Source Code Cross Referenced for TreeMap.java in  » 6.0-JDK-Core » Collections-Jar-Zip-Logging-regex » java » util » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » 6.0 JDK Core » Collections Jar Zip Logging regex » java.util 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


0001:        /*
0002:         * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
0003:         * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
0004:         *
0005:         * This code is free software; you can redistribute it and/or modify it
0006:         * under the terms of the GNU General Public License version 2 only, as
0007:         * published by the Free Software Foundation.  Sun designates this
0008:         * particular file as subject to the "Classpath" exception as provided
0009:         * by Sun in the LICENSE file that accompanied this code.
0010:         *
0011:         * This code is distributed in the hope that it will be useful, but WITHOUT
0012:         * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
0013:         * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
0014:         * version 2 for more details (a copy is included in the LICENSE file that
0015:         * accompanied this code).
0016:         *
0017:         * You should have received a copy of the GNU General Public License version
0018:         * 2 along with this work; if not, write to the Free Software Foundation,
0019:         * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
0020:         *
0021:         * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
0022:         * CA 95054 USA or visit www.sun.com if you need additional information or
0023:         * have any questions.
0024:         */
0025:
0026:        package java.util;
0027:
0028:        /**
0029:         * A Red-Black tree based {@link NavigableMap} implementation.
0030:         * The map is sorted according to the {@linkplain Comparable natural
0031:         * ordering} of its keys, or by a {@link Comparator} provided at map
0032:         * creation time, depending on which constructor is used.
0033:         *
0034:         * <p>This implementation provides guaranteed log(n) time cost for the
0035:         * <tt>containsKey</tt>, <tt>get</tt>, <tt>put</tt> and <tt>remove</tt>
0036:         * operations.  Algorithms are adaptations of those in Cormen, Leiserson, and
0037:         * Rivest's <I>Introduction to Algorithms</I>.
0038:         *
0039:         * <p>Note that the ordering maintained by a sorted map (whether or not an
0040:         * explicit comparator is provided) must be <i>consistent with equals</i> if
0041:         * this sorted map is to correctly implement the <tt>Map</tt> interface.  (See
0042:         * <tt>Comparable</tt> or <tt>Comparator</tt> for a precise definition of
0043:         * <i>consistent with equals</i>.)  This is so because the <tt>Map</tt>
0044:         * interface is defined in terms of the equals operation, but a map performs
0045:         * all key comparisons using its <tt>compareTo</tt> (or <tt>compare</tt>)
0046:         * method, so two keys that are deemed equal by this method are, from the
0047:         * standpoint of the sorted map, equal.  The behavior of a sorted map
0048:         * <i>is</i> well-defined even if its ordering is inconsistent with equals; it
0049:         * just fails to obey the general contract of the <tt>Map</tt> interface.
0050:         *
0051:         * <p><strong>Note that this implementation is not synchronized.</strong>
0052:         * If multiple threads access a map concurrently, and at least one of the
0053:         * threads modifies the map structurally, it <i>must</i> be synchronized
0054:         * externally.  (A structural modification is any operation that adds or
0055:         * deletes one or more mappings; merely changing the value associated
0056:         * with an existing key is not a structural modification.)  This is
0057:         * typically accomplished by synchronizing on some object that naturally
0058:         * encapsulates the map.
0059:         * If no such object exists, the map should be "wrapped" using the
0060:         * {@link Collections#synchronizedSortedMap Collections.synchronizedSortedMap}
0061:         * method.  This is best done at creation time, to prevent accidental
0062:         * unsynchronized access to the map: <pre>
0063:         *   SortedMap m = Collections.synchronizedSortedMap(new TreeMap(...));</pre>
0064:         *
0065:         * <p>The iterators returned by the <tt>iterator</tt> method of the collections
0066:         * returned by all of this class's "collection view methods" are
0067:         * <i>fail-fast</i>: if the map is structurally modified at any time after the
0068:         * iterator is created, in any way except through the iterator's own
0069:         * <tt>remove</tt> method, the iterator will throw a {@link
0070:         * ConcurrentModificationException}.  Thus, in the face of concurrent
0071:         * modification, the iterator fails quickly and cleanly, rather than risking
0072:         * arbitrary, non-deterministic behavior at an undetermined time in the future.
0073:         *
0074:         * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
0075:         * as it is, generally speaking, impossible to make any hard guarantees in the
0076:         * presence of unsynchronized concurrent modification.  Fail-fast iterators
0077:         * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
0078:         * Therefore, it would be wrong to write a program that depended on this
0079:         * exception for its correctness:   <i>the fail-fast behavior of iterators
0080:         * should be used only to detect bugs.</i>
0081:         *
0082:         * <p>All <tt>Map.Entry</tt> pairs returned by methods in this class
0083:         * and its views represent snapshots of mappings at the time they were
0084:         * produced. They do <em>not</em> support the <tt>Entry.setValue</tt>
0085:         * method. (Note however that it is possible to change mappings in the
0086:         * associated map using <tt>put</tt>.)
0087:         *
0088:         * <p>This class is a member of the
0089:         * <a href="{@docRoot}/../technotes/guides/collections/index.html">
0090:         * Java Collections Framework</a>.
0091:         *
0092:         * @param <K> the type of keys maintained by this map
0093:         * @param <V> the type of mapped values
0094:         *
0095:         * @author  Josh Bloch and Doug Lea
0096:         * @version 1.73, 05/10/06
0097:         * @see Map
0098:         * @see HashMap
0099:         * @see Hashtable
0100:         * @see Comparable
0101:         * @see Comparator
0102:         * @see Collection
0103:         * @since 1.2
0104:         */
0105:
0106:        public class TreeMap<K, V> extends AbstractMap<K, V> implements 
0107:                NavigableMap<K, V>, Cloneable, java.io.Serializable {
0108:            /**
0109:             * The comparator used to maintain order in this tree map, or
0110:             * null if it uses the natural ordering of its keys.
0111:             *
0112:             * @serial
0113:             */
0114:            private final Comparator<? super  K> comparator;
0115:
0116:            private transient Entry<K, V> root = null;
0117:
0118:            /**
0119:             * The number of entries in the tree
0120:             */
0121:            private transient int size = 0;
0122:
0123:            /**
0124:             * The number of structural modifications to the tree.
0125:             */
0126:            private transient int modCount = 0;
0127:
0128:            /**
0129:             * Constructs a new, empty tree map, using the natural ordering of its
0130:             * keys.  All keys inserted into the map must implement the {@link
0131:             * Comparable} interface.  Furthermore, all such keys must be
0132:             * <i>mutually comparable</i>: <tt>k1.compareTo(k2)</tt> must not throw
0133:             * a <tt>ClassCastException</tt> for any keys <tt>k1</tt> and
0134:             * <tt>k2</tt> in the map.  If the user attempts to put a key into the
0135:             * map that violates this constraint (for example, the user attempts to
0136:             * put a string key into a map whose keys are integers), the
0137:             * <tt>put(Object key, Object value)</tt> call will throw a
0138:             * <tt>ClassCastException</tt>.
0139:             */
0140:            public TreeMap() {
0141:                comparator = null;
0142:            }
0143:
0144:            /**
0145:             * Constructs a new, empty tree map, ordered according to the given
0146:             * comparator.  All keys inserted into the map must be <i>mutually
0147:             * comparable</i> by the given comparator: <tt>comparator.compare(k1,
0148:             * k2)</tt> must not throw a <tt>ClassCastException</tt> for any keys
0149:             * <tt>k1</tt> and <tt>k2</tt> in the map.  If the user attempts to put
0150:             * a key into the map that violates this constraint, the <tt>put(Object
0151:             * key, Object value)</tt> call will throw a
0152:             * <tt>ClassCastException</tt>.
