Source Code Cross Referenced for ThreadLocal.java in  » 6.0-JDK-Core » lang » java » lang » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
C# / C Sharp
C# / CSharp Tutorial
ASP.Net
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
PHP
Python
SQL Server / T-SQL
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » 6.0 JDK Core » lang » java.lang 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        /*
002:         * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
003:         * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
004:         *
005:         * This code is free software; you can redistribute it and/or modify it
006:         * under the terms of the GNU General Public License version 2 only, as
007:         * published by the Free Software Foundation.  Sun designates this
008:         * particular file as subject to the "Classpath" exception as provided
009:         * by Sun in the LICENSE file that accompanied this code.
010:         *
011:         * This code is distributed in the hope that it will be useful, but WITHOUT
012:         * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
013:         * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
014:         * version 2 for more details (a copy is included in the LICENSE file that
015:         * accompanied this code).
016:         *
017:         * You should have received a copy of the GNU General Public License version
018:         * 2 along with this work; if not, write to the Free Software Foundation,
019:         * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
020:         *
021:         * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
022:         * CA 95054 USA or visit www.sun.com if you need additional information or
023:         * have any questions.
024:         */
025:
026:        package java.lang;
027:
028:        import java.lang.ref.*;
029:        import java.util.concurrent.atomic.AtomicInteger;
030:
031:        /**
032:         * This class provides thread-local variables.  These variables differ from
033:         * their normal counterparts in that each thread that accesses one (via its
034:         * <tt>get</tt> or <tt>set</tt> method) has its own, independently initialized
035:         * copy of the variable.  <tt>ThreadLocal</tt> instances are typically private
036:         * static fields in classes that wish to associate state with a thread (e.g.,
037:         * a user ID or Transaction ID).
038:         *
039:         * <p>For example, the class below generates unique identifiers local to each
040:         * thread.
041:         * A thread's id is assigned the first time it invokes <tt>ThreadId.get()</tt> 
042:         * and remains unchanged on subsequent calls.
043:         * <pre>
044:         * import java.util.concurrent.atomic.AtomicInteger;
045:         *
046:         * public class ThreadId {
047:         *     // Atomic integer containing the next thread ID to be assigned
048:         *     private static final AtomicInteger nextId = new AtomicInteger(0);
049:         *
050:         *     // Thread local variable containing each thread's ID
051:         *     private static final ThreadLocal&lt;Integer> threadId =
052:         *         new ThreadLocal&lt;Integer>() {
053:         *             &#64;Override protected Integer initialValue() {
054:         *                 return nextId.getAndIncrement();
055:         *         }
056:         *     };
057:         * 
058:         *     // Returns the current thread's unique ID, assigning it if necessary
059:         *     public static int get() {
060:         *         return threadId.get();
061:         *     }
062:         * }
063:         * </pre>
064:         * <p>Each thread holds an implicit reference to its copy of a thread-local
065:         * variable as long as the thread is alive and the <tt>ThreadLocal</tt>
066:         * instance is accessible; after a thread goes away, all of its copies of
067:         * thread-local instances are subject to garbage collection (unless other
068:         * references to these copies exist). 
069:         *
070:         * @author  Josh Bloch and Doug Lea
071:         * @version 1.49, 05/05/07
072:         * @since   1.2
073:         */
074:        public class ThreadLocal<T> {
075:            /**
076:             * ThreadLocals rely on per-thread linear-probe hash maps attached
077:             * to each thread (Thread.threadLocals and
078:             * inheritableThreadLocals).  The ThreadLocal objects act as keys,
079:             * searched via threadLocalHashCode.  This is a custom hash code
080:             * (useful only within ThreadLocalMaps) that eliminates collisions
081:             * in the common case where consecutively constructed ThreadLocals
082:             * are used by the same threads, while remaining well-behaved in
083:             * less common cases.
084:             */
085:            private final int threadLocalHashCode = nextHashCode();
086:
087:            /**
088:             * The next hash code to be given out. Updated atomically. Starts at
089:             * zero.
090:             */
091:            private static AtomicInteger nextHashCode = new AtomicInteger();
092:
093:            /**
094:             * The difference between successively generated hash codes - turns
095:             * implicit sequential thread-local IDs into near-optimally spread
096:             * multiplicative hash values for power-of-two-sized tables.
