Source Code Cross Referenced for BigInteger.java in  » JDK-Core » math » java » math » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. JDK Core
2. JDK Modules
3. JDK Modules com.sun
4. JDK Modules com.sun.java
5. JDK Modules Platform
6. JDK Modules sun
7. Open Source Build
8. Open Source Graphic Library
9. Open Source IDE Eclipse
10. Open Source J2EE
11. Open Source JDBC Driver
12. Open Source Library
13. Open Source Library Database
14. Open Source Net
15. Open Source Script
16. Science
17. Security
18. Sevlet Container
19. SUN GlassFish
20. Swing Library
21. Web Services apache cxf 2.0.1
22. Web Services AXIS2
23. XML
Microsoft Office Word 2007 Tutorial
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
C# / C Sharp
C# / CSharp Tutorial
ASP.Net
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
PHP
Python
SQL Server / T-SQL
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Java Source Code / Java Documentation » JDK Core » math » java.math 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


0001:        /*
0002:         * Portions Copyright 1996-2007 Sun Microsystems, Inc.  All Rights Reserved.
0003:         * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
0004:         * 
0005:         * This code is free software; you can redistribute it and/or modify it
0006:         * under the terms of the GNU General Public License version 2 only, as
0007:         * published by the Free Software Foundation.  Sun designates this
0008:         * particular file as subject to the "Classpath" exception as provided
0009:         * by Sun in the LICENSE file that accompanied this code.
0010:         *  
0011:         * This code is distributed in the hope that it will be useful, but WITHOUT
0012:         * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
0013:         * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
0014:         * version 2 for more details (a copy is included in the LICENSE file that
0015:         * accompanied this code).
0016:         *  
0017:         * You should have received a copy of the GNU General Public License version
0018:         * 2 along with this work; if not, write to the Free Software Foundation,
0019:         * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
0020:         *  
0021:         * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
0022:         * CA 95054 USA or visit www.sun.com if you need additional information or
0023:         * have any questions.
0024:         */
0025:
0026:        /*
0027:         * Portions Copyright (c) 1995  Colin Plumb.  All rights reserved.
0028:         */
0029:
0030:        package java.math;
0031:
0032:        import java.util.Random;
0033:        import java.io.*;
0034:
0035:        /**
0036:         * Immutable arbitrary-precision integers.  All operations behave as if
0037:         * BigIntegers were represented in two's-complement notation (like Java's
0038:         * primitive integer types).  BigInteger provides analogues to all of Java's
0039:         * primitive integer operators, and all relevant methods from java.lang.Math.
0040:         * Additionally, BigInteger provides operations for modular arithmetic, GCD
0041:         * calculation, primality testing, prime generation, bit manipulation,
0042:         * and a few other miscellaneous operations.
0043:         * 
0044:         * <p>Semantics of arithmetic operations exactly mimic those of Java's integer
0045:         * arithmetic operators, as defined in <i>The Java Language Specification</i>.
0046:         * For example, division by zero throws an {@code ArithmeticException}, and
0047:         * division of a negative by a positive yields a negative (or zero) remainder.
0048:         * All of the details in the Spec concerning overflow are ignored, as
0049:         * BigIntegers are made as large as necessary to accommodate the results of an
0050:         * operation.
0051:         * 
0052:         * <p>Semantics of shift operations extend those of Java's shift operators
0053:         * to allow for negative shift distances.  A right-shift with a negative
0054:         * shift distance results in a left shift, and vice-versa.  The unsigned
0055:         * right shift operator ({@code >>>}) is omitted, as this operation makes
0056:         * little sense in combination with the "infinite word size" abstraction
0057:         * provided by this class.
0058:         * 
0059:         * <p>Semantics of bitwise logical operations exactly mimic those of Java's
0060:         * bitwise integer operators.  The binary operators ({@code and},
0061:         * {@code or}, {@code xor}) implicitly perform sign extension on the shorter
0062:         * of the two operands prior to performing the operation.
0063:         * 
0064:         * <p>Comparison operations perform signed integer comparisons, analogous to
0065:         * those performed by Java's relational and equality operators.
0066:         * 
0067:         * <p>Modular arithmetic operations are provided to compute residues, perform
0068:         * exponentiation, and compute multiplicative inverses.  These methods always
0069:         * return a non-negative result, between {@code 0} and {@code (modulus - 1)},
0070:         * inclusive.
0071:         * 
0072:         * <p>Bit operations operate on a single bit of the two's-complement
0073:         * representation of their operand.  If necessary, the operand is sign-
0074:         * extended so that it contains the designated bit.  None of the single-bit
0075:         * operations can produce a BigInteger with a different sign from the
0076:         * BigInteger being operated on, as they affect only a single bit, and the
0077:         * "infinite word size" abstraction provided by this class ensures that there
0078:         * are infinitely many "virtual sign bits" preceding each BigInteger.
0079:         * 
0080:         * <p>For the sake of brevity and clarity, pseudo-code is used throughout the
0081:         * descriptions of BigInteger methods.  The pseudo-code expression
0082:         * {@code (i + j)} is shorthand for "a BigInteger whose value is
0083:         * that of the BigInteger {@code i} plus that of the BigInteger {@code j}."
0084:         * The pseudo-code expression {@code (i == j)} is shorthand for
0085:         * "{@code true} if and only if the BigInteger {@code i} represents the same
0086:         * value as the BigInteger {@code j}."  Other pseudo-code expressions are
0087:         * interpreted similarly.
0088:         * 
0089:         * <p>All methods and constructors in this class throw
0090:         * {@code NullPointerException} when passed
0091:         * a null object reference for any input parameter.
0092:         *
0093:         * @see     BigDecimal
0094:         * @author  Josh Bloch
0095:         * @author  Michael McCloskey
0096:         * @since JDK1.1
0097:         */
0098:
0099:        public class BigInteger extends Number implements 
0100:                Comparable<BigInteger> {
0101:            /**
0102:             * The signum of this BigInteger: -1 for negative, 0 for zero, or
0103:             * 1 for positive.  Note that the BigInteger zero <i>must</i> have
0104:             * a signum of 0.  This is necessary to ensures that there is exactly one
0105:             * representation for each BigInteger value.
0106:             *
0107:             * @serial
0108:             */
0109:            int signum;
0110:
0111:            /**
0112:             * The magnitude of this BigInteger, in <i>big-endian</i> order: the
0113:             * zeroth element of this array is the most-significant int of the
0114:             * magnitude.  The magnitude must be "minimal" in that the most-significant
0115:             * int ({@code mag[0]}) must be non-zero.  This is necessary to
0116:             * ensure that there is exactly one representation for each BigInteger
0117:             * value.  Note that this implies that the BigInteger zero has a
0118:             * zero-length mag array.
0119:             */
0120:            int[] mag;
0121:
0122:            // These "redundant fields" are initialized with recognizable nonsense
0123:            // values, and cached the first time they are needed (or never, if they
0124:            // aren't needed).
0125:
0126:            /**
0127:             * The bitCount of this BigInteger, as returned by bitCount(), or -1
0128:             * (either value is acceptable).
0129:             *
0130:             * @serial
0131:             * @see #bitCount
0132:             */
0133:            private int bitCount = -1;
0134:
0135:            /**
0136:             * The bitLength of this BigInteger, as returned by bitLength(), or -1
0137:             * (either value is acceptable).
0138:             *
0139:             * @serial
0140:             * @see #bitLength()
0141:             */
0142:            private int bitLength = -1;
0143:
0144:            /**
0145:             * The lowest set bit of this BigInteger, as returned by getLowestSetBit(),
0146:             * or -2 (either value is acceptable).
0147:             *
0148:             * @serial
0149:             * @see #getLowestSetBit
0150:             */
0151:            private int lowestSetBit = -2;
0152:
0153:            /**
0154:             * The index of the lowest-order byte in the magnitude of this BigInteger
0155:             * that contains a nonzero byte, or -2 (either value is acceptable).  The
0156:             * least significant byte has int-number 0, the next byte in order of
0157:             * increasing significance has byte-number 1, and so forth.
0158:             *
0159:             * @serial
0160:             */
0161:            private int firstNonzeroByteNum = -2;
0162:
0163:            /**
0164:             * The index of the lowest-order int in the magnitude of this BigInteger
0165:             * that contains a nonzero int, or -2 (either value is acceptable).  The
0166:             * least significant int has int-number 0, the next int in order of
0167:             * increasing significance has int-number 1, and so forth.
0168:             */
0169:            private int firstNonzeroIntNum = -2;
0170:
0171:            /**
0172:             * This mask is used to obtain the value of an int as if it were unsigned.
0173:             */
0174:            private final static long LONG_MASK = 0xffffffffL;
0175:
0176:            //Constructors
0177:
0178:            /**
0179:             * Translates a byte array containing the two's-complement binary
0180:             * representation of a BigInteger into a BigInteger.  The input array is
0181:             * assumed to be in <i>big-endian</i> byte-order: the most significant
0182:             * byte is in the zeroth element.
0183:             *
0184:             * @param  val big-endian two's-complement binary representation of
0185:             *	       BigInteger.
0186:             * @throws NumberFormatException {@code val} is zero bytes long.
0187:             */
0188:            public BigInteger(byte[] val) {
0189:                if (val.length == 0)
0190:                    throw new NumberFormatException("Zero length BigInteger");
0191:
0192:                if (val[0] < 0) {
0193:                    mag = makePositive(val);
0194:                    signum = -1;
0195:                } else {
0196:                    mag = stripLeadingZeroBytes(val);
0197:                    signum = (mag.length == 0 ? 0 : 1);
0198:                }
0199:            }
0200:
0201:            /**
0202:             * This private constructor translates an int array containing the
0203:             * two's-complement binary representation of a BigInteger into a
0204:             * BigInteger. The input array is assumed to be in <i>big-endian</i>
0205:             * int-order: the most significant int is in the zeroth element.
0206:             */
0207:            private BigInteger(int[] val) {
0208:                if (val.length == 0)
0209:                    throw new NumberFormatException("Zero length BigInteger");
0210:
0211:                if (val[0] < 0) {
0212:                    mag = makePositive(val);
0213:                    signum = -1;
0214:                } else {
0215:                    mag = trustedStripLeadingZeroInts(val);
0216:                    signum = (mag.length == 0 ? 0 : 1);
0217:                }
0218:            }
0219:
0220:            /**
0221:             * Translates the sign-magnitude representation of a BigInteger into a
0222:             * BigInteger.  The sign is represented as an integer signum value: -1 for
0223:             * negative, 0 for zero, or 1 for positive.  The magnitude is a byte array
0224:             * in <i>big-endian</i> byte-order: the most significant byte is in the
0225:             * zeroth element.  A zero-length magnitude array is permissible, and will
0226:             * result in a BigInteger value of 0, whether signum is -1, 0 or 1.
0227:             *
0228:             * @param  signum signum of the number (-1 for negative, 0 for zero, 1
0229:             * 	       for positive).
0230:             * @param  magnitude big-endian binary representation of the magnitude of
0231:             * 	       the number.
0232:             * @throws NumberFormatException {@code signum} is not one of the three
0233:             *	       legal values (-1, 0, and 1), or {@code signum} is 0 and
0234:             *	       {@code magnitude} contains one or more non-zero bytes.
0235:             */
0236:            public BigInteger(int signum, byte[] magnitude) {
0237:                this .mag = stripLeadingZeroBytes(magnitude);
0238:
0239:                if (signum < -1 || signum > 1)
0240:                    throw (new NumberFormatException("Invalid signum value"));
0241:
0242:                if (this .mag.length == 0) {
0243:                    this .signum = 0;
0244:                } else {
0245:                    if (signum == 0)
0246:                        throw (new NumberFormatException(
0247:                                "signum-magnitude mismatch"));
0248:                    this .signum = signum;
0249:                }
0250:            }
0251:
0252:            /**
0253:             * A constructor for internal use that translates the sign-magnitude
0254:             * representation of a BigInteger into a BigInteger. It checks the
0255:             * arguments and copies the magnitude so this constructor would be
0256:             * safe for external use.
0257:             */
0258:            private BigInteger(int signum, int[] magnitude) {
0259:                this .mag = stripLeadingZeroInts(magnitude);
0260:
0261:                if (signum < -1 || signum > 1)
0262:                    throw (new NumberFormatException("Invalid signum value"));
0263:
0264:                if (this .mag.length == 0) {
0265:                    this .signum = 0;
0266:                } else {
0267:                    if (signum == 0)
0268:                        throw (new NumberFormatException(
0269:                                "signum-magnitude mismatch"));
0270:                    this .signum = signum;
0271:                }
0272:            }
0273:
0274:            /**
0275:             * Translates the String representation of a BigInteger in the
0276:             * specified radix into a BigInteger.  The String representation
0277:             * consists of an optional minus or plus sign followed by a
0278:             * sequence of one or more digits in the specified radix.  The
0279:             * character-to-digit mapping is provided by {@code
0280:             * Character.digit}.  The String may not contain any extraneous
0281:             * characters (whitespace, for example).
0282:             *
0283:             * @param val String representation of BigInteger.
0284:             * @param radix radix to be used in interpreting {@code val}.
0285:             * @throws NumberFormatException {@code val} is not a valid representation
0286:             *	       of a BigInteger in the specified radix, or {@code radix} is
0287:             *	       outside the range from {@link Character#MIN_RADIX} to
0288:             *	       {@link Character#MAX_RADIX}, inclusive.
0289:             * @see    Character#digit
0290:             */
0291:            public BigInteger(String val, int radix) {
0292:                int cursor = 0, numDigits;
0293:                int len = val.length();
0294:
0295:                if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX)
0296:                    throw new NumberFormatException("Radix out of range");
0297:                if (val.length() == 0)
0298:                    throw new NumberFormatException("Zero length BigInteger");
0299:
0300:                // Check for at most one leading sign
0301:                signum = 1;
0302:                int index1 = val.lastIndexOf('-');
0303:                int index2 = val.lastIndexOf('+');
0304:                if ((index1 + index2) <= -1) {
0305:                    // No leading sign character or at most one leading sign character
0306:                    if (index1 == 0 || index2 == 0) {
0307:                        cursor = 1;
0308:                        if (val.length() == 1)
0309:                            throw new NumberFormatException(
0310:                                    "Zero length BigInteger");
0311:                    }
0312:                    if (index1 == 0)
0313:                        signum = -1;
0314:                } else
0315:                    throw new NumberFormatException(
0316:                            "Illegal embedded sign character");
0317:
0318:                // Skip leading zeros and compute number of digits in magnitude
0319:                while (cursor < len
0320:                        && Character.digit(val.charAt(cursor), radix) == 0)
0321:                    cursor++;
0322:                if (cursor == len) {
0323:                    signum = 0;
0324:                    mag = ZERO.mag;
0325:                    return;
0326:                } else {
0327:                    numDigits = len - cursor;
0328:                }
0329:
0330:                // Pre-allocate array of expected size. May be too large but can
0331:                // never be too small. Typically exact.
0332:                int numBits = (int) (((numDigits * bitsPerDigit[radix]) >>> 10) + 1);
0333:                int numWords = (numBits + 31) / 32;
0334:                mag = new int[numWords];
0335:
0336:                // Process first (potentially short) digit group
0337:                int firstGroupLen = numDigits % digitsPerInt[radix];
0338:                if (firstGroupLen == 0)
0339:                    firstGroupLen = digitsPerInt[radix];
0340:                String group = val.substring(cursor, cursor += firstGroupLen);
0341:                mag[mag.length - 1] = Integer.parseInt(group, radix);
0342:                if (mag[mag.length - 1] < 0)
0343:                    throw new NumberFormatException("Illegal digit");
0344:
0345:                // Process remaining digit groups
0346:                int super Radix = intRadix[radix];
0347:                int groupVal = 0;
0348:                while (cursor < val.length()) {
0349:                    group = val
0350:                            .substring(cursor, cursor += digitsPerInt[radix]);
0351:                    groupVal = Integer.parseInt(group, radix);
0352:                    if (groupVal < 0)
0353:                        throw new NumberFormatException("Illegal digit");
0354:                    destructiveMulAdd(mag, super Radix, groupVal);
0355:                }
0356:                // Required for cases where the array was overallocated.