0153:             *
0154:             * @param comparator the comparator that will be used to order this map.
0155:             *        If <tt>null</tt>, the {@linkplain Comparable natural
0156:             *        ordering} of the keys will be used.
0157:             */
0158:            public TreeMap(Comparator<? super  K> comparator) {
0159:                this .comparator = comparator;
0160:            }
0161:
0162:            /**
0163:             * Constructs a new tree map containing the same mappings as the given
0164:             * map, ordered according to the <i>natural ordering</i> of its keys.
0165:             * All keys inserted into the new map must implement the {@link
0166:             * Comparable} interface.  Furthermore, all such keys must be
0167:             * <i>mutually comparable</i>: <tt>k1.compareTo(k2)</tt> must not throw
0168:             * a <tt>ClassCastException</tt> for any keys <tt>k1</tt> and
0169:             * <tt>k2</tt> in the map.  This method runs in n*log(n) time.
0170:             *
0171:             * @param  m the map whose mappings are to be placed in this map
0172:             * @throws ClassCastException if the keys in m are not {@link Comparable},
0173:             *         or are not mutually comparable
0174:             * @throws NullPointerException if the specified map is null
0175:             */
0176:            public TreeMap(Map<? extends K, ? extends V> m) {
0177:                comparator = null;
0178:                putAll(m);
0179:            }
0180:
0181:            /**
0182:             * Constructs a new tree map containing the same mappings and
0183:             * using the same ordering as the specified sorted map.  This
0184:             * method runs in linear time.
0185:             *
0186:             * @param  m the sorted map whose mappings are to be placed in this map,
0187:             *         and whose comparator is to be used to sort this map
0188:             * @throws NullPointerException if the specified map is null
0189:             */
0190:            public TreeMap(SortedMap<K, ? extends V> m) {
0191:                comparator = m.comparator();
0192:                try {
0193:                    buildFromSorted(m.size(), m.entrySet().iterator(), null,
0194:                            null);
0195:                } catch (java.io.IOException cannotHappen) {
0196:                } catch (ClassNotFoundException cannotHappen) {
0197:                }
0198:            }
0199:
0200:            // Query Operations
0201:
0202:            /**
0203:             * Returns the number of key-value mappings in this map.
0204:             *
0205:             * @return the number of key-value mappings in this map
0206:             */
0207:            public int size() {
0208:                return size;
0209:            }
0210:
0211:            /**
0212:             * Returns <tt>true</tt> if this map contains a mapping for the specified
0213:             * key.
0214:             *
0215:             * @param key key whose presence in this map is to be tested
0216:             * @return <tt>true</tt> if this map contains a mapping for the
0217:             *         specified key
0218:             * @throws ClassCastException if the specified key cannot be compared
0219:             *         with the keys currently in the map
0220:             * @throws NullPointerException if the specified key is null
0221:             *         and this map uses natural ordering, or its comparator
0222:             *         does not permit null keys
0223:             */
0224:            public boolean containsKey(Object key) {
0225:                return getEntry(key) != null;
0226:            }
0227:
0228:            /**
0229:             * Returns <tt>true</tt> if this map maps one or more keys to the
0230:             * specified value.  More formally, returns <tt>true</tt> if and only if
0231:             * this map contains at least one mapping to a value <tt>v</tt> such
0232:             * that <tt>(value==null ? v==null : value.equals(v))</tt>.  This
0233:             * operation will probably require time linear in the map size for
0234:             * most implementations.
0235:             *
0236:             * @param value value whose presence in this map is to be tested
0237:             * @return <tt>true</tt> if a mapping to <tt>value</tt> exists;
0238:             *	       <tt>false</tt> otherwise
0239:             * @since 1.2
0240:             */
0241:            public boolean containsValue(Object value) {
0242:                for (Entry<K, V> e = getFirstEntry(); e != null; e = successor(e))
0243:                    if (valEquals(value, e.value))
0244:                        return true;
0245:                return false;
0246:            }
0247:
0248:            /**
0249:             * Returns the value to which the specified key is mapped,
0250:             * or {@code null} if this map contains no mapping for the key.
0251:             *
0252:             * <p>More formally, if this map contains a mapping from a key
0253:             * {@code k} to a value {@code v} such that {@code key} compares
0254:             * equal to {@code k} according to the map's ordering, then this
0255:             * method returns {@code v}; otherwise it returns {@code null}.
0256:             * (There can be at most one such mapping.)
0257:             *
0258:             * <p>A return value of {@code null} does not <i>necessarily</i>
0259:             * indicate that the map contains no mapping for the key; it's also
0260:             * possible that the map explicitly maps the key to {@code null}.
0261:             * The {@link #containsKey containsKey} operation may be used to
0262:             * distinguish these two cases.
0263:             *
0264:             * @throws ClassCastException if the specified key cannot be compared
0265:             *         with the keys currently in the map
0266:             * @throws NullPointerException if the specified key is null
0267:             *         and this map uses natural ordering, or its comparator
0268:             *         does not permit null keys
0269:             */
0270:            public V get(Object key) {
0271:                Entry<K, V> p = getEntry(key);
0272:                return (p == null ? null : p.value);
0273:            }
0274:
0275:            public Comparator<? super  K> comparator() {
0276:                return comparator;
0277:            }
0278:
0279:            /**
0280:             * @throws NoSuchElementException {@inheritDoc}
0281:             */
0282:            public K firstKey() {
0283:                return key(getFirstEntry());
0284:            }
0285:
0286:            /**
0287:             * @throws NoSuchElementException {@inheritDoc}
0288:             */
0289:            public K lastKey() {
0290:                return key(getLastEntry());
0291:            }
0292:
0293:            /**
0294:             * Copies all of the mappings from the specified map to this map.
0295:             * These mappings replace any mappings that this map had for any
0296:             * of the keys currently in the specified map.
0297:             *
0298:             * @param  map mappings to be stored in this map
0299:             * @throws ClassCastException if the class of a key or value in
0300:             *         the specified map prevents it from being stored in this map
0301:             * @throws NullPointerException if the specified map is null or
0302:             *         the specified map contains a null key and this map does not
0303:             *         permit null keys
0304:             */
0305:            public void putAll(Map<? extends K, ? extends V> map) {
0306:                int mapSize = map.size();
0307:                if (size == 0 && mapSize != 0 && map instanceof  SortedMap) {
0308:                    Comparator c = ((SortedMap) map).comparator();
0309:                    if (c == comparator || (c != null && c.equals(comparator))) {
0310:                        ++modCount;
0311:                        try {
0312:                            buildFromSorted(mapSize, map.entrySet().iterator(),
0313:                                    null, null);
0314:                        } catch (java.io.IOException cannotHappen) {
0315:                        } catch (ClassNotFoundException cannotHappen) {
0316:                        }
0317:                        return;
0318:                    }
0319:                }
0320:                super .putAll(map);
0321:            }
0322:
0323:            /**
0324:             * Returns this map's entry for the given key, or <tt>null</tt> if the map
0325:             * does not contain an entry for the key.
0326:             *
0327:             * @return this map's entry for the given key, or <tt>null</tt> if the map
0328:             *         does not contain an entry for the key
0329:             * @throws ClassCastException if the specified key cannot be compared
0330:             *         with the keys currently in the map
0331:             * @throws NullPointerException if the specified key is null
0332:             *         and this map uses natural ordering, or its comparator
0333:             *         does not permit null keys
0334:             */
0335:            final Entry<K, V> getEntry(Object key) {
0336:                // Offload comparator-based version for sake of performance
0337:                if (comparator != null)
0338:                    return getEntryUsingComparator(key);
0339:                if (key == null)
0340:                    throw new NullPointerException();
0341:                Comparable<? super  K> k = (Comparable<? super  K>) key;
0342:                Entry<K, V> p = root;
0343:                while (p != null) {
0344:                    int cmp = k.compareTo(p.key);
0345:                    if (cmp < 0)
0346:                        p = p.left;
0347:                    else if (cmp > 0)
0348:                        p = p.right;
0349:                    else
0350:                        return p;
0351:                }
0352:                return null;
0353:            }
0354:
0355:            /**
0356:             * Version of getEntry using comparator. Split off from getEntry
0357:             * for performance. (This is not worth doing for most methods,
0358:             * that are less dependent on comparator performance, but is
0359:             * worthwhile here.)