097:             */
098:            private static final int HASH_INCREMENT = 0x61c88647;
099:
100:            /**
101:             * Returns the next hash code.
102:             */
103:            private static int nextHashCode() {
104:                return nextHashCode.getAndAdd(HASH_INCREMENT);
105:            }
106:
107:            /**
108:             * Returns the current thread's "initial value" for this
109:             * thread-local variable.  This method will be invoked the first
110:             * time a thread accesses the variable with the {@link #get}
111:             * method, unless the thread previously invoked the {@link #set}
112:             * method, in which case the <tt>initialValue</tt> method will not
113:             * be invoked for the thread.  Normally, this method is invoked at
114:             * most once per thread, but it may be invoked again in case of
115:             * subsequent invocations of {@link #remove} followed by {@link #get}.
116:             *
117:             * <p>This implementation simply returns <tt>null</tt>; if the
118:             * programmer desires thread-local variables to have an initial
119:             * value other than <tt>null</tt>, <tt>ThreadLocal</tt> must be
120:             * subclassed, and this method overridden.  Typically, an
121:             * anonymous inner class will be used.
122:             *
123:             * @return the initial value for this thread-local
124:             */
125:            protected T initialValue() {
126:                return null;
127:            }
128:
129:            /**
130:             * Creates a thread local variable.
131:             */
132:            public ThreadLocal() {
133:            }
134:
135:            /**
136:             * Returns the value in the current thread's copy of this
137:             * thread-local variable.  If the variable has no value for the
138:             * current thread, it is first initialized to the value returned
139:             * by an invocation of the {@link #initialValue} method.
140:             *
141:             * @return the current thread's value of this thread-local
142:             */
143:            public T get() {
144:                Thread t = Thread.currentThread();
145:                ThreadLocalMap map = getMap(t);
146:                if (map != null) {
147:                    ThreadLocalMap.Entry e = map.getEntry(this );
148:                    if (e != null)
149:                        return (T) e.value;
150:                }
151:                return setInitialValue();
152:            }
153:
154:            /**
155:             * Variant of set() to establish initialValue. Used instead
156:             * of set() in case user has overridden the set() method.
157:             *
158:             * @return the initial value
159:             */
160:            private T setInitialValue() {
161:                T value = initialValue();
162:                Thread t = Thread.currentThread();
163:                ThreadLocalMap map = getMap(t);
164:                if (map != null)
165:                    map.set(this , value);
166:                else
167:                    createMap(t, value);
168:                return value;
169:            }
170:
171:            /**
172:             * Sets the current thread's copy of this thread-local variable
173:             * to the specified value.  Most subclasses will have no need to 
174:             * override this method, relying solely on the {@link #initialValue}
175:             * method to set the values of thread-locals.
176:             *
177:             * @param value the value to be stored in the current thread's copy of
178:             *        this thread-local.
179:             */
180:            public void set(T value) {
181:                Thread t = Thread.currentThread();
182:                ThreadLocalMap map = getMap(t);
183:                if (map != null)
184:                    map.set(this , value);
185:                else
186:                    createMap(t, value);
187:            }
188:
189:            /**
190:             * Removes the current thread's value for this thread-local
191:             * variable.  If this thread-local variable is subsequently
192:             * {@linkplain #get read} by the current thread, its value will be
193:             * reinitialized by invoking its {@link #initialValue} method,
194:             * unless its value is {@linkplain #set set} by the current thread
195:             * in the interim.  This may result in multiple invocations of the
196:             * <tt>initialValue</tt> method in the current thread.
197:             *
198:             * @since 1.5
199:             */
200:            public void remove() {
201:                ThreadLocalMap m = getMap(Thread.currentThread());
202:                if (m != null)
203:                    m.remove(this );
204:            }
205:
206:            /**
207:             * Get the map associated with a ThreadLocal. Overridden in
208:             * InheritableThreadLocal.
209:             *
210:             * @param  t the current thread
211:             * @return the map
212:             */
213:            ThreadLocalMap getMap(Thread t) {
214:                return t.threadLocals;
215:            }
216:
217:            /**
218:             * Create the map associated with a ThreadLocal. Overridden in
219:             * InheritableThreadLocal.