0357:                mag = trustedStripLeadingZeroInts(mag);
0358:            }
0359:
0360:            // Constructs a new BigInteger using a char array with radix=10
0361:            BigInteger(char[] val) {
0362:                int cursor = 0, numDigits;
0363:                int len = val.length;
0364:
0365:                // Check for leading minus sign
0366:                signum = 1;
0367:                if (val[0] == '-') {
0368:                    if (len == 1)
0369:                        throw new NumberFormatException(
0370:                                "Zero length BigInteger");
0371:                    signum = -1;
0372:                    cursor = 1;
0373:                } else if (val[0] == '+') {
0374:                    if (len == 1)
0375:                        throw new NumberFormatException(
0376:                                "Zero length BigInteger");
0377:                    cursor = 1;
0378:                }
0379:
0380:                // Skip leading zeros and compute number of digits in magnitude
0381:                while (cursor < len && Character.digit(val[cursor], 10) == 0)
0382:                    cursor++;
0383:                if (cursor == len) {
0384:                    signum = 0;
0385:                    mag = ZERO.mag;
0386:                    return;
0387:                } else {
0388:                    numDigits = len - cursor;
0389:                }
0390:
0391:                // Pre-allocate array of expected size
0392:                int numWords;
0393:                if (len < 10) {
0394:                    numWords = 1;
0395:                } else {
0396:                    int numBits = (int) (((numDigits * bitsPerDigit[10]) >>> 10) + 1);
0397:                    numWords = (numBits + 31) / 32;
0398:                }
0399:                mag = new int[numWords];
0400:
0401:                // Process first (potentially short) digit group
0402:                int firstGroupLen = numDigits % digitsPerInt[10];
0403:                if (firstGroupLen == 0)
0404:                    firstGroupLen = digitsPerInt[10];
0405:                mag[mag.length - 1] = parseInt(val, cursor,
0406:                        cursor += firstGroupLen);
0407:
0408:                // Process remaining digit groups
0409:                while (cursor < len) {
0410:                    int groupVal = parseInt(val, cursor,
0411:                            cursor += digitsPerInt[10]);
0412:                    destructiveMulAdd(mag, intRadix[10], groupVal);
0413:                }
0414:                mag = trustedStripLeadingZeroInts(mag);
0415:            }
0416:
0417:            // Create an integer with the digits between the two indexes
0418:            // Assumes start < end. The result may be negative, but it
0419:            // is to be treated as an unsigned value.
0420:            private int parseInt(char[] source, int start, int end) {
0421:                int result = Character.digit(source[start++], 10);
0422:                if (result == -1)
0423:                    throw new NumberFormatException(new String(source));
0424:
0425:                for (int index = start; index < end; index++) {
0426:                    int nextVal = Character.digit(source[index], 10);
0427:                    if (nextVal == -1)
0428:                        throw new NumberFormatException(new String(source));
0429:                    result = 10 * result + nextVal;
0430:                }
0431:
0432:                return result;
0433:            }
0434:
0435:            // bitsPerDigit in the given radix times 1024
0436:            // Rounded up to avoid underallocation.
0437:            private static long bitsPerDigit[] = { 0, 0, 1024, 1624, 2048,
0438:                    2378, 2648, 2875, 3072, 3247, 3402, 3543, 3672, 3790, 3899,
0439:                    4001, 4096, 4186, 4271, 4350, 4426, 4498, 4567, 4633, 4696,
0440:                    4756, 4814, 4870, 4923, 4975, 5025, 5074, 5120, 5166, 5210,
0441:                    5253, 5295 };
0442:
0443:            // Multiply x array times word y in place, and add word z
0444:            private static void destructiveMulAdd(int[] x, int y, int z) {
0445:                // Perform the multiplication word by word
0446:                long ylong = y & LONG_MASK;
0447:                long zlong = z & LONG_MASK;
0448:                int len = x.length;
0449:
0450:                long product = 0;
0451:                long carry = 0;
0452:                for (int i = len - 1; i >= 0; i--) {
0453:                    product = ylong * (x[i] & LONG_MASK) + carry;
0454:                    x[i] = (int) product;
0455:                    carry = product >>> 32;
0456:                }
0457:
0458:                // Perform the addition
0459:                long sum = (x[len - 1] & LONG_MASK) + zlong;
0460:                x[len - 1] = (int) sum;
0461:                carry = sum >>> 32;
0462:                for (int i = len - 2; i >= 0; i--) {
0463:                    sum = (x[i] & LONG_MASK) + carry;
0464:                    x[i] = (int) sum;
0465:                    carry = sum >>> 32;
0466:                }
0467:            }
0468:
0469:            /**
0470:             * Translates the decimal String representation of a BigInteger into a
0471:             * BigInteger.  The String representation consists of an optional minus
0472:             * sign followed by a sequence of one or more decimal digits.  The
0473:             * character-to-digit mapping is provided by {@code Character.digit}.
0474:             * The String may not contain any extraneous characters (whitespace, for
0475:             * example).
0476:             *
0477:             * @param val decimal String representation of BigInteger.
0478:             * @throws NumberFormatException {@code val} is not a valid representation
0479:             *	       of a BigInteger.
0480:             * @see    Character#digit
0481:             */
0482:            public BigInteger(String val) {
0483:                this (val, 10);
0484:            }
0485:
0486:            /**
0487:             * Constructs a randomly generated BigInteger, uniformly distributed over
0488:             * the range {@code 0} to (2<sup>{@code numBits}</sup> - 1), inclusive.
0489:             * The uniformity of the distribution assumes that a fair source of random
0490:             * bits is provided in {@code rnd}.  Note that this constructor always
0491:             * constructs a non-negative BigInteger.
0492:             *
0493:             * @param  numBits maximum bitLength of the new BigInteger.
0494:             * @param  rnd source of randomness to be used in computing the new
0495:             *	       BigInteger.
0496:             * @throws IllegalArgumentException {@code numBits} is negative.
0497:             * @see #bitLength()
0498:             */
0499:            public BigInteger(int numBits, Random rnd) {
0500:                this (1, randomBits(numBits, rnd));
0501:            }
0502:
0503:            private static byte[] randomBits(int numBits, Random rnd) {
0504:                if (numBits < 0)
0505:                    throw new IllegalArgumentException(
0506:                            "numBits must be non-negative");
0507:                int numBytes = (int) (((long) numBits + 7) / 8); // avoid overflow
0508:                byte[] randomBits = new byte[numBytes];
0509:
0510:                // Generate random bytes and mask out any excess bits
0511:                if (numBytes > 0) {
0512:                    rnd.nextBytes(randomBits);
0513:                    int excessBits = 8 * numBytes - numBits;
0514:                    randomBits[0] &= (1 << (8 - excessBits)) - 1;
0515:                }
0516:                return randomBits;
0517:            }
0518:
0519:            /**
0520:             * Constructs a randomly generated positive BigInteger that is probably
0521:             * prime, with the specified bitLength.
0522:             *
0523:             * <p>It is recommended that the {@link #probablePrime probablePrime}
0524:             * method be used in preference to this constructor unless there
0525:             * is a compelling need to specify a certainty.
0526:             *
0527:             * @param  bitLength bitLength of the returned BigInteger.
0528:             * @param  certainty a measure of the uncertainty that the caller is
0529:             *         willing to tolerate.  The probability that the new BigInteger
0530:             *	       represents a prime number will exceed
0531:             *	       (1 - 1/2<sup>{@code certainty}</sup>).  The execution time of
0532:             *	       this constructor is proportional to the value of this parameter.
0533:             * @param  rnd source of random bits used to select candidates to be
0534:             *	       tested for primality.
0535:             * @throws ArithmeticException {@code bitLength < 2}.
0536:             * @see    #bitLength()
0537:             */
0538:            public BigInteger(int bitLength, int certainty, Random rnd) {
0539:                BigInteger prime;
0540:
0541:                if (bitLength < 2)
0542:                    throw new ArithmeticException("bitLength < 2");
0543:                // The cutoff of 95 was chosen empirically for best performance
0544:                prime = (bitLength < 95 ? smallPrime(bitLength, certainty, rnd)
0545:                        : largePrime(bitLength, certainty, rnd));
0546:                signum = 1;
0547:                mag = prime.mag;
0548:            }
0549:
0550:            // Minimum size in bits that the requested prime number has
0551:            // before we use the large prime number generating algorithms
0552:            private static final int SMALL_PRIME_THRESHOLD = 95;
0553:
0554:            // Certainty required to meet the spec of probablePrime
0555:            private static final int DEFAULT_PRIME_CERTAINTY = 100;
0556:
0557:            /**
0558:             * Returns a positive BigInteger that is probably prime, with the
0559:             * specified bitLength. The probability that a BigInteger returned
0560:             * by this method is composite does not exceed 2<sup>-100</sup>.
0561:             *
0562:             * @param  bitLength bitLength of the returned BigInteger.
0563:             * @param  rnd source of random bits used to select candidates to be
0564:             *	       tested for primality.
0565:             * @return a BigInteger of {@code bitLength} bits that is probably prime
0566:             * @throws ArithmeticException {@code bitLength < 2}.
0567:             * @see    #bitLength()
0568:             * @since 1.4
0569:             */
0570:            public static BigInteger probablePrime(int bitLength, Random rnd) {
0571:                if (bitLength < 2)
0572:                    throw new ArithmeticException("bitLength < 2");
0573:
0574:                // The cutoff of 95 was chosen empirically for best performance
0575:                return (bitLength < SMALL_PRIME_THRESHOLD ? smallPrime(
0576:                        bitLength, DEFAULT_PRIME_CERTAINTY, rnd) : largePrime(
0577:                        bitLength, DEFAULT_PRIME_CERTAINTY, rnd));
0578:            }
0579:
0580:            /**
0581:             * Find a random number of the specified bitLength that is probably prime.
0582:             * This method is used for smaller primes, its performance degrades on
0583:             * larger bitlengths.
0584:             *
0585:             * This method assumes bitLength > 1.
0586:             */
0587:            private static BigInteger smallPrime(int bitLength, int certainty,
0588:                    Random rnd) {
0589:                int magLen = (bitLength + 31) >>> 5;
0590:                int temp[] = new int[magLen];
0591:                int highBit = 1 << ((bitLength + 31) & 0x1f); // High bit of high int
0592:                int highMask = (highBit << 1) - 1; // Bits to keep in high int
0593:
0594:                while (true) {
0595:                    // Construct a candidate
0596:                    for (int i = 0; i < magLen; i++)
0597:                        temp[i] = rnd.nextInt();
0598:                    temp[0] = (temp[0] & highMask) | highBit; // Ensure exact length
0599:                    if (bitLength > 2)
0600:                        temp[magLen - 1] |= 1; // Make odd if bitlen > 2
0601:
0602:                    BigInteger p = new BigInteger(temp, 1);
0603:
0604:                    // Do cheap "pre-test" if applicable
0605:                    if (bitLength > 6) {
0606:                        long r = p.remainder(SMALL_PRIME_PRODUCT).longValue();
0607:                        if ((r % 3 == 0) || (r % 5 == 0) || (r % 7 == 0)
0608:                                || (r % 11 == 0) || (r % 13 == 0)
0609:                                || (r % 17 == 0) || (r % 19 == 0)
0610:                                || (r % 23 == 0) || (r % 29 == 0)
0611:                                || (r % 31 == 0) || (r % 37 == 0)
0612:                                || (r % 41 == 0))
0613:                            continue; // Candidate is composite; try another
0614:                    }
0615:
0616:                    // All candidates of bitLength 2 and 3 are prime by this point
0617:                    if (bitLength < 4)
0618:                        return p;
0619:
0620:                    // Do expensive test if we survive pre-test (or it's inapplicable)
0621:                    if (p.primeToCertainty(certainty, rnd))
0622:                        return p;
0623:                }
0624:            }
0625:
0626:            private static final BigInteger SMALL_PRIME_PRODUCT = valueOf(3L
0627:                    * 5 * 7 * 11 * 13 * 17 * 19 * 23 * 29 * 31 * 37 * 41);
0628:
0629:            /**
0630:             * Find a random number of the specified bitLength that is probably prime.
0631:             * This method is more appropriate for larger bitlengths since it uses
0632:             * a sieve to eliminate most composites before using a more expensive
0633:             * test.
0634:             */
0635:            private static BigInteger largePrime(int bitLength, int certainty,
0636:                    Random rnd) {
0637:                BigInteger p;
0638:                p = new BigInteger(bitLength, rnd).setBit(bitLength - 1);
0639:                p.mag[p.mag.length - 1] &= 0xfffffffe;
0640:
0641:                // Use a sieve length likely to contain the next prime number
0642:                int searchLen = (bitLength / 20) * 64;
0643:                BitSieve searchSieve = new BitSieve(p, searchLen);
0644:                BigInteger candidate = searchSieve.retrieve(p, certainty, rnd);
0645:
0646:                while ((candidate == null)
0647:                        || (candidate.bitLength() != bitLength)) {
0648:                    p = p.add(BigInteger.valueOf(2 * searchLen));
0649:                    if (p.bitLength() != bitLength)
0650:                        p = new BigInteger(bitLength, rnd)
0651:                                .setBit(bitLength - 1);
0652:                    p.mag[p.mag.length - 1] &= 0xfffffffe;
0653:                    searchSieve = new BitSieve(p, searchLen);
0654:                    candidate = searchSieve.retrieve(p, certainty, rnd);
0655:                }
0656:                return candidate;
0657:            }
0658:
0659:            /**
0660:             * Returns the first integer greater than this {@code BigInteger} that
0661:             * is probably prime.  The probability that the number returned by this
0662:             * method is composite does not exceed 2<sup>-100</sup>. This method will
0663:             * never skip over a prime when searching: if it returns {@code p}, there
0664:             * is no prime {@code q} such that {@code this < q < p}.
0665:             *
0666:             * @return the first integer greater than this {@code BigInteger} that
0667:             *         is probably prime.
0668:             * @throws ArithmeticException {@code this < 0}.
0669:             * @since 1.5
0670:             */
0671:            public BigInteger nextProbablePrime() {
0672:                if (this .signum < 0)
0673:                    throw new ArithmeticException("start < 0: " + this );
0674:
0675:                // Handle trivial cases
0676:                if ((this .signum == 0) || this .equals(ONE))
0677:                    return TWO;
0678:
0679:                BigInteger result = this .add(ONE);
0680:
0681:                // Fastpath for small numbers
0682:                if (result.bitLength() < SMALL_PRIME_THRESHOLD) {
0683:
0684:                    // Ensure an odd number
0685:                    if (!result.testBit(0))
0686:                        result = result.add(ONE);
0687:
0688:                    while (true) {
0689:                        // Do cheap "pre-test" if applicable
0690:                        if (result.bitLength() > 6) {
0691:                            long r = result.remainder(SMALL_PRIME_PRODUCT)
0692:                                    .longValue();
0693:                            if ((r % 3 == 0) || (r % 5 == 0) || (r % 7 == 0)
0694:                                    || (r % 11 == 0) || (r % 13 == 0)
0695:                                    || (r % 17 == 0) || (r % 19 == 0)
0696:                                    || (r % 23 == 0) || (r % 29 == 0)
0697:                                    || (r % 31 == 0) || (r % 37 == 0)
0698:                                    || (r % 41 == 0)) {
0699:                                result = result.add(TWO);
0700:                                continue; // Candidate is composite; try another
0701:                            }
0702:                        }
0703:
0704:                        // All candidates of bitLength 2 and 3 are prime by this point
0705:                        if (result.bitLength() < 4)
0706:                            return result;
0707:
0708:                        // The expensive test
0709:                        if (result.primeToCertainty(DEFAULT_PRIME_CERTAINTY,
0710:                                null))
0711:                            return result;
0712:
0713:                        result = result.add(TWO);
0714:                    }
0715:                }
0716:
0717:                // Start at previous even number
0718:                if (result.testBit(0))
0719:                    result = result.subtract(ONE);
0720:
0721:                // Looking for the next large prime
0722:                int searchLen = (result.bitLength() / 20) * 64;
0723:
0724:                while (true) {
0725:                    BitSieve searchSieve = new BitSieve(result, searchLen);
0726:                    BigInteger candidate = searchSieve.retrieve(result,
0727:                            DEFAULT_PRIME_CERTAINTY, null);
0728:                    if (candidate != null)
0729:                        return candidate;
0730:                    result = result.add(BigInteger.valueOf(2 * searchLen));
0731:                }
0732:            }
0733:
0734:            /**
0735:             * Returns {@code true} if this BigInteger is probably prime,
0736:             * {@code false} if it's definitely composite.
0737:             *
0738:             * This method assumes bitLength > 2.
0739:             *
0740:             * @param  certainty a measure of the uncertainty that the caller is
0741:             *	       willing to tolerate: if the call returns {@code true}
0742:             *	       the probability that this BigInteger is prime exceeds
0743:             *	       {@code (1 - 1/2<sup>certainty</sup>)}.  The execution time of
0744:             * 	       this method is proportional to the value of this parameter.
0745:             * @return {@code true} if this BigInteger is probably prime,
0746:             * 	       {@code false} if it's definitely composite.
0747:             */
0748:            boolean primeToCertainty(int certainty, Random random) {
0749:                int rounds = 0;
0750:                int n = (Math.min(certainty, Integer.MAX_VALUE - 1) + 1) / 2;
0751:
0752:                // The relationship between the certainty and the number of rounds
0753:                // we perform is given in the draft standard ANSI X9.80, "PRIME
0754:                // NUMBER GENERATION, PRIMALITY TESTING, AND PRIMALITY CERTIFICATES".
