URI.java in  » JDK-Core » net » java » net » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. JDK Core
2. JDK Modules
3. JDK Modules com.sun
4. JDK Modules com.sun.java
5. JDK Modules Platform
6. JDK Modules sun
7. Open Source Graphic Library
8. Open Source IDE Eclipse
9. Open Source J2EE
10. Open Source JBOSS
11. Open Source JDBC Driver
12. Open Source Library
13. Open Source Library Database
14. Open Source Net
15. Science
16. Sevlet Container
17. SUN GlassFish
18. Swing Library
19. Web Services apache cxf 2.0.1
20. Web Services AXIS2
21. XML
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
C# / C Sharp
C# / CSharp Tutorial
ASP.Net
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
PHP
Python
SQL Server / T-SQL
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Java Source Code / Java Documentation » JDK Core » net » java.net 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


0001:        /*
0002:         * Copyright 2000-2006 Sun Microsystems, Inc.  All Rights Reserved.
0003:         * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
0004:         *
0005:         * This code is free software; you can redistribute it and/or modify it
0006:         * under the terms of the GNU General Public License version 2 only, as
0007:         * published by the Free Software Foundation.  Sun designates this
0008:         * particular file as subject to the "Classpath" exception as provided
0009:         * by Sun in the LICENSE file that accompanied this code.
0010:         *
0011:         * This code is distributed in the hope that it will be useful, but WITHOUT
0012:         * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
0013:         * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
0014:         * version 2 for more details (a copy is included in the LICENSE file that
0015:         * accompanied this code).
0016:         *
0017:         * You should have received a copy of the GNU General Public License version
0018:         * 2 along with this work; if not, write to the Free Software Foundation,
0019:         * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
0020:         *
0021:         * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
0022:         * CA 95054 USA or visit www.sun.com if you need additional information or
0023:         * have any questions.
0024:         */
0025:
0026:        package java.net;
0027:
0028:        import java.io.IOException;
0029:        import java.io.InvalidObjectException;
0030:        import java.io.ObjectInputStream;
0031:        import java.io.ObjectOutputStream;
0032:        import java.io.Serializable;
0033:        import java.nio.ByteBuffer;
0034:        import java.nio.CharBuffer;
0035:        import java.nio.charset.CharsetDecoder;
0036:        import java.nio.charset.CharsetEncoder;
0037:        import java.nio.charset.CoderResult;
0038:        import java.nio.charset.CodingErrorAction;
0039:        import java.nio.charset.CharacterCodingException;
0040:        import java.text.Normalizer;
0041:        import sun.nio.cs.ThreadLocalCoders;
0042:
0043:        import java.lang.Character; // for javadoc
0044:        import java.lang.NullPointerException; // for javadoc
0045:
0046:        /**
0047:         * Represents a Uniform Resource Identifier (URI) reference.
0048:         *
0049:         * <p> Aside from some minor deviations noted below, an instance of this 
0050:         * class represents a URI reference as defined by
0051:         * <a href="http://www.ietf.org/rfc/rfc2396.txt""><i>RFC&nbsp;2396: Uniform
0052:         * Resource Identifiers (URI): Generic Syntax</i></a>, amended by <a
0053:         * href="http://www.ietf.org/rfc/rfc2732.txt"><i>RFC&nbsp;2732: Format for
0054:         * Literal IPv6 Addresses in URLs</i></a>. The Literal IPv6 address format
0055:         * also supports scope_ids. The syntax and usage of scope_ids is described
0056:         * <a href="Inet6Address.html#scoped">here</a>.
0057:         * This class provides constructors for creating URI instances from
0058:         * their components or by parsing their string forms, methods for accessing the
0059:         * various components of an instance, and methods for normalizing, resolving,
0060:         * and relativizing URI instances.  Instances of this class are immutable.
0061:         *
0062:         *
0063:         * <h4> URI syntax and components </h4>
0064:         *
0065:         * At the highest level a URI reference (hereinafter simply "URI") in string
0066:         * form has the syntax
0067:         *
0068:         * <blockquote>
0069:         * [<i>scheme</i><tt><b>:</b></tt><i></i>]<i>scheme-specific-part</i>[<tt><b>#</b></tt><i>fragment</i>]
0070:         * </blockquote>
0071:         *
0072:         * where square brackets [...] delineate optional components and the characters
0073:         * <tt><b>:</b></tt> and <tt><b>#</b></tt> stand for themselves.
0074:         *
0075:         * <p> An <i>absolute</i> URI specifies a scheme; a URI that is not absolute is
0076:         * said to be <i>relative</i>.  URIs are also classified according to whether
0077:         * they are <i>opaque</i> or <i>hierarchical</i>.
0078:         *
0079:         * <p> An <i>opaque</i> URI is an absolute URI whose scheme-specific part does
0080:         * not begin with a slash character (<tt>'/'</tt>).  Opaque URIs are not
0081:         * subject to further parsing.  Some examples of opaque URIs are:
0082:         *
0083:         * <blockquote><table cellpadding=0 cellspacing=0 summary="layout">
0084:         * <tr><td><tt>mailto:[email protected]</tt><td></tr>
0085:         * <tr><td><tt>news:comp.lang.java</tt><td></tr>
0086:         * <tr><td><tt>urn:isbn:096139210x</tt></td></tr>
0087:         * </table></blockquote>
0088:         *
0089:         * <p> A <i>hierarchical</i> URI is either an absolute URI whose
0090:         * scheme-specific part begins with a slash character, or a relative URI, that
0091:         * is, a URI that does not specify a scheme.  Some examples of hierarchical
0092:         * URIs are:
0093:         *
0094:         * <blockquote>
0095:         * <tt>http://java.sun.com/j2se/1.3/</tt><br>
0096:         * <tt>docs/guide/collections/designfaq.html#28</tt><br>
0097:         * <tt>../../../demo/jfc/SwingSet2/src/SwingSet2.java</tt><br>
0098:         * <tt>file:///~/calendar</tt>
0099:         * </blockquote>
0100:         *
0101:         * <p> A hierarchical URI is subject to further parsing according to the syntax
0102:         *
0103:         * <blockquote>
0104:         * [<i>scheme</i><tt><b>:</b></tt>][<tt><b>//</b></tt><i>authority</i>][<i>path</i>][<tt><b>?</b></tt><i>query</i>][<tt><b>#</b></tt><i>fragment</i>]
0105:         * </blockquote>
0106:         *
0107:         * where the characters <tt><b>:</b></tt>, <tt><b>/</b></tt>,
0108:         * <tt><b>?</b></tt>, and <tt><b>#</b></tt> stand for themselves.  The
0109:         * scheme-specific part of a hierarchical URI consists of the characters
0110:         * between the scheme and fragment components.
0111:         *
0112:         * <p> The authority component of a hierarchical URI is, if specified, either
0113:         * <i>server-based</i> or <i>registry-based</i>.  A server-based authority
0114:         * parses according to the familiar syntax
0115:         *
0116:         * <blockquote>
0117:         * [<i>user-info</i><tt><b>@</b></tt>]<i>host</i>[<tt><b>:</b></tt><i>port</i>]
0118:         * </blockquote>
0119:         *
0120:         * where the characters <tt><b>@</b></tt> and <tt><b>:</b></tt> stand for
0121:         * themselves.  Nearly all URI schemes currently in use are server-based.  An
0122:         * authority component that does not parse in this way is considered to be
0123:         * registry-based.
0124:         *
0125:         * <p> The path component of a hierarchical URI is itself said to be absolute
0126:         * if it begins with a slash character (<tt>'/'</tt>); otherwise it is
0127:         * relative.  The path of a hierarchical URI that is either absolute or
0128:         * specifies an authority is always absolute.
0129:         *
0130:         * <p> All told, then, a URI instance has the following nine components:
0131:         *
0132:         * <blockquote><table summary="Describes the components of a URI:scheme,scheme-specific-part,authority,user-info,host,port,path,query,fragment">
0133:         * <tr><th><i>Component</i></th><th><i>Type</i></th></tr>
0134:         * <tr><td>scheme</td><td><tt>String</tt></td></tr>
0135:         * <tr><td>scheme-specific-part&nbsp;&nbsp;&nbsp;&nbsp;</td><td><tt>String</tt></td></tr>
0136:         * <tr><td>authority</td><td><tt>String</tt></td></tr>
0137:         * <tr><td>user-info</td><td><tt>String</tt></td></tr>
0138:         * <tr><td>host</td><td><tt>String</tt></td></tr>
0139:         * <tr><td>port</td><td><tt>int</tt></td></tr>
0140:         * <tr><td>path</td><td><tt>String</tt></td></tr>
0141:         * <tr><td>query</td><td><tt>String</tt></td></tr>
0142:         * <tr><td>fragment</td><td><tt>String</tt></td></tr>
0143:         * </table></blockquote>
0144:         *
0145:         * In a given instance any particular component is either <i>undefined</i> or
0146:         * <i>defined</i> with a distinct value.  Undefined string components are
0147:         * represented by <tt>null</tt>, while undefined integer components are
0148:         * represented by <tt>-1</tt>.  A string component may be defined to have the
0149:         * empty string as its value; this is not equivalent to that component being
0150:         * undefined.
0151:         *
0152:         * <p> Whether a particular component is or is not defined in an instance
0153:         * depends upon the type of the URI being represented.  An absolute URI has a
0154:         * scheme component.  An opaque URI has a scheme, a scheme-specific part, and
0155:         * possibly a fragment, but has no other components.  A hierarchical URI always
0156:         * has a path (though it may be empty) and a scheme-specific-part (which at
0157:         * least contains the path), and may have any of the other components.  If the
0158:         * authority component is present and is server-based then the host component
0159:         * will be defined and the user-information and port components may be defined.
0160:         *
0161:         *
0162:         * <h4> Operations on URI instances </h4>
0163:         *
0164:         * The key operations supported by this class are those of
0165:         * <i>normalization</i>, <i>resolution</i>, and <i>relativization</i>.
0166:         *
0167:         * <p> <i>Normalization</i> is the process of removing unnecessary <tt>"."</tt>
0168:         * and <tt>".."</tt> segments from the path component of a hierarchical URI.
0169:         * Each <tt>"."</tt> segment is simply removed.  A <tt>".."</tt> segment is
0170:         * removed only if it is preceded by a non-<tt>".."</tt> segment.
0171:         * Normalization has no effect upon opaque URIs.
0172:         *
0173:         * <p> <i>Resolution</i> is the process of resolving one URI against another,
0174:         * <i>base</i> URI.  The resulting URI is constructed from components of both
0175:         * URIs in the manner specified by RFC&nbsp;2396, taking components from the
0176:         * base URI for those not specified in the original.  For hierarchical URIs,
0177:         * the path of the original is resolved against the path of the base and then
0178:         * normalized.  The result, for example, of resolving
0179:         *
0180:         * <blockquote>
0181:         * <tt>docs/guide/collections/designfaq.html#28&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</tt>(1)
0182:         * </blockquote>
0183:         *
0184:         * against the base URI <tt>http://java.sun.com/j2se/1.3/</tt> is the result
0185:         * URI
0186:         *
0187:         * <blockquote>
0188:         * <tt>http://java.sun.com/j2se/1.3/docs/guide/collections/designfaq.html#28</tt>
0189:         * </blockquote>
0190:         *
0191:         * Resolving the relative URI
0192:         *
0193:         * <blockquote>
0194:         * <tt>../../../demo/jfc/SwingSet2/src/SwingSet2.java&nbsp;&nbsp;&nbsp;&nbsp;</tt>(2)
0195:         * </blockquote>
0196:         *
0197:         * against this result yields, in turn,
0198:         *
0199:         * <blockquote>
0200:         * <tt>http://java.sun.com/j2se/1.3/demo/jfc/SwingSet2/src/SwingSet2.java</tt>
0201:         * </blockquote>
0202:         *
0203:         * Resolution of both absolute and relative URIs, and of both absolute and
0204:         * relative paths in the case of hierarchical URIs, is supported.  Resolving
0205:         * the URI <tt>file:///~calendar</tt> against any other URI simply yields the
0206:         * original URI, since it is absolute.  Resolving the relative URI (2) above
0207:         * against the relative base URI (1) yields the normalized, but still relative,
0208:         * URI
0209:         *
0210:         * <blockquote>
0211:         * <tt>demo/jfc/SwingSet2/src/SwingSet2.java</tt>
0212:         * </blockquote>
0213:         *
0214:         * <p> <i>Relativization</i>, finally, is the inverse of resolution: For any
0215:         * two normalized URIs <i>u</i> and&nbsp;<i>v</i>,
0216:         *
0217:         * <blockquote>
0218:         *   <i>u</i><tt>.relativize(</tt><i>u</i><tt>.resolve(</tt><i>v</i><tt>)).equals(</tt><i>v</i><tt>)</tt>&nbsp;&nbsp;and<br>
0219:         *   <i>u</i><tt>.resolve(</tt><i>u</i><tt>.relativize(</tt><i>v</i><tt>)).equals(</tt><i>v</i><tt>)</tt>&nbsp;&nbsp;.<br>
0220:         * </blockquote>
0221:         *
0222:         * This operation is often useful when constructing a document containing URIs
0223:         * that must be made relative to the base URI of the document wherever
0224:         * possible.  For example, relativizing the URI
0225:         *
0226:         * <blockquote>
0227:         * <tt>http://java.sun.com/j2se/1.3/docs/guide/index.html</tt>
0228:         * </blockquote>
0229:         *
0230:         * against the base URI
0231:         *
0232:         * <blockquote>
0233:         * <tt>http://java.sun.com/j2se/1.3</tt>
0234:         * </blockquote>
0235:         *
0236:         * yields the relative URI <tt>docs/guide/index.html</tt>.
0237:         *
0238:         *
0239:         * <h4> Character categories </h4>
0240:         *
0241:         * RFC&nbsp;2396 specifies precisely which characters are permitted in the
0242:         * various components of a URI reference.  The following categories, most of
0243:         * which are taken from that specification, are used below to describe these
0244:         * constraints:
0245:         *
0246:         * <blockquote><table cellspacing=2 summary="Describes categories alpha,digit,alphanum,unreserved,punct,reserved,escaped,and other">
0247:         *   <tr><th valign=top><i>alpha</i></th>
0248:         *       <td>The US-ASCII alphabetic characters,
0249:         * 	  <tt>'A'</tt>&nbsp;through&nbsp;<tt>'Z'</tt>
0250:         * 	  and <tt>'a'</tt>&nbsp;through&nbsp;<tt>'z'</tt></td></tr>
0251:         *   <tr><th valign=top><i>digit</i></th>
0252:         *       <td>The US-ASCII decimal digit characters,
0253:         *       <tt>'0'</tt>&nbsp;through&nbsp;<tt>'9'</tt></td></tr>
0254:         *   <tr><th valign=top><i>alphanum</i></th>
0255:         *       <td>All <i>alpha</i> and <i>digit</i> characters</td></tr>
0256:         *   <tr><th valign=top><i>unreserved</i>&nbsp;&nbsp;&nbsp;&nbsp;</th>
0257:         *       <td>All <i>alphanum</i> characters together with those in the string
0258:         * 	  <tt>"_-!.~'()*"</tt></td></tr>
0259:         *   <tr><th valign=top><i>punct</i></th>
0260:         *       <td>The characters in the string <tt>",;:$&+="</tt></td></tr>
0261:         *   <tr><th valign=top><i>reserved</i></th>
0262:         *       <td>All <i>punct</i> characters together with those in the string
0263:         * 	  <tt>"?/[]@"</tt></td></tr>
0264:         *   <tr><th valign=top><i>escaped</i></th>
0265:         *       <td>Escaped octets, that is, triplets consisting of the percent
0266:         *           character (<tt>'%'</tt>) followed by two hexadecimal digits
0267:         *           (<tt>'0'</tt>-<tt>'9'</tt>, <tt>'A'</tt>-<tt>'F'</tt>, and
0268:         *           <tt>'a'</tt>-<tt>'f'</tt>)</td></tr>
0269:         *   <tr><th valign=top><i>other</i></th>
0270:         *       <td>The Unicode characters that are not in the US-ASCII character set,
0271:         *           are not control characters (according to the {@link
0272:         *           java.lang.Character#isISOControl(char) Character.isISOControl}
0273:         * 	     method), and are not space characters (according to the {@link
0274:         * 	     java.lang.Character#isSpaceChar(char) Character.isSpaceChar}
0275:         * 	     method)&nbsp;&nbsp;<i>(<b>Deviation from RFC 2396</b>, which is
0276:         * 	     limited to US-ASCII)</i></td></tr>
0277:         * </table></blockquote>
0278:         *
0279:         * <p><a name="legal-chars"></a> The set of all legal URI characters consists of
0280:         * the <i>unreserved</i>, <i>reserved</i>, <i>escaped</i>, and <i>other</i>
0281:         * characters.
0282:         *
0283:         *
0284:         * <h4> Escaped octets, quotation, encoding, and decoding </h4>
0285:         *
0286:         * RFC 2396 allows escaped octets to appear in the user-info, path, query, and
0287:         * fragment components.  Escaping serves two purposes in URIs:
0288:         *
0289:         * <ul>
0290:         *
0291:         *   <li><p> To <i>encode</i> non-US-ASCII characters when a URI is required to
0292:         *   conform strictly to RFC&nbsp;2396 by not containing any <i>other</i>
0293:         *   characters.  </p></li>
0294:         *
0295:         *   <li><p> To <i>quote</i> characters that are otherwise illegal in a
0296:         *   component.  The user-info, path, query, and fragment components differ
0297:         *   slightly in terms of which characters are considered legal and illegal.