0360:             */
0361:            final Entry<K, V> getEntryUsingComparator(Object key) {
0362:                K k = (K) key;
0363:                Comparator<? super  K> cpr = comparator;
0364:                if (cpr != null) {
0365:                    Entry<K, V> p = root;
0366:                    while (p != null) {
0367:                        int cmp = cpr.compare(k, p.key);
0368:                        if (cmp < 0)
0369:                            p = p.left;
0370:                        else if (cmp > 0)
0371:                            p = p.right;
0372:                        else
0373:                            return p;
0374:                    }
0375:                }
0376:                return null;
0377:            }
0378:
0379:            /**
0380:             * Gets the entry corresponding to the specified key; if no such entry
0381:             * exists, returns the entry for the least key greater than the specified
0382:             * key; if no such entry exists (i.e., the greatest key in the Tree is less
0383:             * than the specified key), returns <tt>null</tt>.
0384:             */
0385:            final Entry<K, V> getCeilingEntry(K key) {
0386:                Entry<K, V> p = root;
0387:                while (p != null) {
0388:                    int cmp = compare(key, p.key);
0389:                    if (cmp < 0) {
0390:                        if (p.left != null)
0391:                            p = p.left;
0392:                        else
0393:                            return p;
0394:                    } else if (cmp > 0) {
0395:                        if (p.right != null) {
0396:                            p = p.right;
0397:                        } else {
0398:                            Entry<K, V> parent = p.parent;
0399:                            Entry<K, V> ch = p;
0400:                            while (parent != null && ch == parent.right) {
0401:                                ch = parent;
0402:                                parent = parent.parent;
0403:                            }
0404:                            return parent;
0405:                        }
0406:                    } else
0407:                        return p;
0408:                }
0409:                return null;
0410:            }
0411:
0412:            /**
0413:             * Gets the entry corresponding to the specified key; if no such entry
0414:             * exists, returns the entry for the greatest key less than the specified
0415:             * key; if no such entry exists, returns <tt>null</tt>.
0416:             */
0417:            final Entry<K, V> getFloorEntry(K key) {
0418:                Entry<K, V> p = root;
0419:                while (p != null) {
0420:                    int cmp = compare(key, p.key);
0421:                    if (cmp > 0) {
0422:                        if (p.right != null)
0423:                            p = p.right;
0424:                        else
0425:                            return p;
0426:                    } else if (cmp < 0) {
0427:                        if (p.left != null) {
0428:                            p = p.left;
0429:                        } else {
0430:                            Entry<K, V> parent = p.parent;
0431:                            Entry<K, V> ch = p;
0432:                            while (parent != null && ch == parent.left) {
0433:                                ch = parent;
0434:                                parent = parent.parent;
0435:                            }
0436:                            return parent;
0437:                        }
0438:                    } else
0439:                        return p;
0440:
0441:                }
0442:                return null;
0443:            }
0444:
0445:            /**
0446:             * Gets the entry for the least key greater than the specified
0447:             * key; if no such entry exists, returns the entry for the least
0448:             * key greater than the specified key; if no such entry exists
0449:             * returns <tt>null</tt>.
0450:             */
0451:            final Entry<K, V> getHigherEntry(K key) {
0452:                Entry<K, V> p = root;
0453:                while (p != null) {
0454:                    int cmp = compare(key, p.key);
0455:                    if (cmp < 0) {
0456:                        if (p.left != null)
0457:                            p = p.left;
0458:                        else
0459:                            return p;
0460:                    } else {
0461:                        if (p.right != null) {
0462:                            p = p.right;
0463:                        } else {
0464:                            Entry<K, V> parent = p.parent;
0465:                            Entry<K, V> ch = p;
0466:                            while (parent != null && ch == parent.right) {
0467:                                ch = parent;
0468:                                parent = parent.parent;
0469:                            }
0470:                            return parent;
0471:                        }
0472:                    }
0473:                }
0474:                return null;
0475:            }
0476:
0477:            /**
0478:             * Returns the entry for the greatest key less than the specified key; if
0479:             * no such entry exists (i.e., the least key in the Tree is greater than
0480:             * the specified key), returns <tt>null</tt>.
0481:             */
0482:            final Entry<K, V> getLowerEntry(K key) {
0483:                Entry<K, V> p = root;
0484:                while (p != null) {
0485:                    int cmp = compare(key, p.key);
0486:                    if (cmp > 0) {
0487:                        if (p.right != null)
0488:                            p = p.right;
0489:                        else
0490:                            return p;
0491:                    } else {
0492:                        if (p.left != null) {
0493:                            p = p.left;
0494:                        } else {
0495:                            Entry<K, V> parent = p.parent;
0496:                            Entry<K, V> ch = p;
0497:                            while (parent != null && ch == parent.left) {
0498:                                ch = parent;
0499:                                parent = parent.parent;
0500:                            }
0501:                            return parent;
0502:                        }
0503:                    }
0504:                }
0505:                return null;
0506:            }
0507:
0508:            /**
0509:             * Associates the specified value with the specified key in this map.
0510:             * If the map previously contained a mapping for the key, the old
0511:             * value is replaced.
0512:             *
0513:             * @param key key with which the specified value is to be associated
0514:             * @param value value to be associated with the specified key
0515:             *
0516:             * @return the previous value associated with <tt>key</tt>, or
0517:             *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
0518:             *         (A <tt>null</tt> return can also indicate that the map
0519:             *         previously associated <tt>null</tt> with <tt>key</tt>.)
0520:             * @throws ClassCastException if the specified key cannot be compared
0521:             *         with the keys currently in the map
0522:             * @throws NullPointerException if the specified key is null
0523:             *         and this map uses natural ordering, or its comparator
0524:             *         does not permit null keys
0525:             */
0526:            public V put(K key, V value) {
0527:                Entry<K, V> t = root;
0528:                if (t == null) {
0529:                    // TBD:
0530:                    // 5045147: (coll) Adding null to an empty TreeSet should
0531:                    // throw NullPointerException
0532:                    //
0533:                    // compare(key, key); // type check
0534:                    root = new Entry<K, V>(key, value, null);
0535:                    size = 1;
0536:                    modCount++;
0537:                    return null;
0538:                }
0539:                int cmp;
0540:                Entry<K, V> parent;
0541:                // split comparator and comparable paths
0542:                Comparator<? super  K> cpr = comparator;
0543:                if (cpr != null) {
0544:                    do {
0545:                        parent = t;
0546:                        cmp = cpr.compare(key, t.key);
0547:                        if (cmp < 0)
0548:                            t = t.left;
0549:                        else if (cmp > 0)
0550:                            t = t.right;
0551:                        else
0552:                            return t.setValue(value);
0553:                    } while (t != null);
0554:                } else {
0555:                    if (key == null)
0556:                        throw new NullPointerException();
0557:                    Comparable<? super  K> k = (Comparable<? super  K>) key;
0558:                    do {
0559:                        parent = t;
0560:                        cmp = k.compareTo(t.key);
0561:                        if (cmp < 0)
0562:                            t = t.left;
0563:                        else if (cmp > 0)
0564:                            t = t.right;
0565:                        else
0566:                            return t.setValue(value);
0567:                    } while (t != null);
0568:                }
0569:                Entry<K, V> e = new Entry<K, V>(key, value, parent);
0570:                if (cmp < 0)
0571:                    parent.left = e;
0572:                else
0573:                    parent.right = e;
0574:                fixAfterInsertion(e);
0575:                size++;
0576:                modCount++;
0577:                return null;
0578:            }
0579:
0580:            /**
0581:             * Removes the mapping for this key from this TreeMap if present.