0755:                int sizeInBits = this .bitLength();
0756:                if (sizeInBits < 100) {
0757:                    rounds = 50;
0758:                    rounds = n < rounds ? n : rounds;
0759:                    return passesMillerRabin(rounds, random);
0760:                }
0761:
0762:                if (sizeInBits < 256) {
0763:                    rounds = 27;
0764:                } else if (sizeInBits < 512) {
0765:                    rounds = 15;
0766:                } else if (sizeInBits < 768) {
0767:                    rounds = 8;
0768:                } else if (sizeInBits < 1024) {
0769:                    rounds = 4;
0770:                } else {
0771:                    rounds = 2;
0772:                }
0773:                rounds = n < rounds ? n : rounds;
0774:
0775:                return passesMillerRabin(rounds, random) && passesLucasLehmer();
0776:            }
0777:
0778:            /**
0779:             * Returns true iff this BigInteger is a Lucas-Lehmer probable prime.
0780:             *
0781:             * The following assumptions are made:
0782:             * This BigInteger is a positive, odd number.
0783:             */
0784:            private boolean passesLucasLehmer() {
0785:                BigInteger this PlusOne = this .add(ONE);
0786:
0787:                // Step 1
0788:                int d = 5;
0789:                while (jacobiSymbol(d, this ) != -1) {
0790:                    // 5, -7, 9, -11, ...
0791:                    d = (d < 0) ? Math.abs(d) + 2 : -(d + 2);
0792:                }
0793:
0794:                // Step 2
0795:                BigInteger u = lucasLehmerSequence(d, this PlusOne, this );
0796:
0797:                // Step 3
0798:                return u.mod(this ).equals(ZERO);
0799:            }
0800:
0801:            /**
0802:             * Computes Jacobi(p,n).
0803:             * Assumes n positive, odd, n>=3.
0804:             */
0805:            private static int jacobiSymbol(int p, BigInteger n) {
0806:                if (p == 0)
0807:                    return 0;
0808:
0809:                // Algorithm and comments adapted from Colin Plumb's C library.
0810:                int j = 1;
0811:                int u = n.mag[n.mag.length - 1];
0812:
0813:                // Make p positive
0814:                if (p < 0) {
0815:                    p = -p;
0816:                    int n8 = u & 7;
0817:                    if ((n8 == 3) || (n8 == 7))
0818:                        j = -j; // 3 (011) or 7 (111) mod 8
0819:                }
0820:
0821:                // Get rid of factors of 2 in p
0822:                while ((p & 3) == 0)
0823:                    p >>= 2;
0824:                if ((p & 1) == 0) {
0825:                    p >>= 1;
0826:                    if (((u ^ (u >> 1)) & 2) != 0)
0827:                        j = -j; // 3 (011) or 5 (101) mod 8
0828:                }
0829:                if (p == 1)
0830:                    return j;
0831:                // Then, apply quadratic reciprocity
0832:                if ((p & u & 2) != 0) // p = u = 3 (mod 4)?
0833:                    j = -j;
0834:                // And reduce u mod p
0835:                u = n.mod(BigInteger.valueOf(p)).intValue();
0836:
0837:                // Now compute Jacobi(u,p), u < p
0838:                while (u != 0) {
0839:                    while ((u & 3) == 0)
0840:                        u >>= 2;
0841:                    if ((u & 1) == 0) {
0842:                        u >>= 1;
0843:                        if (((p ^ (p >> 1)) & 2) != 0)
0844:                            j = -j; // 3 (011) or 5 (101) mod 8
0845:                    }
0846:                    if (u == 1)
0847:                        return j;
0848:                    // Now both u and p are odd, so use quadratic reciprocity
0849:                    assert (u < p);
0850:                    int t = u;
0851:                    u = p;
0852:                    p = t;
0853:                    if ((u & p & 2) != 0) // u = p = 3 (mod 4)?
0854:                        j = -j;
0855:                    // Now u >= p, so it can be reduced
0856:                    u %= p;
0857:                }
0858:                return 0;
0859:            }
0860:
0861:            private static BigInteger lucasLehmerSequence(int z, BigInteger k,
0862:                    BigInteger n) {
0863:                BigInteger d = BigInteger.valueOf(z);
0864:                BigInteger u = ONE;
0865:                BigInteger u2;
0866:                BigInteger v = ONE;
0867:                BigInteger v2;
0868:
0869:                for (int i = k.bitLength() - 2; i >= 0; i--) {
0870:                    u2 = u.multiply(v).mod(n);
0871:
0872:                    v2 = v.square().add(d.multiply(u.square())).mod(n);
0873:                    if (v2.testBit(0)) {
0874:                        v2 = n.subtract(v2);
0875:                        v2.signum = -v2.signum;
0876:                    }
0877:                    v2 = v2.shiftRight(1);
0878:
0879:                    u = u2;
0880:                    v = v2;
0881:                    if (k.testBit(i)) {
0882:                        u2 = u.add(v).mod(n);
0883:                        if (u2.testBit(0)) {
0884:                            u2 = n.subtract(u2);
0885:                            u2.signum = -u2.signum;
0886:                        }
0887:                        u2 = u2.shiftRight(1);
0888:
0889:                        v2 = v.add(d.multiply(u)).mod(n);
0890:                        if (v2.testBit(0)) {
0891:                            v2 = n.subtract(v2);
0892:                            v2.signum = -v2.signum;
0893:                        }
0894:                        v2 = v2.shiftRight(1);
0895:
0896:                        u = u2;
0897:                        v = v2;
0898:                    }
0899:                }
0900:                return u;
0901:            }
0902:
0903:            private static volatile Random staticRandom;
0904:
0905:            private static Random getSecureRandom() {
0906:                if (staticRandom == null) {
0907:                    staticRandom = new java.security.SecureRandom();
0908:                }
0909:                return staticRandom;
0910:            }
0911:
0912:            /**
0913:             * Returns true iff this BigInteger passes the specified number of
0914:             * Miller-Rabin tests. This test is taken from the DSA spec (NIST FIPS
0915:             * 186-2).
0916:             *
0917:             * The following assumptions are made:
0918:             * This BigInteger is a positive, odd number greater than 2.
0919:             * iterations<=50.
0920:             */
0921:            private boolean passesMillerRabin(int iterations, Random rnd) {
0922:                // Find a and m such that m is odd and this == 1 + 2**a * m
0923:                BigInteger this MinusOne = this .subtract(ONE);
0924:                BigInteger m = this MinusOne;
0925:                int a = m.getLowestSetBit();
0926:                m = m.shiftRight(a);
0927:
0928:                // Do the tests
0929:                if (rnd == null) {
0930:                    rnd = getSecureRandom();
0931:                }
0932:                for (int i = 0; i < iterations; i++) {
0933:                    // Generate a uniform random on (1, this)
0934:                    BigInteger b;
0935:                    do {
0936:                        b = new BigInteger(this .bitLength(), rnd);
0937:                    } while (b.compareTo(ONE) <= 0 || b.compareTo(this ) >= 0);
0938:
0939:                    int j = 0;
0940:                    BigInteger z = b.modPow(m, this );
0941:                    while (!((j == 0 && z.equals(ONE)) || z
0942:                            .equals(this MinusOne))) {
0943:                        if (j > 0 && z.equals(ONE) || ++j == a)
0944:                            return false;
0945:                        z = z.modPow(TWO, this );
0946:                    }
0947:                }
0948:                return true;
0949:            }
0950:
0951:            /**
0952:             * This private constructor differs from its public cousin
0953:             * with the arguments reversed in two ways: it assumes that its
0954:             * arguments are correct, and it doesn't copy the magnitude array.
0955:             */
0956:            private BigInteger(int[] magnitude, int signum) {
0957:                this .signum = (magnitude.length == 0 ? 0 : signum);
0958:                this .mag = magnitude;
0959:            }
0960:
0961:            /**
0962:             * This private constructor is for internal use and assumes that its
0963:             * arguments are correct.
0964:             */
0965:            private BigInteger(byte[] magnitude, int signum) {
0966:                this .signum = (magnitude.length == 0 ? 0 : signum);
0967:                this .mag = stripLeadingZeroBytes(magnitude);
0968:            }
0969:
0970:            /**
0971:             * This private constructor is for internal use in converting
0972:             * from a MutableBigInteger object into a BigInteger.
0973:             */
0974:            BigInteger(MutableBigInteger val, int sign) {
0975:                if (val.offset > 0 || val.value.length != val.intLen) {
0976:                    mag = new int[val.intLen];
0977:                    for (int i = 0; i < val.intLen; i++)
0978:                        mag[i] = val.value[val.offset + i];
0979:                } else {
0980:                    mag = val.value;
0981:                }
0982:
0983:                this .signum = (val.intLen == 0) ? 0 : sign;
0984:            }
0985:
0986:            //Static Factory Methods
0987:
0988:            /**
0989:             * Returns a BigInteger whose value is equal to that of the
0990:             * specified {@code long}.  This "static factory method" is
0991:             * provided in preference to a ({@code long}) constructor
0992:             * because it allows for reuse of frequently used BigIntegers.
0993:             *
0994:             * @param  val value of the BigInteger to return.
0995:             * @return a BigInteger with the specified value.
0996:             */
0997:            public static BigInteger valueOf(long val) {
0998:                // If -MAX_CONSTANT < val < MAX_CONSTANT, return stashed constant
0999:                if (val == 0)
1000:                    return ZERO;
1001:                if (val > 0 && val <= MAX_CONSTANT)
1002:                    return posConst[(int) val];
1003:                else if (val < 0 && val >= -MAX_CONSTANT)
1004:                    return negConst[(int) -val];
1005:
1006:                return new BigInteger(val);
1007:            }
1008:
1009:            /**
1010:             * Constructs a BigInteger with the specified value, which may not be zero.
1011:             */
1012:            private BigInteger(long val) {
1013:                if (val < 0) {
1014:                    signum = -1;
1015:                    val = -val;
1016:                } else {
1017:                    signum = 1;
1018:                }
1019:
1020:                int highWord = (int) (val >>> 32);
1021:                if (highWord == 0) {
1022:                    mag = new int[1];
1023:                    mag[0] = (int) val;
1024:                } else {
1025:                    mag = new int[2];
1026:                    mag[0] = highWord;
1027:                    mag[1] = (int) val;
1028:                }
1029:            }
1030:
1031:            /**
1032:             * Returns a BigInteger with the given two's complement representation.
1033:             * Assumes that the input array will not be modified (the returned
1034:             * BigInteger will reference the input array if feasible).
1035:             */
1036:            private static BigInteger valueOf(int val[]) {
1037:                return (val[0] > 0 ? new BigInteger(val, 1) : new BigInteger(
1038:                        val));
1039:            }
1040:
1041:            // Constants
1042:
1043:            /**
1044:             * Initialize static constant array when class is loaded.
1045:             */
1046:            private final static int MAX_CONSTANT = 16;
1047:            private static BigInteger posConst[] = new BigInteger[MAX_CONSTANT + 1];
1048:            private static BigInteger negConst[] = new BigInteger[MAX_CONSTANT + 1];
1049:            static {
1050:                for (int i = 1; i <= MAX_CONSTANT; i++) {
1051:                    int[] magnitude = new int[1];
1052:                    magnitude[0] = (int) i;
1053:                    posConst[i] = new BigInteger(magnitude, 1);
1054:                    negConst[i] = new BigInteger(magnitude, -1);
1055:                }
1056:            }
1057:
1058:            /**
1059:             * The BigInteger constant zero.
1060:             *
1061:             * @since   1.2
1062:             */
1063:            public static final BigInteger ZERO = new BigInteger(new int[0], 0);
1064:
1065:            /**
1066:             * The BigInteger constant one.
1067:             *
1068:             * @since   1.2
1069:             */
1070:            public static final BigInteger ONE = valueOf(1);
1071:
1072:            /**
1073:             * The BigInteger constant two.  (Not exported.)
1074:             */
1075:            private static final BigInteger TWO = valueOf(2);
1076:
1077:            /**
1078:             * The BigInteger constant ten.
1079:             *
1080:             * @since   1.5
1081:             */
1082:            public static final BigInteger TEN = valueOf(10);
1083:
1084:            // Arithmetic Operations
1085:
1086:            /**
1087:             * Returns a BigInteger whose value is {@code (this + val)}.
1088:             *
1089:             * @param  val value to be added to this BigInteger.
1090:             * @return {@code this + val}
1091:             */
1092:            public BigInteger add(BigInteger val) {
1093:                int[] resultMag;
1094:                if (val.signum == 0)
1095:                    return this ;
1096:                if (signum == 0)
1097:                    return val;
1098:                if (val.signum == signum)
1099:                    return new BigInteger(add(mag, val.mag), signum);
1100:
1101:                int cmp = intArrayCmp(mag, val.mag);
1102:                if (cmp == 0)
1103:                    return ZERO;
1104:                resultMag = (cmp > 0 ? subtract(mag, val.mag) : subtract(
1105:                        val.mag, mag));
1106:                resultMag = trustedStripLeadingZeroInts(resultMag);
1107:
1108:                return new BigInteger(resultMag, cmp * signum);
1109:            }
1110:
1111:            /**
1112:             * Adds the contents of the int arrays x and y. This method allocates
1113:             * a new int array to hold the answer and returns a reference to that
1114:             * array.
1115:             */
1116:            private static int[] add(int[] x, int[] y) {
1117:                // If x is shorter, swap the two arrays
1118:                if (x.length < y.length) {
1119:                    int[] tmp = x;
1120:                    x = y;
1121:                    y = tmp;
1122:                }
1123:
1124:                int xIndex = x.length;
1125:                int yIndex = y.length;
1126:                int result[] = new int[xIndex];
1127:                long sum = 0;
1128:
1129:                // Add common parts of both numbers
1130:                while (yIndex > 0) {
1131:                    sum = (x[--xIndex] & LONG_MASK) + (y[--yIndex] & LONG_MASK)
1132:                            + (sum >>> 32);
1133:                    result[xIndex] = (int) sum;
1134:                }
1135:
1136:                // Copy remainder of longer number while carry propagation is required
1137:                boolean carry = (sum >>> 32 != 0);
1138:                while (xIndex > 0 && carry)
1139:                    carry = ((result[--xIndex] = x[xIndex] + 1) == 0);
1140:
1141:                // Copy remainder of longer number
1142:                while (xIndex > 0)
1143:                    result[--xIndex] = x[xIndex];
1144:
1145:                // Grow result if necessary
1146:                if (carry) {
1147:                    int newLen = result.length + 1;
1148:                    int temp[] = new int[newLen];
1149:                    for (int i = 1; i < newLen; i++)
1150:                        temp[i] = result[i - 1];
1151:                    temp[0] = 0x01;
1152:                    result = temp;
1153:                }
1154:                return result;
1155:            }
1156:
1157:            /**
1158:             * Returns a BigInteger whose value is {@code (this - val)}.
1159:             *
1160:             * @param  val value to be subtracted from this BigInteger.
1161:             * @return {@code this - val}
1162:             */
1163:            public BigInteger subtract(BigInteger val) {
1164:                int[] resultMag;
1165:                if (val.signum == 0)
1166:                    return this ;
1167:                if (signum == 0)
1168:                    return val.negate();
1169:                if (val.signum != signum)
1170:                    return new BigInteger(add(mag, val.mag), signum);
1171:
1172:                int cmp = intArrayCmp(mag, val.mag);
1173:                if (cmp == 0)
1174:                    return ZERO;
1175:                resultMag = (cmp > 0 ? subtract(mag, val.mag) : subtract(
1176:                        val.mag, mag));
1177:                resultMag = trustedStripLeadingZeroInts(resultMag);
1178:                return new BigInteger(resultMag, cmp * signum);
1179:            }
1180:
1181:            /**
1182:             * Subtracts the contents of the second int arrays (little) from the
1183:             * first (big).  The first int array (big) must represent a larger number
1184:             * than the second.  This method allocates the space necessary to hold the
1185:             * answer.
1186:             */
1187:            private static int[] subtract(int[] big, int[] little) {
1188:                int bigIndex = big.length;
1189:                int result[] = new int[bigIndex];
1190:                int littleIndex = little.length;
1191:                long difference = 0;
1192:
1193:                // Subtract common parts of both numbers
1194:                while (littleIndex > 0) {
1195:                    difference = (big[--bigIndex] & LONG_MASK)
1196:                            - (little[--littleIndex] & LONG_MASK)
1197:                            + (difference >> 32);
1198:                    result[bigIndex] = (int) difference;
1199:                }
1200:
1201:                // Subtract remainder of longer number while borrow propagates
1202:                boolean borrow = (difference >> 32 != 0);
1203:                while (bigIndex > 0 && borrow)
1204:                    borrow = ((result[--bigIndex] = big[bigIndex] - 1) == -1);
1205:
1206:                // Copy remainder of longer number
1207:                while (bigIndex > 0)
1208:                    result[--bigIndex] = big[bigIndex];
1209:
1210:                return result;
1211:            }
1212:
1213:            /**
1214:             * Returns a BigInteger whose value is {@code (this * val)}.
1215:             *
1216:             * @param  val value to be multiplied by this BigInteger.