0298:         *   </p></li>
0299:         *
0300:         * </ul>
0301:         *
0302:         * These purposes are served in this class by three related operations:
0303:         *
0304:         * <ul>
0305:         *
0306:         *   <li><p><a name="encode"></a> A character is <i>encoded</i> by replacing it
0307:         *   with the sequence of escaped octets that represent that character in the
0308:         *   UTF-8 character set.  The Euro currency symbol (<tt>'&#92;u20AC'</tt>),
0309:         *   for example, is encoded as <tt>"%E2%82%AC"</tt>.  <i>(<b>Deviation from
0310:         *   RFC&nbsp;2396</b>, which does not specify any particular character
0311:         *   set.)</i> </p></li>
0312:         *
0313:         *   <li><p><a name="quote"></a> An illegal character is <i>quoted</i> simply by
0314:         *   encoding it.  The space character, for example, is quoted by replacing it
0315:         *   with <tt>"%20"</tt>.  UTF-8 contains US-ASCII, hence for US-ASCII
0316:         *   characters this transformation has exactly the effect required by
0317:         *   RFC&nbsp;2396. </p></li>
0318:         *
0319:         *   <li><p><a name="decode"></a>
0320:         *   A sequence of escaped octets is <i>decoded</i> by
0321:         *   replacing it with the sequence of characters that it represents in the
0322:         *   UTF-8 character set.  UTF-8 contains US-ASCII, hence decoding has the
0323:         *   effect of de-quoting any quoted US-ASCII characters as well as that of
0324:         *   decoding any encoded non-US-ASCII characters.  If a <a
0325:         *   href="../nio/charset/CharsetDecoder.html#ce">decoding error</a> occurs
0326:         *   when decoding the escaped octets then the erroneous octets are replaced by
0327:         *   <tt>'&#92;uFFFD'</tt>, the Unicode replacement character.  </p></li>
0328:         *
0329:         * </ul>
0330:         *
0331:         * These operations are exposed in the constructors and methods of this class
0332:         * as follows:
0333:         *
0334:         * <ul>
0335:         *
0336:         *   <li><p> The {@link #URI(java.lang.String) <code>single-argument
0337:         *   constructor</code>} requires any illegal characters in its argument to be
0338:         *   quoted and preserves any escaped octets and <i>other</i> characters that
0339:         *   are present.  </p></li>
0340:         *
0341:         *   <li><p> The {@link
0342:         *   #URI(java.lang.String,java.lang.String,java.lang.String,int,java.lang.String,java.lang.String,java.lang.String)
0343:         *   <code>multi-argument constructors</code>} quote illegal characters as
0344:         *   required by the components in which they appear.  The percent character
0345:         *   (<tt>'%'</tt>) is always quoted by these constructors.  Any <i>other</i>
0346:         *   characters are preserved.  </p></li>
0347:         *
0348:         *   <li><p> The {@link #getRawUserInfo() getRawUserInfo}, {@link #getRawPath()
0349:         *   getRawPath}, {@link #getRawQuery() getRawQuery}, {@link #getRawFragment()
0350:         *   getRawFragment}, {@link #getRawAuthority() getRawAuthority}, and {@link
0351:         *   #getRawSchemeSpecificPart() getRawSchemeSpecificPart} methods return the
0352:         *   values of their corresponding components in raw form, without interpreting
0353:         *   any escaped octets.  The strings returned by these methods may contain
0354:         *   both escaped octets and <i>other</i> characters, and will not contain any
0355:         *   illegal characters.  </p></li>
0356:         *
0357:         *   <li><p> The {@link #getUserInfo() getUserInfo}, {@link #getPath()
0358:         *   getPath}, {@link #getQuery() getQuery}, {@link #getFragment()
0359:         *   getFragment}, {@link #getAuthority() getAuthority}, and {@link
0360:         *   #getSchemeSpecificPart() getSchemeSpecificPart} methods decode any escaped
0361:         *   octets in their corresponding components.  The strings returned by these
0362:         *   methods may contain both <i>other</i> characters and illegal characters,
0363:         *   and will not contain any escaped octets.  </p></li>
0364:         *
0365:         *   <li><p> The {@link #toString() toString} method returns a URI string with
0366:         *   all necessary quotation but which may contain <i>other</i> characters.
0367:         *   </p></li>
0368:         *
0369:         *   <li><p> The {@link #toASCIIString() toASCIIString} method returns a fully
0370:         *   quoted and encoded URI string that does not contain any <i>other</i>
0371:         *   characters.  </p></li>
0372:         *
0373:         * </ul>
0374:         *
0375:         *
0376:         * <h4> Identities </h4>
0377:         *
0378:         * For any URI <i>u</i>, it is always the case that
0379:         *
0380:         * <blockquote>
0381:         * <tt>new URI(</tt><i>u</i><tt>.toString()).equals(</tt><i>u</i><tt>)</tt>&nbsp;.
0382:         * </blockquote>
0383:         *
0384:         * For any URI <i>u</i> that does not contain redundant syntax such as two
0385:         * slashes before an empty authority (as in <tt>file:///tmp/</tt>&nbsp;) or a
0386:         * colon following a host name but no port (as in
0387:         * <tt>http://java.sun.com:</tt>&nbsp;), and that does not encode characters
0388:         * except those that must be quoted, the following identities also hold:
0389:         *
0390:         * <blockquote>
0391:         * <tt>new URI(</tt><i>u</i><tt>.getScheme(),<br>
0392:         * &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</tt><i>u</i><tt>.getSchemeSpecificPart(),<br>
0393:         * &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</tt><i>u</i><tt>.getFragment())<br>
0394:         * .equals(</tt><i>u</i><tt>)</tt>
0395:         * </blockquote>
0396:         *
0397:         * in all cases,
0398:         *
0399:         * <blockquote>
0400:         * <tt>new URI(</tt><i>u</i><tt>.getScheme(),<br>
0401:         * &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</tt><i>u</i><tt>.getUserInfo(),&nbsp;</tt><i>u</i><tt>.getAuthority(),<br>
0402:         * &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</tt><i>u</i><tt>.getPath(),&nbsp;</tt><i>u</i><tt>.getQuery(),<br>
0403:         * &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</tt><i>u</i><tt>.getFragment())<br>
0404:         * .equals(</tt><i>u</i><tt>)</tt>
0405:         * </blockquote>
0406:         *
0407:         * if <i>u</i> is hierarchical, and
0408:         *
0409:         * <blockquote>
0410:         * <tt>new URI(</tt><i>u</i><tt>.getScheme(),<br>
0411:         * &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</tt><i>u</i><tt>.getUserInfo(),&nbsp;</tt><i>u</i><tt>.getHost(),&nbsp;</tt><i>u</i><tt>.getPort(),<br>
0412:         * &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</tt><i>u</i><tt>.getPath(),&nbsp;</tt><i>u</i><tt>.getQuery(),<br>
0413:         * &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</tt><i>u</i><tt>.getFragment())<br>
0414:         * .equals(</tt><i>u</i><tt>)</tt>
0415:         * </blockquote>
0416:         *
0417:         * if <i>u</i> is hierarchical and has either no authority or a server-based
0418:         * authority.
0419:         *
0420:         *
0421:         * <h4> URIs, URLs, and URNs </h4>
0422:         *
0423:         * A URI is a uniform resource <i>identifier</i> while a URL is a uniform
0424:         * resource <i>locator</i>.  Hence every URL is a URI, abstractly speaking, but
0425:         * not every URI is a URL.  This is because there is another subcategory of
0426:         * URIs, uniform resource <i>names</i> (URNs), which name resources but do not
0427:         * specify how to locate them.  The <tt>mailto</tt>, <tt>news</tt>, and
0428:         * <tt>isbn</tt> URIs shown above are examples of URNs.
0429:         *
0430:         * <p> The conceptual distinction between URIs and URLs is reflected in the
0431:         * differences between this class and the {@link URL} class.
0432:         *
0433:         * <p> An instance of this class represents a URI reference in the syntactic
0434:         * sense defined by RFC&nbsp;2396.  A URI may be either absolute or relative.
0435:         * A URI string is parsed according to the generic syntax without regard to the
0436:         * scheme, if any, that it specifies.  No lookup of the host, if any, is
0437:         * performed, and no scheme-dependent stream handler is constructed.  Equality,
0438:         * hashing, and comparison are defined strictly in terms of the character
0439:         * content of the instance.  In other words, a URI instance is little more than
0440:         * a structured string that supports the syntactic, scheme-independent
0441:         * operations of comparison, normalization, resolution, and relativization.
0442:         *
0443:         * <p> An instance of the {@link URL} class, by contrast, represents the
0444:         * syntactic components of a URL together with some of the information required
0445:         * to access the resource that it describes.  A URL must be absolute, that is,
0446:         * it must always specify a scheme.  A URL string is parsed according to its
0447:         * scheme.  A stream handler is always established for a URL, and in fact it is
0448:         * impossible to create a URL instance for a scheme for which no handler is
0449:         * available.  Equality and hashing depend upon both the scheme and the
0450:         * Internet address of the host, if any; comparison is not defined.  In other
0451:         * words, a URL is a structured string that supports the syntactic operation of
0452:         * resolution as well as the network I/O operations of looking up the host and
0453:         * opening a connection to the specified resource.
0454:         *
0455:         *
0456:         * @version 1.55, 07/05/05
0457:         * @author Mark Reinhold
0458:         * @since 1.4
0459:         *
0460:         * @see <a href="http://ietf.org/rfc/rfc2279.txt"><i>RFC&nbsp;2279: UTF-8, a
0461:         * transformation format of ISO 10646</i></a>, <br><a
0462:         * href="http://www.ietf.org/rfc/rfc2373.txt"><i>RFC&nbsp;2373: IPv6 Addressing
0463:         * Architecture</i></a>, <br><a
0464:         * href="http://www.ietf.org/rfc/rfc2396.txt""><i>RFC&nbsp;2396: Uniform
0465:         * Resource Identifiers (URI): Generic Syntax</i></a>, <br><a
0466:         * href="http://www.ietf.org/rfc/rfc2732.txt"><i>RFC&nbsp;2732: Format for
0467:         * Literal IPv6 Addresses in URLs</i></a>, <br><a
0468:         * href="URISyntaxException.html">URISyntaxException</a>
0469:         */
0470:
0471:        public final class URI implements  Comparable<URI>, Serializable {
0472:
0473:            // Note: Comments containing the word "ASSERT" indicate places where a
0474:            // throw of an InternalError should be replaced by an appropriate assertion
0475:            // statement once asserts are enabled in the build.
0476:
0477:            static final long serialVersionUID = -6052424284110960213L;
0478:
0479:            // -- Properties and components of this instance --
0480:
0481:            // Components of all URIs: [<scheme>:]<scheme-specific-part>[#<fragment>]
0482:            private transient String scheme; // null ==> relative URI
0483:            private transient String fragment;
0484:
0485:            // Hierarchical URI components: [//<authority>]<path>[?<query>]
0486:            private transient String authority; // Registry or server
0487:
0488:            // Server-based authority: [<userInfo>@]<host>[:<port>]
0489:            private transient String userInfo;
0490:            private transient String host; // null ==> registry-based
0491:            private transient int port = -1; // -1 ==> undefined
0492:
0493:            // Remaining components of hierarchical URIs
0494:            private transient String path; // null ==> opaque
0495:            private transient String query;
0496:
0497:            // The remaining fields may be computed on demand
0498:
0499:            private volatile transient String schemeSpecificPart;
0500:            private volatile transient int hash; // Zero ==> undefined
0501:
0502:            private volatile transient String decodedUserInfo = null;
0503:            private volatile transient String decodedAuthority = null;
0504:            private volatile transient String decodedPath = null;
0505:            private volatile transient String decodedQuery = null;
0506:            private volatile transient String decodedFragment = null;
0507:            private volatile transient String decodedSchemeSpecificPart = null;
0508:
0509:            /**
0510:             * The string form of this URI.
0511:             *
0512:             * @serial
0513:             */
0514:            private volatile String string; // The only serializable field
0515:
0516:            // -- Constructors and factories --
0517:
0518:            private URI() {
0519:            } // Used internally
0520:
0521:            /**
0522:             * Constructs a URI by parsing the given string.
0523:             *
0524:             * <p> This constructor parses the given string exactly as specified by the
0525:             * grammar in <a
0526:             * href="http://www.ietf.org/rfc/rfc2396.txt">RFC&nbsp;2396</a>,
0527:             * Appendix&nbsp;A, <b><i>except for the following deviations:</i></b> </p>
0528:             *
0529:             * <ul type=disc>
0530:             *
0531:             *   <li><p> An empty authority component is permitted as long as it is
0532:             *   followed by a non-empty path, a query component, or a fragment
0533:             *   component.  This allows the parsing of URIs such as
0534:             *   <tt>"file:///foo/bar"</tt>, which seems to be the intent of
0535:             *   RFC&nbsp;2396 although the grammar does not permit it.  If the
0536:             *   authority component is empty then the user-information, host, and port
0537:             *   components are undefined. </p></li>
0538:             *
0539:             *   <li><p> Empty relative paths are permitted; this seems to be the
0540:             *   intent of RFC&nbsp;2396 although the grammar does not permit it.  The
0541:             *   primary consequence of this deviation is that a standalone fragment
0542:             *   such as <tt>"#foo"</tt> parses as a relative URI with an empty path
0543:             *   and the given fragment, and can be usefully <a
0544:             *   href="#resolve-frag">resolved</a> against a base URI.
0545:             *
0546:             *   <li><p> IPv4 addresses in host components are parsed rigorously, as
0547:             *   specified by <a
0548:             *   href="http://www.ietf.org/rfc/rfc2732.txt">RFC&nbsp;2732</a>: Each
0549:             *   element of a dotted-quad address must contain no more than three
0550:             *   decimal digits.  Each element is further constrained to have a value
0551:             *   no greater than 255. </p></li>
0552:             *
0553:             *   <li> <p> Hostnames in host components that comprise only a single
0554:             *   domain label are permitted to start with an <i>alphanum</i> 
0555:             *   character. This seems to be the intent of <a
0556:             *   href="http://www.ietf.org/rfc/rfc2396.txt">RFC&nbsp;2396</a>
0557:             *   section&nbsp;3.2.2 although the grammar does not permit it. The
0558:             *   consequence of this deviation is that the authority component of a
0559:             *   hierarchical URI such as <tt>s://123</tt>, will parse as a server-based 
0560:             *   authority. </p></li>
0561:             *
0562:             *   <li><p> IPv6 addresses are permitted for the host component.  An IPv6
0563:             *   address must be enclosed in square brackets (<tt>'['</tt> and
0564:             *   <tt>']'</tt>) as specified by <a
0565:             *   href="http://www.ietf.org/rfc/rfc2732.txt">RFC&nbsp;2732</a>.  The
0566:             *   IPv6 address itself must parse according to <a
0567:             *   href="http://www.ietf.org/rfc/rfc2373.txt">RFC&nbsp;2373</a>.  IPv6
0568:             *   addresses are further constrained to describe no more than sixteen
0569:             *   bytes of address information, a constraint implicit in RFC&nbsp;2373
0570:             *   but not expressible in the grammar. </p></li>
0571:             *
0572:             *   <li><p> Characters in the <i>other</i> category are permitted wherever
0573:             *   RFC&nbsp;2396 permits <i>escaped</i> octets, that is, in the
0574:             *   user-information, path, query, and fragment components, as well as in
0575:             *   the authority component if the authority is registry-based.  This
0576:             *   allows URIs to contain Unicode characters beyond those in the US-ASCII
0577:             *   character set. </p></li>
0578:             *
0579:             * </ul>
0580:             *
0581:             * @param  str   The string to be parsed into a URI
0582:             *
0583:             * @throws  NullPointerException
0584:             *          If <tt>str</tt> is <tt>null</tt>
0585:             *
0586:             * @throws  URISyntaxException
0587:             *          If the given string violates RFC&nbsp;2396, as augmented
0588:             *          by the above deviations
0589:             */
0590:            public URI(String str) throws URISyntaxException {
0591:                new Parser(str).parse(false);
0592:            }
0593:
0594:            /**
0595:             * Constructs a hierarchical URI from the given components.
0596:             *
0597:             * <p> If a scheme is given then the path, if also given, must either be
0598:             * empty or begin with a slash character (<tt>'/'</tt>).  Otherwise a
0599:             * component of the new URI may be left undefined by passing <tt>null</tt>
0600:             * for the corresponding parameter or, in the case of the <tt>port</tt>
0601:             * parameter, by passing <tt>-1</tt>.
0602:             *
0603:             * <p> This constructor first builds a URI string from the given components
0604:             * according to the rules specified in <a
0605:             * href="http://www.ietf.org/rfc/rfc2396.txt">RFC&nbsp;2396</a>,
0606:             * section&nbsp;5.2, step&nbsp;7: </p>
0607:             *
0608:             * <ol>
0609:             *
0610:             *   <li><p> Initially, the result string is empty. </p></li>
0611:             *
0612:             *   <li><p> If a scheme is given then it is appended to the result,
0613:             *   followed by a colon character (<tt>':'</tt>).  </p></li>
0614:             *
0615:             *   <li><p> If user information, a host, or a port are given then the
0616:             *   string <tt>"//"</tt> is appended.  </p></li>
0617:             *
0618:             *   <li><p> If user information is given then it is appended, followed by
0619:             *   a commercial-at character (<tt>'@'</tt>).  Any character not in the
0620:             *   <i>unreserved</i>, <i>punct</i>, <i>escaped</i>, or <i>other</i>
0621:             *   categories is <a href="#quote">quoted</a>.  </p></li>
0622:             *
0623:             *   <li><p> If a host is given then it is appended.  If the host is a
0624:             *   literal IPv6 address but is not enclosed in square brackets
0625:             *   (<tt>'['</tt> and <tt>']'</tt>) then the square brackets are added.
0626:             *   </p></li>
0627:             *
0628:             *   <li><p> If a port number is given then a colon character
0629:             *   (<tt>':'</tt>) is appended, followed by the port number in decimal.
0630:             *   </p></li>
0631:             *
0632:             *   <li><p> If a path is given then it is appended.  Any character not in
0633:             *   the <i>unreserved</i>, <i>punct</i>, <i>escaped</i>, or <i>other</i>
0634:             *   categories, and not equal to the slash character (<tt>'/'</tt>) or the
0635:             *   commercial-at character (<tt>'@'</tt>), is quoted.  </p></li>
0636:             *
0637:             *   <li><p> If a query is given then a question-mark character
0638:             *   (<tt>'?'</tt>) is appended, followed by the query.  Any character that
0639:             *   is not a <a href="#legal-chars">legal URI character</a> is quoted.