220:             *
221:             * @param t the current thread
222:             * @param firstValue value for the initial entry of the map
223:             * @param map the map to store.
224:             */
225:            void createMap(Thread t, T firstValue) {
226:                t.threadLocals = new ThreadLocalMap(this , firstValue);
227:            }
228:
229:            /**
230:             * Factory method to create map of inherited thread locals.
231:             * Designed to be called only from Thread constructor.
232:             *
233:             * @param  parentMap the map associated with parent thread
234:             * @return a map containing the parent's inheritable bindings
235:             */
236:            static ThreadLocalMap createInheritedMap(ThreadLocalMap parentMap) {
237:                return new ThreadLocalMap(parentMap);
238:            }
239:
240:            /**
241:             * Method childValue is visibly defined in subclass
242:             * InheritableThreadLocal, but is internally defined here for the
243:             * sake of providing createInheritedMap factory method without
244:             * needing to subclass the map class in InheritableThreadLocal.
245:             * This technique is preferable to the alternative of embedding
246:             * instanceof tests in methods.
247:             */
248:            T childValue(T parentValue) {
249:                throw new UnsupportedOperationException();
250:            }
251:
252:            /**
253:             * ThreadLocalMap is a customized hash map suitable only for
254:             * maintaining thread local values. No operations are exported
255:             * outside of the ThreadLocal class. The class is package private to
256:             * allow declaration of fields in class Thread.  To help deal with
257:             * very large and long-lived usages, the hash table entries use
258:             * WeakReferences for keys. However, since reference queues are not
259:             * used, stale entries are guaranteed to be removed only when
260:             * the table starts running out of space.
261:             */
262:            static class ThreadLocalMap {
263:
264:                /**
265:                 * The entries in this hash map extend WeakReference, using
266:                 * its main ref field as the key (which is always a
267:                 * ThreadLocal object).  Note that null keys (i.e. entry.get()
268:                 * == null) mean that the key is no longer referenced, so the
269:                 * entry can be expunged from table.  Such entries are referred to
270:                 * as "stale entries" in the code that follows.
271:                 */
272:                static class Entry extends WeakReference<ThreadLocal> {
273:                    /** The value associated with this ThreadLocal. */
274:                    Object value;
275:
276:                    Entry(ThreadLocal k, Object v) {
277:                        super (k);
278:                        value = v;
279:                    }
280:                }
281:
282:                /**
283:                 * The initial capacity -- MUST be a power of two.
284:                 */
285:                private static final int INITIAL_CAPACITY = 16;
286:
287:                /**
288:                 * The table, resized as necessary.
289:                 * table.length MUST always be a power of two.
290:                 */
291:                private Entry[] table;
292:
293:                /**
294:                 * The number of entries in the table.
295:                 */
296:                private int size = 0;
297:
298:                /**
299:                 * The next size value at which to resize.
300:                 */
301:                private int threshold; // Default to 0
302:
303:                /**
304:                 * Set the resize threshold to maintain at worst a 2/3 load factor.
305:                 */
306:                private void setThreshold(int len) {
307:                    threshold = len * 2 / 3;
308:                }
309:
310:                /**
311:                 * Increment i modulo len.
312:                 */
313:                private static int nextIndex(int i, int len) {
314:                    return ((i + 1 < len) ? i + 1 : 0);
315:                }
316:
317:                /**
318:                 * Decrement i modulo len.
319:                 */
320:                private static int prevIndex(int i, int len) {
321:                    return ((i - 1 >= 0) ? i - 1 : len - 1);
322:                }
323:
324:                /**
325:                 * Construct a new map initially containing (firstKey, firstValue).
326:                 * ThreadLocalMaps are constructed lazily, so we only create
327:                 * one when we have at least one entry to put in it.
328:                 */
329:                ThreadLocalMap(ThreadLocal firstKey, Object firstValue) {
330:                    table = new Entry[INITIAL_CAPACITY];
331:                    int i = firstKey.threadLocalHashCode
332:                            & (INITIAL_CAPACITY - 1);
333:                    table[i] = new Entry(firstKey, firstValue);
334:                    size = 1;
335:                    setThreshold(INITIAL_CAPACITY);
336:                }
337:
338:                /**
339:                 * Construct a new map including all Inheritable ThreadLocals
340:                 * from given parent map. Called only by createInheritedMap.