1217:             * @return {@code this * val}
1218:             */
1219:            public BigInteger multiply(BigInteger val) {
1220:                if (val.signum == 0 || signum == 0)
1221:                    return ZERO;
1222:
1223:                int[] result = multiplyToLen(mag, mag.length, val.mag,
1224:                        val.mag.length, null);
1225:                result = trustedStripLeadingZeroInts(result);
1226:                return new BigInteger(result, signum * val.signum);
1227:            }
1228:
1229:            /**
1230:             * Multiplies int arrays x and y to the specified lengths and places
1231:             * the result into z.
1232:             */
1233:            private int[] multiplyToLen(int[] x, int xlen, int[] y, int ylen,
1234:                    int[] z) {
1235:                int xstart = xlen - 1;
1236:                int ystart = ylen - 1;
1237:
1238:                if (z == null || z.length < (xlen + ylen))
1239:                    z = new int[xlen + ylen];
1240:
1241:                long carry = 0;
1242:                for (int j = ystart, k = ystart + 1 + xstart; j >= 0; j--, k--) {
1243:                    long product = (y[j] & LONG_MASK) * (x[xstart] & LONG_MASK)
1244:                            + carry;
1245:                    z[k] = (int) product;
1246:                    carry = product >>> 32;
1247:                }
1248:                z[xstart] = (int) carry;
1249:
1250:                for (int i = xstart - 1; i >= 0; i--) {
1251:                    carry = 0;
1252:                    for (int j = ystart, k = ystart + 1 + i; j >= 0; j--, k--) {
1253:                        long product = (y[j] & LONG_MASK) * (x[i] & LONG_MASK)
1254:                                + (z[k] & LONG_MASK) + carry;
1255:                        z[k] = (int) product;
1256:                        carry = product >>> 32;
1257:                    }
1258:                    z[i] = (int) carry;
1259:                }
1260:                return z;
1261:            }
1262:
1263:            /**
1264:             * Returns a BigInteger whose value is {@code (this<sup>2</sup>)}.
1265:             *
1266:             * @return {@code this<sup>2</sup>}
1267:             */
1268:            private BigInteger square() {
1269:                if (signum == 0)
1270:                    return ZERO;
1271:                int[] z = squareToLen(mag, mag.length, null);
1272:                return new BigInteger(trustedStripLeadingZeroInts(z), 1);
1273:            }
1274:
1275:            /**
1276:             * Squares the contents of the int array x. The result is placed into the
1277:             * int array z.  The contents of x are not changed.
1278:             */
1279:            private static final int[] squareToLen(int[] x, int len, int[] z) {
1280:                /*
1281:                 * The algorithm used here is adapted from Colin Plumb's C library.
1282:                 * Technique: Consider the partial products in the multiplication
1283:                 * of "abcde" by itself:
1284:                 *
1285:                 *               a  b  c  d  e
1286:                 *            *  a  b  c  d  e
1287:                 *          ==================
1288:                 *              ae be ce de ee
1289:                 *           ad bd cd dd de
1290:                 *        ac bc cc cd ce
1291:                 *     ab bb bc bd be
1292:                 *  aa ab ac ad ae
1293:                 *
1294:                 * Note that everything above the main diagonal:
1295:                 *              ae be ce de = (abcd) * e
1296:                 *           ad bd cd       = (abc) * d
1297:                 *        ac bc             = (ab) * c
1298:                 *     ab                   = (a) * b
1299:                 *
1300:                 * is a copy of everything below the main diagonal:
1301:                 *                       de
1302:                 *                 cd ce
1303:                 *           bc bd be
1304:                 *     ab ac ad ae
1305:                 *
1306:                 * Thus, the sum is 2 * (off the diagonal) + diagonal.
1307:                 *
1308:                 * This is accumulated beginning with the diagonal (which
1309:                 * consist of the squares of the digits of the input), which is then
1310:                 * divided by two, the off-diagonal added, and multiplied by two
1311:                 * again.  The low bit is simply a copy of the low bit of the
1312:                 * input, so it doesn't need special care.
1313:                 */
1314:                int zlen = len << 1;
1315:                if (z == null || z.length < zlen)
1316:                    z = new int[zlen];
1317:
1318:                // Store the squares, right shifted one bit (i.e., divided by 2)
1319:                int lastProductLowWord = 0;
1320:                for (int j = 0, i = 0; j < len; j++) {
1321:                    long piece = (x[j] & LONG_MASK);
1322:                    long product = piece * piece;
1323:                    z[i++] = (lastProductLowWord << 31)
1324:                            | (int) (product >>> 33);
1325:                    z[i++] = (int) (product >>> 1);
1326:                    lastProductLowWord = (int) product;
1327:                }
1328:
1329:                // Add in off-diagonal sums
1330:                for (int i = len, offset = 1; i > 0; i--, offset += 2) {
1331:                    int t = x[i - 1];
1332:                    t = mulAdd(z, x, offset, i - 1, t);
1333:                    addOne(z, offset - 1, i, t);
1334:                }
1335:
1336:                // Shift back up and set low bit
1337:                primitiveLeftShift(z, zlen, 1);
1338:                z[zlen - 1] |= x[len - 1] & 1;
1339:
1340:                return z;
1341:            }
1342:
1343:            /**
1344:             * Returns a BigInteger whose value is {@code (this / val)}.
1345:             *
1346:             * @param  val value by which this BigInteger is to be divided.
1347:             * @return {@code this / val}
1348:             * @throws ArithmeticException {@code val==0}
1349:             */
1350:            public BigInteger divide(BigInteger val) {
1351:                MutableBigInteger q = new MutableBigInteger(), r = new MutableBigInteger(), a = new MutableBigInteger(
1352:                        this .mag), b = new MutableBigInteger(val.mag);
1353:
1354:                a.divide(b, q, r);
1355:                return new BigInteger(q, this .signum * val.signum);
1356:            }
1357:
1358:            /**
1359:             * Returns an array of two BigIntegers containing {@code (this / val)}
1360:             * followed by {@code (this % val)}.
1361:             *
1362:             * @param  val value by which this BigInteger is to be divided, and the
1363:             *	       remainder computed.
1364:             * @return an array of two BigIntegers: the quotient {@code (this / val)}
1365:             *	       is the initial element, and the remainder {@code (this % val)}
1366:             *	       is the final element.
1367:             * @throws ArithmeticException {@code val==0}
1368:             */
1369:            public BigInteger[] divideAndRemainder(BigInteger val) {
1370:                BigInteger[] result = new BigInteger[2];
1371:                MutableBigInteger q = new MutableBigInteger(), r = new MutableBigInteger(), a = new MutableBigInteger(
1372:                        this .mag), b = new MutableBigInteger(val.mag);
1373:                a.divide(b, q, r);
1374:                result[0] = new BigInteger(q, this .signum * val.signum);
1375:                result[1] = new BigInteger(r, this .signum);
1376:                return result;
1377:            }
1378:
1379:            /**
1380:             * Returns a BigInteger whose value is {@code (this % val)}.
1381:             *
1382:             * @param  val value by which this BigInteger is to be divided, and the
1383:             *	       remainder computed.
1384:             * @return {@code this % val}
1385:             * @throws ArithmeticException {@code val==0}
1386:             */
1387:            public BigInteger remainder(BigInteger val) {
1388:                MutableBigInteger q = new MutableBigInteger(), r = new MutableBigInteger(), a = new MutableBigInteger(
1389:                        this .mag), b = new MutableBigInteger(val.mag);
1390:
1391:                a.divide(b, q, r);
1392:                return new BigInteger(r, this .signum);
1393:            }
1394:
1395:            /**
1396:             * Returns a BigInteger whose value is <tt>(this<sup>exponent</sup>)</tt>.
1397:             * Note that {@code exponent} is an integer rather than a BigInteger.
1398:             *
1399:             * @param  exponent exponent to which this BigInteger is to be raised.
1400:             * @return <tt>this<sup>exponent</sup></tt>
1401:             * @throws ArithmeticException {@code exponent} is negative.  (This would
1402:             *	       cause the operation to yield a non-integer value.)
1403:             */
1404:            public BigInteger pow(int exponent) {
1405:                if (exponent < 0)
1406:                    throw new ArithmeticException("Negative exponent");
1407:                if (signum == 0)
1408:                    return (exponent == 0 ? ONE : this );
1409:
1410:                // Perform exponentiation using repeated squaring trick
1411:                int newSign = (signum < 0 && (exponent & 1) == 1 ? -1 : 1);
1412:                int[] baseToPow2 = this .mag;
1413:                int[] result = { 1 };
1414:
1415:                while (exponent != 0) {
1416:                    if ((exponent & 1) == 1) {
1417:                        result = multiplyToLen(result, result.length,
1418:                                baseToPow2, baseToPow2.length, null);
1419:                        result = trustedStripLeadingZeroInts(result);
1420:                    }
1421:                    if ((exponent >>>= 1) != 0) {
1422:                        baseToPow2 = squareToLen(baseToPow2, baseToPow2.length,
1423:                                null);
1424:                        baseToPow2 = trustedStripLeadingZeroInts(baseToPow2);
1425:                    }
1426:                }
1427:                return new BigInteger(result, newSign);
1428:            }
1429:
1430:            /**
1431:             * Returns a BigInteger whose value is the greatest common divisor of
1432:             * {@code abs(this)} and {@code abs(val)}.  Returns 0 if
1433:             * {@code this==0 && val==0}.
1434:             *
1435:             * @param  val value with which the GCD is to be computed.
1436:             * @return {@code GCD(abs(this), abs(val))}
1437:             */
1438:            public BigInteger gcd(BigInteger val) {
1439:                if (val.signum == 0)
1440:                    return this .abs();
1441:                else if (this .signum == 0)
1442:                    return val.abs();
1443:
1444:                MutableBigInteger a = new MutableBigInteger(this );
1445:                MutableBigInteger b = new MutableBigInteger(val);
1446:
1447:                MutableBigInteger result = a.hybridGCD(b);
1448:
1449:                return new BigInteger(result, 1);
1450:            }
1451:
1452:            /**
1453:             * Left shift int array a up to len by n bits. Returns the array that
1454:             * results from the shift since space may have to be reallocated.
1455:             */
1456:            private static int[] leftShift(int[] a, int len, int n) {
1457:                int nInts = n >>> 5;
1458:                int nBits = n & 0x1F;
1459:                int bitsInHighWord = bitLen(a[0]);
1460:
1461:                // If shift can be done without recopy, do so
1462:                if (n <= (32 - bitsInHighWord)) {
1463:                    primitiveLeftShift(a, len, nBits);
1464:                    return a;
1465:                } else { // Array must be resized
1466:                    if (nBits <= (32 - bitsInHighWord)) {
1467:                        int result[] = new int[nInts + len];
1468:                        for (int i = 0; i < len; i++)
1469:                            result[i] = a[i];
1470:                        primitiveLeftShift(result, result.length, nBits);
1471:                        return result;
1472:                    } else {
1473:                        int result[] = new int[nInts + len + 1];
1474:                        for (int i = 0; i < len; i++)
1475:                            result[i] = a[i];
1476:                        primitiveRightShift(result, result.length, 32 - nBits);
1477:                        return result;
1478:                    }
1479:                }
1480:            }
1481:
1482:            // shifts a up to len right n bits assumes no leading zeros, 0<n<32
1483:            static void primitiveRightShift(int[] a, int len, int n) {
1484:                int n2 = 32 - n;
1485:                for (int i = len - 1, c = a[i]; i > 0; i--) {
1486:                    int b = c;
1487:                    c = a[i - 1];
1488:                    a[i] = (c << n2) | (b >>> n);
1489:                }
1490:                a[0] >>>= n;
1491:            }
1492:
1493:            // shifts a up to len left n bits assumes no leading zeros, 0<=n<32
1494:            static void primitiveLeftShift(int[] a, int len, int n) {
1495:                if (len == 0 || n == 0)
1496:                    return;
1497:
1498:                int n2 = 32 - n;
1499:                for (int i = 0, c = a[i], m = i + len - 1; i < m; i++) {
1500:                    int b = c;
1501:                    c = a[i + 1];
1502:                    a[i] = (b << n) | (c >>> n2);
1503:                }
1504:                a[len - 1] <<= n;
1505:            }
1506:
1507:            /**
1508:             * Calculate bitlength of contents of the first len elements an int array,
1509:             * assuming there are no leading zero ints.
1510:             */
1511:            private static int bitLength(int[] val, int len) {
1512:                if (len == 0)
1513:                    return 0;
1514:                return ((len - 1) << 5) + bitLen(val[0]);
1515:            }
1516:
1517:            /**
1518:             * Returns a BigInteger whose value is the absolute value of this
1519:             * BigInteger. 
1520:             *
1521:             * @return {@code abs(this)}
1522:             */
1523:            public BigInteger abs() {
1524:                return (signum >= 0 ? this  : this .negate());
1525:            }
1526:
1527:            /**
1528:             * Returns a BigInteger whose value is {@code (-this)}.
1529:             *
1530:             * @return {@code -this}
1531:             */
1532:            public BigInteger negate() {
1533:                return new BigInteger(this .mag, -this .signum);
1534:            }
1535:
1536:            /**
1537:             * Returns the signum function of this BigInteger.
1538:             *
1539:             * @return -1, 0 or 1 as the value of this BigInteger is negative, zero or
1540:             *	       positive.
1541:             */
1542:            public int signum() {
1543:                return this .signum;
1544:            }
1545:
1546:            // Modular Arithmetic Operations
1547:
1548:            /**
1549:             * Returns a BigInteger whose value is {@code (this mod m}).  This method
1550:             * differs from {@code remainder} in that it always returns a
1551:             * <i>non-negative</i> BigInteger.
1552:             *
1553:             * @param  m the modulus.
1554:             * @return {@code this mod m}
1555:             * @throws ArithmeticException {@code m <= 0}
1556:             * @see    #remainder
1557:             */
1558:            public BigInteger mod(BigInteger m) {
1559:                if (m.signum <= 0)
1560:                    throw new ArithmeticException(
1561:                            "BigInteger: modulus not positive");
1562:
1563:                BigInteger result = this .remainder(m);
1564:                return (result.signum >= 0 ? result : result.add(m));
1565:            }
1566:
1567:            /**
1568:             * Returns a BigInteger whose value is
1569:             * <tt>(this<sup>exponent</sup> mod m)</tt>.  (Unlike {@code pow}, this
1570:             * method permits negative exponents.)
1571:             *
1572:             * @param  exponent the exponent.
1573:             * @param  m the modulus.
1574:             * @return <tt>this<sup>exponent</sup> mod m</tt>
1575:             * @throws ArithmeticException {@code m <= 0}
1576:             * @see    #modInverse
1577:             */
1578:            public BigInteger modPow(BigInteger exponent, BigInteger m) {
1579:                if (m.signum <= 0)
1580:                    throw new ArithmeticException(
1581:                            "BigInteger: modulus not positive");
1582:
1583:                // Trivial cases
1584:                if (exponent.signum == 0)
1585:                    return (m.equals(ONE) ? ZERO : ONE);
1586:
1587:                if (this .equals(ONE))
1588:                    return (m.equals(ONE) ? ZERO : ONE);
1589:
1590:                if (this .equals(ZERO) && exponent.signum >= 0)
1591:                    return ZERO;
1592:
1593:                if (this .equals(negConst[1]) && (!exponent.testBit(0)))
1594:                    return (m.equals(ONE) ? ZERO : ONE);
1595:
1596:                boolean invertResult;
1597:                if ((invertResult = (exponent.signum < 0)))
1598:                    exponent = exponent.negate();
1599:
1600:                BigInteger base = (this .signum < 0 || this .compareTo(m) >= 0 ? this 
1601:                        .mod(m)
1602:                        : this );
1603:                BigInteger result;
1604:                if (m.testBit(0)) { // odd modulus
1605:                    result = base.oddModPow(exponent, m);
1606:                } else {
1607:                    /*
1608:                     * Even modulus.  Tear it into an "odd part" (m1) and power of two
1609:                     * (m2), exponentiate mod m1, manually exponentiate mod m2, and
1610:                     * use Chinese Remainder Theorem to combine results.
1611:                     */
1612:
1613:                    // Tear m apart into odd part (m1) and power of 2 (m2)
1614:                    int p = m.getLowestSetBit(); // Max pow of 2 that divides m
1615:
1616:                    BigInteger m1 = m.shiftRight(p); // m/2**p
1617:                    BigInteger m2 = ONE.shiftLeft(p); // 2**p
1618:
1619:                    // Calculate new base from m1
1620:                    BigInteger base2 = (this .signum < 0
1621:                            || this .compareTo(m1) >= 0 ? this .mod(m1) : this );
1622:
1623:                    // Caculate (base ** exponent) mod m1.