0640:             *   </p></li>
0641:             *
0642:             *   <li><p> Finally, if a fragment is given then a hash character
0643:             *   (<tt>'#'</tt>) is appended, followed by the fragment.  Any character
0644:             *   that is not a legal URI character is quoted.  </p></li>
0645:             *
0646:             * </ol>
0647:             *
0648:             * <p> The resulting URI string is then parsed as if by invoking the {@link
0649:             * #URI(String)} constructor and then invoking the {@link
0650:             * #parseServerAuthority()} method upon the result; this may cause a {@link
0651:             * URISyntaxException} to be thrown.  </p>
0652:             *
0653:             * @param   scheme    Scheme name
0654:             * @param   userInfo  User name and authorization information
0655:             * @param   host      Host name
0656:             * @param   port      Port number
0657:             * @param   path      Path
0658:             * @param   query     Query
0659:             * @param   fragment  Fragment
0660:             *
0661:             * @throws URISyntaxException
0662:             *         If both a scheme and a path are given but the path is relative,
0663:             *         if the URI string constructed from the given components violates
0664:             *         RFC&nbsp;2396, or if the authority component of the string is
0665:             *         present but cannot be parsed as a server-based authority
0666:             */
0667:            public URI(String scheme, String userInfo, String host, int port,
0668:                    String path, String query, String fragment)
0669:                    throws URISyntaxException {
0670:                String s = toString(scheme, null, null, userInfo, host, port,
0671:                        path, query, fragment);
0672:                checkPath(s, scheme, path);
0673:                new Parser(s).parse(true);
0674:            }
0675:
0676:            /**
0677:             * Constructs a hierarchical URI from the given components.
0678:             *
0679:             * <p> If a scheme is given then the path, if also given, must either be
0680:             * empty or begin with a slash character (<tt>'/'</tt>).  Otherwise a
0681:             * component of the new URI may be left undefined by passing <tt>null</tt>
0682:             * for the corresponding parameter.
0683:             *
0684:             * <p> This constructor first builds a URI string from the given components
0685:             * according to the rules specified in <a
0686:             * href="http://www.ietf.org/rfc/rfc2396.txt">RFC&nbsp;2396</a>,
0687:             * section&nbsp;5.2, step&nbsp;7: </p>
0688:             *
0689:             * <ol>
0690:             *
0691:             *   <li><p> Initially, the result string is empty.  </p></li>
0692:             *
0693:             *   <li><p> If a scheme is given then it is appended to the result,
0694:             *   followed by a colon character (<tt>':'</tt>).  </p></li>
0695:             *
0696:             *   <li><p> If an authority is given then the string <tt>"//"</tt> is
0697:             *   appended, followed by the authority.  If the authority contains a
0698:             *   literal IPv6 address then the address must be enclosed in square
0699:             *   brackets (<tt>'['</tt> and <tt>']'</tt>).  Any character not in the
0700:             *   <i>unreserved</i>, <i>punct</i>, <i>escaped</i>, or <i>other</i>
0701:             *   categories, and not equal to the commercial-at character
0702:             *   (<tt>'@'</tt>), is <a href="#quote">quoted</a>.  </p></li>
0703:             *
0704:             *   <li><p> If a path is given then it is appended.  Any character not in
0705:             *   the <i>unreserved</i>, <i>punct</i>, <i>escaped</i>, or <i>other</i>
0706:             *   categories, and not equal to the slash character (<tt>'/'</tt>) or the
0707:             *   commercial-at character (<tt>'@'</tt>), is quoted.  </p></li>
0708:             *
0709:             *   <li><p> If a query is given then a question-mark character
0710:             *   (<tt>'?'</tt>) is appended, followed by the query.  Any character that
0711:             *   is not a <a href="#legal-chars">legal URI character</a> is quoted.
0712:             *   </p></li>
0713:             *
0714:             *   <li><p> Finally, if a fragment is given then a hash character
0715:             *   (<tt>'#'</tt>) is appended, followed by the fragment.  Any character
0716:             *   that is not a legal URI character is quoted.  </p></li>
0717:             *
0718:             * </ol>
0719:             *
0720:             * <p> The resulting URI string is then parsed as if by invoking the {@link
0721:             * #URI(String)} constructor and then invoking the {@link
0722:             * #parseServerAuthority()} method upon the result; this may cause a {@link
0723:             * URISyntaxException} to be thrown.  </p>
0724:             *
0725:             * @param   scheme     Scheme name
0726:             * @param   authority  Authority
0727:             * @param   path       Path
0728:             * @param   query      Query
0729:             * @param   fragment   Fragment
0730:             *
0731:             * @throws URISyntaxException
0732:             *         If both a scheme and a path are given but the path is relative,
0733:             *         if the URI string constructed from the given components violates
0734:             *         RFC&nbsp;2396, or if the authority component of the string is
0735:             *         present but cannot be parsed as a server-based authority
0736:             */
0737:            public URI(String scheme, String authority, String path,
0738:                    String query, String fragment) throws URISyntaxException {
0739:                String s = toString(scheme, null, authority, null, null, -1,
0740:                        path, query, fragment);
0741:                checkPath(s, scheme, path);
0742:                new Parser(s).parse(false);
0743:            }
0744:
0745:            /**
0746:             * Constructs a hierarchical URI from the given components.
0747:             *
0748:             * <p> A component may be left undefined by passing <tt>null</tt>.
0749:             *
0750:             * <p> This convenience constructor works as if by invoking the
0751:             * seven-argument constructor as follows:
0752:             *
0753:             * <blockquote><tt>
0754:             * new&nbsp;{@link #URI(String, String, String, int, String, String, String)
0755:             * URI}(scheme,&nbsp;null,&nbsp;host,&nbsp;-1,&nbsp;path,&nbsp;null,&nbsp;fragment);
0756:             * </tt></blockquote>
0757:             *
0758:             * @param   scheme    Scheme name
0759:             * @param   host      Host name
0760:             * @param   path      Path
0761:             * @param   fragment  Fragment
0762:             *
0763:             * @throws  URISyntaxException
0764:             *          If the URI string constructed from the given components
0765:             *          violates RFC&nbsp;2396
0766:             */
0767:            public URI(String scheme, String host, String path, String fragment)
0768:                    throws URISyntaxException {
0769:                this (scheme, null, host, -1, path, null, fragment);
0770:            }
0771:
0772:            /**
0773:             * Constructs a URI from the given components.
0774:             *
0775:             * <p> A component may be left undefined by passing <tt>null</tt>.
0776:             *
0777:             * <p> This constructor first builds a URI in string form using the given
0778:             * components as follows:  </p>
0779:             *
0780:             * <ol>
0781:             *
0782:             *   <li><p> Initially, the result string is empty.  </p></li>
0783:             *
0784:             *   <li><p> If a scheme is given then it is appended to the result,
0785:             *   followed by a colon character (<tt>':'</tt>).  </p></li>
0786:             *
0787:             *   <li><p> If a scheme-specific part is given then it is appended.  Any
0788:             *   character that is not a <a href="#legal-chars">legal URI character</a>
0789:             *   is <a href="#quote">quoted</a>.  </p></li>
0790:             *
0791:             *   <li><p> Finally, if a fragment is given then a hash character
0792:             *   (<tt>'#'</tt>) is appended to the string, followed by the fragment.
0793:             *   Any character that is not a legal URI character is quoted.  </p></li>
0794:             *
0795:             * </ol>
0796:             *
0797:             * <p> The resulting URI string is then parsed in order to create the new
0798:             * URI instance as if by invoking the {@link #URI(String)} constructor;
0799:             * this may cause a {@link URISyntaxException} to be thrown.  </p>
0800:             *
0801:             * @param   scheme    Scheme name
0802:             * @param   ssp       Scheme-specific part
0803:             * @param   fragment  Fragment
0804:             *
0805:             * @throws  URISyntaxException
0806:             *          If the URI string constructed from the given components
0807:             *          violates RFC&nbsp;2396
0808:             */
0809:            public URI(String scheme, String ssp, String fragment)
0810:                    throws URISyntaxException {
0811:                new Parser(toString(scheme, ssp, null, null, null, -1, null,
0812:                        null, fragment)).parse(false);
0813:            }
0814:
0815:            /**
0816:             * Creates a URI by parsing the given string.
0817:             *
0818:             * <p> This convenience factory method works as if by invoking the {@link
0819:             * #URI(String)} constructor; any {@link URISyntaxException} thrown by the
0820:             * constructor is caught and wrapped in a new {@link
0821:             * IllegalArgumentException} object, which is then thrown.
0822:             *
0823:             * <p> This method is provided for use in situations where it is known that
0824:             * the given string is a legal URI, for example for URI constants declared
0825:             * within in a program, and so it would be considered a programming error
0826:             * for the string not to parse as such.  The constructors, which throw
0827:             * {@link URISyntaxException} directly, should be used situations where a
0828:             * URI is being constructed from user input or from some other source that
0829:             * may be prone to errors.  </p>
0830:             *
0831:             * @param  str   The string to be parsed into a URI
0832:             * @return The new URI
0833:             *
0834:             * @throws  NullPointerException
0835:             *          If <tt>str</tt> is <tt>null</tt>
0836:             *
0837:             * @throws  IllegalArgumentException
0838:             *          If the given string violates RFC&nbsp;2396
0839:             */
0840:            public static URI create(String str) {
0841:                try {
0842:                    return new URI(str);
0843:                } catch (URISyntaxException x) {
0844:                    IllegalArgumentException y = new IllegalArgumentException();
0845:                    y.initCause(x);
0846:                    throw y;
0847:                }
0848:            }
0849:
0850:            // -- Operations --
0851:
0852:            /**
0853:             * Attempts to parse this URI's authority component, if defined, into
0854:             * user-information, host, and port components.
0855:             *
0856:             * <p> If this URI's authority component has already been recognized as
0857:             * being server-based then it will already have been parsed into
0858:             * user-information, host, and port components.  In this case, or if this
0859:             * URI has no authority component, this method simply returns this URI.
0860:             *
0861:             * <p> Otherwise this method attempts once more to parse the authority
0862:             * component into user-information, host, and port components, and throws
0863:             * an exception describing why the authority component could not be parsed
0864:             * in that way.
0865:             *
0866:             * <p> This method is provided because the generic URI syntax specified in
0867:             * <a href="http://www.ietf.org/rfc/rfc2396.txt">RFC&nbsp;2396</a>
0868:             * cannot always distinguish a malformed server-based authority from a
0869:             * legitimate registry-based authority.  It must therefore treat some
0870:             * instances of the former as instances of the latter.  The authority
0871:             * component in the URI string <tt>"//foo:bar"</tt>, for example, is not a
0872:             * legal server-based authority but it is legal as a registry-based
0873:             * authority.
0874:             *
0875:             * <p> In many common situations, for example when working URIs that are
0876:             * known to be either URNs or URLs, the hierarchical URIs being used will
0877:             * always be server-based.  They therefore must either be parsed as such or
0878:             * treated as an error.  In these cases a statement such as
0879:             *
0880:             * <blockquote>
0881:             * <tt>URI </tt><i>u</i><tt> = new URI(str).parseServerAuthority();</tt>
0882:             * </blockquote>
0883:             *
0884:             * <p> can be used to ensure that <i>u</i> always refers to a URI that, if
0885:             * it has an authority component, has a server-based authority with proper
0886:             * user-information, host, and port components.  Invoking this method also
0887:             * ensures that if the authority could not be parsed in that way then an
0888:             * appropriate diagnostic message can be issued based upon the exception
0889:             * that is thrown. </p>
0890:             *
0891:             * @return  A URI whose authority field has been parsed
0892:             *          as a server-based authority
0893:             *
0894:             * @throws  URISyntaxException
0895:             *          If the authority component of this URI is defined
0896:             *          but cannot be parsed as a server-based authority
0897:             *          according to RFC&nbsp;2396
0898:             */
0899:            public URI parseServerAuthority() throws URISyntaxException {
0900:                // We could be clever and cache the error message and index from the
0901:                // exception thrown during the original parse, but that would require
0902:                // either more fields or a more-obscure representation.
0903:                if ((host != null) || (authority == null))
0904:                    return this ;
0905:                defineString();
0906:                new Parser(string).parse(true);
0907:                return this ;
0908:            }
0909:
0910:            /**
0911:             * Normalizes this URI's path.
0912:             *
0913:             * <p> If this URI is opaque, or if its path is already in normal form,
0914:             * then this URI is returned.  Otherwise a new URI is constructed that is
0915:             * identical to this URI except that its path is computed by normalizing
0916:             * this URI's path in a manner consistent with <a
0917:             * href="http://www.ietf.org/rfc/rfc2396.txt">RFC&nbsp;2396</a>,
0918:             * section&nbsp;5.2, step&nbsp;6, sub-steps&nbsp;c through&nbsp;f; that is:
0919:             * </p>
0920:             *
0921:             * <ol>
0922:             *
0923:             *   <li><p> All <tt>"."</tt> segments are removed. </p></li>
0924:             *
0925:             *   <li><p> If a <tt>".."</tt> segment is preceded by a non-<tt>".."</tt>
0926:             *   segment then both of these segments are removed.  This step is
0927:             *   repeated until it is no longer applicable. </p></li>
0928:             *
0929:             *   <li><p> If the path is relative, and if its first segment contains a
0930:             *   colon character (<tt>':'</tt>), then a <tt>"."</tt> segment is
0931:             *   prepended.  This prevents a relative URI with a path such as
0932:             *   <tt>"a:b/c/d"</tt> from later being re-parsed as an opaque URI with a
0933:             *   scheme of <tt>"a"</tt> and a scheme-specific part of <tt>"b/c/d"</tt>.
0934:             *   <b><i>(Deviation from RFC&nbsp;2396)</i></b> </p></li>
0935:             *
0936:             * </ol>
0937:             *
0938:             * <p> A normalized path will begin with one or more <tt>".."</tt> segments
0939:             * if there were insufficient non-<tt>".."</tt> segments preceding them to
0940:             * allow their removal.  A normalized path will begin with a <tt>"."</tt>
0941:             * segment if one was inserted by step 3 above.  Otherwise, a normalized
0942:             * path will not contain any <tt>"."</tt> or <tt>".."</tt> segments. </p>
0943:             *
0944:             * @return  A URI equivalent to this URI,
0945:             *          but whose path is in normal form
0946:             */
0947:            public URI normalize() {
0948:                return normalize(this );
0949:            }
0950:
0951:            /**
0952:             * Resolves the given URI against this URI.
0953:             *
0954:             * <p> If the given URI is already absolute, or if this URI is opaque, then
0955:             * the given URI is returned.
0956:             *
0957:             * <p><a name="resolve-frag"></a> If the given URI's fragment component is
0958:             * defined, its path component is empty, and its scheme, authority, and
0959:             * query components are undefined, then a URI with the given fragment but
0960:             * with all other components equal to those of this URI is returned.  This
0961:             * allows a URI representing a standalone fragment reference, such as
0962:             * <tt>"#foo"</tt>, to be usefully resolved against a base URI.
0963:             *
0964:             * <p> Otherwise this method constructs a new hierarchical URI in a manner
0965:             * consistent with <a
0966:             * href="http://www.ietf.org/rfc/rfc2396.txt">RFC&nbsp;2396</a>,
0967:             * section&nbsp;5.2; that is: </p>
0968:             *
0969:             * <ol>
0970:             *
0971:             *   <li><p> A new URI is constructed with this URI's scheme and the given
0972:             *   URI's query and fragment components. </p></li>
0973:             *
0974:             *   <li><p> If the given URI has an authority component then the new URI's
0975:             *   authority and path are taken from the given URI. </p></li>
0976:             *
0977:             *   <li><p> Otherwise the new URI's authority component is copied from
0978:             *   this URI, and its path is computed as follows: </p></li>
0979:             *
0980:             *   <ol type=a>
0981:             *
0982:             *     <li><p> If the given URI's path is absolute then the new URI's path
0983:             *     is taken from the given URI. </p></li>
0984:             *
0985:             *     <li><p> Otherwise the given URI's path is relative, and so the new
0986:             *     URI's path is computed by resolving the path of the given URI
0987:             *     against the path of this URI.  This is done by concatenating all but
0988:             *     the last segment of this URI's path, if any, with the given URI's
0989:             *     path and then normalizing the result as if by invoking the {@link
0990:             *     #normalize() normalize} method. </p></li>
0991:             *
0992:             *   </ol>
0993:             *
0994:             * </ol>
0995:             *
0996:             * <p> The result of this method is absolute if, and only if, either this
0997:             * URI is absolute or the given URI is absolute.  </p>
0998:             *
0999:             * @param  uri  The URI to be resolved against this URI
1000:             * @return The resulting URI
1001:             *
1002:             * @throws  NullPointerException
1003:             *          If <tt>uri</tt> is <tt>null</tt>
1004:             */
1005:            public URI resolve(URI uri) {
1006:                return resolve(this , uri);
1007:            }
1008:
1009:            /**
1010:             * Constructs a new URI by parsing the given string and then resolving it
1011:             * against this URI.
1012:             *
1013:             * <p> This convenience method works as if invoking it were equivalent to
1014:             * evaluating the expression <tt>{@link #resolve(java.net.URI)
1015:             * resolve}(URI.{@link #create(String) create}(str))</tt>. </p>
1016:             *
1017:             * @param  str   The string to be parsed into a URI
1018:             * @return The resulting URI
1019:             *
1020:             * @throws  NullPointerException
1021:             *          If <tt>str</tt> is <tt>null</tt>
1022:             *
1023:             * @throws  IllegalArgumentException
1024:             *          If the given string violates RFC&nbsp;2396
1025:             */
1026:            public URI resolve(String str) {
1027:                return resolve(URI.create(str));
1028:            }
1029:
1030:            /**
1031:             * Relativizes the given URI against this URI.
1032:             *
1033:             * <p> The relativization of the given URI against this URI is computed as
1034:             * follows: </p>
1035:             *
1036:             * <ol>
1037:             *
1038:             *   <li><p> If either this URI or the given URI are opaque, or if the
1039:             *   scheme and authority components of the two URIs are not identical, or
1040:             *   if the path of this URI is not a prefix of the path of the given URI,
1041:             *   then the given URI is returned. </p></li>
1042:             *
1043:             *   <li><p> Otherwise a new relative hierarchical URI is constructed with
1044:             *   query and fragment components taken from the given URI and with a path
1045:             *   component computed by removing this URI's path from the beginning of
1046:             *   the given URI's path. </p></li>
1047:             *
1048:             * </ol>
1049:             *
1050:             * @param  uri  The URI to be relativized against this URI
1051:             * @return The resulting URI
1052:             *
1053:             * @throws  NullPointerException
1054:             *          If <tt>uri</tt> is <tt>null</tt>
1055:             */
1056:            public URI relativize(URI uri) {
1057:                return relativize(this , uri);
1058:            }
1059:
1060:            /**
1061:             * Constructs a URL from this URI.