0582:             *
0583:             * @param  key key for which mapping should be removed
0584:             * @return the previous value associated with <tt>key</tt>, or
0585:             *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
0586:             *         (A <tt>null</tt> return can also indicate that the map
0587:             *         previously associated <tt>null</tt> with <tt>key</tt>.)
0588:             * @throws ClassCastException if the specified key cannot be compared
0589:             *         with the keys currently in the map
0590:             * @throws NullPointerException if the specified key is null
0591:             *         and this map uses natural ordering, or its comparator
0592:             *         does not permit null keys
0593:             */
0594:            public V remove(Object key) {
0595:                Entry<K, V> p = getEntry(key);
0596:                if (p == null)
0597:                    return null;
0598:
0599:                V oldValue = p.value;
0600:                deleteEntry(p);
0601:                return oldValue;
0602:            }
0603:
0604:            /**
0605:             * Removes all of the mappings from this map.
0606:             * The map will be empty after this call returns.
0607:             */
0608:            public void clear() {
0609:                modCount++;
0610:                size = 0;
0611:                root = null;
0612:            }
0613:
0614:            /**
0615:             * Returns a shallow copy of this <tt>TreeMap</tt> instance. (The keys and
0616:             * values themselves are not cloned.)
0617:             *
0618:             * @return a shallow copy of this map
0619:             */
0620:            public Object clone() {
0621:                TreeMap<K, V> clone = null;
0622:                try {
0623:                    clone = (TreeMap<K, V>) super .clone();
0624:                } catch (CloneNotSupportedException e) {
0625:                    throw new InternalError();
0626:                }
0627:
0628:                // Put clone into "virgin" state (except for comparator)
0629:                clone.root = null;
0630:                clone.size = 0;
0631:                clone.modCount = 0;
0632:                clone.entrySet = null;
0633:                clone.navigableKeySet = null;
0634:                clone.descendingMap = null;
0635:
0636:                // Initialize clone with our mappings
0637:                try {
0638:                    clone.buildFromSorted(size, entrySet().iterator(), null,
0639:                            null);
0640:                } catch (java.io.IOException cannotHappen) {
0641:                } catch (ClassNotFoundException cannotHappen) {
0642:                }
0643:
0644:                return clone;
0645:            }
0646:
0647:            // NavigableMap API methods
0648:
0649:            /**
0650:             * @since 1.6
0651:             */
0652:            public Map.Entry<K, V> firstEntry() {
0653:                return exportEntry(getFirstEntry());
0654:            }
0655:
0656:            /**
0657:             * @since 1.6
0658:             */
0659:            public Map.Entry<K, V> lastEntry() {
0660:                return exportEntry(getLastEntry());
0661:            }
0662:
0663:            /**
0664:             * @since 1.6
0665:             */
0666:            public Map.Entry<K, V> pollFirstEntry() {
0667:                Entry<K, V> p = getFirstEntry();
0668:                Map.Entry<K, V> result = exportEntry(p);
0669:                if (p != null)
0670:                    deleteEntry(p);
0671:                return result;
0672:            }
0673:
0674:            /**
0675:             * @since 1.6
0676:             */
0677:            public Map.Entry<K, V> pollLastEntry() {
0678:                Entry<K, V> p = getLastEntry();
0679:                Map.Entry<K, V> result = exportEntry(p);
0680:                if (p != null)
0681:                    deleteEntry(p);
0682:                return result;
0683:            }
0684:
0685:            /**
0686:             * @throws ClassCastException {@inheritDoc}
0687:             * @throws NullPointerException if the specified key is null
0688:             *         and this map uses natural ordering, or its comparator
0689:             *         does not permit null keys
0690:             * @since 1.6
0691:             */
0692:            public Map.Entry<K, V> lowerEntry(K key) {
0693:                return exportEntry(getLowerEntry(key));
0694:            }
0695:
0696:            /**
0697:             * @throws ClassCastException {@inheritDoc}
0698:             * @throws NullPointerException if the specified key is null
0699:             *         and this map uses natural ordering, or its comparator
0700:             *         does not permit null keys
0701:             * @since 1.6
0702:             */
0703:            public K lowerKey(K key) {
0704:                return keyOrNull(getLowerEntry(key));
0705:            }
0706:
0707:            /**
0708:             * @throws ClassCastException {@inheritDoc}
0709:             * @throws NullPointerException if the specified key is null
0710:             *         and this map uses natural ordering, or its comparator
0711:             *         does not permit null keys
0712:             * @since 1.6
0713:             */
0714:            public Map.Entry<K, V> floorEntry(K key) {
0715:                return exportEntry(getFloorEntry(key));
0716:            }
0717:
0718:            /**
0719:             * @throws ClassCastException {@inheritDoc}
0720:             * @throws NullPointerException if the specified key is null
0721:             *         and this map uses natural ordering, or its comparator
0722:             *         does not permit null keys
0723:             * @since 1.6
0724:             */
0725:            public K floorKey(K key) {
0726:                return keyOrNull(getFloorEntry(key));
0727:            }
0728:
0729:            /**
0730:             * @throws ClassCastException {@inheritDoc}
0731:             * @throws NullPointerException if the specified key is null
0732:             *         and this map uses natural ordering, or its comparator
0733:             *         does not permit null keys
0734:             * @since 1.6
0735:             */
0736:            public Map.Entry<K, V> ceilingEntry(K key) {
0737:                return exportEntry(getCeilingEntry(key));
0738:            }
0739:
0740:            /**
0741:             * @throws ClassCastException {@inheritDoc}
0742:             * @throws NullPointerException if the specified key is null
0743:             *         and this map uses natural ordering, or its comparator
0744:             *         does not permit null keys
0745:             * @since 1.6
0746:             */
0747:            public K ceilingKey(K key) {
0748:                return keyOrNull(getCeilingEntry(key));
0749:            }
0750:
0751:            /**
0752:             * @throws ClassCastException {@inheritDoc}
0753:             * @throws NullPointerException if the specified key is null
0754:             *         and this map uses natural ordering, or its comparator
0755:             *         does not permit null keys
0756:             * @since 1.6
0757:             */
0758:            public Map.Entry<K, V> higherEntry(K key) {
0759:                return exportEntry(getHigherEntry(key));
0760:            }
0761:
0762:            /**
0763:             * @throws ClassCastException {@inheritDoc}
0764:             * @throws NullPointerException if the specified key is null
0765:             *         and this map uses natural ordering, or its comparator
0766:             *         does not permit null keys
0767:             * @since 1.6
0768:             */
0769:            public K higherKey(K key) {
0770:                return keyOrNull(getHigherEntry(key));
0771:            }
0772:
0773:            // Views
0774:
0775:            /**
0776:             * Fields initialized to contain an instance of the entry set view
0777:             * the first time this view is requested.  Views are stateless, so
0778:             * there's no reason to create more than one.
0779:             */
0780:            private transient EntrySet entrySet = null;
0781:            private transient KeySet<K> navigableKeySet = null;
0782:            private transient NavigableMap<K, V> descendingMap = null;
0783:
0784:            /**
0785:             * Returns a {@link Set} view of the keys contained in this map.
0786:             * The set's iterator returns the keys in ascending order.