1624:                    BigInteger a1 = (m1.equals(ONE) ? ZERO : base2.oddModPow(
1625:                            exponent, m1));
1626:
1627:                    // Calculate (this ** exponent) mod m2
1628:                    BigInteger a2 = base.modPow2(exponent, p);
1629:
1630:                    // Combine results using Chinese Remainder Theorem
1631:                    BigInteger y1 = m2.modInverse(m1);
1632:                    BigInteger y2 = m1.modInverse(m2);
1633:
1634:                    result = a1.multiply(m2).multiply(y1).add(
1635:                            a2.multiply(m1).multiply(y2)).mod(m);
1636:                }
1637:
1638:                return (invertResult ? result.modInverse(m) : result);
1639:            }
1640:
1641:            static int[] bnExpModThreshTable = { 7, 25, 81, 241, 673, 1793,
1642:                    Integer.MAX_VALUE }; // Sentinel
1643:
1644:            /**
1645:             * Returns a BigInteger whose value is x to the power of y mod z.
1646:             * Assumes: z is odd && x < z.
1647:             */
1648:            private BigInteger oddModPow(BigInteger y, BigInteger z) {
1649:                /*
1650:                 * The algorithm is adapted from Colin Plumb's C library.
1651:                 *
1652:                 * The window algorithm:
1653:                 * The idea is to keep a running product of b1 = n^(high-order bits of exp)
1654:                 * and then keep appending exponent bits to it.  The following patterns
1655:                 * apply to a 3-bit window (k = 3):
1656:                 * To append   0: square
1657:                 * To append   1: square, multiply by n^1
1658:                 * To append  10: square, multiply by n^1, square
1659:                 * To append  11: square, square, multiply by n^3
1660:                 * To append 100: square, multiply by n^1, square, square
1661:                 * To append 101: square, square, square, multiply by n^5
1662:                 * To append 110: square, square, multiply by n^3, square
1663:                 * To append 111: square, square, square, multiply by n^7
1664:                 *
1665:                 * Since each pattern involves only one multiply, the longer the pattern
1666:                 * the better, except that a 0 (no multiplies) can be appended directly.
1667:                 * We precompute a table of odd powers of n, up to 2^k, and can then
1668:                 * multiply k bits of exponent at a time.  Actually, assuming random
1669:                 * exponents, there is on average one zero bit between needs to
1670:                 * multiply (1/2 of the time there's none, 1/4 of the time there's 1,
1671:                 * 1/8 of the time, there's 2, 1/32 of the time, there's 3, etc.), so
1672:                 * you have to do one multiply per k+1 bits of exponent.
1673:                 *
1674:                 * The loop walks down the exponent, squaring the result buffer as
1675:                 * it goes.  There is a wbits+1 bit lookahead buffer, buf, that is
1676:                 * filled with the upcoming exponent bits.  (What is read after the
1677:                 * end of the exponent is unimportant, but it is filled with zero here.)
1678:                 * When the most-significant bit of this buffer becomes set, i.e.
1679:                 * (buf & tblmask) != 0, we have to decide what pattern to multiply
1680:                 * by, and when to do it.  We decide, remember to do it in future
1681:                 * after a suitable number of squarings have passed (e.g. a pattern
1682:                 * of "100" in the buffer requires that we multiply by n^1 immediately;
1683:                 * a pattern of "110" calls for multiplying by n^3 after one more
1684:                 * squaring), clear the buffer, and continue.
1685:                 *
1686:                 * When we start, there is one more optimization: the result buffer
1687:                 * is implcitly one, so squaring it or multiplying by it can be
1688:                 * optimized away.  Further, if we start with a pattern like "100"
1689:                 * in the lookahead window, rather than placing n into the buffer
1690:                 * and then starting to square it, we have already computed n^2
1691:                 * to compute the odd-powers table, so we can place that into
1692:                 * the buffer and save a squaring.
1693:                 *
1694:                 * This means that if you have a k-bit window, to compute n^z,
1695:                 * where z is the high k bits of the exponent, 1/2 of the time
1696:                 * it requires no squarings.  1/4 of the time, it requires 1
1697:                 * squaring, ... 1/2^(k-1) of the time, it reqires k-2 squarings.
1698:                 * And the remaining 1/2^(k-1) of the time, the top k bits are a
1699:                 * 1 followed by k-1 0 bits, so it again only requires k-2
1700:                 * squarings, not k-1.  The average of these is 1.  Add that
1701:                 * to the one squaring we have to do to compute the table,
1702:                 * and you'll see that a k-bit window saves k-2 squarings
1703:                 * as well as reducing the multiplies.  (It actually doesn't
1704:                 * hurt in the case k = 1, either.)
1705:                 */
1706:                // Special case for exponent of one
1707:                if (y.equals(ONE))
1708:                    return this ;
1709:
1710:                // Special case for base of zero
1711:                if (signum == 0)
1712:                    return ZERO;
1713:
1714:                int[] base = (int[]) mag.clone();
1715:                int[] exp = y.mag;
1716:                int[] mod = z.mag;
1717:                int modLen = mod.length;
1718:
1719:                // Select an appropriate window size
1720:                int wbits = 0;
1721:                int ebits = bitLength(exp, exp.length);
1722:                // if exponent is 65537 (0x10001), use minimum window size
1723:                if ((ebits != 17) || (exp[0] != 65537)) {
1724:                    while (ebits > bnExpModThreshTable[wbits]) {
1725:                        wbits++;
1726:                    }
1727:                }
1728:
1729:                // Calculate appropriate table size
1730:                int tblmask = 1 << wbits;
1731:
1732:                // Allocate table for precomputed odd powers of base in Montgomery form
1733:                int[][] table = new int[tblmask][];
1734:                for (int i = 0; i < tblmask; i++)
1735:                    table[i] = new int[modLen];
1736:
1737:                // Compute the modular inverse
1738:                int inv = -MutableBigInteger.inverseMod32(mod[modLen - 1]);
1739:
1740:                // Convert base to Montgomery form
1741:                int[] a = leftShift(base, base.length, modLen << 5);
1742:
1743:                MutableBigInteger q = new MutableBigInteger(), r = new MutableBigInteger(), a2 = new MutableBigInteger(
1744:                        a), b2 = new MutableBigInteger(mod);
1745:
1746:                a2.divide(b2, q, r);
1747:                table[0] = r.toIntArray();
1748:
1749:                // Pad table[0] with leading zeros so its length is at least modLen
1750:                if (table[0].length < modLen) {
1751:                    int offset = modLen - table[0].length;
1752:                    int[] t2 = new int[modLen];
1753:                    for (int i = 0; i < table[0].length; i++)
1754:                        t2[i + offset] = table[0][i];
1755:                    table[0] = t2;
1756:                }
1757:
1758:                // Set b to the square of the base
1759:                int[] b = squareToLen(table[0], modLen, null);
1760:                b = montReduce(b, mod, modLen, inv);
1761:
1762:                // Set t to high half of b
1763:                int[] t = new int[modLen];
1764:                for (int i = 0; i < modLen; i++)
1765:                    t[i] = b[i];
1766:
1767:                // Fill in the table with odd powers of the base        
1768:                for (int i = 1; i < tblmask; i++) {
1769:                    int[] prod = multiplyToLen(t, modLen, table[i - 1], modLen,
1770:                            null);
1771:                    table[i] = montReduce(prod, mod, modLen, inv);
1772:                }
1773:
1774:                // Pre load the window that slides over the exponent
1775:                int bitpos = 1 << ((ebits - 1) & (32 - 1));
1776:
1777:                int buf = 0;
1778:                int elen = exp.length;
1779:                int eIndex = 0;
1780:                for (int i = 0; i <= wbits; i++) {
1781:                    buf = (buf << 1) | (((exp[eIndex] & bitpos) != 0) ? 1 : 0);
1782:                    bitpos >>>= 1;
1783:                    if (bitpos == 0) {
1784:                        eIndex++;
1785:                        bitpos = 1 << (32 - 1);
1786:                        elen--;
1787:                    }
1788:                }
1789:
1790:                int multpos = ebits;
1791:
1792:                // The first iteration, which is hoisted out of the main loop
1793:                ebits--;
1794:                boolean isone = true;
1795:
1796:                multpos = ebits - wbits;
1797:                while ((buf & 1) == 0) {
1798:                    buf >>>= 1;
1799:                    multpos++;
1800:                }
1801:
1802:                int[] mult = table[buf >>> 1];
1803:
1804:                buf = 0;
1805:                if (multpos == ebits)
1806:                    isone = false;
1807:
1808:                // The main loop
1809:                while (true) {
1810:                    ebits--;
1811:                    // Advance the window
1812:                    buf <<= 1;
1813:
1814:                    if (elen != 0) {
1815:                        buf |= ((exp[eIndex] & bitpos) != 0) ? 1 : 0;
1816:                        bitpos >>>= 1;
1817:                        if (bitpos == 0) {
1818:                            eIndex++;
1819:                            bitpos = 1 << (32 - 1);
1820:                            elen--;
1821:                        }
1822:                    }
1823:
1824:                    // Examine the window for pending multiplies
1825:                    if ((buf & tblmask) != 0) {
1826:                        multpos = ebits - wbits;
1827:                        while ((buf & 1) == 0) {
1828:                            buf >>>= 1;
1829:                            multpos++;
1830:                        }
1831:                        mult = table[buf >>> 1];
1832:                        buf = 0;
1833:                    }
1834:
1835:                    // Perform multiply
1836:                    if (ebits == multpos) {
1837:                        if (isone) {
1838:                            b = (int[]) mult.clone();
1839:                            isone = false;
1840:                        } else {
1841:                            t = b;
1842:                            a = multiplyToLen(t, modLen, mult, modLen, a);
1843:                            a = montReduce(a, mod, modLen, inv);
1844:                            t = a;
1845:                            a = b;
1846:                            b = t;
1847:                        }
1848:                    }
1849:
1850:                    // Check if done
1851:                    if (ebits == 0)
1852:                        break;
1853:
1854:                    // Square the input
1855:                    if (!isone) {
1856:                        t = b;
1857:                        a = squareToLen(t, modLen, a);
1858:                        a = montReduce(a, mod, modLen, inv);
1859:                        t = a;
1860:                        a = b;
1861:                        b = t;
1862:                    }
1863:                }
1864:
1865:                // Convert result out of Montgomery form and return
1866:                int[] t2 = new int[2 * modLen];
1867:                for (int i = 0; i < modLen; i++)
1868:                    t2[i + modLen] = b[i];
1869:
1870:                b = montReduce(t2, mod, modLen, inv);
1871:
1872:                t2 = new int[modLen];
1873:                for (int i = 0; i < modLen; i++)
1874:                    t2[i] = b[i];
1875:
1876:                return new BigInteger(1, t2);
1877:            }
1878:
1879:            /**
1880:             * Montgomery reduce n, modulo mod.  This reduces modulo mod and divides
1881:             * by 2^(32*mlen). Adapted from Colin Plumb's C library.
1882:             */
1883:            private static int[] montReduce(int[] n, int[] mod, int mlen,
1884:                    int inv) {
1885:                int c = 0;
1886:                int len = mlen;
1887:                int offset = 0;
1888:
1889:                do {
1890:                    int nEnd = n[n.length - 1 - offset];
1891:                    int carry = mulAdd(n, mod, offset, mlen, inv * nEnd);
1892:                    c += addOne(n, offset, mlen, carry);
1893:                    offset++;
1894:                } while (--len > 0);
1895:
1896:                while (c > 0)
1897:                    c += subN(n, mod, mlen);
1898:
1899:                while (intArrayCmpToLen(n, mod, mlen) >= 0)
1900:                    subN(n, mod, mlen);
1901:
1902:                return n;
1903:            }
1904:
1905:            /*
1906:             * Returns -1, 0 or +1 as big-endian unsigned int array arg1 is less than,
1907:             * equal to, or greater than arg2 up to length len.
1908:             */
1909:            private static int intArrayCmpToLen(int[] arg1, int[] arg2, int len) {
1910:                for (int i = 0; i < len; i++) {
1911:                    long b1 = arg1[i] & LONG_MASK;
1912:                    long b2 = arg2[i] & LONG_MASK;
1913:                    if (b1 < b2)
1914:                        return -1;
1915:                    if (b1 > b2)
1916:                        return 1;
1917:                }
1918:                return 0;
1919:            }
1920:
1921:            /**
1922:             * Subtracts two numbers of same length, returning borrow.
1923:             */
1924:            private static int subN(int[] a, int[] b, int len) {
1925:                long sum = 0;
1926:
1927:                while (--len >= 0) {
1928:                    sum = (a[len] & LONG_MASK) - (b[len] & LONG_MASK)
1929:                            + (sum >> 32);
1930:                    a[len] = (int) sum;
1931:                }
1932:
1933:                return (int) (sum >> 32);
1934:            }
1935:
1936:            /**
1937:             * Multiply an array by one word k and add to result, return the carry
1938:             */
1939:            static int mulAdd(int[] out, int[] in, int offset, int len, int k) {
1940:                long kLong = k & LONG_MASK;
1941:                long carry = 0;
1942:
1943:                offset = out.length - offset - 1;
1944:                for (int j = len - 1; j >= 0; j--) {
1945:                    long product = (in[j] & LONG_MASK) * kLong
1946:                            + (out[offset] & LONG_MASK) + carry;
1947:                    out[offset--] = (int) product;
1948:                    carry = product >>> 32;
1949:                }
1950:                return (int) carry;
1951:            }
1952:
1953:            /**
1954:             * Add one word to the number a mlen words into a. Return the resulting
1955:             * carry.
1956:             */
1957:            static int addOne(int[] a, int offset, int mlen, int carry) {
1958:                offset = a.length - 1 - mlen - offset;
1959:                long t = (a[offset] & LONG_MASK) + (carry & LONG_MASK);
1960:
1961:                a[offset] = (int) t;
1962:                if ((t >>> 32) == 0)
1963:                    return 0;
1964:                while (--mlen >= 0) {
1965:                    if (--offset < 0) { // Carry out of number
1966:                        return 1;
1967:                    } else {
1968:                        a[offset]++;
1969:                        if (a[offset] != 0)
1970:                            return 0;
1971:                    }
1972:                }
1973:                return 1;
1974:            }
1975:
1976:            /**
1977:             * Returns a BigInteger whose value is (this ** exponent) mod (2**p)
1978:             */
1979:            private BigInteger modPow2(BigInteger exponent, int p) {
1980:                /*
1981:                 * Perform exponentiation using repeated squaring trick, chopping off
1982:                 * high order bits as indicated by modulus.
1983:                 */
1984:                BigInteger result = valueOf(1);
1985:                BigInteger baseToPow2 = this .mod2(p);
1986:                int expOffset = 0;
1987:
1988:                int limit = exponent.bitLength();
1989:
1990:                if (this .testBit(0))
1991:                    limit = (p - 1) < limit ? (p - 1) : limit;
1992:
1993:                while (expOffset < limit) {
1994:                    if (exponent.testBit(expOffset))
1995:                        result = result.multiply(baseToPow2).mod2(p);
1996:                    expOffset++;
1997:                    if (expOffset < limit)
1998:                        baseToPow2 = baseToPow2.square().mod2(p);
1999:                }
2000:
2001:                return result;
2002:            }
2003:
2004:            /**
2005:             * Returns a BigInteger whose value is this mod(2**p).
2006:             * Assumes that this {@code BigInteger >= 0} and {@code p > 0}.
2007:             */
2008:            private BigInteger mod2(int p) {
2009:                if (bitLength() <= p)
2010:                    return this ;
2011:
2012:                // Copy remaining ints of mag
2013:                int numInts = (p + 31) / 32;
2014:                int[] mag = new int[numInts];
2015:                for (int i = 0; i < numInts; i++)
2016:                    mag[i] = this .mag[i + (this .mag.length - numInts)];
2017:
2018:                // Mask out any excess bits
2019:                int excessBits = (numInts << 5) - p;
2020:                mag[0] &= (1L << (32 - excessBits)) - 1;
2021:
2022:                return (mag[0] == 0 ? new BigInteger(1, mag) : new BigInteger(
2023:                        mag, 1));
2024:            }
2025:
2026:            /**
2027:             * Returns a BigInteger whose value is {@code (this}<sup>-1</sup> {@code mod m)}.
2028:             *
2029:             * @param  m the modulus.
2030:             * @return {@code this}<sup>-1</sup> {@code mod m}.
2031:             * @throws ArithmeticException {@code  m <= 0}, or this BigInteger
2032:             *	       has no multiplicative inverse mod m (that is, this BigInteger
2033:             *	       is not <i>relatively prime</i> to m).
2034:             */
2035:            public BigInteger modInverse(BigInteger m) {
2036:                if (m.signum != 1)
2037:                    throw new ArithmeticException(
2038:                            "BigInteger: modulus not positive");
2039:
2040:                if (m.equals(ONE))
2041:                    return ZERO;
2042:
2043:                // Calculate (this mod m)
2044:                BigInteger modVal = this ;
2045:                if (signum < 0 || (intArrayCmp(mag, m.mag) >= 0))
2046:                    modVal = this .mod(m);
2047:
2048:                if (modVal.equals(ONE))
2049:                    return ONE;
2050:
2051:                MutableBigInteger a = new MutableBigInteger(modVal);
2052:                MutableBigInteger b = new MutableBigInteger(m);
2053:
2054:                MutableBigInteger result = a.mutableModInverse(b);
2055:                return new BigInteger(result, 1);
2056:            }
2057:
2058:            // Shift Operations
2059:
2060:            /**
2061:             * Returns a BigInteger whose value is {@code (this << n)}.