1062:             *
1063:             * <p> This convenience method works as if invoking it were equivalent to
1064:             * evaluating the expression <tt>new&nbsp;URL(this.toString())</tt> after
1065:             * first checking that this URI is absolute. </p>
1066:             *
1067:             * @return  A URL constructed from this URI
1068:             *
1069:             * @throws  IllegalArgumentException
1070:             *          If this URL is not absolute
1071:             *
1072:             * @throws  MalformedURLException
1073:             *          If a protocol handler for the URL could not be found,
1074:             *          or if some other error occurred while constructing the URL
1075:             */
1076:            public URL toURL() throws MalformedURLException {
1077:                if (!isAbsolute())
1078:                    throw new IllegalArgumentException("URI is not absolute");
1079:                return new URL(toString());
1080:            }
1081:
1082:            // -- Component access methods --
1083:
1084:            /**
1085:             * Returns the scheme component of this URI.
1086:             *
1087:             * <p> The scheme component of a URI, if defined, only contains characters
1088:             * in the <i>alphanum</i> category and in the string <tt>"-.+"</tt>.  A
1089:             * scheme always starts with an <i>alpha</i> character. <p>
1090:             *
1091:             * The scheme component of a URI cannot contain escaped octets, hence this
1092:             * method does not perform any decoding.
1093:             *
1094:             * @return  The scheme component of this URI,
1095:             *          or <tt>null</tt> if the scheme is undefined
1096:             */
1097:            public String getScheme() {
1098:                return scheme;
1099:            }
1100:
1101:            /**
1102:             * Tells whether or not this URI is absolute.
1103:             *
1104:             * <p> A URI is absolute if, and only if, it has a scheme component. </p>
1105:             *
1106:             * @return  <tt>true</tt> if, and only if, this URI is absolute
1107:             */
1108:            public boolean isAbsolute() {
1109:                return scheme != null;
1110:            }
1111:
1112:            /**
1113:             * Tells whether or not this URI is opaque.
1114:             *
1115:             * <p> A URI is opaque if, and only if, it is absolute and its
1116:             * scheme-specific part does not begin with a slash character ('/').
1117:             * An opaque URI has a scheme, a scheme-specific part, and possibly
1118:             * a fragment; all other components are undefined. </p>
1119:             *
1120:             * @return  <tt>true</tt> if, and only if, this URI is opaque
1121:             */
1122:            public boolean isOpaque() {
1123:                return path == null;
1124:            }
1125:
1126:            /**
1127:             * Returns the raw scheme-specific part of this URI.  The scheme-specific
1128:             * part is never undefined, though it may be empty.
1129:             *
1130:             * <p> The scheme-specific part of a URI only contains legal URI
1131:             * characters. </p>
1132:             *
1133:             * @return  The raw scheme-specific part of this URI
1134:             *          (never <tt>null</tt>)
1135:             */
1136:            public String getRawSchemeSpecificPart() {
1137:                defineSchemeSpecificPart();
1138:                return schemeSpecificPart;
1139:            }
1140:
1141:            /**
1142:             * Returns the decoded scheme-specific part of this URI.
1143:             *
1144:             * <p> The string returned by this method is equal to that returned by the
1145:             * {@link #getRawSchemeSpecificPart() getRawSchemeSpecificPart} method
1146:             * except that all sequences of escaped octets are <a
1147:             * href="#decode">decoded</a>.  </p>
1148:             *
1149:             * @return  The decoded scheme-specific part of this URI
1150:             *          (never <tt>null</tt>)
1151:             */
1152:            public String getSchemeSpecificPart() {
1153:                if (decodedSchemeSpecificPart == null)
1154:                    decodedSchemeSpecificPart = decode(getRawSchemeSpecificPart());
1155:                return decodedSchemeSpecificPart;
1156:            }
1157:
1158:            /**
1159:             * Returns the raw authority component of this URI.
1160:             *
1161:             * <p> The authority component of a URI, if defined, only contains the
1162:             * commercial-at character (<tt>'@'</tt>) and characters in the
1163:             * <i>unreserved</i>, <i>punct</i>, <i>escaped</i>, and <i>other</i>
1164:             * categories.  If the authority is server-based then it is further
1165:             * constrained to have valid user-information, host, and port
1166:             * components. </p>
1167:             *
1168:             * @return  The raw authority component of this URI,
1169:             *          or <tt>null</tt> if the authority is undefined
1170:             */
1171:            public String getRawAuthority() {
1172:                return authority;
1173:            }
1174:
1175:            /**
1176:             * Returns the decoded authority component of this URI.
1177:             *
1178:             * <p> The string returned by this method is equal to that returned by the
1179:             * {@link #getRawAuthority() getRawAuthority} method except that all
1180:             * sequences of escaped octets are <a href="#decode">decoded</a>.  </p>
1181:             *
1182:             * @return  The decoded authority component of this URI,
1183:             *          or <tt>null</tt> if the authority is undefined
1184:             */
1185:            public String getAuthority() {
1186:                if (decodedAuthority == null)
1187:                    decodedAuthority = decode(authority);
1188:                return decodedAuthority;
1189:            }
1190:
1191:            /**
1192:             * Returns the raw user-information component of this URI.
1193:             *
1194:             * <p> The user-information component of a URI, if defined, only contains
1195:             * characters in the <i>unreserved</i>, <i>punct</i>, <i>escaped</i>, and
1196:             * <i>other</i> categories. </p>
1197:             *
1198:             * @return  The raw user-information component of this URI,
1199:             *          or <tt>null</tt> if the user information is undefined
1200:             */
1201:            public String getRawUserInfo() {
1202:                return userInfo;
1203:            }
1204:
1205:            /**
1206:             * Returns the decoded user-information component of this URI.
1207:             *
1208:             * <p> The string returned by this method is equal to that returned by the
1209:             * {@link #getRawUserInfo() getRawUserInfo} method except that all
1210:             * sequences of escaped octets are <a href="#decode">decoded</a>.  </p>
1211:             *
1212:             * @return  The decoded user-information component of this URI,
1213:             *          or <tt>null</tt> if the user information is undefined
1214:             */
1215:            public String getUserInfo() {
1216:                if ((decodedUserInfo == null) && (userInfo != null))
1217:                    decodedUserInfo = decode(userInfo);
1218:                return decodedUserInfo;
1219:            }
1220:
1221:            /**
1222:             * Returns the host component of this URI.
1223:             *
1224:             * <p> The host component of a URI, if defined, will have one of the
1225:             * following forms: </p>
1226:             *
1227:             * <ul type=disc>
1228:             *
1229:             *   <li><p> A domain name consisting of one or more <i>labels</i>
1230:             *   separated by period characters (<tt>'.'</tt>), optionally followed by
1231:             *   a period character.  Each label consists of <i>alphanum</i> characters
1232:             *   as well as hyphen characters (<tt>'-'</tt>), though hyphens never
1233:             *   occur as the first or last characters in a label. The rightmost
1234:             *   label of a domain name consisting of two or more labels, begins
1235:             *   with an <i>alpha</i> character. </li>
1236:             *
1237:             *   <li><p> A dotted-quad IPv4 address of the form
1238:             *   <i>digit</i><tt>+.</tt><i>digit</i><tt>+.</tt><i>digit</i><tt>+.</tt><i>digit</i><tt>+</tt>,
1239:             *   where no <i>digit</i> sequence is longer than three characters and no
1240:             *   sequence has a value larger than 255. </p></li>
1241:             *
1242:             *   <li><p> An IPv6 address enclosed in square brackets (<tt>'['</tt> and
1243:             *   <tt>']'</tt>) and consisting of hexadecimal digits, colon characters
1244:             *   (<tt>':'</tt>), and possibly an embedded IPv4 address.  The full
1245:             *   syntax of IPv6 addresses is specified in <a
1246:             *   href="http://www.ietf.org/rfc/rfc2373.txt"><i>RFC&nbsp;2373: IPv6
1247:             *   Addressing Architecture</i></a>.  </p></li>
1248:             *
1249:             * </ul>
1250:             *
1251:             * The host component of a URI cannot contain escaped octets, hence this
1252:             * method does not perform any decoding.
1253:             *
1254:             * @return  The host component of this URI,
1255:             *          or <tt>null</tt> if the host is undefined
1256:             */
1257:            public String getHost() {
1258:                return host;
1259:            }
1260:
1261:            /**
1262:             * Returns the port number of this URI.
1263:             *
1264:             * <p> The port component of a URI, if defined, is a non-negative
1265:             * integer. </p>
1266:             *
1267:             * @return  The port component of this URI,
1268:             *          or <tt>-1</tt> if the port is undefined
1269:             */
1270:            public int getPort() {
1271:                return port;
1272:            }
1273:
1274:            /**
1275:             * Returns the raw path component of this URI.
1276:             *
1277:             * <p> The path component of a URI, if defined, only contains the slash
1278:             * character (<tt>'/'</tt>), the commercial-at character (<tt>'@'</tt>),
1279:             * and characters in the <i>unreserved</i>, <i>punct</i>, <i>escaped</i>,
1280:             * and <i>other</i> categories. </p>
1281:             *
1282:             * @return  The path component of this URI,
1283:             *          or <tt>null</tt> if the path is undefined
1284:             */
1285:            public String getRawPath() {
1286:                return path;
1287:            }
1288:
1289:            /**
1290:             * Returns the decoded path component of this URI.
1291:             *
1292:             * <p> The string returned by this method is equal to that returned by the
1293:             * {@link #getRawPath() getRawPath} method except that all sequences of
1294:             * escaped octets are <a href="#decode">decoded</a>.  </p>
1295:             *
1296:             * @return  The decoded path component of this URI,
1297:             *          or <tt>null</tt> if the path is undefined
1298:             */
1299:            public String getPath() {
1300:                if ((decodedPath == null) && (path != null))
1301:                    decodedPath = decode(path);
1302:                return decodedPath;
1303:            }
1304:
1305:            /**
1306:             * Returns the raw query component of this URI.
1307:             *
1308:             * <p> The query component of a URI, if defined, only contains legal URI
1309:             * characters. </p>
1310:             *
1311:             * @return  The raw query component of this URI,
1312:             *          or <tt>null</tt> if the query is undefined
1313:             */
1314:            public String getRawQuery() {
1315:                return query;
1316:            }
1317:
1318:            /**
1319:             * Returns the decoded query component of this URI.
1320:             *
1321:             * <p> The string returned by this method is equal to that returned by the
1322:             * {@link #getRawQuery() getRawQuery} method except that all sequences of
1323:             * escaped octets are <a href="#decode">decoded</a>.  </p>
1324:             *
1325:             * @return  The decoded query component of this URI,
1326:             *          or <tt>null</tt> if the query is undefined
1327:             */
1328:            public String getQuery() {
1329:                if ((decodedQuery == null) && (query != null))
1330:                    decodedQuery = decode(query);
1331:                return decodedQuery;
1332:            }
1333:
1334:            /**
1335:             * Returns the raw fragment component of this URI.
1336:             *
1337:             * <p> The fragment component of a URI, if defined, only contains legal URI
1338:             * characters. </p>
1339:             *
1340:             * @return  The raw fragment component of this URI,
1341:             *          or <tt>null</tt> if the fragment is undefined
1342:             */
1343:            public String getRawFragment() {
1344:                return fragment;
1345:            }
1346:
1347:            /**
1348:             * Returns the decoded fragment component of this URI.
1349:             *
1350:             * <p> The string returned by this method is equal to that returned by the
1351:             * {@link #getRawFragment() getRawFragment} method except that all
1352:             * sequences of escaped octets are <a href="#decode">decoded</a>.  </p>
1353:             *
1354:             * @return  The decoded fragment component of this URI,
1355:             *          or <tt>null</tt> if the fragment is undefined
1356:             */
1357:            public String getFragment() {
1358:                if ((decodedFragment == null) && (fragment != null))
1359:                    decodedFragment = decode(fragment);
1360:                return decodedFragment;
1361:            }
1362:
1363:            // -- Equality, comparison, hash code, toString, and serialization --
1364:
1365:            /**
1366:             * Tests this URI for equality with another object.
1367:             *
1368:             * <p> If the given object is not a URI then this method immediately
1369:             * returns <tt>false</tt>.
1370:             *
1371:             * <p> For two URIs to be considered equal requires that either both are
1372:             * opaque or both are hierarchical.  Their schemes must either both be
1373:             * undefined or else be equal without regard to case. Their fragments
1374:             * must either both be undefined or else be equal.
1375:             *
1376:             * <p> For two opaque URIs to be considered equal, their scheme-specific
1377:             * parts must be equal.
1378:             *
1379:             * <p> For two hierarchical URIs to be considered equal, their paths must
1380:             * be equal and their queries must either both be undefined or else be
1381:             * equal.  Their authorities must either both be undefined, or both be
1382:             * registry-based, or both be server-based.  If their authorities are
1383:             * defined and are registry-based, then they must be equal.  If their
1384:             * authorities are defined and are server-based, then their hosts must be
1385:             * equal without regard to case, their port numbers must be equal, and
1386:             * their user-information components must be equal.
1387:             *
1388:             * <p> When testing the user-information, path, query, fragment, authority,
1389:             * or scheme-specific parts of two URIs for equality, the raw forms rather
1390:             * than the encoded forms of these components are compared and the
1391:             * hexadecimal digits of escaped octets are compared without regard to
1392:             * case.
1393:             *
1394:             * <p> This method satisfies the general contract of the {@link
1395:             * java.lang.Object#equals(Object) Object.equals} method. </p>
1396:             *
1397:             * @param   ob   The object to which this object is to be compared
1398:             *
1399:             * @return  <tt>true</tt> if, and only if, the given object is a URI that
1400:             *          is identical to this URI
1401:             */
1402:            public boolean equals(Object ob) {
1403:                if (ob == this )
1404:                    return true;
1405:                if (!(ob instanceof  URI))
1406:                    return false;
1407:                URI that = (URI) ob;
1408:                if (this .isOpaque() != that.isOpaque())
1409:                    return false;
1410:                if (!equalIgnoringCase(this .scheme, that.scheme))
1411:                    return false;
1412:                if (!equal(this .fragment, that.fragment))
1413:                    return false;
1414:
1415:                // Opaque
1416:                if (this .isOpaque())
1417:                    return equal(this .schemeSpecificPart,
1418:                            that.schemeSpecificPart);
1419:
1420:                // Hierarchical
1421:                if (!equal(this .path, that.path))
1422:                    return false;
1423:                if (!equal(this .query, that.query))
1424:                    return false;
1425:
1426:                // Authorities
1427:                if (this .authority == that.authority)
1428:                    return true;
1429:                if (this .host != null) {
1430:                    // Server-based
1431:                    if (!equal(this .userInfo, that.userInfo))
1432:                        return false;
1433:                    if (!equalIgnoringCase(this .host, that.host))
1434:                        return false;
1435:                    if (this .port != that.port)
1436:                        return false;
1437:                } else if (this .authority != null) {
1438:                    // Registry-based
1439:                    if (!equal(this .authority, that.authority))
1440:                        return false;
1441:                } else if (this .authority != that.authority) {
1442:                    return false;
1443:                }
1444:
1445:                return true;
1446:            }
1447:
1448:            /**
1449:             * Returns a hash-code value for this URI.  The hash code is based upon all
1450:             * of the URI's components, and satisfies the general contract of the
1451:             * {@link java.lang.Object#hashCode() Object.hashCode} method.
1452:             *
1453:             * @return  A hash-code value for this URI
1454:             */
1455:            public int hashCode() {
1456:                if (hash != 0)
1457:                    return hash;
1458:                int h = hashIgnoringCase(0, scheme);
1459:                h = hash(h, fragment);
1460:                if (isOpaque()) {
1461:                    h = hash(h, schemeSpecificPart);
1462:                } else {
1463:                    h = hash(h, path);
1464:                    h = hash(h, query);
1465:                    if (host != null) {
1466:                        h = hash(h, userInfo);
1467:                        h = hashIgnoringCase(h, host);
1468:                        h += 1949 * port;
1469:                    } else {
1470:                        h = hash(h, authority);
1471:                    }
1472:                }
1473:                hash = h;
1474:                return h;
1475:            }
1476:
1477:            /**
1478:             * Compares this URI to another object, which must be a URI.
1479:             *
1480:             * <p> When comparing corresponding components of two URIs, if one
1481:             * component is undefined but the other is defined then the first is
1482:             * considered to be less than the second.  Unless otherwise noted, string
1483:             * components are ordered according to their natural, case-sensitive
1484:             * ordering as defined by the {@link java.lang.String#compareTo(Object)
1485:             * String.compareTo} method.  String components that are subject to
1486:             * encoding are compared by comparing their raw forms rather than their
1487:             * encoded forms.
1488:             *
1489:             * <p> The ordering of URIs is defined as follows: </p>
1490:             *
1491:             * <ul type=disc>
1492:             *
1493:             *   <li><p> Two URIs with different schemes are ordered according the
1494:             *   ordering of their schemes, without regard to case. </p></li>
1495:             *
1496:             *   <li><p> A hierarchical URI is considered to be less than an opaque URI
1497:             *   with an identical scheme. </p></li>
1498:             *
1499:             *   <li><p> Two opaque URIs with identical schemes are ordered according
1500:             *   to the ordering of their scheme-specific parts. </p></li>
1501:             *
1502:             *   <li><p> Two opaque URIs with identical schemes and scheme-specific
1503:             *   parts are ordered according to the ordering of their
1504:             *   fragments. </p></li>
1505:             *
1506:             *   <li><p> Two hierarchical URIs with identical schemes are ordered
1507:             *   according to the ordering of their authority components: </p></li>
1508:             *
1509:             *   <ul type=disc>
1510:             *
1511:             *     <li><p> If both authority components are server-based then the URIs
1512:             *     are ordered according to their user-information components; if these
1513:             *     components are identical then the URIs are ordered according to the
1514:             *     ordering of their hosts, without regard to case; if the hosts are
1515:             *     identical then the URIs are ordered according to the ordering of
1516:             *     their ports. </p></li>
1517:             *
1518:             *     <li><p> If one or both authority components are registry-based then
1519:             *     the URIs are ordered according to the ordering of their authority
1520:             *     components. </p></li>
1521:             *
1522:             *   </ul>
1523:             *
1524:             *   <li><p> Finally, two hierarchical URIs with identical schemes and
1525:             *   authority components are ordered according to the ordering of their
1526:             *   paths; if their paths are identical then they are ordered according to
1527:             *   the ordering of their queries; if the queries are identical then they
1528:             *   are ordered according to the order of their fragments. </p></li>
1529:             *
1530:             * </ul>
1531:             *
1532:             * <p> This method satisfies the general contract of the {@link
1533:             * java.lang.Comparable#compareTo(Object) Comparable.compareTo}
1534:             * method. </p>
1535:             *
1536:             * @param   that
1537:             *          The object to which this URI is to be compared
1538:             *
1539:             * @return  A negative integer, zero, or a positive integer as this URI is
1540:             *          less than, equal to, or greater than the given URI
1541:             *
1542:             * @throws  ClassCastException
1543:             *          If the given object is not a URI
1544:             */
1545:            public int compareTo(URI that) {
1546:                int c;
1547:
1548:                if ((c = compareIgnoringCase(this .scheme, that.scheme)) != 0)
1549:                    return c;
1550:
1551:                if (this .isOpaque()) {
1552:                    if (that.isOpaque()) {
1553:                        // Both opaque
1554:                        if ((c = compare(this .schemeSpecificPart,
1555:                                that.schemeSpecificPart)) != 0)
1556:                            return c;
1557:                        return compare(this .fragment, that.fragment);
1558:                    }
1559:                    return +1; // Opaque > hierarchical
1560:                } else if (that.isOpaque()) {
1561:                    return -1; // Hierarchical < opaque
1562:                }
1563:
1564:                // Hierarchical
1565:                if ((this .host != null) && (that.host != null)) {
1566:                    // Both server-based
1567:                    if ((c = compare(this .userInfo, that.userInfo)) != 0)
1568:                        return c;
1569:                    if ((c = compareIgnoringCase(this .host, that.host)) != 0)
1570:                        return c;
1571:                    if ((c = this .port - that.port) != 0)
1572:                        return c;
1573:                } else {
1574:                    // If one or both authorities are registry-based then we simply
1575:                    // compare them in the usual, case-sensitive way.  If one is
1576:                    // registry-based and one is server-based then the strings are
1577:                    // guaranteed to be unequal, hence the comparison will never return
1578:                    // zero and the compareTo and equals methods will remain
1579:                    // consistent.