0787:             * The set is backed by the map, so changes to the map are
0788:             * reflected in the set, and vice-versa.  If the map is modified
0789:             * while an iteration over the set is in progress (except through
0790:             * the iterator's own <tt>remove</tt> operation), the results of
0791:             * the iteration are undefined.  The set supports element removal,
0792:             * which removes the corresponding mapping from the map, via the
0793:             * <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
0794:             * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
0795:             * operations.  It does not support the <tt>add</tt> or <tt>addAll</tt>
0796:             * operations.
0797:             */
0798:            public Set<K> keySet() {
0799:                return navigableKeySet();
0800:            }
0801:
0802:            /**
0803:             * @since 1.6
0804:             */
0805:            public NavigableSet<K> navigableKeySet() {
0806:                KeySet<K> nks = navigableKeySet;
0807:                return (nks != null) ? nks
0808:                        : (navigableKeySet = new KeySet(this ));
0809:            }
0810:
0811:            /**
0812:             * @since 1.6
0813:             */
0814:            public NavigableSet<K> descendingKeySet() {
0815:                return descendingMap().navigableKeySet();
0816:            }
0817:
0818:            /**
0819:             * Returns a {@link Collection} view of the values contained in this map.
0820:             * The collection's iterator returns the values in ascending order
0821:             * of the corresponding keys.
0822:             * The collection is backed by the map, so changes to the map are
0823:             * reflected in the collection, and vice-versa.  If the map is
0824:             * modified while an iteration over the collection is in progress
0825:             * (except through the iterator's own <tt>remove</tt> operation),
0826:             * the results of the iteration are undefined.  The collection
0827:             * supports element removal, which removes the corresponding
0828:             * mapping from the map, via the <tt>Iterator.remove</tt>,
0829:             * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
0830:             * <tt>retainAll</tt> and <tt>clear</tt> operations.  It does not
0831:             * support the <tt>add</tt> or <tt>addAll</tt> operations.
0832:             */
0833:            public Collection<V> values() {
0834:                Collection<V> vs = values;
0835:                return (vs != null) ? vs : (values = new Values());
0836:            }
0837:
0838:            /**
0839:             * Returns a {@link Set} view of the mappings contained in this map.
0840:             * The set's iterator returns the entries in ascending key order.
0841:             * The set is backed by the map, so changes to the map are
0842:             * reflected in the set, and vice-versa.  If the map is modified
0843:             * while an iteration over the set is in progress (except through
0844:             * the iterator's own <tt>remove</tt> operation, or through the
0845:             * <tt>setValue</tt> operation on a map entry returned by the
0846:             * iterator) the results of the iteration are undefined.  The set
0847:             * supports element removal, which removes the corresponding
0848:             * mapping from the map, via the <tt>Iterator.remove</tt>,
0849:             * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and
0850:             * <tt>clear</tt> operations.  It does not support the
0851:             * <tt>add</tt> or <tt>addAll</tt> operations.
0852:             */
0853:            public Set<Map.Entry<K, V>> entrySet() {
0854:                EntrySet es = entrySet;
0855:                return (es != null) ? es : (entrySet = new EntrySet());
0856:            }
0857:
0858:            /**
0859:             * @since 1.6
0860:             */
0861:            public NavigableMap<K, V> descendingMap() {
0862:                NavigableMap<K, V> km = descendingMap;
0863:                return (km != null) ? km
0864:                        : (descendingMap = new DescendingSubMap(this , true,
0865:                                null, true, true, null, true));
0866:            }
0867:
0868:            /**
0869:             * @throws ClassCastException       {@inheritDoc}
0870:             * @throws NullPointerException if <tt>fromKey</tt> or <tt>toKey</tt> is
0871:             *         null and this map uses natural ordering, or its comparator
0872:             *         does not permit null keys
0873:             * @throws IllegalArgumentException {@inheritDoc}
0874:             * @since 1.6
0875:             */
0876:            public NavigableMap<K, V> subMap(K fromKey, boolean fromInclusive,
0877:                    K toKey, boolean toInclusive) {
0878:                return new AscendingSubMap(this , false, fromKey, fromInclusive,
0879:                        false, toKey, toInclusive);
0880:            }
0881:
0882:            /**
0883:             * @throws ClassCastException       {@inheritDoc}
0884:             * @throws NullPointerException if <tt>toKey</tt> is null
0885:             *         and this map uses natural ordering, or its comparator
0886:             *         does not permit null keys
0887:             * @throws IllegalArgumentException {@inheritDoc}
0888:             * @since 1.6
0889:             */
0890:            public NavigableMap<K, V> headMap(K toKey, boolean inclusive) {
0891:                return new AscendingSubMap(this , true, null, true, false,
0892:                        toKey, inclusive);
0893:            }
0894:
0895:            /**
0896:             * @throws ClassCastException       {@inheritDoc}
0897:             * @throws NullPointerException if <tt>fromKey</tt> is null
0898:             *         and this map uses natural ordering, or its comparator
0899:             *         does not permit null keys
0900:             * @throws IllegalArgumentException {@inheritDoc}
0901:             * @since 1.6
0902:             */
0903:            public NavigableMap<K, V> tailMap(K fromKey, boolean inclusive) {
0904:                return new AscendingSubMap(this , false, fromKey, inclusive,
0905:                        true, null, true);
0906:            }
0907:
0908:            /**
0909:             * @throws ClassCastException       {@inheritDoc}
0910:             * @throws NullPointerException if <tt>fromKey</tt> or <tt>toKey</tt> is
0911:             *         null and this map uses natural ordering, or its comparator
0912:             *         does not permit null keys
0913:             * @throws IllegalArgumentException {@inheritDoc}
0914:             */
0915:            public SortedMap<K, V> subMap(K fromKey, K toKey) {
0916:                return subMap(fromKey, true, toKey, false);
0917:            }
0918:
0919:            /**
0920:             * @throws ClassCastException       {@inheritDoc}
0921:             * @throws NullPointerException if <tt>toKey</tt> is null
0922:             *         and this map uses natural ordering, or its comparator
0923:             *         does not permit null keys
0924:             * @throws IllegalArgumentException {@inheritDoc}
0925:             */
0926:            public SortedMap<K, V> headMap(K toKey) {
0927:                return headMap(toKey, false);
0928:            }
0929:
0930:            /**
0931:             * @throws ClassCastException       {@inheritDoc}
0932:             * @throws NullPointerException if <tt>fromKey</tt> is null
0933:             *         and this map uses natural ordering, or its comparator
0934:             *         does not permit null keys
0935:             * @throws IllegalArgumentException {@inheritDoc}
0936:             */
0937:            public SortedMap<K, V> tailMap(K fromKey) {
0938:                return tailMap(fromKey, true);
0939:            }
0940:
0941:            // View class support
0942:
0943:            class Values extends AbstractCollection<V> {
0944:                public Iterator<V> iterator() {
0945:                    return new ValueIterator(getFirstEntry());
0946:                }
0947:
0948:                public int size() {
0949:                    return TreeMap.this .size();
0950:                }
0951:
0952:                public boolean contains(Object o) {
0953:                    return TreeMap.this .containsValue(o);
0954:                }
0955:
0956:                public boolean remove(Object o) {
0957:                    for (Entry<K, V> e = getFirstEntry(); e != null; e = successor(e)) {
0958:                        if (valEquals(e.getValue(), o)) {
0959:                            deleteEntry(e);
0960:                            return true;
0961:                        }
0962:                    }
0963:                    return false;
0964:                }
0965:
0966:                public void clear() {
0967:                    TreeMap.this .clear();
0968:                }
0969:            }
0970:
0971:            class EntrySet extends AbstractSet<Map.Entry<K, V>> {
0972:                public Iterator<Map.Entry<K, V>> iterator() {
0973:                    return new EntryIterator(getFirstEntry());
0974:                }
0975:
0976:                public boolean contains(Object o) {
0977:                    if (!(o instanceof  Map.Entry))
0978:                        return false;
0979:                    Map.Entry<K, V> entry = (Map.Entry<K, V>) o;
0980:                    V value = entry.getValue();
0981:                    Entry<K, V> p = getEntry(entry.getKey());
0982:                    return p != null && valEquals(p.getValue(), value);
0983:                }
0984:
0985:                public boolean remove(Object o) {
0986:                    if (!(o instanceof  Map.Entry))
0987:                        return false;
0988:                    Map.Entry<K, V> entry = (Map.Entry<K, V>) o;
0989:                    V value = entry.getValue();
0990:                    Entry<K, V> p = getEntry(entry.getKey());
0991:                    if (p != null && valEquals(p.getValue(), value)) {
0992:                        deleteEntry(p);
0993:                        return true;
0994:                    }
0995:                    return false;
0996:                }
0997:
0998:                public int size() {
0999:                    return TreeMap.this .size();
1000:                }
1001:
1002:                public void clear() {
1003:                    TreeMap.this .clear();
1004:                }
1005:            }
1006:
1007:            /*
1008:             * Unlike Values and EntrySet, the KeySet class is static,
1009:             * delegating to a NavigableMap to allow use by SubMaps, which
1010:             * outweighs the ugliness of needing type-tests for the following
1011:             * Iterator methods that are defined appropriately in main versus
1012:             * submap classes.