341:                 *
342:                 * @param parentMap the map associated with parent thread.
343:                 */
344:                private ThreadLocalMap(ThreadLocalMap parentMap) {
345:                    Entry[] parentTable = parentMap.table;
346:                    int len = parentTable.length;
347:                    setThreshold(len);
348:                    table = new Entry[len];
349:
350:                    for (int j = 0; j < len; j++) {
351:                        Entry e = parentTable[j];
352:                        if (e != null) {
353:                            ThreadLocal key = e.get();
354:                            if (key != null) {
355:                                Object value = key.childValue(e.value);
356:                                Entry c = new Entry(key, value);
357:                                int h = key.threadLocalHashCode & (len - 1);
358:                                while (table[h] != null)
359:                                    h = nextIndex(h, len);
360:                                table[h] = c;
361:                                size++;
362:                            }
363:                        }
364:                    }
365:                }
366:
367:                /**
368:                 * Get the entry associated with key.  This method
369:                 * itself handles only the fast path: a direct hit of existing
370:                 * key. It otherwise relays to getEntryAfterMiss.  This is
371:                 * designed to maximize performance for direct hits, in part
372:                 * by making this method readily inlinable.
373:                 *
374:                 * @param  key the thread local object
375:                 * @return the entry associated with key, or null if no such
376:                 */
377:                private Entry getEntry(ThreadLocal key) {
378:                    int i = key.threadLocalHashCode & (table.length - 1);
379:                    Entry e = table[i];
380:                    if (e != null && e.get() == key)
381:                        return e;
382:                    else
383:                        return getEntryAfterMiss(key, i, e);
384:                }
385:
386:                /**
387:                 * Version of getEntry method for use when key is not found in
388:                 * its direct hash slot.
389:                 *
390:                 * @param  key the thread local object
391:                 * @param  i the table index for key's hash code
392:                 * @param  e the entry at table[i]
393:                 * @return the entry associated with key, or null if no such
394:                 */
395:                private Entry getEntryAfterMiss(ThreadLocal key, int i, Entry e) {
396:                    Entry[] tab = table;
397:                    int len = tab.length;
398:
399:                    while (e != null) {
400:                        ThreadLocal k = e.get();
401:                        if (k == key)
402:                            return e;
403:                        if (k == null)
404:                            expungeStaleEntry(i);
405:                        else
406:                            i = nextIndex(i, len);
407:                        e = tab[i];
408:                    }
409:                    return null;
410:                }
411:
412:                /**
413:                 * Set the value associated with key.
414:                 *
415:                 * @param key the thread local object
416:                 * @param value the value to be set
417:                 */
418:                private void set(ThreadLocal key, Object value) {
419:
420:                    // We don't use a fast path as with get() because it is at
421:                    // least as common to use set() to create new entries as
422:                    // it is to replace existing ones, in which case, a fast
423:                    // path would fail more often than not.
424:
425:                    Entry[] tab = table;
426:                    int len = tab.length;
427:                    int i = key.threadLocalHashCode & (len - 1);
428:
429:                    for (Entry e = tab[i]; e != null; e = tab[i = nextIndex(i,
430:                            len)]) {
431:                        ThreadLocal k = e.get();
432:
433:                        if (k == key) {
434:                            e.value = value;
435:                            return;
436:                        }
437:
438:                        if (k == null) {
439:                            replaceStaleEntry(key, value, i);
440:                            return;
441:                        }
442:                    }
443:
444:                    tab[i] = new Entry(key, value);
445:                    int sz = ++size;
446:                    if (!cleanSomeSlots(i, sz) && sz >= threshold)
447:                        rehash();
448:                }
449:
450:                /**
451:                 * Remove the entry for key.