1580:                    if ((c = compare(this .authority, that.authority)) != 0)
1581:                        return c;
1582:                }
1583:
1584:                if ((c = compare(this .path, that.path)) != 0)
1585:                    return c;
1586:                if ((c = compare(this .query, that.query)) != 0)
1587:                    return c;
1588:                return compare(this .fragment, that.fragment);
1589:            }
1590:
1591:            /**
1592:             * Returns the content of this URI as a string.
1593:             *
1594:             * <p> If this URI was created by invoking one of the constructors in this
1595:             * class then a string equivalent to the original input string, or to the
1596:             * string computed from the originally-given components, as appropriate, is
1597:             * returned.  Otherwise this URI was created by normalization, resolution,
1598:             * or relativization, and so a string is constructed from this URI's
1599:             * components according to the rules specified in <a
1600:             * href="http://www.ietf.org/rfc/rfc2396.txt">RFC&nbsp;2396</a>,
1601:             * section&nbsp;5.2, step&nbsp;7. </p>
1602:             *
1603:             * @return  The string form of this URI
1604:             */
1605:            public String toString() {
1606:                defineString();
1607:                return string;
1608:            }
1609:
1610:            /**
1611:             * Returns the content of this URI as a US-ASCII string.
1612:             *
1613:             * <p> If this URI does not contain any characters in the <i>other</i>
1614:             * category then an invocation of this method will return the same value as
1615:             * an invocation of the {@link #toString() toString} method.  Otherwise
1616:             * this method works as if by invoking that method and then <a
1617:             * href="#encode">encoding</a> the result.  </p>
1618:             *
1619:             * @return  The string form of this URI, encoded as needed
1620:             *          so that it only contains characters in the US-ASCII
1621:             *          charset
1622:             */
1623:            public String toASCIIString() {
1624:                defineString();
1625:                return encode(string);
1626:            }
1627:
1628:            // -- Serialization support --
1629:
1630:            /**
1631:             * Saves the content of this URI to the given serial stream.
1632:             *
1633:             * <p> The only serializable field of a URI instance is its <tt>string</tt>
1634:             * field.  That field is given a value, if it does not have one already,
1635:             * and then the {@link java.io.ObjectOutputStream#defaultWriteObject()}
1636:             * method of the given object-output stream is invoked. </p>
1637:             *
1638:             * @param  os  The object-output stream to which this object
1639:             *             is to be written
1640:             */
1641:            private void writeObject(ObjectOutputStream os) throws IOException {
1642:                defineString();
1643:                os.defaultWriteObject(); // Writes the string field only
1644:            }
1645:
1646:            /**
1647:             * Reconstitutes a URI from the given serial stream.
1648:             *
1649:             * <p> The {@link java.io.ObjectInputStream#defaultReadObject()} method is
1650:             * invoked to read the value of the <tt>string</tt> field.  The result is
1651:             * then parsed in the usual way.
1652:             *
1653:             * @param  is  The object-input stream from which this object
1654:             *             is being read
1655:             */
1656:            private void readObject(ObjectInputStream is)
1657:                    throws ClassNotFoundException, IOException {
1658:                port = -1; // Argh
1659:                is.defaultReadObject();
1660:                try {
1661:                    new Parser(string).parse(false);
1662:                } catch (URISyntaxException x) {
1663:                    IOException y = new InvalidObjectException("Invalid URI");
1664:                    y.initCause(x);
1665:                    throw y;
1666:                }
1667:            }
1668:
1669:            // -- End of public methods --
1670:
1671:            // -- Utility methods for string-field comparison and hashing --
1672:
1673:            // These methods return appropriate values for null string arguments,
1674:            // thereby simplifying the equals, hashCode, and compareTo methods.
1675:            //
1676:            // The case-ignoring methods should only be applied to strings whose
1677:            // characters are all known to be US-ASCII.  Because of this restriction,
1678:            // these methods are faster than the similar methods in the String class.
1679:
1680:            // US-ASCII only
1681:            private static int toLower(char c) {
1682:                if ((c >= 'A') && (c <= 'Z'))
1683:                    return c + ('a' - 'A');
1684:                return c;
1685:            }
1686:
1687:            private static boolean equal(String s, String t) {
1688:                if (s == t)
1689:                    return true;
1690:                if ((s != null) && (t != null)) {
1691:                    if (s.length() != t.length())
1692:                        return false;
1693:                    if (s.indexOf('%') < 0)
1694:                        return s.equals(t);
1695:                    int n = s.length();
1696:                    for (int i = 0; i < n;) {
1697:                        char c = s.charAt(i);
1698:                        char d = t.charAt(i);
1699:                        if (c != '%') {
1700:                            if (c != d)
1701:                                return false;
1702:                            i++;
1703:                            continue;
1704:                        }
1705:                        i++;
1706:                        if (toLower(s.charAt(i)) != toLower(t.charAt(i)))
1707:                            return false;
1708:                        i++;
1709:                        if (toLower(s.charAt(i)) != toLower(t.charAt(i)))
1710:                            return false;
1711:                        i++;
1712:                    }
1713:                    return true;
1714:                }
1715:                return false;
1716:            }
1717:
1718:            // US-ASCII only
1719:            private static boolean equalIgnoringCase(String s, String t) {
1720:                if (s == t)
1721:                    return true;
1722:                if ((s != null) && (t != null)) {
1723:                    int n = s.length();
1724:                    if (t.length() != n)
1725:                        return false;
1726:                    for (int i = 0; i < n; i++) {
1727:                        if (toLower(s.charAt(i)) != toLower(t.charAt(i)))
1728:                            return false;
1729:                    }
1730:                    return true;
1731:                }
1732:                return false;
1733:            }
1734:
1735:            private static int hash(int hash, String s) {
1736:                if (s == null)
1737:                    return hash;
1738:                return hash * 127 + s.hashCode();
1739:            }
1740:
1741:            // US-ASCII only
1742:            private static int hashIgnoringCase(int hash, String s) {
1743:                if (s == null)
1744:                    return hash;
1745:                int h = hash;
1746:                int n = s.length();
1747:                for (int i = 0; i < n; i++)
1748:                    h = 31 * h + toLower(s.charAt(i));
1749:                return h;
1750:            }
1751:
1752:            private static int compare(String s, String t) {
1753:                if (s == t)
1754:                    return 0;
1755:                if (s != null) {
1756:                    if (t != null)
1757:                        return s.compareTo(t);
1758:                    else
1759:                        return +1;
1760:                } else {
1761:                    return -1;
1762:                }
1763:            }
1764:
1765:            // US-ASCII only
1766:            private static int compareIgnoringCase(String s, String t) {
1767:                if (s == t)
1768:                    return 0;
1769:                if (s != null) {
1770:                    if (t != null) {
1771:                        int sn = s.length();
1772:                        int tn = t.length();
1773:                        int n = sn < tn ? sn : tn;
1774:                        for (int i = 0; i < n; i++) {
1775:                            int c = toLower(s.charAt(i)) - toLower(t.charAt(i));
1776:                            if (c != 0)
1777:                                return c;
1778:                        }
1779:                        return sn - tn;
1780:                    }
1781:                    return +1;
1782:                } else {
1783:                    return -1;
1784:                }
1785:            }
1786:
1787:            // -- String construction --
1788:
1789:            // If a scheme is given then the path, if given, must be absolute
1790:            //
1791:            private static void checkPath(String s, String scheme, String path)
1792:                    throws URISyntaxException {
1793:                if (scheme != null) {
1794:                    if ((path != null)
1795:                            && ((path.length() > 0) && (path.charAt(0) != '/')))
1796:                        throw new URISyntaxException(s,
1797:                                "Relative path in absolute URI");
1798:                }
1799:            }
1800:
1801:            private void appendAuthority(StringBuffer sb, String authority,
1802:                    String userInfo, String host, int port) {
1803:                if (host != null) {
1804:                    sb.append("//");
1805:                    if (userInfo != null) {
1806:                        sb.append(quote(userInfo, L_USERINFO, H_USERINFO));
1807:                        sb.append('@');
1808:                    }
1809:                    boolean needBrackets = ((host.indexOf(':') >= 0)
1810:                            && !host.startsWith("[") && !host.endsWith("]"));
1811:                    if (needBrackets)
1812:                        sb.append('[');
1813:                    sb.append(host);
1814:                    if (needBrackets)
1815:                        sb.append(']');
1816:                    if (port != -1) {
1817:                        sb.append(':');
1818:                        sb.append(port);
1819:                    }
1820:                } else if (authority != null) {
1821:                    sb.append("//");
1822:                    if (authority.startsWith("[")) {
1823:                        int end = authority.indexOf("]");
1824:                        if (end != -1 && authority.indexOf(":") != -1) {
1825:                            String doquote, dontquote;
1826:                            if (end == authority.length()) {
1827:                                dontquote = authority;
1828:                                doquote = "";
1829:                            } else {
1830:                                dontquote = authority.substring(0, end + 1);
1831:                                doquote = authority.substring(end + 1);
1832:                            }
1833:                            sb.append(dontquote);
1834:                            sb.append(quote(doquote, L_REG_NAME | L_SERVER,
1835:                                    H_REG_NAME | H_SERVER));
1836:                        }
1837:                    } else {
1838:                        sb.append(quote(authority, L_REG_NAME | L_SERVER,
1839:                                H_REG_NAME | H_SERVER));
1840:                    }
1841:                }
1842:            }
1843:
1844:            private void appendSchemeSpecificPart(StringBuffer sb,
1845:                    String opaquePart, String authority, String userInfo,
1846:                    String host, int port, String path, String query) {
1847:                if (opaquePart != null) {
1848:                    /* check if SSP begins with an IPv6 address
1849:                     * because we must not quote a literal IPv6 address
1850:                     */
1851:                    if (opaquePart.startsWith("//[")) {
1852:                        int end = opaquePart.indexOf("]");
1853:                        if (end != -1 && opaquePart.indexOf(":") != -1) {
1854:                            String doquote, dontquote;
1855:                            if (end == opaquePart.length()) {
1856:                                dontquote = opaquePart;
1857:                                doquote = "";
1858:                            } else {
1859:                                dontquote = opaquePart.substring(0, end + 1);
1860:                                doquote = opaquePart.substring(end + 1);
1861:                            }
1862:                            sb.append(dontquote);
1863:                            sb.append(quote(doquote, L_URIC, H_URIC));
1864:                        }
1865:                    } else {
1866:                        sb.append(quote(opaquePart, L_URIC, H_URIC));
1867:                    }
1868:                } else {
1869:                    appendAuthority(sb, authority, userInfo, host, port);
1870:                    if (path != null)
1871:                        sb.append(quote(path, L_PATH, H_PATH));
1872:                    if (query != null) {
1873:                        sb.append('?');
1874:                        sb.append(quote(query, L_URIC, H_URIC));
1875:                    }
1876:                }
1877:            }
1878:
1879:            private void appendFragment(StringBuffer sb, String fragment) {
1880:                if (fragment != null) {
1881:                    sb.append('#');
1882:                    sb.append(quote(fragment, L_URIC, H_URIC));
1883:                }
1884:            }
1885:
1886:            private String toString(String scheme, String opaquePart,
1887:                    String authority, String userInfo, String host, int port,
1888:                    String path, String query, String fragment) {
1889:                StringBuffer sb = new StringBuffer();
1890:                if (scheme != null) {
1891:                    sb.append(scheme);
1892:                    sb.append(':');
1893:                }
1894:                appendSchemeSpecificPart(sb, opaquePart, authority, userInfo,
1895:                        host, port, path, query);
1896:                appendFragment(sb, fragment);
1897:                return sb.toString();
1898:            }
1899:
1900:            private void defineSchemeSpecificPart() {
1901:                if (schemeSpecificPart != null)
1902:                    return;
1903:                StringBuffer sb = new StringBuffer();
1904:                appendSchemeSpecificPart(sb, null, getAuthority(),
1905:                        getUserInfo(), host, port, getPath(), getQuery());
1906:                if (sb.length() == 0)
1907:                    return;
1908:                schemeSpecificPart = sb.toString();
1909:            }
1910:
1911:            private void defineString() {
1912:                if (string != null)
1913:                    return;
1914:
1915:                StringBuffer sb = new StringBuffer();
1916:                if (scheme != null) {
1917:                    sb.append(scheme);
1918:                    sb.append(':');
1919:                }
1920:                if (isOpaque()) {
1921:                    sb.append(schemeSpecificPart);
1922:                } else {
1923:                    if (host != null) {
1924:                        sb.append("//");
1925:                        if (userInfo != null) {
1926:                            sb.append(userInfo);
1927:                            sb.append('@');
1928:                        }
1929:                        boolean needBrackets = ((host.indexOf(':') >= 0)
1930:                                && !host.startsWith("[") && !host.endsWith("]"));
1931:                        if (needBrackets)
1932:                            sb.append('[');
1933:                        sb.append(host);
1934:                        if (needBrackets)
1935:                            sb.append(']');
1936:                        if (port != -1) {
1937:                            sb.append(':');
1938:                            sb.append(port);
1939:                        }
1940:                    } else if (authority != null) {
1941:                        sb.append("//");
1942:                        sb.append(authority);
1943:                    }
1944:                    if (path != null)
1945:                        sb.append(path);
1946:                    if (query != null) {
1947:                        sb.append('?');
1948:                        sb.append(query);
1949:                    }
1950:                }
1951:                if (fragment != null) {
1952:                    sb.append('#');
1953:                    sb.append(fragment);
1954:                }
1955:                string = sb.toString();
1956:            }
1957:
1958:            // -- Normalization, resolution, and relativization --
1959:
1960:            // RFC2396 5.2 (6)
1961:            private static String resolvePath(String base, String child,
1962:                    boolean absolute) {
1963:                int i = base.lastIndexOf('/');
1964:                int cn = child.length();
1965:                String path = "";
1966:
1967:                if (cn == 0) {
1968:                    // 5.2 (6a)
1969:                    if (i >= 0)
1970:                        path = base.substring(0, i + 1);
1971:                } else {
1972:                    StringBuffer sb = new StringBuffer(base.length() + cn);
1973:                    // 5.2 (6a)
1974:                    if (i >= 0)
1975:                        sb.append(base.substring(0, i + 1));
1976:                    // 5.2 (6b)
1977:                    sb.append(child);
1978:                    path = sb.toString();
1979:                }
1980:
1981:                // 5.2 (6c-f)
1982:                String np = normalize(path);
1983:
1984:                // 5.2 (6g): If the result is absolute but the path begins with "../",
1985:                // then we simply leave the path as-is
1986:
1987:                return np;
1988:            }
1989:
1990:            // RFC2396 5.2
1991:            private static URI resolve(URI base, URI child) {
1992:                // check if child if opaque first so that NPE is thrown 
1993:                // if child is null.
1994:                if (child.isOpaque() || base.isOpaque())
1995:                    return child;
1996:
1997:                // 5.2 (2): Reference to current document (lone fragment)
1998:                if ((child.scheme == null) && (child.authority == null)
1999:                        && child.path.equals("") && (child.fragment != null)
2000:                        && (child.query == null)) {
2001:                    if ((base.fragment != null)
2002:                            && child.fragment.equals(base.fragment)) {
2003:                        return base;
2004:                    }
2005:                    URI ru = new URI();
2006:                    ru.scheme = base.scheme;
2007:                    ru.authority = base.authority;
2008:                    ru.userInfo = base.userInfo;
2009:                    ru.host = base.host;
2010:                    ru.port = base.port;
2011:                    ru.path = base.path;
2012:                    ru.fragment = child.fragment;
2013:                    ru.query = base.query;
2014:                    return ru;
2015:                }
2016:
2017:                // 5.2 (3): Child is absolute
2018:                if (child.scheme != null)
2019:                    return child;
2020:
2021:                URI ru = new URI(); // Resolved URI
2022:                ru.scheme = base.scheme;
2023:                ru.query = child.query;
2024:                ru.fragment = child.fragment;
2025:
2026:                // 5.2 (4): Authority
2027:                if (child.authority == null) {
2028:                    ru.authority = base.authority;
2029:                    ru.host = base.host;
2030:                    ru.userInfo = base.userInfo;
2031:                    ru.port = base.port;
2032:
2033:                    String cp = (child.path == null) ? "" : child.path;
2034:                    if ((cp.length() > 0) && (cp.charAt(0) == '/')) {
2035:                        // 5.2 (5): Child path is absolute
2036:                        ru.path = child.path;
2037:                    } else {
2038:                        // 5.2 (6): Resolve relative path
2039:                        ru.path = resolvePath(base.path, cp, base.isAbsolute());
2040:                    }
2041:                } else {
2042:                    ru.authority = child.authority;
2043:                    ru.host = child.host;
2044:                    ru.userInfo = child.userInfo;
2045:                    ru.host = child.host;
2046:                    ru.port = child.port;
2047:                    ru.path = child.path;
2048:                }
2049:
2050:                // 5.2 (7): Recombine (nothing to do here)
2051:                return ru;
2052:            }
2053:
2054:            // If the given URI's path is normal then return the URI;
2055:            // o.w., return a new URI containing the normalized path.