1013:             */
1014:
1015:            Iterator<K> keyIterator() {
1016:                return new KeyIterator(getFirstEntry());
1017:            }
1018:
1019:            Iterator<K> descendingKeyIterator() {
1020:                return new DescendingKeyIterator(getFirstEntry());
1021:            }
1022:
1023:            static final class KeySet<E> extends AbstractSet<E> implements 
1024:                    NavigableSet<E> {
1025:                private final NavigableMap<E, Object> m;
1026:
1027:                KeySet(NavigableMap<E, Object> map) {
1028:                    m = map;
1029:                }
1030:
1031:                public Iterator<E> iterator() {
1032:                    if (m instanceof  TreeMap)
1033:                        return ((TreeMap<E, Object>) m).keyIterator();
1034:                    else
1035:                        return (Iterator<E>) (((TreeMap.NavigableSubMap) m)
1036:                                .keyIterator());
1037:                }
1038:
1039:                public Iterator<E> descendingIterator() {
1040:                    if (m instanceof  TreeMap)
1041:                        return ((TreeMap<E, Object>) m).descendingKeyIterator();
1042:                    else
1043:                        return (Iterator<E>) (((TreeMap.NavigableSubMap) m)
1044:                                .descendingKeyIterator());
1045:                }
1046:
1047:                public int size() {
1048:                    return m.size();
1049:                }
1050:
1051:                public boolean isEmpty() {
1052:                    return m.isEmpty();
1053:                }
1054:
1055:                public boolean contains(Object o) {
1056:                    return m.containsKey(o);
1057:                }
1058:
1059:                public void clear() {
1060:                    m.clear();
1061:                }
1062:
1063:                public E lower(E e) {
1064:                    return m.lowerKey(e);
1065:                }
1066:
1067:                public E floor(E e) {
1068:                    return m.floorKey(e);
1069:                }
1070:
1071:                public E ceiling(E e) {
1072:                    return m.ceilingKey(e);
1073:                }
1074:
1075:                public E higher(E e) {
1076:                    return m.higherKey(e);
1077:                }
1078:
1079:                public E first() {
1080:                    return m.firstKey();
1081:                }
1082:
1083:                public E last() {
1084:                    return m.lastKey();
1085:                }
1086:
1087:                public Comparator<? super  E> comparator() {
1088:                    return m.comparator();
1089:                }
1090:
1091:                public E pollFirst() {
1092:                    Map.Entry<E, Object> e = m.pollFirstEntry();
1093:                    return e == null ? null : e.getKey();
1094:                }
1095:
1096:                public E pollLast() {
1097:                    Map.Entry<E, Object> e = m.pollLastEntry();
1098:                    return e == null ? null : e.getKey();
1099:                }
1100:
1101:                public boolean remove(Object o) {
1102:                    int oldSize = size();
1103:                    m.remove(o);
1104:                    return size() != oldSize;
1105:                }
1106:
1107:                public NavigableSet<E> subSet(E fromElement,
1108:                        boolean fromInclusive, E toElement, boolean toInclusive) {
1109:                    return new TreeSet<E>(m.subMap(fromElement, fromInclusive,
1110:                            toElement, toInclusive));
1111:                }
1112:
1113:                public NavigableSet<E> headSet(E toElement, boolean inclusive) {
1114:                    return new TreeSet<E>(m.headMap(toElement, inclusive));
1115:                }
1116:
1117:                public NavigableSet<E> tailSet(E fromElement, boolean inclusive) {
1118:                    return new TreeSet<E>(m.tailMap(fromElement, inclusive));
1119:                }
1120:
1121:                public SortedSet<E> subSet(E fromElement, E toElement) {
1122:                    return subSet(fromElement, true, toElement, false);
1123:                }
1124:
1125:                public SortedSet<E> headSet(E toElement) {
1126:                    return headSet(toElement, false);
1127:                }
1128:
1129:                public SortedSet<E> tailSet(E fromElement) {
1130:                    return tailSet(fromElement, true);
1131:                }
1132:
1133:                public NavigableSet<E> descendingSet() {
1134:                    return new TreeSet(m.descendingMap());
1135:                }
1136:            }
1137:
1138:            /**
1139:             * Base class for TreeMap Iterators
1140:             */
1141:            abstract class PrivateEntryIterator<T> implements  Iterator<T> {
1142:                Entry<K, V> next;
1143:                Entry<K, V> lastReturned;
1144:                int expectedModCount;
1145:
1146:                PrivateEntryIterator(Entry<K, V> first) {
1147:                    expectedModCount = modCount;
1148:                    lastReturned = null;
1149:                    next = first;
1150:                }
1151:
1152:                public final boolean hasNext() {
1153:                    return next != null;
1154:                }
1155:
1156:                final Entry<K, V> nextEntry() {
1157:                    Entry<K, V> e = next;
1158:                    if (e == null)
1159:                        throw new NoSuchElementException();
1160:                    if (modCount != expectedModCount)
1161:                        throw new ConcurrentModificationException();
1162:                    next = successor(e);
1163:                    lastReturned = e;
1164:                    return e;
1165:                }
1166:
1167:                final Entry<K, V> prevEntry() {
1168:                    Entry<K, V> e = next;
1169:                    if (e == null)
1170:                        throw new NoSuchElementException();
1171:                    if (modCount != expectedModCount)
1172:                        throw new ConcurrentModificationException();
1173:                    next = predecessor(e);
1174:                    lastReturned = e;
1175:                    return e;
1176:                }
1177:
1178:                public void remove() {
1179:                    if (lastReturned == null)
1180:                        throw new IllegalStateException();
1181:                    if (modCount != expectedModCount)
1182:                        throw new ConcurrentModificationException();
1183:                    // deleted entries are replaced by their successors
1184:                    if (lastReturned.left != null && lastReturned.right != null)
1185:                        next = lastReturned;
1186:                    deleteEntry(lastReturned);
1187:                    expectedModCount = modCount;
1188:                    lastReturned = null;
1189:                }
1190:            }
1191:
1192:            final class EntryIterator extends
1193:                    PrivateEntryIterator<Map.Entry<K, V>> {
1194:                EntryIterator(Entry<K, V> first) {
1195:                    super (first);
1196:                }
1197:
1198:                public Map.Entry<K, V> next() {
1199:                    return nextEntry();
1200:                }
1201:            }
1202:
1203:            final class ValueIterator extends PrivateEntryIterator<V> {
1204:                ValueIterator(Entry<K, V> first) {
1205:                    super (first);
1206:                }
1207:
1208:                public V next() {
1209:                    return nextEntry().value;
1210:                }
1211:            }
1212:
1213:            final class KeyIterator extends PrivateEntryIterator<K> {
1214:                KeyIterator(Entry<K, V> first) {
1215:                    super (first);
1216:                }
1217:
1218:                public K next() {
1219:                    return nextEntry().key;
1220:                }
1221:            }
1222:
1223:            final class DescendingKeyIterator extends PrivateEntryIterator<K> {
1224:                DescendingKeyIterator(Entry<K, V> first) {
1225:                    super (first);
1226:                }
1227:
1228:                public K next() {
1229:                    return prevEntry().key;
1230:                }
1231:            }
1232:
1233:            // Little utilities
1234:
1235:            /**
1236:             * Compares two keys using the correct comparison method for this TreeMap.