452:                 */
453:                private void remove(ThreadLocal key) {
454:                    Entry[] tab = table;
455:                    int len = tab.length;
456:                    int i = key.threadLocalHashCode & (len - 1);
457:                    for (Entry e = tab[i]; e != null; e = tab[i = nextIndex(i,
458:                            len)]) {
459:                        if (e.get() == key) {
460:                            e.clear();
461:                            expungeStaleEntry(i);
462:                            return;
463:                        }
464:                    }
465:                }
466:
467:                /**
468:                 * Replace a stale entry encountered during a set operation
469:                 * with an entry for the specified key.  The value passed in
470:                 * the value parameter is stored in the entry, whether or not
471:                 * an entry already exists for the specified key.
472:                 *
473:                 * As a side effect, this method expunges all stale entries in the
474:                 * "run" containing the stale entry.  (A run is a sequence of entries
475:                 * between two null slots.)
476:                 *
477:                 * @param  key the key
478:                 * @param  value the value to be associated with key
479:                 * @param  staleSlot index of the first stale entry encountered while
480:                 *         searching for key.
481:                 */
482:                private void replaceStaleEntry(ThreadLocal key, Object value,
483:                        int staleSlot) {
484:                    Entry[] tab = table;
485:                    int len = tab.length;
486:                    Entry e;
487:
488:                    // Back up to check for prior stale entry in current run.
489:                    // We clean out whole runs at a time to avoid continual
490:                    // incremental rehashing due to garbage collector freeing
491:                    // up refs in bunches (i.e., whenever the collector runs).
492:                    int slotToExpunge = staleSlot;
493:                    for (int i = prevIndex(staleSlot, len); (e = tab[i]) != null; i = prevIndex(
494:                            i, len))
495:                        if (e.get() == null)
496:                            slotToExpunge = i;
497:
498:                    // Find either the key or trailing null slot of run, whichever
499:                    // occurs first
500:                    for (int i = nextIndex(staleSlot, len); (e = tab[i]) != null; i = nextIndex(
501:                            i, len)) {
502:                        ThreadLocal k = e.get();
503:
504:                        // If we find key, then we need to swap it
505:                        // with the stale entry to maintain hash table order.
506:                        // The newly stale slot, or any other stale slot
507:                        // encountered above it, can then be sent to expungeStaleEntry
508:                        // to remove or rehash all of the other entries in run.
509:                        if (k == key) {
510:                            e.value = value;
511:
512:                            tab[i] = tab[staleSlot];
513:                            tab[staleSlot] = e;
514:
515:                            // Start expunge at preceding stale entry if it exists
516:                            if (slotToExpunge == staleSlot)
517:                                slotToExpunge = i;
518:                            cleanSomeSlots(expungeStaleEntry(slotToExpunge),
519:                                    len);
520:                            return;
521:                        }
522:
523:                        // If we didn't find stale entry on backward scan, the
524:                        // first stale entry seen while scanning for key is the
525:                        // first still present in the run.
526:                        if (k == null && slotToExpunge == staleSlot)
527:                            slotToExpunge = i;
528:                    }
529:
530:                    // If key not found, put new entry in stale slot
531:                    tab[staleSlot].value = null;
532:                    tab[staleSlot] = new Entry(key, value);
533:
534:                    // If there are any other stale entries in run, expunge them
535:                    if (slotToExpunge != staleSlot)
536:                        cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
537:                }
538:
539:                /**
540:                 * Expunge a stale entry by rehashing any possibly colliding entries
541:                 * lying between staleSlot and the next null slot.  This also expunges
542:                 * any other stale entries encountered before the trailing null.  See
543:                 * Knuth, Section 6.4
544:                 *
545:                 * @param staleSlot index of slot known to have null key
546:                 * @return the index of the next null slot after staleSlot
547:                 * (all between staleSlot and this slot will have been checked
548:                 * for expunging).
549:                 */
550:                private int expungeStaleEntry(int staleSlot) {
551:                    Entry[] tab = table;
552:                    int len = tab.length;
553:
554:                    // expunge entry at staleSlot
555:                    tab[staleSlot].value = null;
556:                    tab[staleSlot] = null;
557:                    size--;
558:
559:                    // Rehash until we encounter null
560:                    Entry e;
561:                    int i;
562:                    for (i = nextIndex(staleSlot, len); (e = tab[i]) != null; i = nextIndex(
563:                            i, len)) {
564:                        ThreadLocal k = e.get();
565:                        if (k == null) {
566:                            e.value = null;
567:                            tab[i] = null;
568:                            size--;
569:                        } else {
570:                            int h = k.threadLocalHashCode & (len - 1);
571:                            if (h != i) {
572:                                tab[i] = null;
573:
574:                                // Unlike Knuth 6.4 Algorithm R, we must scan until
575:                                // null because multiple entries could have been stale.