2056:            //
2057:            private static URI normalize(URI u) {
2058:                if (u.isOpaque() || (u.path == null) || (u.path.length() == 0))
2059:                    return u;
2060:
2061:                String np = normalize(u.path);
2062:                if (np == u.path)
2063:                    return u;
2064:
2065:                URI v = new URI();
2066:                v.scheme = u.scheme;
2067:                v.fragment = u.fragment;
2068:                v.authority = u.authority;
2069:                v.userInfo = u.userInfo;
2070:                v.host = u.host;
2071:                v.port = u.port;
2072:                v.path = np;
2073:                v.query = u.query;
2074:                return v;
2075:            }
2076:
2077:            // If both URIs are hierarchical, their scheme and authority components are
2078:            // identical, and the base path is a prefix of the child's path, then
2079:            // return a relative URI that, when resolved against the base, yields the
2080:            // child; otherwise, return the child.
2081:            //
2082:            private static URI relativize(URI base, URI child) {
2083:                // check if child if opaque first so that NPE is thrown 
2084:                // if child is null.
2085:                if (child.isOpaque() || base.isOpaque())
2086:                    return child;
2087:                if (!equalIgnoringCase(base.scheme, child.scheme)
2088:                        || !equal(base.authority, child.authority))
2089:                    return child;
2090:
2091:                String bp = normalize(base.path);
2092:                String cp = normalize(child.path);
2093:                if (!bp.equals(cp)) {
2094:                    if (!bp.endsWith("/"))
2095:                        bp = bp + "/";
2096:                    if (!cp.startsWith(bp))
2097:                        return child;
2098:                }
2099:
2100:                URI v = new URI();
2101:                v.path = cp.substring(bp.length());
2102:                v.query = child.query;
2103:                v.fragment = child.fragment;
2104:                return v;
2105:            }
2106:
2107:            // -- Path normalization --
2108:
2109:            // The following algorithm for path normalization avoids the creation of a
2110:            // string object for each segment, as well as the use of a string buffer to
2111:            // compute the final result, by using a single char array and editing it in
2112:            // place.  The array is first split into segments, replacing each slash
2113:            // with '\0' and creating a segment-index array, each element of which is
2114:            // the index of the first char in the corresponding segment.  We then walk
2115:            // through both arrays, removing ".", "..", and other segments as necessary
2116:            // by setting their entries in the index array to -1.  Finally, the two
2117:            // arrays are used to rejoin the segments and compute the final result.
2118:            //
2119:            // This code is based upon src/solaris/native/java/io/canonicalize_md.c
2120:
2121:            // Check the given path to see if it might need normalization.  A path
2122:            // might need normalization if it contains duplicate slashes, a "."
2123:            // segment, or a ".." segment.  Return -1 if no further normalization is
2124:            // possible, otherwise return the number of segments found.
2125:            //
2126:            // This method takes a string argument rather than a char array so that
2127:            // this test can be performed without invoking path.toCharArray().
2128:            //
2129:            static private int needsNormalization(String path) {
2130:                boolean normal = true;
2131:                int ns = 0; // Number of segments
2132:                int end = path.length() - 1; // Index of last char in path
2133:                int p = 0; // Index of next char in path
2134:
2135:                // Skip initial slashes
2136:                while (p <= end) {
2137:                    if (path.charAt(p) != '/')
2138:                        break;
2139:                    p++;
2140:                }
2141:                if (p > 1)
2142:                    normal = false;
2143:
2144:                // Scan segments
2145:                while (p <= end) {
2146:
2147:                    // Looking at "." or ".." ?
2148:                    if ((path.charAt(p) == '.')
2149:                            && ((p == end) || ((path.charAt(p + 1) == '/') || ((path
2150:                                    .charAt(p + 1) == '.') && ((p + 1 == end) || (path
2151:                                    .charAt(p + 2) == '/')))))) {
2152:                        normal = false;
2153:                    }
2154:                    ns++;
2155:
2156:                    // Find beginning of next segment
2157:                    while (p <= end) {
2158:                        if (path.charAt(p++) != '/')
2159:                            continue;
2160:
2161:                        // Skip redundant slashes
2162:                        while (p <= end) {
2163:                            if (path.charAt(p) != '/')
2164:                                break;
2165:                            normal = false;
2166:                            p++;
2167:                        }
2168:
2169:                        break;
2170:                    }
2171:                }
2172:
2173:                return normal ? -1 : ns;
2174:            }
2175:
2176:            // Split the given path into segments, replacing slashes with nulls and
2177:            // filling in the given segment-index array.
2178:            //
2179:            // Preconditions:
2180:            //   segs.length == Number of segments in path
2181:            //
2182:            // Postconditions:
2183:            //   All slashes in path replaced by '\0'
2184:            //   segs[i] == Index of first char in segment i (0 <= i < segs.length)
2185:            //
2186:            static private void split(char[] path, int[] segs) {
2187:                int end = path.length - 1; // Index of last char in path
2188:                int p = 0; // Index of next char in path
2189:                int i = 0; // Index of current segment
2190:
2191:                // Skip initial slashes
2192:                while (p <= end) {
2193:                    if (path[p] != '/')
2194:                        break;
2195:                    path[p] = '\0';
2196:                    p++;
2197:                }
2198:
2199:                while (p <= end) {
2200:
2201:                    // Note start of segment
2202:                    segs[i++] = p++;
2203:
2204:                    // Find beginning of next segment
2205:                    while (p <= end) {
2206:                        if (path[p++] != '/')
2207:                            continue;
2208:                        path[p - 1] = '\0';
2209:
2210:                        // Skip redundant slashes
2211:                        while (p <= end) {
2212:                            if (path[p] != '/')
2213:                                break;
2214:                            path[p++] = '\0';
2215:                        }
2216:                        break;
2217:                    }
2218:                }
2219:
2220:                if (i != segs.length)
2221:                    throw new InternalError(); // ASSERT
2222:            }
2223:
2224:            // Join the segments in the given path according to the given segment-index
2225:            // array, ignoring those segments whose index entries have been set to -1,
2226:            // and inserting slashes as needed.  Return the length of the resulting
2227:            // path.
2228:            //
2229:            // Preconditions:
2230:            //   segs[i] == -1 implies segment i is to be ignored
2231:            //   path computed by split, as above, with '\0' having replaced '/'
2232:            //
2233:            // Postconditions:
2234:            //   path[0] .. path[return value] == Resulting path
2235:            //
2236:            static private int join(char[] path, int[] segs) {
2237:                int ns = segs.length; // Number of segments
2238:                int end = path.length - 1; // Index of last char in path
2239:                int p = 0; // Index of next path char to write
2240:
2241:                if (path[p] == '\0') {
2242:                    // Restore initial slash for absolute paths
2243:                    path[p++] = '/';
2244:                }
2245:
2246:                for (int i = 0; i < ns; i++) {
2247:                    int q = segs[i]; // Current segment
2248:                    if (q == -1)
2249:                        // Ignore this segment
2250:                        continue;
2251:
2252:                    if (p == q) {
2253:                        // We're already at this segment, so just skip to its end
2254:                        while ((p <= end) && (path[p] != '\0'))
2255:                            p++;
2256:                        if (p <= end) {
2257:                            // Preserve trailing slash
2258:                            path[p++] = '/';
2259:                        }
2260:                    } else if (p < q) {
2261:                        // Copy q down to p
2262:                        while ((q <= end) && (path[q] != '\0'))
2263:                            path[p++] = path[q++];
2264:                        if (q <= end) {
2265:                            // Preserve trailing slash
2266:                            path[p++] = '/';
2267:                        }
2268:                    } else
2269:                        throw new InternalError(); // ASSERT false
2270:                }
2271:
2272:                return p;
2273:            }
2274:
2275:            // Remove "." segments from the given path, and remove segment pairs
2276:            // consisting of a non-".." segment followed by a ".." segment.
2277:            //
2278:            private static void removeDots(char[] path, int[] segs) {
2279:                int ns = segs.length;
2280:                int end = path.length - 1;
2281:
2282:                for (int i = 0; i < ns; i++) {
2283:                    int dots = 0; // Number of dots found (0, 1, or 2)
2284:
2285:                    // Find next occurrence of "." or ".."
2286:                    do {
2287:                        int p = segs[i];
2288:                        if (path[p] == '.') {
2289:                            if (p == end) {
2290:                                dots = 1;
2291:                                break;
2292:                            } else if (path[p + 1] == '\0') {
2293:                                dots = 1;
2294:                                break;
2295:                            } else if ((path[p + 1] == '.')
2296:                                    && ((p + 1 == end) || (path[p + 2] == '\0'))) {
2297:                                dots = 2;
2298:                                break;
2299:                            }
2300:                        }
2301:                        i++;
2302:                    } while (i < ns);
2303:                    if ((i > ns) || (dots == 0))
2304:                        break;
2305:
2306:                    if (dots == 1) {
2307:                        // Remove this occurrence of "."
2308:                        segs[i] = -1;
2309:                    } else {
2310:                        // If there is a preceding non-".." segment, remove both that
2311:                        // segment and this occurrence of ".."; otherwise, leave this
2312:                        // ".." segment as-is.
2313:                        int j;
2314:                        for (j = i - 1; j >= 0; j--) {
2315:                            if (segs[j] != -1)
2316:                                break;
2317:                        }
2318:                        if (j >= 0) {
2319:                            int q = segs[j];
2320:                            if (!((path[q] == '.') && (path[q + 1] == '.') && (path[q + 2] == '\0'))) {
2321:                                segs[i] = -1;
2322:                                segs[j] = -1;
2323:                            }
2324:                        }
2325:                    }
2326:                }
2327:            }
2328:
2329:            // DEVIATION: If the normalized path is relative, and if the first
2330:            // segment could be parsed as a scheme name, then prepend a "." segment
2331:            //
2332:            private static void maybeAddLeadingDot(char[] path, int[] segs) {
2333:
2334:                if (path[0] == '\0')
2335:                    // The path is absolute
2336:                    return;
2337:
2338:                int ns = segs.length;
2339:                int f = 0; // Index of first segment
2340:                while (f < ns) {
2341:                    if (segs[f] >= 0)
2342:                        break;
2343:                    f++;
2344:                }
2345:                if ((f >= ns) || (f == 0))
2346:                    // The path is empty, or else the original first segment survived,
2347:                    // in which case we already know that no leading "." is needed
2348:                    return;
2349:
2350:                int p = segs[f];
2351:                while ((p < path.length) && (path[p] != ':')
2352:                        && (path[p] != '\0'))
2353:                    p++;
2354:                if (p >= path.length || path[p] == '\0')
2355:                    // No colon in first segment, so no "." needed
2356:                    return;
2357:
2358:                // At this point we know that the first segment is unused,
2359:                // hence we can insert a "." segment at that position
2360:                path[0] = '.';
2361:                path[1] = '\0';
2362:                segs[0] = 0;
2363:            }
2364:
2365:            // Normalize the given path string.  A normal path string has no empty
2366:            // segments (i.e., occurrences of "//"), no segments equal to ".", and no
2367:            // segments equal to ".." that are preceded by a segment not equal to "..".
2368:            // In contrast to Unix-style pathname normalization, for URI paths we
2369:            // always retain trailing slashes.
2370:            //
2371:            private static String normalize(String ps) {
2372:
2373:                // Does this path need normalization?
2374:                int ns = needsNormalization(ps); // Number of segments
2375:                if (ns < 0)
2376:                    // Nope -- just return it
2377:                    return ps;
2378:
2379:                char[] path = ps.toCharArray(); // Path in char-array form
2380:
2381:                // Split path into segments
2382:                int[] segs = new int[ns]; // Segment-index array
2383:                split(path, segs);
2384:
2385:                // Remove dots
2386:                removeDots(path, segs);
2387:
2388:                // Prevent scheme-name confusion
2389:                maybeAddLeadingDot(path, segs);
2390:
2391:                // Join the remaining segments and return the result
2392:                String s = new String(path, 0, join(path, segs));
2393:                if (s.equals(ps)) {
2394:                    // string was already normalized
2395:                    return ps;
2396:                }
2397:                return s;
2398:            }
2399:
2400:            // -- Character classes for parsing --
2401:
2402:            // RFC2396 precisely specifies which characters in the US-ASCII charset are
2403:            // permissible in the various components of a URI reference.  We here
2404:            // define a set of mask pairs to aid in enforcing these restrictions.  Each
2405:            // mask pair consists of two longs, a low mask and a high mask.  Taken
2406:            // together they represent a 128-bit mask, where bit i is set iff the
2407:            // character with value i is permitted.
2408:            //
2409:            // This approach is more efficient than sequentially searching arrays of
2410:            // permitted characters.  It could be made still more efficient by
2411:            // precompiling the mask information so that a character's presence in a
2412:            // given mask could be determined by a single table lookup.
2413:
2414:            // Compute the low-order mask for the characters in the given string
2415:            private static long lowMask(String chars) {
2416:                int n = chars.length();
2417:                long m = 0;
2418:                for (int i = 0; i < n; i++) {
2419:                    char c = chars.charAt(i);
2420:                    if (c < 64)
2421:                        m |= (1L << c);
2422:                }
2423:                return m;
2424:            }
2425:
2426:            // Compute the high-order mask for the characters in the given string
2427:            private static long highMask(String chars) {
2428:                int n = chars.length();
2429:                long m = 0;
2430:                for (int i = 0; i < n; i++) {
2431:                    char c = chars.charAt(i);
2432:                    if ((c >= 64) && (c < 128))
2433:                        m |= (1L << (c - 64));
2434:                }
2435:                return m;
2436:            }
2437:
2438:            // Compute a low-order mask for the characters
2439:            // between first and last, inclusive
2440:            private static long lowMask(char first, char last) {
2441:                long m = 0;
2442:                int f = Math.max(Math.min(first, 63), 0);
2443:                int l = Math.max(Math.min(last, 63), 0);
2444:                for (int i = f; i <= l; i++)
2445:                    m |= 1L << i;
2446:                return m;
2447:            }
2448:
2449:            // Compute a high-order mask for the characters
2450:            // between first and last, inclusive
2451:            private static long highMask(char first, char last) {
2452:                long m = 0;
2453:                int f = Math.max(Math.min(first, 127), 64) - 64;
2454:                int l = Math.max(Math.min(last, 127), 64) - 64;
2455:                for (int i = f; i <= l; i++)
2456:                    m |= 1L << i;
2457:                return m;
2458:            }
2459:
2460:            // Tell whether the given character is permitted by the given mask pair
2461:            private static boolean match(char c, long lowMask, long highMask) {
2462:                if (c < 64)
2463:                    return ((1L << c) & lowMask) != 0;
2464:                if (c < 128)
2465:                    return ((1L << (c - 64)) & highMask) != 0;
2466:                return false;
2467:            }
2468:
2469:            // Character-class masks, in reverse order from RFC2396 because
2470:            // initializers for static fields cannot make forward references.
2471:
2472:            // digit    = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" |
2473:            //            "8" | "9"
2474:            private static final long L_DIGIT = lowMask('0', '9');
2475:            private static final long H_DIGIT = 0L;
2476:
2477:            // upalpha  = "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" |
2478:            //            "J" | "K" | "L" | "M" | "N" | "O" | "P" | "Q" | "R" |
2479:            //            "S" | "T" | "U" | "V" | "W" | "X" | "Y" | "Z"
2480:            private static final long L_UPALPHA = 0L;
2481:            private static final long H_UPALPHA = highMask('A', 'Z');
2482:
2483:            // lowalpha = "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" |
2484:            //            "j" | "k" | "l" | "m" | "n" | "o" | "p" | "q" | "r" |
2485:            //            "s" | "t" | "u" | "v" | "w" | "x" | "y" | "z"
2486:            private static final long L_LOWALPHA = 0L;
2487:            private static final long H_LOWALPHA = highMask('a', 'z');
2488:
2489:            // alpha         = lowalpha | upalpha
2490:            private static final long L_ALPHA = L_LOWALPHA | L_UPALPHA;
2491:            private static final long H_ALPHA = H_LOWALPHA | H_UPALPHA;
2492:
2493:            // alphanum      = alpha | digit
2494:            private static final long L_ALPHANUM = L_DIGIT | L_ALPHA;
2495:            private static final long H_ALPHANUM = H_DIGIT | H_ALPHA;
2496:
2497:            // hex           = digit | "A" | "B" | "C" | "D" | "E" | "F" |
2498:            //                         "a" | "b" | "c" | "d" | "e" | "f"
2499:            private static final long L_HEX = L_DIGIT;
2500:            private static final long H_HEX = highMask('A', 'F')
2501:                    | highMask('a', 'f');
2502:
2503:            // mark          = "-" | "_" | "." | "!" | "~" | "*" | "'" |
2504:            //                 "(" | ")"
2505:            private static final long L_MARK = lowMask("-_.!~*'()");
2506:            private static final long H_MARK = highMask("-_.!~*'()");
2507:
2508:            // unreserved    = alphanum | mark
2509:            private static final long L_UNRESERVED = L_ALPHANUM | L_MARK;
2510:            private static final long H_UNRESERVED = H_ALPHANUM | H_MARK;
2511:
2512:            // reserved      = ";" | "/" | "?" | ":" | "@" | "&" | "=" | "+" |
2513:            //                 "$" | "," | "[" | "]"
2514:            // Added per RFC2732: "[", "]"
2515:            private static final long L_RESERVED = lowMask(";/?:@&=+$,[]");
2516:            private static final long H_RESERVED = highMask(";/?:@&=+$,[]");
2517:
2518:            // The zero'th bit is used to indicate that escape pairs and non-US-ASCII
2519:            // characters are allowed; this is handled by the scanEscape method below.