2062:             * The shift distance, {@code n}, may be negative, in which case
2063:             * this method performs a right shift.
2064:             * (Computes <tt>floor(this * 2<sup>n</sup>)</tt>.)
2065:             *
2066:             * @param  n shift distance, in bits.
2067:             * @return {@code this << n}
2068:             * @see #shiftRight
2069:             */
2070:            public BigInteger shiftLeft(int n) {
2071:                if (signum == 0)
2072:                    return ZERO;
2073:                if (n == 0)
2074:                    return this ;
2075:                if (n < 0)
2076:                    return shiftRight(-n);
2077:
2078:                int nInts = n >>> 5;
2079:                int nBits = n & 0x1f;
2080:                int magLen = mag.length;
2081:                int newMag[] = null;
2082:
2083:                if (nBits == 0) {
2084:                    newMag = new int[magLen + nInts];
2085:                    for (int i = 0; i < magLen; i++)
2086:                        newMag[i] = mag[i];
2087:                } else {
2088:                    int i = 0;
2089:                    int nBits2 = 32 - nBits;
2090:                    int highBits = mag[0] >>> nBits2;
2091:                    if (highBits != 0) {
2092:                        newMag = new int[magLen + nInts + 1];
2093:                        newMag[i++] = highBits;
2094:                    } else {
2095:                        newMag = new int[magLen + nInts];
2096:                    }
2097:                    int j = 0;
2098:                    while (j < magLen - 1)
2099:                        newMag[i++] = mag[j++] << nBits | mag[j] >>> nBits2;
2100:                    newMag[i] = mag[j] << nBits;
2101:                }
2102:
2103:                return new BigInteger(newMag, signum);
2104:            }
2105:
2106:            /**
2107:             * Returns a BigInteger whose value is {@code (this >> n)}.  Sign
2108:             * extension is performed.  The shift distance, {@code n}, may be
2109:             * negative, in which case this method performs a left shift.
2110:             * (Computes <tt>floor(this / 2<sup>n</sup>)</tt>.) 
2111:             *
2112:             * @param  n shift distance, in bits.
2113:             * @return {@code this >> n}
2114:             * @see #shiftLeft
2115:             */
2116:            public BigInteger shiftRight(int n) {
2117:                if (n == 0)
2118:                    return this ;
2119:                if (n < 0)
2120:                    return shiftLeft(-n);
2121:
2122:                int nInts = n >>> 5;
2123:                int nBits = n & 0x1f;
2124:                int magLen = mag.length;
2125:                int newMag[] = null;
2126:
2127:                // Special case: entire contents shifted off the end
2128:                if (nInts >= magLen)
2129:                    return (signum >= 0 ? ZERO : negConst[1]);
2130:
2131:                if (nBits == 0) {
2132:                    int newMagLen = magLen - nInts;
2133:                    newMag = new int[newMagLen];
2134:                    for (int i = 0; i < newMagLen; i++)
2135:                        newMag[i] = mag[i];
2136:                } else {
2137:                    int i = 0;
2138:                    int highBits = mag[0] >>> nBits;
2139:                    if (highBits != 0) {
2140:                        newMag = new int[magLen - nInts];
2141:                        newMag[i++] = highBits;
2142:                    } else {
2143:                        newMag = new int[magLen - nInts - 1];
2144:                    }
2145:
2146:                    int nBits2 = 32 - nBits;
2147:                    int j = 0;
2148:                    while (j < magLen - nInts - 1)
2149:                        newMag[i++] = (mag[j++] << nBits2) | (mag[j] >>> nBits);
2150:                }
2151:
2152:                if (signum < 0) {
2153:                    // Find out whether any one-bits were shifted off the end.
2154:                    boolean onesLost = false;
2155:                    for (int i = magLen - 1, j = magLen - nInts; i >= j
2156:                            && !onesLost; i--)
2157:                        onesLost = (mag[i] != 0);
2158:                    if (!onesLost && nBits != 0)
2159:                        onesLost = (mag[magLen - nInts - 1] << (32 - nBits) != 0);
2160:
2161:                    if (onesLost)
2162:                        newMag = javaIncrement(newMag);
2163:                }
2164:
2165:                return new BigInteger(newMag, signum);
2166:            }
2167:
2168:            int[] javaIncrement(int[] val) {
2169:                int lastSum = 0;
2170:                for (int i = val.length - 1; i >= 0 && lastSum == 0; i--)
2171:                    lastSum = (val[i] += 1);
2172:                if (lastSum == 0) {
2173:                    val = new int[val.length + 1];
2174:                    val[0] = 1;
2175:                }
2176:                return val;
2177:            }
2178:
2179:            // Bitwise Operations
2180:
2181:            /**
2182:             * Returns a BigInteger whose value is {@code (this & val)}.  (This
2183:             * method returns a negative BigInteger if and only if this and val are
2184:             * both negative.)
2185:             *
2186:             * @param val value to be AND'ed with this BigInteger.
2187:             * @return {@code this & val}
2188:             */
2189:            public BigInteger and(BigInteger val) {
2190:                int[] result = new int[Math.max(intLength(), val.intLength())];
2191:                for (int i = 0; i < result.length; i++)
2192:                    result[i] = (int) (getInt(result.length - i - 1) & val
2193:                            .getInt(result.length - i - 1));
2194:
2195:                return valueOf(result);
2196:            }
2197:
2198:            /**
2199:             * Returns a BigInteger whose value is {@code (this | val)}.  (This method
2200:             * returns a negative BigInteger if and only if either this or val is
2201:             * negative.) 
2202:             *
2203:             * @param val value to be OR'ed with this BigInteger.
2204:             * @return {@code this | val}
2205:             */
2206:            public BigInteger or(BigInteger val) {
2207:                int[] result = new int[Math.max(intLength(), val.intLength())];
2208:                for (int i = 0; i < result.length; i++)
2209:                    result[i] = (int) (getInt(result.length - i - 1) | val
2210:                            .getInt(result.length - i - 1));
2211:
2212:                return valueOf(result);
2213:            }
2214:
2215:            /**
2216:             * Returns a BigInteger whose value is {@code (this ^ val)}.  (This method
2217:             * returns a negative BigInteger if and only if exactly one of this and
2218:             * val are negative.)
2219:             *
2220:             * @param val value to be XOR'ed with this BigInteger.
2221:             * @return {@code this ^ val}
2222:             */
2223:            public BigInteger xor(BigInteger val) {
2224:                int[] result = new int[Math.max(intLength(), val.intLength())];
2225:                for (int i = 0; i < result.length; i++)
2226:                    result[i] = (int) (getInt(result.length - i - 1) ^ val
2227:                            .getInt(result.length - i - 1));
2228:
2229:                return valueOf(result);
2230:            }
2231:
2232:            /**
2233:             * Returns a BigInteger whose value is {@code (~this)}.  (This method
2234:             * returns a negative value if and only if this BigInteger is
2235:             * non-negative.)
2236:             *
2237:             * @return {@code ~this}
2238:             */
2239:            public BigInteger not() {
2240:                int[] result = new int[intLength()];
2241:                for (int i = 0; i < result.length; i++)
2242:                    result[i] = (int) ~getInt(result.length - i - 1);
2243:
2244:                return valueOf(result);
2245:            }
2246:
2247:            /**
2248:             * Returns a BigInteger whose value is {@code (this & ~val)}.  This
2249:             * method, which is equivalent to {@code and(val.not())}, is provided as
2250:             * a convenience for masking operations.  (This method returns a negative
2251:             * BigInteger if and only if {@code this} is negative and {@code val} is
2252:             * positive.)
2253:             *
2254:             * @param val value to be complemented and AND'ed with this BigInteger.
2255:             * @return {@code this & ~val}
2256:             */
2257:            public BigInteger andNot(BigInteger val) {
2258:                int[] result = new int[Math.max(intLength(), val.intLength())];
2259:                for (int i = 0; i < result.length; i++)
2260:                    result[i] = (int) (getInt(result.length - i - 1) & ~val
2261:                            .getInt(result.length - i - 1));
2262:
2263:                return valueOf(result);
2264:            }
2265:
2266:            // Single Bit Operations
2267:
2268:            /**
2269:             * Returns {@code true} if and only if the designated bit is set.
2270:             * (Computes {@code ((this & (1<<n)) != 0)}.)
2271:             *
2272:             * @param  n index of bit to test.
2273:             * @return {@code true} if and only if the designated bit is set.
2274:             * @throws ArithmeticException {@code n} is negative.
2275:             */
2276:            public boolean testBit(int n) {
2277:                if (n < 0)
2278:                    throw new ArithmeticException("Negative bit address");
2279:
2280:                return (getInt(n / 32) & (1 << (n % 32))) != 0;
2281:            }
2282:
2283:            /**
2284:             * Returns a BigInteger whose value is equivalent to this BigInteger
2285:             * with the designated bit set.  (Computes {@code (this | (1<<n))}.)
2286:             *
2287:             * @param  n index of bit to set.
2288:             * @return {@code this | (1<<n)}
2289:             * @throws ArithmeticException {@code n} is negative.
2290:             */
2291:            public BigInteger setBit(int n) {
2292:                if (n < 0)
2293:                    throw new ArithmeticException("Negative bit address");
2294:
2295:                int intNum = n / 32;
2296:                int[] result = new int[Math.max(intLength(), intNum + 2)];
2297:
2298:                for (int i = 0; i < result.length; i++)
2299:                    result[result.length - i - 1] = getInt(i);
2300:
2301:                result[result.length - intNum - 1] |= (1 << (n % 32));
2302:
2303:                return valueOf(result);
2304:            }
2305:
2306:            /**
2307:             * Returns a BigInteger whose value is equivalent to this BigInteger
2308:             * with the designated bit cleared.
2309:             * (Computes {@code (this & ~(1<<n))}.)
2310:             *
2311:             * @param  n index of bit to clear.
2312:             * @return {@code this & ~(1<<n)}
2313:             * @throws ArithmeticException {@code n} is negative.
2314:             */
2315:            public BigInteger clearBit(int n) {
2316:                if (n < 0)
2317:                    throw new ArithmeticException("Negative bit address");
2318:
2319:                int intNum = n / 32;
2320:                int[] result = new int[Math.max(intLength(), (n + 1) / 32 + 1)];
2321:
2322:                for (int i = 0; i < result.length; i++)
2323:                    result[result.length - i - 1] = getInt(i);
2324:
2325:                result[result.length - intNum - 1] &= ~(1 << (n % 32));
2326:
2327:                return valueOf(result);
2328:            }
2329:
2330:            /**
2331:             * Returns a BigInteger whose value is equivalent to this BigInteger
2332:             * with the designated bit flipped.
2333:             * (Computes {@code (this ^ (1<<n))}.)
2334:             *
2335:             * @param  n index of bit to flip.
2336:             * @return {@code this ^ (1<<n)}
2337:             * @throws ArithmeticException {@code n} is negative.
2338:             */
2339:            public BigInteger flipBit(int n) {
2340:                if (n < 0)
2341:                    throw new ArithmeticException("Negative bit address");
2342:
2343:                int intNum = n / 32;
2344:                int[] result = new int[Math.max(intLength(), intNum + 2)];
2345:
2346:                for (int i = 0; i < result.length; i++)
2347:                    result[result.length - i - 1] = getInt(i);
2348:
2349:                result[result.length - intNum - 1] ^= (1 << (n % 32));
2350:
2351:                return valueOf(result);
2352:            }
2353:
2354:            /**
2355:             * Returns the index of the rightmost (lowest-order) one bit in this
2356:             * BigInteger (the number of zero bits to the right of the rightmost
2357:             * one bit).  Returns -1 if this BigInteger contains no one bits.
2358:             * (Computes {@code (this==0? -1 : log2(this & -this))}.)
2359:             *
2360:             * @return index of the rightmost one bit in this BigInteger.
2361:             */
2362:            public int getLowestSetBit() {
2363:                /*
2364:                 * Initialize lowestSetBit field the first time this method is
2365:                 * executed. This method depends on the atomicity of int modifies;
2366:                 * without this guarantee, it would have to be synchronized.
2367:                 */
2368:                if (lowestSetBit == -2) {
2369:                    if (signum == 0) {
2370:                        lowestSetBit = -1;
2371:                    } else {
2372:                        // Search for lowest order nonzero int
2373:                        int i, b;
2374:                        for (i = 0; (b = getInt(i)) == 0; i++)
2375:                            ;
2376:                        lowestSetBit = (i << 5) + trailingZeroCnt(b);
2377:                    }
2378:                }
2379:                return lowestSetBit;
2380:            }
2381:
2382:            // Miscellaneous Bit Operations
2383:
2384:            /**
2385:             * Returns the number of bits in the minimal two's-complement
2386:             * representation of this BigInteger, <i>excluding</i> a sign bit.
2387:             * For positive BigIntegers, this is equivalent to the number of bits in
2388:             * the ordinary binary representation.  (Computes
2389:             * {@code (ceil(log2(this < 0 ? -this : this+1)))}.)
2390:             *
2391:             * @return number of bits in the minimal two's-complement
2392:             *         representation of this BigInteger, <i>excluding</i> a sign bit.
2393:             */
2394:            public int bitLength() {
2395:                /*
2396:                 * Initialize bitLength field the first time this method is executed.
2397:                 * This method depends on the atomicity of int modifies; without
2398:                 * this guarantee, it would have to be synchronized.
2399:                 */
2400:                if (bitLength == -1) {
2401:                    if (signum == 0) {
2402:                        bitLength = 0;
2403:                    } else {
2404:                        // Calculate the bit length of the magnitude
2405:                        int magBitLength = ((mag.length - 1) << 5)
2406:                                + bitLen(mag[0]);
2407:
2408:                        if (signum < 0) {
2409:                            // Check if magnitude is a power of two
2410:                            boolean pow2 = (bitCnt(mag[0]) == 1);
2411:                            for (int i = 1; i < mag.length && pow2; i++)
2412:                                pow2 = (mag[i] == 0);
2413:
2414:                            bitLength = (pow2 ? magBitLength - 1 : magBitLength);
2415:                        } else {
2416:                            bitLength = magBitLength;
2417:                        }
2418:                    }
2419:                }
2420:                return bitLength;
2421:            }
2422:
2423:            /**
2424:             * bitLen(val) is the number of bits in val.
2425:             */
2426:            static int bitLen(int w) {
2427:                // Binary search - decision tree (5 tests, rarely 6)
2428:                return (w < 1 << 15 ? (w < 1 << 7 ? (w < 1 << 3 ? (w < 1 << 1 ? (w < 1 << 0 ? (w < 0 ? 32
2429:                        : 0)
2430:                        : 1)
2431:                        : (w < 1 << 2 ? 2 : 3))
2432:                        : (w < 1 << 5 ? (w < 1 << 4 ? 4 : 5) : (w < 1 << 6 ? 6
2433:                                : 7)))
2434:                        : (w < 1 << 11 ? (w < 1 << 9 ? (w < 1 << 8 ? 8 : 9)
2435:                                : (w < 1 << 10 ? 10 : 11))
2436:                                : (w < 1 << 13 ? (w < 1 << 12 ? 12 : 13)
2437:                                        : (w < 1 << 14 ? 14 : 15))))
2438:                        : (w < 1 << 23 ? (w < 1 << 19 ? (w < 1 << 17 ? (w < 1 << 16 ? 16
2439:                                : 17)
2440:                                : (w < 1 << 18 ? 18 : 19))
2441:                                : (w < 1 << 21 ? (w < 1 << 20 ? 20 : 21)
2442:                                        : (w < 1 << 22 ? 22 : 23)))
2443:                                : (w < 1 << 27 ? (w < 1 << 25 ? (w < 1 << 24 ? 24
2444:                                        : 25)
2445:                                        : (w < 1 << 26 ? 26 : 27))
2446:                                        : (w < 1 << 29 ? (w < 1 << 28 ? 28 : 29)
2447:                                                : (w < 1 << 30 ? 30 : 31)))));
2448:            }
2449:
2450:            /*
2451:             * trailingZeroTable[i] is the number of trailing zero bits in the binary
2452:             * representation of i.
2453:             */
2454:            final static byte trailingZeroTable[] = { -25, 0, 1, 0, 2, 0, 1, 0,
2455:                    3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0,
2456:                    2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
2457:                    4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 6, 0, 1, 0,
2458:                    2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0,
2459:                    3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0,
2460:                    2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
2461:                    7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0,
2462:                    2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0,
2463:                    3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0,
2464:                    2, 0, 1, 0, 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
2465:                    4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0,
2466:                    2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0,
2467:                    3, 0, 1, 0, 2, 0, 1, 0 };
2468:
2469:            /**
2470:             * Returns the number of bits in the two's complement representation
2471:             * of this BigInteger that differ from its sign bit.  This method is
2472:             * useful when implementing bit-vector style sets atop BigIntegers.