576:                                while (tab[h] != null)
577:                                    h = nextIndex(h, len);
578:                                tab[h] = e;
579:                            }
580:                        }
581:                    }
582:                    return i;
583:                }
584:
585:                /**
586:                 * Heuristically scan some cells looking for stale entries.
587:                 * This is invoked when either a new element is added, or
588:                 * another stale one has been expunged. It performs a
589:                 * logarithmic number of scans, as a balance between no
590:                 * scanning (fast but retains garbage) and a number of scans
591:                 * proportional to number of elements, that would find all
592:                 * garbage but would cause some insertions to take O(n) time.
593:                 *
594:                 * @param i a position known NOT to hold a stale entry. The
595:                 * scan starts at the element after i.
596:                 *
597:                 * @param n scan control: <tt>log2(n)</tt> cells are scanned,
598:                 * unless a stale entry is found, in which case
599:                 * <tt>log2(table.length)-1</tt> additional cells are scanned.
600:                 * When called from insertions, this parameter is the number
601:                 * of elements, but when from replaceStaleEntry, it is the
602:                 * table length. (Note: all this could be changed to be either
603:                 * more or less aggressive by weighting n instead of just
604:                 * using straight log n. But this version is simple, fast, and
605:                 * seems to work well.)
606:                 *
607:                 * @return true if any stale entries have been removed.
608:                 */
609:                private boolean cleanSomeSlots(int i, int n) {
610:                    boolean removed = false;
611:                    Entry[] tab = table;
612:                    int len = tab.length;
613:                    do {
614:                        i = nextIndex(i, len);
615:                        Entry e = tab[i];
616:                        if (e != null && e.get() == null) {
617:                            n = len;
618:                            removed = true;
619:                            i = expungeStaleEntry(i);
620:                        }
621:                    } while ((n >>>= 1) != 0);
622:                    return removed;
623:                }
624:
625:                /**
626:                 * Re-pack and/or re-size the table. First scan the entire
627:                 * table removing stale entries. If this doesn't sufficiently
628:                 * shrink the size of the table, double the table size.
629:                 */
630:                private void rehash() {
631:                    expungeStaleEntries();
632:
633:                    // Use lower threshold for doubling to avoid hysteresis
634:                    if (size >= threshold - threshold / 4)
635:                        resize();
636:                }
637:
638:                /**
639:                 * Double the capacity of the table.
640:                 */
641:                private void resize() {
642:                    Entry[] oldTab = table;
643:                    int oldLen = oldTab.length;
644:                    int newLen = oldLen * 2;
645:                    Entry[] newTab = new Entry[newLen];
646:                    int count = 0;
647:
648:                    for (int j = 0; j < oldLen; ++j) {
649:                        Entry e = oldTab[j];
650:                        if (e != null) {
651:                            ThreadLocal k = e.get();
652:                            if (k == null) {
653:                                e.value = null; // Help the GC
654:                            } else {
655:                                int h = k.threadLocalHashCode & (newLen - 1);
656:                                while (newTab[h] != null)
657:                                    h = nextIndex(h, newLen);
658:                                newTab[h] = e;
659:                                count++;
660:                            }
661:                        }
662:                    }
663:
664:                    setThreshold(newLen);
665:                    size = count;
666:                    table = newTab;
667:                }
668:
669:                /**
670:                 * Expunge all stale entries in the table.
671:                 */
672:                private void expungeStaleEntries() {
673:                    Entry[] tab = table;
674:                    int len = tab.length;
675:                    for (int j = 0; j < len; j++) {
676:                        Entry e = tab[j];
677:                        if (e != null && e.get() == null)
678:                            expungeStaleEntry(j);
679:                    }
680:                }
681:            }
682:        }
w__ww___._ja_va2_s_.___co__m__ | Contact Us
Copyright 2003 - 08 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.