2520:            private static final long L_ESCAPED = 1L;
2521:            private static final long H_ESCAPED = 0L;
2522:
2523:            // uric          = reserved | unreserved | escaped
2524:            private static final long L_URIC = L_RESERVED | L_UNRESERVED
2525:                    | L_ESCAPED;
2526:            private static final long H_URIC = H_RESERVED | H_UNRESERVED
2527:                    | H_ESCAPED;
2528:
2529:            // pchar         = unreserved | escaped |
2530:            //                 ":" | "@" | "&" | "=" | "+" | "$" | ","
2531:            private static final long L_PCHAR = L_UNRESERVED | L_ESCAPED
2532:                    | lowMask(":@&=+$,");
2533:            private static final long H_PCHAR = H_UNRESERVED | H_ESCAPED
2534:                    | highMask(":@&=+$,");
2535:
2536:            // All valid path characters
2537:            private static final long L_PATH = L_PCHAR | lowMask(";/");
2538:            private static final long H_PATH = H_PCHAR | highMask(";/");
2539:
2540:            // Dash, for use in domainlabel and toplabel
2541:            private static final long L_DASH = lowMask("-");
2542:            private static final long H_DASH = highMask("-");
2543:
2544:            // Dot, for use in hostnames
2545:            private static final long L_DOT = lowMask(".");
2546:            private static final long H_DOT = highMask(".");
2547:
2548:            // userinfo      = *( unreserved | escaped |
2549:            //                    ";" | ":" | "&" | "=" | "+" | "$" | "," )
2550:            private static final long L_USERINFO = L_UNRESERVED | L_ESCAPED
2551:                    | lowMask(";:&=+$,");
2552:            private static final long H_USERINFO = H_UNRESERVED | H_ESCAPED
2553:                    | highMask(";:&=+$,");
2554:
2555:            // reg_name      = 1*( unreserved | escaped | "$" | "," |
2556:            //                     ";" | ":" | "@" | "&" | "=" | "+" )
2557:            private static final long L_REG_NAME = L_UNRESERVED | L_ESCAPED
2558:                    | lowMask("$,;:@&=+");
2559:            private static final long H_REG_NAME = H_UNRESERVED | H_ESCAPED
2560:                    | highMask("$,;:@&=+");
2561:
2562:            // All valid characters for server-based authorities
2563:            private static final long L_SERVER = L_USERINFO | L_ALPHANUM
2564:                    | L_DASH | lowMask(".:@[]");
2565:            private static final long H_SERVER = H_USERINFO | H_ALPHANUM
2566:                    | H_DASH | highMask(".:@[]");
2567:
2568:            // Special case of server authority that represents an IPv6 address
2569:            // In this case, a % does not signify an escape sequence
2570:            private static final long L_SERVER_PERCENT = L_SERVER
2571:                    | lowMask("%");
2572:            private static final long H_SERVER_PERCENT = H_SERVER
2573:                    | highMask("%");
2574:            private static final long L_LEFT_BRACKET = lowMask("[");
2575:            private static final long H_LEFT_BRACKET = highMask("[");
2576:
2577:            // scheme        = alpha *( alpha | digit | "+" | "-" | "." )
2578:            private static final long L_SCHEME = L_ALPHA | L_DIGIT
2579:                    | lowMask("+-.");
2580:            private static final long H_SCHEME = H_ALPHA | H_DIGIT
2581:                    | highMask("+-.");
2582:
2583:            // uric_no_slash = unreserved | escaped | ";" | "?" | ":" | "@" |
2584:            //                 "&" | "=" | "+" | "$" | ","
2585:            private static final long L_URIC_NO_SLASH = L_UNRESERVED
2586:                    | L_ESCAPED | lowMask(";?:@&=+$,");
2587:            private static final long H_URIC_NO_SLASH = H_UNRESERVED
2588:                    | H_ESCAPED | highMask(";?:@&=+$,");
2589:
2590:            // -- Escaping and encoding --
2591:
2592:            private final static char[] hexDigits = { '0', '1', '2', '3', '4',
2593:                    '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F' };
2594:
2595:            private static void appendEscape(StringBuffer sb, byte b) {
2596:                sb.append('%');
2597:                sb.append(hexDigits[(b >> 4) & 0x0f]);
2598:                sb.append(hexDigits[(b >> 0) & 0x0f]);
2599:            }
2600:
2601:            private static void appendEncoded(StringBuffer sb, char c) {
2602:                ByteBuffer bb = null;
2603:                try {
2604:                    bb = ThreadLocalCoders.encoderFor("UTF-8").encode(
2605:                            CharBuffer.wrap("" + c));
2606:                } catch (CharacterCodingException x) {
2607:                    assert false;
2608:                }
2609:                while (bb.hasRemaining()) {
2610:                    int b = bb.get() & 0xff;
2611:                    if (b >= 0x80)
2612:                        appendEscape(sb, (byte) b);
2613:                    else
2614:                        sb.append((char) b);
2615:                }
2616:            }
2617:
2618:            // Quote any characters in s that are not permitted
2619:            // by the given mask pair
2620:            //
2621:            private static String quote(String s, long lowMask, long highMask) {
2622:                int n = s.length();
2623:                StringBuffer sb = null;
2624:                boolean allowNonASCII = ((lowMask & L_ESCAPED) != 0);
2625:                for (int i = 0; i < s.length(); i++) {
2626:                    char c = s.charAt(i);
2627:                    if (c < '\u0080') {
2628:                        if (!match(c, lowMask, highMask)) {
2629:                            if (sb == null) {
2630:                                sb = new StringBuffer();
2631:                                sb.append(s.substring(0, i));
2632:                            }
2633:                            appendEscape(sb, (byte) c);
2634:                        } else {
2635:                            if (sb != null)
2636:                                sb.append(c);
2637:                        }
2638:                    } else if (allowNonASCII
2639:                            && (Character.isSpaceChar(c) || Character
2640:                                    .isISOControl(c))) {
2641:                        if (sb == null) {
2642:                            sb = new StringBuffer();
2643:                            sb.append(s.substring(0, i));
2644:                        }
2645:                        appendEncoded(sb, c);
2646:                    } else {
2647:                        if (sb != null)
2648:                            sb.append(c);
2649:                    }
2650:                }
2651:                return (sb == null) ? s : sb.toString();
2652:            }
2653:
2654:            // Encodes all characters >= \u0080 into escaped, normalized UTF-8 octets,
2655:            // assuming that s is otherwise legal
2656:            //
2657:            private static String encode(String s) {
2658:                int n = s.length();
2659:                if (n == 0)
2660:                    return s;
2661:
2662:                // First check whether we actually need to encode
2663:                for (int i = 0;;) {
2664:                    if (s.charAt(i) >= '\u0080')
2665:                        break;
2666:                    if (++i >= n)
2667:                        return s;
2668:                }
2669:
2670:                String ns = Normalizer.normalize(s, Normalizer.Form.NFC);
2671:                ByteBuffer bb = null;
2672:                try {
2673:                    bb = ThreadLocalCoders.encoderFor("UTF-8").encode(
2674:                            CharBuffer.wrap(ns));
2675:                } catch (CharacterCodingException x) {
2676:                    assert false;
2677:                }
2678:
2679:                StringBuffer sb = new StringBuffer();
2680:                while (bb.hasRemaining()) {
2681:                    int b = bb.get() & 0xff;
2682:                    if (b >= 0x80)
2683:                        appendEscape(sb, (byte) b);
2684:                    else
2685:                        sb.append((char) b);
2686:                }
2687:                return sb.toString();
2688:            }
2689:
2690:            private static int decode(char c) {
2691:                if ((c >= '0') && (c <= '9'))
2692:                    return c - '0';
2693:                if ((c >= 'a') && (c <= 'f'))
2694:                    return c - 'a' + 10;
2695:                if ((c >= 'A') && (c <= 'F'))
2696:                    return c - 'A' + 10;
2697:                assert false;
2698:                return -1;
2699:            }
2700:
2701:            private static byte decode(char c1, char c2) {
2702:                return (byte) (((decode(c1) & 0xf) << 4) | ((decode(c2) & 0xf) << 0));
2703:            }
2704:
2705:            // Evaluates all escapes in s, applying UTF-8 decoding if needed.  Assumes
2706:            // that escapes are well-formed syntactically, i.e., of the form %XX.  If a
2707:            // sequence of escaped octets is not valid UTF-8 then the erroneous octets
2708:            // are replaced with '\uFFFD'.
2709:            // Exception: any "%" found between "[]" is left alone. It is an IPv6 literal
2710:            //            with a scope_id
2711:            //
2712:            private static String decode(String s) {
2713:                if (s == null)
2714:                    return s;
2715:                int n = s.length();
2716:                if (n == 0)
2717:                    return s;
2718:                if (s.indexOf('%') < 0)
2719:                    return s;
2720:
2721:                StringBuffer sb = new StringBuffer(n);
2722:                ByteBuffer bb = ByteBuffer.allocate(n);
2723:                CharBuffer cb = CharBuffer.allocate(n);
2724:                CharsetDecoder dec = ThreadLocalCoders.decoderFor("UTF-8")
2725:                        .onMalformedInput(CodingErrorAction.REPLACE)
2726:                        .onUnmappableCharacter(CodingErrorAction.REPLACE);
2727:
2728:                // This is not horribly efficient, but it will do for now
2729:                char c = s.charAt(0);
2730:                boolean betweenBrackets = false;
2731:
2732:                for (int i = 0; i < n;) {
2733:                    assert c == s.charAt(i); // Loop invariant
2734:                    if (c == '[') {
2735:                        betweenBrackets = true;
2736:                    } else if (betweenBrackets && c == ']') {
2737:                        betweenBrackets = false;
2738:                    }
2739:                    if (c != '%' || betweenBrackets) {
2740:                        sb.append(c);
2741:                        if (++i >= n)
2742:                            break;
2743:                        c = s.charAt(i);
2744:                        continue;
2745:                    }
2746:                    bb.clear();
2747:                    int ui = i;
2748:                    for (;;) {
2749:                        assert (n - i >= 2);
2750:                        bb.put(decode(s.charAt(++i), s.charAt(++i)));
2751:                        if (++i >= n)
2752:                            break;
2753:                        c = s.charAt(i);
2754:                        if (c != '%')
2755:                            break;
2756:                    }
2757:                    bb.flip();
2758:                    cb.clear();
2759:                    dec.reset();
2760:                    CoderResult cr = dec.decode(bb, cb, true);
2761:                    assert cr.isUnderflow();
2762:                    cr = dec.flush(cb);
2763:                    assert cr.isUnderflow();
2764:                    sb.append(cb.flip().toString());
2765:                }
2766:
2767:                return sb.toString();
2768:            }
2769:
2770:            // -- Parsing --
2771:
2772:            // For convenience we wrap the input URI string in a new instance of the
2773:            // following internal class.  This saves always having to pass the input
2774:            // string as an argument to each internal scan/parse method.
2775:
2776:            private class Parser {
2777:
2778:                private String input; // URI input string
2779:                private boolean requireServerAuthority = false;
2780:
2781:                Parser(String s) {
2782:                    input = s;
2783:                    string = s;
2784:                }
2785:
2786:                // -- Methods for throwing URISyntaxException in various ways --
2787:
2788:                private void fail(String reason) throws URISyntaxException {
2789:                    throw new URISyntaxException(input, reason);
2790:                }
2791:
2792:                private void fail(String reason, int p)
2793:                        throws URISyntaxException {
2794:                    throw new URISyntaxException(input, reason, p);
2795:                }
2796:
2797:                private void failExpecting(String expected, int p)
2798:                        throws URISyntaxException {
2799:                    fail("Expected " + expected, p);
2800:                }
2801:
2802:                private void failExpecting(String expected, String prior, int p)
2803:                        throws URISyntaxException {
2804:                    fail("Expected " + expected + " following " + prior, p);
2805:                }
2806:
2807:                // -- Simple access to the input string --
2808:
2809:                // Return a substring of the input string
2810:                //
2811:                private String substring(int start, int end) {
2812:                    return input.substring(start, end);
2813:                }
2814:
2815:                // Return the char at position p,
2816:                // assuming that p < input.length()
2817:                //
2818:                private char charAt(int p) {
2819:                    return input.charAt(p);
2820:                }
2821:
2822:                // Tells whether start < end and, if so, whether charAt(start) == c
2823:                //
2824:                private boolean at(int start, int end, char c) {
2825:                    return (start < end) && (charAt(start) == c);
2826:                }
2827:
2828:                // Tells whether start + s.length() < end and, if so,
2829:                // whether the chars at the start position match s exactly
2830:                //
2831:                private boolean at(int start, int end, String s) {
2832:                    int p = start;
2833:                    int sn = s.length();
2834:                    if (sn > end - p)
2835:                        return false;
2836:                    int i = 0;
2837:                    while (i < sn) {
2838:                        if (charAt(p++) != s.charAt(i)) {
2839:                            break;
2840:                        }
2841:                        i++;
2842:                    }
2843:                    return (i == sn);
2844:                }
2845:
2846:                // -- Scanning --
2847:
2848:                // The various scan and parse methods that follow use a uniform
2849:                // convention of taking the current start position and end index as
2850:                // their first two arguments.  The start is inclusive while the end is
2851:                // exclusive, just as in the String class, i.e., a start/end pair
2852:                // denotes the left-open interval [start, end) of the input string.
2853:                //
2854:                // These methods never proceed past the end position.  They may return
2855:                // -1 to indicate outright failure, but more often they simply return
2856:                // the position of the first char after the last char scanned.  Thus
2857:                // a typical idiom is
2858:                //
2859:                //     int p = start;
2860:                //     int q = scan(p, end, ...);
2861:                //     if (q > p)
2862:                //         // We scanned something
2863:                //         ...;
2864:                //     else if (q == p)
2865:                //         // We scanned nothing
2866:                //         ...;
2867:                //     else if (q == -1)
2868:                //         // Something went wrong
2869:                //         ...;
2870:
2871:                // Scan a specific char: If the char at the given start position is
2872:                // equal to c, return the index of the next char; otherwise, return the
2873:                // start position.
2874:                //
2875:                private int scan(int start, int end, char c) {
2876:                    if ((start < end) && (charAt(start) == c))
2877:                        return start + 1;
2878:                    return start;
2879:                }
2880:
2881:                // Scan forward from the given start position.  Stop at the first char
2882:                // in the err string (in which case -1 is returned), or the first char
2883:                // in the stop string (in which case the index of the preceding char is
2884:                // returned), or the end of the input string (in which case the length
2885:                // of the input string is returned).  May return the start position if
2886:                // nothing matches.
2887:                //
2888:                private int scan(int start, int end, String err, String stop) {
2889:                    int p = start;
2890:                    while (p < end) {
2891:                        char c = charAt(p);
2892:                        if (err.indexOf(c) >= 0)
2893:                            return -1;
2894:                        if (stop.indexOf(c) >= 0)
2895:                            break;
2896:                        p++;
2897:                    }
2898:                    return p;
2899:                }
2900:
2901:                // Scan a potential escape sequence, starting at the given position,
2902:                // with the given first char (i.e., charAt(start) == c).
2903:                //
2904:                // This method assumes that if escapes are allowed then visible
2905:                // non-US-ASCII chars are also allowed.
2906:                //
2907:                private int scanEscape(int start, int n, char first)
2908:                        throws URISyntaxException {
2909:                    int p = start;
2910:                    char c = first;
2911:                    if (c == '%') {
2912:                        // Process escape pair
2913:                        if ((p + 3 <= n) && match(charAt(p + 1), L_HEX, H_HEX)
2914:                                && match(charAt(p + 2), L_HEX, H_HEX)) {
2915:                            return p + 3;
2916:                        }
2917:                        fail("Malformed escape pair", p);
2918:                    } else if ((c > 128) && !Character.isSpaceChar(c)
2919:                            && !Character.isISOControl(c)) {
2920:                        // Allow unescaped but visible non-US-ASCII chars
2921:                        return p + 1;
2922:                    }
2923:                    return p;
2924:                }
2925:
2926:                // Scan chars that match the given mask pair
2927:                //
2928:                private int scan(int start, int n, long lowMask, long highMask)
2929:                        throws URISyntaxException {
2930:                    int p = start;
2931:                    while (p < n) {
2932:                        char c = charAt(p);
2933:                        if (match(c, lowMask, highMask)) {
2934:                            p++;
2935:                            continue;
2936:                        }
2937:                        if ((lowMask & L_ESCAPED) != 0) {
2938:                            int q = scanEscape(p, n, c);
2939:                            if (q > p) {
2940:                                p = q;
2941:                                continue;
2942:                            }
2943:                        }
2944:                        break;
2945:                    }
2946:                    return p;
2947:                }
2948:
2949:                // Check that each of the chars in [start, end) matches the given mask
2950:                //
2951:                private void checkChars(int start, int end, long lowMask,
2952:                        long highMask, String what) throws URISyntaxException {
2953:                    int p = scan(start, end, lowMask, highMask);
2954:                    if (p < end)
2955:                        fail("Illegal character in " + what, p);
2956:                }
2957:
2958:                // Check that the char at position p matches the given mask
2959:                //
2960:                private void checkChar(int p, long lowMask, long highMask,
2961:                        String what) throws URISyntaxException {
2962:                    checkChars(p, p + 1, lowMask, highMask, what);
2963:                }
2964:
2965:                // -- Parsing --
2966:
2967:                // [<scheme>:]<scheme-specific-part>[#<fragment>]
2968:                //
2969:                void parse(boolean rsa) throws URISyntaxException {
2970:                    requireServerAuthority = rsa;
2971:                    int ssp; // Start of scheme-specific part
2972:                    int n = input.length();
2973:                    int p = scan(0, n, "/?#", ":");
2974:                    if ((p >= 0) && at(p, n, ':')) {
2975:                        if (p == 0)
2976:                            failExpecting("scheme name", 0);
2977:                        checkChar(0, L_ALPHA, H_ALPHA, "scheme name");
2978:                        checkChars(1, p, L_SCHEME, H_SCHEME, "scheme name");
2979:                        scheme = substring(0, p);
2980:                        p++; // Skip ':'
2981:                        ssp = p;
2982:                        if (at(p, n, '/')) {
2983:                            p = parseHierarchical(p, n);
2984:                        } else {
2985:                            int q = scan(p, n, "", "#");
2986:                            if (q <= p)
2987:                                failExpecting("scheme-specific part", p);
2988:                            checkChars(p, q, L_URIC, H_URIC, "opaque part");
2989:                            p = q;
2990:                        }
2991:                    } else {
2992:                        ssp = 0;
2993:                        p = parseHierarchical(0, n);
2994:                    }
2995:                    schemeSpecificPart = substring(ssp, p);
2996:                    if (at(p, n, '#')) {
2997:                        checkChars(p + 1, n, L_URIC, H_URIC, "fragment");
2998:                        fragment = substring(p + 1, n);
2999:                        p = n;
3000:                    }
3001:                    if (p < n)
3002:                        fail("end of URI", p);
3003:                }
3004:
3005:                // [//authority]<path>[?<query>]
3006:                //
3007:                // DEVIATION from RFC2396: We allow an empty authority component as
3008:                // long as it's followed by a non-empty path, query component, or
3009:                // fragment component.  This is so that URIs such as "file:///foo/bar"
3010:                // will parse.  This seems to be the intent of RFC2396, though the
3011:                // grammar does not permit it.  If the authority is empty then the
3012:                // userInfo, host, and port components are undefined.