1237:             */
1238:            final int compare(Object k1, Object k2) {
1239:                return comparator == null ? ((Comparable<? super  K>) k1)
1240:                        .compareTo((K) k2) : comparator.compare((K) k1, (K) k2);
1241:            }
1242:
1243:            /**
1244:             * Test two values for equality.  Differs from o1.equals(o2) only in
1245:             * that it copes with <tt>null</tt> o1 properly.
1246:             */
1247:            final static boolean valEquals(Object o1, Object o2) {
1248:                return (o1 == null ? o2 == null : o1.equals(o2));
1249:            }
1250:
1251:            /**
1252:             * Return SimpleImmutableEntry for entry, or null if null
1253:             */
1254:            static <K, V> Map.Entry<K, V> exportEntry(TreeMap.Entry<K, V> e) {
1255:                return e == null ? null
1256:                        : new AbstractMap.SimpleImmutableEntry<K, V>(e);
1257:            }
1258:
1259:            /**
1260:             * Return key for entry, or null if null
1261:             */
1262:            static <K, V> K keyOrNull(TreeMap.Entry<K, V> e) {
1263:                return e == null ? null : e.key;
1264:            }
1265:
1266:            /**
1267:             * Returns the key corresponding to the specified Entry.
1268:             * @throws NoSuchElementException if the Entry is null
1269:             */
1270:            static <K> K key(Entry<K, ?> e) {
1271:                if (e == null)
1272:                    throw new NoSuchElementException();
1273:                return e.key;
1274:            }
1275:
1276:            // SubMaps
1277:
1278:            /**
1279:             * Dummy value serving as unmatchable fence key for unbounded
1280:             * SubMapIterators
1281:             */
1282:            private static final Object UNBOUNDED = new Object();
1283:
1284:            /**
1285:             * @serial include
1286:             */
1287:            static abstract class NavigableSubMap<K, V> extends
1288:                    AbstractMap<K, V> implements  NavigableMap<K, V>,
1289:                    java.io.Serializable {
1290:                /**
1291:                 * The backing map.
1292:                 */
1293:                final TreeMap<K, V> m;
1294:
1295:                /**
1296:                 * Endpoints are represented as triples (fromStart, lo,
1297:                 * loInclusive) and (toEnd, hi, hiInclusive). If fromStart is
1298:                 * true, then the low (absolute) bound is the start of the
1299:                 * backing map, and the other values are ignored. Otherwise,
1300:                 * if loInclusive is true, lo is the inclusive bound, else lo
1301:                 * is the exclusive bound. Similarly for the upper bound.
1302:                 */
1303:                final K lo, hi;
1304:                final boolean fromStart, toEnd;
1305:                final boolean loInclusive, hiInclusive;
1306:
1307:                NavigableSubMap(TreeMap<K, V> m, boolean fromStart, K lo,
1308:                        boolean loInclusive, boolean toEnd, K hi,
1309:                        boolean hiInclusive) {
1310:                    if (!fromStart && !toEnd) {
1311:                        if (m.compare(lo, hi) > 0)
1312:                            throw new IllegalArgumentException(
1313:                                    "fromKey > toKey");
1314:                    } else {
1315:                        if (!fromStart) // type check
1316:                            m.compare(lo, lo);
1317:                        if (!toEnd)
1318:                            m.compare(hi, hi);
1319:                    }
1320:
1321:                    this .m = m;
1322:                    this .fromStart = fromStart;
1323:                    this .lo = lo;
1324:                    this .loInclusive = loInclusive;
1325:                    this .toEnd = toEnd;
1326:                    this .hi = hi;
1327:                    this .hiInclusive = hiInclusive;
1328:                }
1329:
1330:                // internal utilities
1331:
1332:                final boolean tooLow(Object key) {
1333:                    if (!fromStart) {
1334:                        int c = m.compare(key, lo);
1335:                        if (c < 0 || (c == 0 && !loInclusive))
1336:                            return true;
1337:                    }
1338:                    return false;
1339:                }
1340:
1341:                final boolean tooHigh(Object key) {
1342:                    if (!toEnd) {
1343:                        int c = m.compare(key, hi);
1344:                        if (c > 0 || (c == 0 && !hiInclusive))
1345:                            return true;
1346:                    }
1347:                    return false;
1348:                }
1349:
1350:                final boolean inRange(Object key) {
1351:                    return !tooLow(key) && !tooHigh(key);
1352:                }
1353:
1354:                final boolean inClosedRange(Object key) {
1355:                    return (fromStart || m.compare(key, lo) >= 0)
1356:                            && (toEnd || m.compare(hi, key) >= 0);
1357:                }
1358:
1359:                final boolean inRange(Object key, boolean inclusive) {
1360:                    return inclusive ? inRange(key) : inClosedRange(key);
1361:                }
1362:
1363:                /*
1364:                 * Absolute versions of relation operations.