2473:             *
2474:             * @return number of bits in the two's complement representation
2475:             *         of this BigInteger that differ from its sign bit.
2476:             */
2477:            public int bitCount() {
2478:                /*
2479:                 * Initialize bitCount field the first time this method is executed.
2480:                 * This method depends on the atomicity of int modifies; without
2481:                 * this guarantee, it would have to be synchronized.
2482:                 */
2483:                if (bitCount == -1) {
2484:                    // Count the bits in the magnitude
2485:                    int magBitCount = 0;
2486:                    for (int i = 0; i < mag.length; i++)
2487:                        magBitCount += bitCnt(mag[i]);
2488:
2489:                    if (signum < 0) {
2490:                        // Count the trailing zeros in the magnitude
2491:                        int magTrailingZeroCount = 0, j;
2492:                        for (j = mag.length - 1; mag[j] == 0; j--)
2493:                            magTrailingZeroCount += 32;
2494:                        magTrailingZeroCount += trailingZeroCnt(mag[j]);
2495:
2496:                        bitCount = magBitCount + magTrailingZeroCount - 1;
2497:                    } else {
2498:                        bitCount = magBitCount;
2499:                    }
2500:                }
2501:                return bitCount;
2502:            }
2503:
2504:            static int bitCnt(int val) {
2505:                val -= (0xaaaaaaaa & val) >>> 1;
2506:                val = (val & 0x33333333) + ((val >>> 2) & 0x33333333);
2507:                val = val + (val >>> 4) & 0x0f0f0f0f;
2508:                val += val >>> 8;
2509:                val += val >>> 16;
2510:                return val & 0xff;
2511:            }
2512:
2513:            static int trailingZeroCnt(int val) {
2514:                // Loop unrolled for performance
2515:                int byteVal = val & 0xff;
2516:                if (byteVal != 0)
2517:                    return trailingZeroTable[byteVal];
2518:
2519:                byteVal = (val >>> 8) & 0xff;
2520:                if (byteVal != 0)
2521:                    return trailingZeroTable[byteVal] + 8;
2522:
2523:                byteVal = (val >>> 16) & 0xff;
2524:                if (byteVal != 0)
2525:                    return trailingZeroTable[byteVal] + 16;
2526:
2527:                byteVal = (val >>> 24) & 0xff;
2528:                return trailingZeroTable[byteVal] + 24;
2529:            }
2530:
2531:            // Primality Testing
2532:
2533:            /**
2534:             * Returns {@code true} if this BigInteger is probably prime,
2535:             * {@code false} if it's definitely composite.  If
2536:             * {@code certainty} is {@code  <= 0}, {@code true} is
2537:             * returned.
2538:             *
2539:             * @param  certainty a measure of the uncertainty that the caller is
2540:             *	       willing to tolerate: if the call returns {@code true}
2541:             *	       the probability that this BigInteger is prime exceeds
2542:             *	       (1 - 1/2<sup>{@code certainty}</sup>).  The execution time of
2543:             * 	       this method is proportional to the value of this parameter.
2544:             * @return {@code true} if this BigInteger is probably prime,
2545:             * 	       {@code false} if it's definitely composite.
2546:             */
2547:            public boolean isProbablePrime(int certainty) {
2548:                if (certainty <= 0)
2549:                    return true;
2550:                BigInteger w = this .abs();
2551:                if (w.equals(TWO))
2552:                    return true;
2553:                if (!w.testBit(0) || w.equals(ONE))
2554:                    return false;
2555:
2556:                return w.primeToCertainty(certainty, null);
2557:            }
2558:
2559:            // Comparison Operations
2560:
2561:            /**
2562:             * Compares this BigInteger with the specified BigInteger.  This
2563:             * method is provided in preference to individual methods for each
2564:             * of the six boolean comparison operators ({@literal <}, ==,
2565:             * {@literal >}, {@literal >=}, !=, {@literal <=}).  The suggested
2566:             * idiom for performing these comparisons is: {@code
2567:             * (x.compareTo(y)} &lt;<i>op</i>&gt; {@code 0)}, where
2568:             * &lt;<i>op</i>&gt; is one of the six comparison operators.
2569:             *
2570:             * @param  val BigInteger to which this BigInteger is to be compared.
2571:             * @return -1, 0 or 1 as this BigInteger is numerically less than, equal
2572:             *         to, or greater than {@code val}.
2573:             */
2574:            public int compareTo(BigInteger val) {
2575:                return (signum == val.signum ? signum
2576:                        * intArrayCmp(mag, val.mag) : (signum > val.signum ? 1
2577:                        : -1));
2578:            }
2579:
2580:            /*
2581:             * Returns -1, 0 or +1 as big-endian unsigned int array arg1 is
2582:             * less than, equal to, or greater than arg2.
2583:             */
2584:            private static int intArrayCmp(int[] arg1, int[] arg2) {
2585:                if (arg1.length < arg2.length)
2586:                    return -1;
2587:                if (arg1.length > arg2.length)
2588:                    return 1;
2589:
2590:                // Argument lengths are equal; compare the values
2591:                for (int i = 0; i < arg1.length; i++) {
2592:                    long b1 = arg1[i] & LONG_MASK;
2593:                    long b2 = arg2[i] & LONG_MASK;
2594:                    if (b1 < b2)
2595:                        return -1;
2596:                    if (b1 > b2)
2597:                        return 1;
2598:                }
2599:                return 0;
2600:            }
2601:
2602:            /**
2603:             * Compares this BigInteger with the specified Object for equality.
2604:             *
2605:             * @param  x Object to which this BigInteger is to be compared.
2606:             * @return {@code true} if and only if the specified Object is a
2607:             *	       BigInteger whose value is numerically equal to this BigInteger.
2608:             */
2609:            public boolean equals(Object x) {
2610:                // This test is just an optimization, which may or may not help
2611:                if (x == this )
2612:                    return true;
2613:
2614:                if (!(x instanceof  BigInteger))
2615:                    return false;
2616:                BigInteger xInt = (BigInteger) x;
2617:
2618:                if (xInt.signum != signum || xInt.mag.length != mag.length)
2619:                    return false;
2620:
2621:                for (int i = 0; i < mag.length; i++)
2622:                    if (xInt.mag[i] != mag[i])
2623:                        return false;
2624:
2625:                return true;
2626:            }
2627:
2628:            /**
2629:             * Returns the minimum of this BigInteger and {@code val}.
2630:             *
2631:             * @param  val value with which the minimum is to be computed.
2632:             * @return the BigInteger whose value is the lesser of this BigInteger and 
2633:             *	       {@code val}.  If they are equal, either may be returned.
2634:             */
2635:            public BigInteger min(BigInteger val) {
2636:                return (compareTo(val) < 0 ? this  : val);
2637:            }
2638:
2639:            /**
2640:             * Returns the maximum of this BigInteger and {@code val}.
2641:             *
2642:             * @param  val value with which the maximum is to be computed.
2643:             * @return the BigInteger whose value is the greater of this and
2644:             *         {@code val}.  If they are equal, either may be returned.
2645:             */
2646:            public BigInteger max(BigInteger val) {
2647:                return (compareTo(val) > 0 ? this  : val);
2648:            }
2649:
2650:            // Hash Function
2651:
2652:            /**
2653:             * Returns the hash code for this BigInteger.
2654:             *
2655:             * @return hash code for this BigInteger.
2656:             */
2657:            public int hashCode() {
2658:                int hashCode = 0;
2659:
2660:                for (int i = 0; i < mag.length; i++)
2661:                    hashCode = (int) (31 * hashCode + (mag[i] & LONG_MASK));
2662:
2663:                return hashCode * signum;
2664:            }
2665:
2666:            /**
2667:             * Returns the String representation of this BigInteger in the
2668:             * given radix.  If the radix is outside the range from {@link
2669:             * Character#MIN_RADIX} to {@link Character#MAX_RADIX} inclusive,
2670:             * it will default to 10 (as is the case for
2671:             * {@code Integer.toString}).  The digit-to-character mapping
2672:             * provided by {@code Character.forDigit} is used, and a minus
2673:             * sign is prepended if appropriate.  (This representation is
2674:             * compatible with the {@link #BigInteger(String, int) (String,
2675:             * int)} constructor.)
2676:             *
2677:             * @param  radix  radix of the String representation.
2678:             * @return String representation of this BigInteger in the given radix.
2679:             * @see    Integer#toString
2680:             * @see    Character#forDigit
2681:             * @see    #BigInteger(java.lang.String, int)
2682:             */
2683:            public String toString(int radix) {
2684:                if (signum == 0)
2685:                    return "0";
2686:                if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX)
2687:                    radix = 10;
2688:
2689:                // Compute upper bound on number of digit groups and allocate space
2690:                int maxNumDigitGroups = (4 * mag.length + 6) / 7;
2691:                String digitGroup[] = new String[maxNumDigitGroups];
2692:
2693:                // Translate number to string, a digit group at a time
2694:                BigInteger tmp = this .abs();
2695:                int numGroups = 0;
2696:                while (tmp.signum != 0) {
2697:                    BigInteger d = longRadix[radix];
2698:
2699:                    MutableBigInteger q = new MutableBigInteger(), r = new MutableBigInteger(), a = new MutableBigInteger(
2700:                            tmp.mag), b = new MutableBigInteger(d.mag);
2701:                    a.divide(b, q, r);
2702:                    BigInteger q2 = new BigInteger(q, tmp.signum * d.signum);
2703:                    BigInteger r2 = new BigInteger(r, tmp.signum * d.signum);
2704:
2705:                    digitGroup[numGroups++] = Long.toString(r2.longValue(),
2706:                            radix);
2707:                    tmp = q2;
2708:                }
2709:
2710:                // Put sign (if any) and first digit group into result buffer
2711:                StringBuilder buf = new StringBuilder(numGroups
2712:                        * digitsPerLong[radix] + 1);
2713:                if (signum < 0)
2714:                    buf.append('-');
2715:                buf.append(digitGroup[numGroups - 1]);
2716:
2717:                // Append remaining digit groups padded with leading zeros
2718:                for (int i = numGroups - 2; i >= 0; i--) {
2719:                    // Prepend (any) leading zeros for this digit group
2720:                    int numLeadingZeros = digitsPerLong[radix]
2721:                            - digitGroup[i].length();
2722:                    if (numLeadingZeros != 0)
2723:                        buf.append(zeros[numLeadingZeros]);
2724:                    buf.append(digitGroup[i]);
2725:                }
2726:                return buf.toString();
2727:            }
2728:
2729:            /* zero[i] is a string of i consecutive zeros. */
2730:            private static String zeros[] = new String[64];
2731:            static {
2732:                zeros[63] = "000000000000000000000000000000000000000000000000000000000000000";
2733:                for (int i = 0; i < 63; i++)
2734:                    zeros[i] = zeros[63].substring(0, i);
2735:            }
2736:
2737:            /**
2738:             * Returns the decimal String representation of this BigInteger.
2739:             * The digit-to-character mapping provided by
2740:             * {@code Character.forDigit} is used, and a minus sign is
2741:             * prepended if appropriate.  (This representation is compatible
2742:             * with the {@link #BigInteger(String) (String)} constructor, and
2743:             * allows for String concatenation with Java's + operator.)
2744:             *
2745:             * @return decimal String representation of this BigInteger.
2746:             * @see    Character#forDigit
2747:             * @see    #BigInteger(java.lang.String)
2748:             */
2749:            public String toString() {
2750:                return toString(10);
2751:            }
2752:
2753:            /**
2754:             * Returns a byte array containing the two's-complement
2755:             * representation of this BigInteger.  The byte array will be in
2756:             * <i>big-endian</i> byte-order: the most significant byte is in
2757:             * the zeroth element.  The array will contain the minimum number
2758:             * of bytes required to represent this BigInteger, including at
2759:             * least one sign bit, which is {@code (ceil((this.bitLength() +
2760:             * 1)/8))}.  (This representation is compatible with the
2761:             * {@link #BigInteger(byte[]) (byte[])} constructor.)
2762:             *
2763:             * @return a byte array containing the two's-complement representation of
2764:             *	       this BigInteger.
2765:             * @see    #BigInteger(byte[])
2766:             */
2767:            public byte[] toByteArray() {
2768:                int byteLen = bitLength() / 8 + 1;
2769:                byte[] byteArray = new byte[byteLen];
2770:
2771:                for (int i = byteLen - 1, bytesCopied = 4, nextInt = 0, intIndex = 0; i >= 0; i--) {
2772:                    if (bytesCopied == 4) {
2773:                        nextInt = getInt(intIndex++);
2774:                        bytesCopied = 1;
2775:                    } else {
2776:                        nextInt >>>= 8;
2777:                        bytesCopied++;
2778:                    }
2779:                    byteArray[i] = (byte) nextInt;
2780:                }
2781:                return byteArray;
2782:            }
2783:
2784:            /**
2785:             * Converts this BigInteger to an {@code int}.  This
2786:             * conversion is analogous to a <a
2787:             * href="http://java.sun.com/docs/books/jls/second_edition/html/conversions.doc.html#25363"><i>narrowing
2788:             * primitive conversion</i></a> from {@code long} to
2789:             * {@code int} as defined in the <a
2790:             * href="http://java.sun.com/docs/books/jls/html/">Java Language
2791:             * Specification</a>: if this BigInteger is too big to fit in an
2792:             * {@code int}, only the low-order 32 bits are returned.
2793:             * Note that this conversion can lose information about the
2794:             * overall magnitude of the BigInteger value as well as return a
2795:             * result with the opposite sign.
2796:             *
2797:             * @return this BigInteger converted to an {@code int}.
2798:             */
2799:            public int intValue() {
2800:                int result = 0;
2801:                result = getInt(0);
2802:                return result;
2803:            }
2804:
2805:            /**
2806:             * Converts this BigInteger to a {@code long}.  This
2807:             * conversion is analogous to a <a
2808:             * href="http://java.sun.com/docs/books/jls/second_edition/html/conversions.doc.html#25363"><i>narrowing
2809:             * primitive conversion</i></a> from {@code long} to
2810:             * {@code int} as defined in the <a
2811:             * href="http://java.sun.com/docs/books/jls/html/">Java Language
2812:             * Specification</a>: if this BigInteger is too big to fit in a
2813:             * {@code long}, only the low-order 64 bits are returned.
2814:             * Note that this conversion can lose information about the
2815:             * overall magnitude of the BigInteger value as well as return a
2816:             * result with the opposite sign.
2817:             *
2818:             * @return this BigInteger converted to a {@code long}.
2819:             */
2820:            public long longValue() {
2821:                long result = 0;
2822:
2823:                for (int i = 1; i >= 0; i--)
2824:                    result = (result << 32) + (getInt(i) & LONG_MASK);
2825:                return result;
2826:            }
2827:
2828:            /**
2829:             * Converts this BigInteger to a {@code float}.  This
2830:             * conversion is similar to the <a
2831:             * href="http://java.sun.com/docs/books/jls/second_edition/html/conversions.doc.html#25363"><i>narrowing
2832:             * primitive conversion</i></a> from {@code double} to
2833:             * {@code float} defined in the <a
2834:             * href="http://java.sun.com/docs/books/jls/html/">Java Language
2835:             * Specification</a>: if this BigInteger has too great a magnitude
2836:             * to represent as a {@code float}, it will be converted to
2837:             * {@link Float#NEGATIVE_INFINITY} or {@link
2838:             * Float#POSITIVE_INFINITY} as appropriate.  Note that even when
2839:             * the return value is finite, this conversion can lose
2840:             * information about the precision of the BigInteger value.
2841:             *
2842:             * @return this BigInteger converted to a {@code float}.
2843:             */
2844:            public float floatValue() {
2845:                // Somewhat inefficient, but guaranteed to work.
2846:                return Float.parseFloat(this .toString());
2847:            }
2848:
2849:            /**
2850:             * Converts this BigInteger to a {@code double}.  This
2851:             * conversion is similar to the <a
2852:             * href="http://java.sun.com/docs/books/jls/second_edition/html/conversions.doc.html#25363"><i>narrowing
2853:             * primitive conversion</i></a> from {@code double} to
2854:             * {@code float} defined in the <a
2855:             * href="http://java.sun.com/docs/books/jls/html/">Java Language
2856:             * Specification</a>: if this BigInteger has too great a magnitude
2857:             * to represent as a {@code double}, it will be converted to
2858:             * {@link Double#NEGATIVE_INFINITY} or {@link
2859:             * Double#POSITIVE_INFINITY} as appropriate.  Note that even when
2860:             * the return value is finite, this conversion can lose
2861:             * information about the precision of the BigInteger value.
2862:             *
2863:             * @return this BigInteger converted to a {@code double}.
2864:             */
2865:            public double doubleValue() {
2866:                // Somewhat inefficient, but guaranteed to work.
2867:                return Double.parseDouble(this .toString());
2868:            }
2869:
2870:            /**
2871:             * Returns a copy of the input array stripped of any leading zero bytes.