3013:                //
3014:                // DEVIATION from RFC2396: We allow empty relative paths.  This seems
3015:                // to be the intent of RFC2396, but the grammar does not permit it.
3016:                // The primary consequence of this deviation is that "#f" parses as a
3017:                // relative URI with an empty path.
3018:                //
3019:                private int parseHierarchical(int start, int n)
3020:                        throws URISyntaxException {
3021:                    int p = start;
3022:                    if (at(p, n, '/') && at(p + 1, n, '/')) {
3023:                        p += 2;
3024:                        int q = scan(p, n, "", "/?#");
3025:                        if (q > p) {
3026:                            p = parseAuthority(p, q);
3027:                        } else if (q < n) {
3028:                            // DEVIATION: Allow empty authority prior to non-empty 
3029:                            // path, query component or fragment identifier
3030:                        } else
3031:                            failExpecting("authority", p);
3032:                    }
3033:                    int q = scan(p, n, "", "?#"); // DEVIATION: May be empty
3034:                    checkChars(p, q, L_PATH, H_PATH, "path");
3035:                    path = substring(p, q);
3036:                    p = q;
3037:                    if (at(p, n, '?')) {
3038:                        p++;
3039:                        q = scan(p, n, "", "#");
3040:                        checkChars(p, q, L_URIC, H_URIC, "query");
3041:                        query = substring(p, q);
3042:                        p = q;
3043:                    }
3044:                    return p;
3045:                }
3046:
3047:                // authority     = server | reg_name
3048:                //
3049:                // Ambiguity: An authority that is a registry name rather than a server
3050:                // might have a prefix that parses as a server.  We use the fact that
3051:                // the authority component is always followed by '/' or the end of the
3052:                // input string to resolve this: If the complete authority did not
3053:                // parse as a server then we try to parse it as a registry name.
3054:                //
3055:                private int parseAuthority(int start, int n)
3056:                        throws URISyntaxException {
3057:                    int p = start;
3058:                    int q = p;
3059:                    URISyntaxException ex = null;
3060:
3061:                    boolean serverChars;
3062:                    boolean regChars;
3063:
3064:                    if (scan(p, n, "", "]") > p) {
3065:                        // contains a literal IPv6 address, therefore % is allowed
3066:                        serverChars = (scan(p, n, L_SERVER_PERCENT,
3067:                                H_SERVER_PERCENT) == n);
3068:                    } else {
3069:                        serverChars = (scan(p, n, L_SERVER, H_SERVER) == n);
3070:                    }
3071:                    regChars = (scan(p, n, L_REG_NAME, H_REG_NAME) == n);
3072:
3073:                    if (regChars && !serverChars) {
3074:                        // Must be a registry-based authority
3075:                        authority = substring(p, n);
3076:                        return n;
3077:                    }
3078:
3079:                    if (serverChars) {
3080:                        // Might be (probably is) a server-based authority, so attempt
3081:                        // to parse it as such.  If the attempt fails, try to treat it
3082:                        // as a registry-based authority.
3083:                        try {
3084:                            q = parseServer(p, n);
3085:                            if (q < n)
3086:                                failExpecting("end of authority", q);
3087:                            authority = substring(p, n);
3088:                        } catch (URISyntaxException x) {
3089:                            // Undo results of failed parse
3090:                            userInfo = null;
3091:                            host = null;
3092:                            port = -1;
3093:                            if (requireServerAuthority) {
3094:                                // If we're insisting upon a server-based authority,
3095:                                // then just re-throw the exception
3096:                                throw x;
3097:                            } else {
3098:                                // Save the exception in case it doesn't parse as a
3099:                                // registry either
3100:                                ex = x;
3101:                                q = p;
3102:                            }
3103:                        }
3104:                    }
3105:
3106:                    if (q < n) {
3107:                        if (regChars) {
3108:                            // Registry-based authority
3109:                            authority = substring(p, n);
3110:                        } else if (ex != null) {
3111:                            // Re-throw exception; it was probably due to
3112:                            // a malformed IPv6 address
3113:                            throw ex;
3114:                        } else {
3115:                            fail("Illegal character in authority", q);
3116:                        }
3117:                    }
3118:
3119:                    return n;
3120:                }
3121:
3122:                // [<userinfo>@]<host>[:<port>]
3123:                //
3124:                private int parseServer(int start, int n)
3125:                        throws URISyntaxException {
3126:                    int p = start;
3127:                    int q;
3128:
3129:                    // userinfo
3130:                    q = scan(p, n, "/?#", "@");
3131:                    if ((q >= p) && at(q, n, '@')) {
3132:                        checkChars(p, q, L_USERINFO, H_USERINFO, "user info");
3133:                        userInfo = substring(p, q);
3134:                        p = q + 1; // Skip '@'
3135:                    }
3136:
3137:                    // hostname, IPv4 address, or IPv6 address
3138:                    if (at(p, n, '[')) {
3139:                        // DEVIATION from RFC2396: Support IPv6 addresses, per RFC2732
3140:                        p++;
3141:                        q = scan(p, n, "/?#", "]");
3142:                        if ((q > p) && at(q, n, ']')) {
3143:                            // look for a "%" scope id
3144:                            int r = scan(p, q, "", "%");
3145:                            if (r > p) {
3146:                                parseIPv6Reference(p, r);
3147:                                if (r + 1 == q) {
3148:                                    fail("scope id expected");
3149:                                }
3150:                                checkChars(r + 1, q, L_ALPHANUM, H_ALPHANUM,
3151:                                        "scope id");
3152:                            } else {
3153:                                parseIPv6Reference(p, q);
3154:                            }
3155:                            host = substring(p - 1, q + 1);
3156:                            p = q + 1;
3157:                        } else {
3158:                            failExpecting("closing bracket for IPv6 address", q);
3159:                        }
3160:                    } else {
3161:                        q = parseIPv4Address(p, n);
3162:                        if (q <= p)
3163:                            q = parseHostname(p, n);
3164:                        p = q;
3165:                    }
3166:
3167:                    // port
3168:                    if (at(p, n, ':')) {
3169:                        p++;
3170:                        q = scan(p, n, "", "/");
3171:                        if (q > p) {
3172:                            checkChars(p, q, L_DIGIT, H_DIGIT, "port number");
3173:                            try {
3174:                                port = Integer.parseInt(substring(p, q));
3175:                            } catch (NumberFormatException x) {
3176:                                fail("Malformed port number", p);
3177:                            }
3178:                            p = q;
3179:                        }
3180:                    }
3181:                    if (p < n)
3182:                        failExpecting("port number", p);
3183:
3184:                    return p;
3185:                }
3186:
3187:                // Scan a string of decimal digits whose value fits in a byte
3188:                //
3189:                private int scanByte(int start, int n)
3190:                        throws URISyntaxException {
3191:                    int p = start;
3192:                    int q = scan(p, n, L_DIGIT, H_DIGIT);
3193:                    if (q <= p)
3194:                        return q;
3195:                    if (Integer.parseInt(substring(p, q)) > 255)
3196:                        return p;
3197:                    return q;
3198:                }
3199:
3200:                // Scan an IPv4 address.
3201:                //
3202:                // If the strict argument is true then we require that the given
3203:                // interval contain nothing besides an IPv4 address; if it is false
3204:                // then we only require that it start with an IPv4 address.
3205:                //
3206:                // If the interval does not contain or start with (depending upon the
3207:                // strict argument) a legal IPv4 address characters then we return -1
3208:                // immediately; otherwise we insist that these characters parse as a
3209:                // legal IPv4 address and throw an exception on failure.
3210:                //
3211:                // We assume that any string of decimal digits and dots must be an IPv4
3212:                // address.  It won't parse as a hostname anyway, so making that
3213:                // assumption here allows more meaningful exceptions to be thrown.
3214:                //
3215:                private int scanIPv4Address(int start, int n, boolean strict)
3216:                        throws URISyntaxException {
3217:                    int p = start;
3218:                    int q;
3219:                    int m = scan(p, n, L_DIGIT | L_DOT, H_DIGIT | H_DOT);
3220:                    if ((m <= p) || (strict && (m != n)))
3221:                        return -1;
3222:                    for (;;) {
3223:                        // Per RFC2732: At most three digits per byte
3224:                        // Further constraint: Each element fits in a byte
3225:                        if ((q = scanByte(p, m)) <= p)
3226:                            break;
3227:                        p = q;
3228:                        if ((q = scan(p, m, '.')) <= p)
3229:                            break;
3230:                        p = q;
3231:                        if ((q = scanByte(p, m)) <= p)
3232:                            break;
3233:                        p = q;
3234:                        if ((q = scan(p, m, '.')) <= p)
3235:                            break;
3236:                        p = q;
3237:                        if ((q = scanByte(p, m)) <= p)
3238:                            break;
3239:                        p = q;
3240:                        if ((q = scan(p, m, '.')) <= p)
3241:                            break;
3242:                        p = q;
3243:                        if ((q = scanByte(p, m)) <= p)
3244:                            break;
3245:                        p = q;
3246:                        if (q < m)
3247:                            break;
3248:                        return q;
3249:                    }
3250:                    fail("Malformed IPv4 address", q);
3251:                    return -1;
3252:                }
3253:
3254:                // Take an IPv4 address: Throw an exception if the given interval
3255:                // contains anything except an IPv4 address
3256:                //
3257:                private int takeIPv4Address(int start, int n, String expected)
3258:                        throws URISyntaxException {
3259:                    int p = scanIPv4Address(start, n, true);
3260:                    if (p <= start)
3261:                        failExpecting(expected, start);
3262:                    return p;
3263:                }
3264:
3265:                // Attempt to parse an IPv4 address, returning -1 on failure but
3266:                // allowing the given interval to contain [:<characters>] after
3267:                // the IPv4 address.
3268:                //
3269:                private int parseIPv4Address(int start, int n) {
3270:                    int p;
3271:
3272:                    try {
3273:                        p = scanIPv4Address(start, n, false);
3274:                    } catch (URISyntaxException x) {
3275:                        return -1;
3276:                    } catch (NumberFormatException nfe) {
3277:                        return -1;
3278:                    }
3279:
3280:                    if (p > start && p < n) {
3281:                        // IPv4 address is followed by something - check that
3282:                        // it's a ":" as this is the only valid character to
3283:                        // follow an address.
3284:                        if (charAt(p) != ':') {
3285:                            p = -1;
3286:                        }
3287:                    }
3288:
3289:                    if (p > start)
3290:                        host = substring(start, p);
3291:
3292:                    return p;
3293:                }
3294:
3295:                // hostname      = domainlabel [ "." ] | 1*( domainlabel "." ) toplabel [ "." ] 
3296:                // domainlabel   = alphanum | alphanum *( alphanum | "-" ) alphanum
3297:                // toplabel      = alpha | alpha *( alphanum | "-" ) alphanum
3298:                //
3299:                private int parseHostname(int start, int n)
3300:                        throws URISyntaxException {
3301:                    int p = start;
3302:                    int q;
3303:                    int l = -1; // Start of last parsed label
3304:
3305:                    do {
3306:                        // domainlabel = alphanum [ *( alphanum | "-" ) alphanum ]
3307:                        q = scan(p, n, L_ALPHANUM, H_ALPHANUM);
3308:                        if (q <= p)
3309:                            break;
3310:                        l = p;
3311:                        if (q > p) {
3312:                            p = q;
3313:                            q = scan(p, n, L_ALPHANUM | L_DASH, H_ALPHANUM
3314:                                    | H_DASH);
3315:                            if (q > p) {
3316:                                if (charAt(q - 1) == '-')
3317:                                    fail("Illegal character in hostname", q - 1);
3318:                                p = q;
3319:                            }
3320:                        }
3321:                        q = scan(p, n, '.');
3322:                        if (q <= p)
3323:                            break;
3324:                        p = q;
3325:                    } while (p < n);
3326:
3327:                    if ((p < n) && !at(p, n, ':'))
3328:                        fail("Illegal character in hostname", p);
3329:
3330:                    if (l < 0)
3331:                        failExpecting("hostname", start);
3332:
3333:                    // for a fully qualified hostname check that the rightmost
3334:                    // label starts with an alpha character.
3335:                    if (l > start && !match(charAt(l), L_ALPHA, H_ALPHA)) {
3336:                        fail("Illegal character in hostname", l);
3337:                    }
3338:
3339:                    host = substring(start, p);
3340:                    return p;
3341:                }
3342:
3343:                // IPv6 address parsing, from RFC2373: IPv6 Addressing Architecture
3344:                //
3345:                // Bug: The grammar in RFC2373 Appendix B does not allow addresses of
3346:                // the form ::12.34.56.78, which are clearly shown in the examples
3347:                // earlier in the document.  Here is the original grammar:
3348:                //
3349:                //   IPv6address = hexpart [ ":" IPv4address ]
3350:                //   hexpart     = hexseq | hexseq "::" [ hexseq ] | "::" [ hexseq ]
3351:                //   hexseq      = hex4 *( ":" hex4)
3352:                //   hex4        = 1*4HEXDIG
3353:                //
3354:                // We therefore use the following revised grammar:
3355:                //
3356:                //   IPv6address = hexseq [ ":" IPv4address ]
3357:                //                 | hexseq [ "::" [ hexpost ] ]
3358:                //                 | "::" [ hexpost ]
3359:                //   hexpost     = hexseq | hexseq ":" IPv4address | IPv4address
3360:                //   hexseq      = hex4 *( ":" hex4)
3361:                //   hex4        = 1*4HEXDIG
3362:                //
3363:                // This covers all and only the following cases:
3364:                //
3365:                //   hexseq
3366:                //   hexseq : IPv4address
3367:                //   hexseq ::
3368:                //   hexseq :: hexseq
3369:                //   hexseq :: hexseq : IPv4address
3370:                //   hexseq :: IPv4address
3371:                //   :: hexseq
3372:                //   :: hexseq : IPv4address
3373:                //   :: IPv4address
3374:                //   ::
3375:                //
3376:                // Additionally we constrain the IPv6 address as follows :-
3377:                //
3378:                //  i.  IPv6 addresses without compressed zeros should contain
3379:                //      exactly 16 bytes.
3380:                //
3381:                //  ii. IPv6 addresses with compressed zeros should contain
3382:                //      less than 16 bytes.
3383:
3384:                private int ipv6byteCount = 0;
3385:
3386:                private int parseIPv6Reference(int start, int n)
3387:                        throws URISyntaxException {
3388:                    int p = start;
3389:                    int q;
3390:                    boolean compressedZeros = false;
3391:
3392:                    q = scanHexSeq(p, n);
3393:
3394:                    if (q > p) {
3395:                        p = q;
3396:                        if (at(p, n, "::")) {
3397:                            compressedZeros = true;
3398:                            p = scanHexPost(p + 2, n);
3399:                        } else if (at(p, n, ':')) {
3400:                            p = takeIPv4Address(p + 1, n, "IPv4 address");
3401:                            ipv6byteCount += 4;
3402:                        }
3403:                    } else if (at(p, n, "::")) {
3404:                        compressedZeros = true;
3405:                        p = scanHexPost(p + 2, n);
3406:                    }
3407:                    if (p < n)
3408:                        fail("Malformed IPv6 address", start);
3409:                    if (ipv6byteCount > 16)
3410:                        fail("IPv6 address too long", start);
3411:                    if (!compressedZeros && ipv6byteCount < 16)
3412:                        fail("IPv6 address too short", start);
3413:                    if (compressedZeros && ipv6byteCount == 16)
3414:                        fail("Malformed IPv6 address", start);
3415:
3416:                    return p;
3417:                }
3418:
3419:                private int scanHexPost(int start, int n)
3420:                        throws URISyntaxException {
3421:                    int p = start;
3422:                    int q;
3423:
3424:                    if (p == n)
3425:                        return p;
3426:
3427:                    q = scanHexSeq(p, n);
3428:                    if (q > p) {
3429:                        p = q;
3430:                        if (at(p, n, ':')) {
3431:                            p++;
3432:                            p = takeIPv4Address(p, n,
3433:                                    "hex digits or IPv4 address");
3434:                            ipv6byteCount += 4;
3435:                        }
3436:                    } else {
3437:                        p = takeIPv4Address(p, n, "hex digits or IPv4 address");
3438:                        ipv6byteCount += 4;
3439:                    }
3440:                    return p;
3441:                }
3442:
3443:                // Scan a hex sequence; return -1 if one could not be scanned
3444:                //
3445:                private int scanHexSeq(int start, int n)
3446:                        throws URISyntaxException {
3447:                    int p = start;
3448:                    int q;
3449:
3450:                    q = scan(p, n, L_HEX, H_HEX);
3451:                    if (q <= p)
3452:                        return -1;
3453:                    if (at(q, n, '.')) // Beginning of IPv4 address
3454:                        return -1;
3455:                    if (q > p + 4)
3456:                        fail("IPv6 hexadecimal digit sequence too long", p);
3457:                    ipv6byteCount += 2;
3458:                    p = q;
3459:                    while (p < n) {
3460:                        if (!at(p, n, ':'))
3461:                            break;
3462:                        if (at(p + 1, n, ':'))
3463:                            break; // "::"
3464:                        p++;
3465:                        q = scan(p, n, L_HEX, H_HEX);
3466:                        if (q <= p)
3467:                            failExpecting("digits for an IPv6 address", p);
3468:                        if (at(q, n, '.')) { // Beginning of IPv4 address
3469:                            p--;
3470:                            break;
3471:                        }
3472:                        if (q > p + 4)
3473:                            fail("IPv6 hexadecimal digit sequence too long", p);
3474:                        ipv6byteCount += 2;
3475:                        p = q;
3476:                    }
3477:
3478:                    return p;
3479:                }
3480:
3481:            }
3482:
3483:        }
www___._ja_v__a___2__s.___c__o__m__
Home | Contact Us
Copyright 2003 - 07 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.