2872:             */
2873:            private static int[] stripLeadingZeroInts(int val[]) {
2874:                int byteLength = val.length;
2875:                int keep;
2876:
2877:                // Find first nonzero byte
2878:                for (keep = 0; keep < val.length && val[keep] == 0; keep++)
2879:                    ;
2880:
2881:                int result[] = new int[val.length - keep];
2882:                for (int i = 0; i < val.length - keep; i++)
2883:                    result[i] = val[keep + i];
2884:
2885:                return result;
2886:            }
2887:
2888:            /**
2889:             * Returns the input array stripped of any leading zero bytes.
2890:             * Since the source is trusted the copying may be skipped.
2891:             */
2892:            private static int[] trustedStripLeadingZeroInts(int val[]) {
2893:                int byteLength = val.length;
2894:                int keep;
2895:
2896:                // Find first nonzero byte
2897:                for (keep = 0; keep < val.length && val[keep] == 0; keep++)
2898:                    ;
2899:
2900:                // Only perform copy if necessary
2901:                if (keep > 0) {
2902:                    int result[] = new int[val.length - keep];
2903:                    for (int i = 0; i < val.length - keep; i++)
2904:                        result[i] = val[keep + i];
2905:                    return result;
2906:                }
2907:                return val;
2908:            }
2909:
2910:            /**
2911:             * Returns a copy of the input array stripped of any leading zero bytes.
2912:             */
2913:            private static int[] stripLeadingZeroBytes(byte a[]) {
2914:                int byteLength = a.length;
2915:                int keep;
2916:
2917:                // Find first nonzero byte
2918:                for (keep = 0; keep < a.length && a[keep] == 0; keep++)
2919:                    ;
2920:
2921:                // Allocate new array and copy relevant part of input array
2922:                int intLength = ((byteLength - keep) + 3) / 4;
2923:                int[] result = new int[intLength];
2924:                int b = byteLength - 1;
2925:                for (int i = intLength - 1; i >= 0; i--) {
2926:                    result[i] = a[b--] & 0xff;
2927:                    int bytesRemaining = b - keep + 1;
2928:                    int bytesToTransfer = Math.min(3, bytesRemaining);
2929:                    for (int j = 8; j <= 8 * bytesToTransfer; j += 8)
2930:                        result[i] |= ((a[b--] & 0xff) << j);
2931:                }
2932:                return result;
2933:            }
2934:
2935:            /**
2936:             * Takes an array a representing a negative 2's-complement number and
2937:             * returns the minimal (no leading zero bytes) unsigned whose value is -a.
2938:             */
2939:            private static int[] makePositive(byte a[]) {
2940:                int keep, k;
2941:                int byteLength = a.length;
2942:
2943:                // Find first non-sign (0xff) byte of input
2944:                for (keep = 0; keep < byteLength && a[keep] == -1; keep++)
2945:                    ;
2946:
2947:                /* Allocate output array.  If all non-sign bytes are 0x00, we must
2948:                 * allocate space for one extra output byte. */
2949:                for (k = keep; k < byteLength && a[k] == 0; k++)
2950:                    ;
2951:
2952:                int extraByte = (k == byteLength) ? 1 : 0;
2953:                int intLength = ((byteLength - keep + extraByte) + 3) / 4;
2954:                int result[] = new int[intLength];
2955:
2956:                /* Copy one's complement of input into output, leaving extra
2957:                 * byte (if it exists) == 0x00 */
2958:                int b = byteLength - 1;
2959:                for (int i = intLength - 1; i >= 0; i--) {
2960:                    result[i] = a[b--] & 0xff;
2961:                    int numBytesToTransfer = Math.min(3, b - keep + 1);
2962:                    if (numBytesToTransfer < 0)
2963:                        numBytesToTransfer = 0;
2964:                    for (int j = 8; j <= 8 * numBytesToTransfer; j += 8)
2965:                        result[i] |= ((a[b--] & 0xff) << j);
2966:
2967:                    // Mask indicates which bits must be complemented
2968:                    int mask = -1 >>> (8 * (3 - numBytesToTransfer));
2969:                    result[i] = ~result[i] & mask;
2970:                }
2971:
2972:                // Add one to one's complement to generate two's complement
2973:                for (int i = result.length - 1; i >= 0; i--) {
2974:                    result[i] = (int) ((result[i] & LONG_MASK) + 1);
2975:                    if (result[i] != 0)
2976:                        break;
2977:                }
2978:
2979:                return result;
2980:            }
2981:
2982:            /**
2983:             * Takes an array a representing a negative 2's-complement number and
2984:             * returns the minimal (no leading zero ints) unsigned whose value is -a.
2985:             */
2986:            private static int[] makePositive(int a[]) {
2987:                int keep, j;
2988:
2989:                // Find first non-sign (0xffffffff) int of input
2990:                for (keep = 0; keep < a.length && a[keep] == -1; keep++)
2991:                    ;
2992:
2993:                /* Allocate output array.  If all non-sign ints are 0x00, we must
2994:                 * allocate space for one extra output int. */
2995:                for (j = keep; j < a.length && a[j] == 0; j++)
2996:                    ;
2997:                int extraInt = (j == a.length ? 1 : 0);
2998:                int result[] = new int[a.length - keep + extraInt];
2999:
3000:                /* Copy one's complement of input into output, leaving extra
3001:                 * int (if it exists) == 0x00 */
3002:                for (int i = keep; i < a.length; i++)
3003:                    result[i - keep + extraInt] = ~a[i];
3004:
3005:                // Add one to one's complement to generate two's complement
3006:                for (int i = result.length - 1; ++result[i] == 0; i--)
3007:                    ;
3008:
3009:                return result;
3010:            }
3011:
3012:            /*
3013:             * The following two arrays are used for fast String conversions.  Both
3014:             * are indexed by radix.  The first is the number of digits of the given
3015:             * radix that can fit in a Java long without "going negative", i.e., the
3016:             * highest integer n such that radix**n < 2**63.  The second is the
3017:             * "long radix" that tears each number into "long digits", each of which
3018:             * consists of the number of digits in the corresponding element in
3019:             * digitsPerLong (longRadix[i] = i**digitPerLong[i]).  Both arrays have
3020:             * nonsense values in their 0 and 1 elements, as radixes 0 and 1 are not
3021:             * used.
3022:             */
3023:            private static int digitsPerLong[] = { 0, 0, 62, 39, 31, 27, 24,
3024:                    22, 20, 19, 18, 18, 17, 17, 16, 16, 15, 15, 15, 14, 14, 14,
3025:                    14, 13, 13, 13, 13, 13, 13, 12, 12, 12, 12, 12, 12, 12, 12 };
3026:
3027:            private static BigInteger longRadix[] = { null, null,
3028:                    valueOf(0x4000000000000000L), valueOf(0x383d9170b85ff80bL),
3029:                    valueOf(0x4000000000000000L), valueOf(0x6765c793fa10079dL),
3030:                    valueOf(0x41c21cb8e1000000L), valueOf(0x3642798750226111L),
3031:                    valueOf(0x1000000000000000L), valueOf(0x12bf307ae81ffd59L),
3032:                    valueOf(0xde0b6b3a7640000L), valueOf(0x4d28cb56c33fa539L),
3033:                    valueOf(0x1eca170c00000000L), valueOf(0x780c7372621bd74dL),
3034:                    valueOf(0x1e39a5057d810000L), valueOf(0x5b27ac993df97701L),
3035:                    valueOf(0x1000000000000000L), valueOf(0x27b95e997e21d9f1L),
3036:                    valueOf(0x5da0e1e53c5c8000L), valueOf(0xb16a458ef403f19L),
3037:                    valueOf(0x16bcc41e90000000L), valueOf(0x2d04b7fdd9c0ef49L),
3038:                    valueOf(0x5658597bcaa24000L), valueOf(0x6feb266931a75b7L),
3039:                    valueOf(0xc29e98000000000L), valueOf(0x14adf4b7320334b9L),
3040:                    valueOf(0x226ed36478bfa000L), valueOf(0x383d9170b85ff80bL),
3041:                    valueOf(0x5a3c23e39c000000L), valueOf(0x4e900abb53e6b71L),
3042:                    valueOf(0x7600ec618141000L), valueOf(0xaee5720ee830681L),
3043:                    valueOf(0x1000000000000000L), valueOf(0x172588ad4f5f0981L),
3044:                    valueOf(0x211e44f7d02c1000L), valueOf(0x2ee56725f06e5c71L),
3045:                    valueOf(0x41c21cb8e1000000L) };
3046:
3047:            /*
3048:             * These two arrays are the integer analogue of above.
3049:             */
3050:            private static int digitsPerInt[] = { 0, 0, 30, 19, 15, 13, 11, 11,
3051:                    10, 9, 9, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6,
3052:                    6, 6, 6, 6, 6, 6, 6, 6, 6, 5 };
3053:
3054:            private static int intRadix[] = { 0, 0, 0x40000000, 0x4546b3db,
3055:                    0x40000000, 0x48c27395, 0x159fd800, 0x75db9c97, 0x40000000,
3056:                    0x17179149, 0x3b9aca00, 0xcc6db61, 0x19a10000, 0x309f1021,
3057:                    0x57f6c100, 0xa2f1b6f, 0x10000000, 0x18754571, 0x247dbc80,
3058:                    0x3547667b, 0x4c4b4000, 0x6b5a6e1d, 0x6c20a40, 0x8d2d931,
3059:                    0xb640000, 0xe8d4a51, 0x1269ae40, 0x17179149, 0x1cb91000,
3060:                    0x23744899, 0x2b73a840, 0x34e63b41, 0x40000000, 0x4cfa3cc1,
3061:                    0x5c13d840, 0x6d91b519, 0x39aa400 };
3062:
3063:            /**
3064:             * These routines provide access to the two's complement representation
3065:             * of BigIntegers.
3066:             */
3067:
3068:            /**
3069:             * Returns the length of the two's complement representation in ints,
3070:             * including space for at least one sign bit.
3071:             */
3072:            private int intLength() {
3073:                return bitLength() / 32 + 1;
3074:            }
3075:
3076:            /* Returns sign bit */
3077:            private int signBit() {
3078:                return (signum < 0 ? 1 : 0);
3079:            }
3080:
3081:            /* Returns an int of sign bits */
3082:            private int signInt() {
3083:                return (int) (signum < 0 ? -1 : 0);
3084:            }
3085:
3086:            /**
3087:             * Returns the specified int of the little-endian two's complement
3088:             * representation (int 0 is the least significant).  The int number can
3089:             * be arbitrarily high (values are logically preceded by infinitely many
3090:             * sign ints).
3091:             */
3092:            private int getInt(int n) {
3093:                if (n < 0)
3094:                    return 0;
3095:                if (n >= mag.length)
3096:                    return signInt();
3097:
3098:                int magInt = mag[mag.length - n - 1];
3099:
3100:                return (int) (signum >= 0 ? magInt
3101:                        : (n <= firstNonzeroIntNum() ? -magInt : ~magInt));
3102:            }
3103:
3104:            /**
3105:             * Returns the index of the int that contains the first nonzero int in the
3106:             * little-endian binary representation of the magnitude (int 0 is the
3107:             * least significant). If the magnitude is zero, return value is undefined.
3108:             */
3109:            private int firstNonzeroIntNum() {
3110:                /*
3111:                 * Initialize firstNonzeroIntNum field the first time this method is
3112:                 * executed. This method depends on the atomicity of int modifies;
3113:                 * without this guarantee, it would have to be synchronized.
3114:                 */
3115:                if (firstNonzeroIntNum == -2) {
3116:                    // Search for the first nonzero int
3117:                    int i;
3118:                    for (i = mag.length - 1; i >= 0 && mag[i] == 0; i--)
3119:                        ;
3120:                    firstNonzeroIntNum = mag.length - i - 1;
3121:                }
3122:                return firstNonzeroIntNum;
3123:            }
3124:
3125:            /** use serialVersionUID from JDK 1.1. for interoperability */
3126:            private static final long serialVersionUID = -8287574255936472291L;
3127:
3128:            /**
3129:             * Serializable fields for BigInteger.
3130:             * 
3131:             * @serialField signum  int
3132:             *              signum of this BigInteger.
3133:             * @serialField magnitude int[]
3134:             *              magnitude array of this BigInteger.
3135:             * @serialField bitCount  int
3136:             *              number of bits in this BigInteger
3137:             * @serialField bitLength int
3138:             *              the number of bits in the minimal two's-complement
3139:             *              representation of this BigInteger
3140:             * @serialField lowestSetBit int
3141:             *              lowest set bit in the twos complement representation
3142:             */
3143:            private static final ObjectStreamField[] serialPersistentFields = {
3144:                    new ObjectStreamField("signum", Integer.TYPE),
3145:                    new ObjectStreamField("magnitude", byte[].class),
3146:                    new ObjectStreamField("bitCount", Integer.TYPE),
3147:                    new ObjectStreamField("bitLength", Integer.TYPE),
3148:                    new ObjectStreamField("firstNonzeroByteNum", Integer.TYPE),
3149:                    new ObjectStreamField("lowestSetBit", Integer.TYPE) };
3150:
3151:            /**
3152:             * Reconstitute the {@code BigInteger} instance from a stream (that is,
3153:             * deserialize it). The magnitude is read in as an array of bytes
3154:             * for historical reasons, but it is converted to an array of ints
3155:             * and the byte array is discarded.
3156:             */
3157:            private void readObject(java.io.ObjectInputStream s)
3158:                    throws java.io.IOException, ClassNotFoundException {
3159:                /*
3160:                 * In order to maintain compatibility with previous serialized forms,
3161:                 * the magnitude of a BigInteger is serialized as an array of bytes.
3162:                 * The magnitude field is used as a temporary store for the byte array
3163:                 * that is deserialized. The cached computation fields should be
3164:                 * transient but are serialized for compatibility reasons.
3165:                 */
3166:
3167:                // prepare to read the alternate persistent fields
3168:                ObjectInputStream.GetField fields = s.readFields();
3169:
3170:                // Read the alternate persistent fields that we care about
3171:                signum = (int) fields.get("signum", -2);
3172:                byte[] magnitude = (byte[]) fields.get("magnitude", null);
3173:
3174:                // Validate signum
3175:                if (signum < -1 || signum > 1) {
3176:                    String message = "BigInteger: Invalid signum value";
3177:                    if (fields.defaulted("signum"))
3178:                        message = "BigInteger: Signum not present in stream";
3179:                    throw new java.io.StreamCorruptedException(message);
3180:                }
3181:                if ((magnitude.length == 0) != (signum == 0)) {
3182:                    String message = "BigInteger: signum-magnitude mismatch";
3183:                    if (fields.defaulted("magnitude"))
3184:                        message = "BigInteger: Magnitude not present in stream";
3185:                    throw new java.io.StreamCorruptedException(message);
3186:                }
3187:
3188:                // Set "cached computation" fields to their initial values
3189:                bitCount = bitLength = -1;
3190:                lowestSetBit = firstNonzeroByteNum = firstNonzeroIntNum = -2;
3191:
3192:                // Calculate mag field from magnitude and discard magnitude
3193:                mag = stripLeadingZeroBytes(magnitude);
3194:            }
3195:
3196:            /**
3197:             * Save the {@code BigInteger} instance to a stream.
3198:             * The magnitude of a BigInteger is serialized as a byte array for
3199:             * historical reasons.
3200:             * 
3201:             * @serialData two necessary fields are written as well as obsolete
3202:             *             fields for compatibility with older versions.
3203:             */
3204:            private void writeObject(ObjectOutputStream s) throws IOException {
3205:                // set the values of the Serializable fields
3206:                ObjectOutputStream.PutField fields = s.putFields();
3207:                fields.put("signum", signum);
3208:                fields.put("magnitude", magSerializedForm());
3209:                fields.put("bitCount", -1);
3210:                fields.put("bitLength", -1);
3211:                fields.put("lowestSetBit", -2);
3212:                fields.put("firstNonzeroByteNum", -2);
3213:
3214:                // save them
3215:                s.writeFields();
3216:            }
3217:
3218:            /**
3219:             * Returns the mag array as an array of bytes.
3220:             */
3221:            private byte[] magSerializedForm() {
3222:                int bitLen = (mag.length == 0 ? 0 : ((mag.length - 1) << 5)
3223:                        + bitLen(mag[0]));
3224:                int byteLen = (bitLen + 7) / 8;
3225:                byte[] result = new byte[byteLen];
3226:
3227:                for (int i = byteLen - 1, bytesCopied = 4, intIndex = mag.length - 1, nextInt = 0; i >= 0; i--) {
3228:                    if (bytesCopied == 4) {
3229:                        nextInt = mag[intIndex--];
3230:                        bytesCopied = 1;
3231:                    } else {
3232:                        nextInt >>>= 8;
3233:                        bytesCopied++;
3234:                    }
3235:                    result[i] = (byte) nextInt;
3236:                }
3237:                return result;
3238:            }
3239:        }
w__ww___._j_a_v___a___2s___.___c___o___m__ | Contact Us
Copyright 2003 - 08 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.