1365:                 * Subclasses map to these using like-named "sub"
1366:                 * versions that invert senses for descending maps
1367:                 */
1368:
1369:                final TreeMap.Entry<K, V> absLowest() {
1370:                    TreeMap.Entry<K, V> e = (fromStart ? m.getFirstEntry()
1371:                            : (loInclusive ? m.getCeilingEntry(lo) : m
1372:                                    .getHigherEntry(lo)));
1373:                    return (e == null || tooHigh(e.key)) ? null : e;
1374:                }
1375:
1376:                final TreeMap.Entry<K, V> absHighest() {
1377:                    TreeMap.Entry<K, V> e = (toEnd ? m.getLastEntry()
1378:                            : (hiInclusive ? m.getFloorEntry(hi) : m
1379:                                    .getLowerEntry(hi)));
1380:                    return (e == null || tooLow(e.key)) ? null : e;
1381:                }
1382:
1383:                final TreeMap.Entry<K, V> absCeiling(K key) {
1384:                    if (tooLow(key))
1385:                        return absLowest();
1386:                    TreeMap.Entry<K, V> e = m.getCeilingEntry(key);
1387:                    return (e == null || tooHigh(e.key)) ? null : e;
1388:                }
1389:
1390:                final TreeMap.Entry<K, V> absHigher(K key) {
1391:                    if (tooLow(key))
1392:                        return absLowest();
1393:                    TreeMap.Entry<K, V> e = m.getHigherEntry(key);
1394:                    return (e == null || tooHigh(e.key)) ? null : e;
1395:                }
1396:
1397:                final TreeMap.Entry<K, V> absFloor(K key) {
1398:                    if (tooHigh(key))
1399:                        return absHighest();
1400:                    TreeMap.Entry<K, V> e = m.getFloorEntry(key);
1401:                    return (e == null || tooLow(e.key)) ? null : e;
1402:                }
1403:
1404:                final TreeMap.Entry<K, V> absLower(K key) {
1405:                    if (tooHigh(key))
1406:                        return absHighest();
1407:                    TreeMap.Entry<K, V> e = m.getLowerEntry(key);
1408:                    return (e == null || tooLow(e.key)) ? null : e;
1409:                }
1410:
1411:                /** Returns the absolute high fence for ascending traversal */
1412:                final TreeMap.Entry<K, V> absHighFence() {
1413:                    return (toEnd ? null : (hiInclusive ? m.getHigherEntry(hi)
1414:                            : m.getCeilingEntry(hi)));
1415:                }
1416:
1417:                /** Return the absolute low fence for descending traversal  */
1418:                final TreeMap.Entry<K, V> absLowFence() {
1419:                    return (fromStart ? null : (loInclusive ? m
1420:                            .getLowerEntry(lo) : m.getFloorEntry(lo)));
1421:                }
1422:
1423:                // Abstract methods defined in ascending vs descending classes
1424:                // These relay to the appropriate absolute versions
1425:
1426:                abstract TreeMap.Entry<K, V> subLowest();
1427:
1428:                abstract TreeMap.Entry<K, V> subHighest();
1429:
1430:                abstract TreeMap.Entry<K, V> subCeiling(K key);
1431:
1432:                abstract TreeMap.Entry<K, V> subHigher(K key);
1433:
1434:                abstract TreeMap.Entry<K, V> subFloor(K key);
1435:
1436:                abstract TreeMap.Entry<K, V> subLower(K key);
1437:
1438:                /** Returns ascending iterator from the perspective of this submap */
1439:                abstract Iterator<K> keyIterator();
1440:
1441:                /** Returns descending iterator from the perspective of this submap */
1442:                abstract Iterator<K> descendingKeyIterator();
1443:
1444:                // public methods
1445:
1446:                public boolean isEmpty() {
1447:                    return (fromStart && toEnd) ? m.isEmpty() : entrySet()
1448:                            .isEmpty();
1449:                }
1450:
1451:                public int size() {
1452:                    return (fromStart && toEnd) ? m.size() : entrySet().size();
1453:                }
1454:
1455:                public final boolean containsKey(Object key) {
1456:                    return inRange(key) && m.containsKey(key);
1457:                }
1458:
1459:                public final V put(K key, V value) {
1460:                    if (!inRange(key))
1461:                        throw new IllegalArgumentException("key out of range");
1462:                    return m.put(key, value);
1463:                }
1464:
1465:                public final V get(Object key) {
1466:                    return !inRange(key) ? null : m.get(key);
1467:                }
1468:
1469:                public final V remove(Object key) {
1470:                    return !inRange(key) ? null : m.remove(key);
1471:                }
1472:
1473:                public final Map.Entry<K, V> ceilingEntry(K key) {
1474:                    return exportEntry(subCeiling(key));
1475:                }
1476:
1477:                public final K ceilingKey(K key) {
1478:                    return keyOrNull(subCeiling(key));
1479:                }
1480:
1481:                public final Map.Entry<K, V> higherEntry(K key) {
1482:                    return exportEntry(subHigher(key));
1483:                }
1484:
1485:                public final K higherKey(K key) {
1486:                    return keyOrNull(subHigher(key));
1487:                }
1488:
1489:                public final Map.Entry<K, V> floorEntry(K key) {
1490:                    return exportEntry(subFloor(key));
1491:                }
1492:
1493:                public final K floorKey(K key) {
1494:                    return keyOrNull(subFloor(key));
1495:                }
1496:
1497:                public final Map.Entry<K, V> lowerEntry(K key) {
1498:                    return exportEntry(subLower(key));
1499:                }
1500:
1501:                public final K lowerKey(K key) {
1502:                    return keyOrNull(subLower(key));
1503:                }
1504:
1505:                public final K firstKey() {
1506:                    return key(subLowest());
1507:                }
1508:
1509:                public final K lastKey() {
1510:                    return key(subHighest());
1511:                }
1512:
1513:                public final Map.Entry<K, V> firstEntry() {
1514:                    return exportEntry(subLowest());
1515:                }
1516:
1517:                public final Map.Entry<K, V> lastEntry() {
1518:                    return exportEntry(subHighest());
1519:                }
1520:
1521:                public final Map.Entry<K, V> pollFirstEntry() {
1522:                    TreeMap.Entry<K, V> e = subLowest();
1523:                    Map.Entry<K, V> result = exportEntry(e);
1524:                    if (e != null)
1525:                        m.deleteEntry(e);
1526:                    return result;
1527:                }
1528:
1529:                public final Map.Entry<K, V> pollLastEntry() {
1530:                    TreeMap.Entry<K, V> e = subHighest();
1531:                    Map.Entry<K, V> result = exportEntry(e);
1532:                    if (e != null)
1533:                        m.deleteEntry(e);
1534:                    return result;
1535:                }
1536:
1537:                // Views
1538:                transient NavigableMap<K, V> descendingMapView = null;
1539:                transient EntrySetView entrySetView = null;
1540:                transient KeySet<K> navigableKeySetView = null;
1541:
1542:                public final NavigableSet<K> navigableKeySet() {
1543:                    KeySet<K> nksv = navigableKeySetView;
1544:                    return (nksv != null) ? nksv
1545:                            : (navigableKeySetView = new TreeMap.KeySet(this ));
1546:                }
1547:
1548:                public final Set<K> keySet() {
1549:                    return navigableKeySet();
1550:                }
1551:
1552:                public NavigableSet<K> descendingKeySet() {
1553:                    return descendingMap().navigableKeySet();
1554:                }
1555:
1556:                public final SortedMap<K, V> subMap(K fromKey, K toKey) {
1557:                    return subMap(fromKey, true, toKey, false);
1558:                }
1559:
1560:                public final SortedMap<K, V> headMap(K toKey) {
1561:                    return headMap(toKey, false);
1562:                }
1563:
1564:                public final SortedMap<K, V> tailMap(K fromKey) {
1565:                    return tailMap(fromKey, true);
1566:                }
1567:
1568:                // View classes
1569:
1570:                abstract class EntrySetView extends
1571:                        AbstractSet<Map.Entry<K, V>> {
1572:                    private transient int size = -1, sizeModCount;
1573:
1574:                    public int size() {
1575:                        if (fromStart && toEnd)
1576:                            return m.size();
1577:                        if (size == -1 || sizeModCount != m.modCount) {
1578:                            sizeModCount = m.modCount;
1579:                            size = 0;
1580:                            Iterator i = iterator();
1581:                            while (i.hasNext()) {
1582:                                size++;
1583:                                i.next();
1584:                            }
1585:                        }
1586:                        return size;
1587:                    }
1588:
1589:                    public boolean isEmpty() {
1590:                        TreeMap.Entry<K, V> n = absLowest();
1591:                        return n == null || tooHigh(n.key);
1592:                    }
1593:
1594:                    public boolean contains(Object o) {
1595:                        if (!(o instanceof  Map.Entry))
1596:                            return false;
1597:                        Map.Entry<K, V> entry = (Map.Entry<K, V>) o;
1598:                        K key = entry.getKey();
1599:                        if (!inRange(key))
1600:                            return false;
1601:                        TreeMap.Entry node = m.getEntry(key);
1602:                        return node != null
1603:                                && valEquals(node.getValue(), entry.getValue());
1604:                    }
1605:
1606:                    public boolean remove(Object o) {
1607:                        if (!(o instanceof  Map.Entry))
1608:                            return false;
1609:                        Map.Entry<K, V> entry = (Map.Entry<K, V>) o;
1610:                        K key = entry.getKey();
1611:                        if (!inRange(key))
1612:                            return false;
1613:                        TreeMap.Entry<K, V> node = m.getEntry(key);
1614:                        if (node != null
1615:                                && valEquals(node.getValue(), entry.getValue())) {
1616:                            m.deleteEntry(node);
1617:                            return true;
1618:                        }
1619:                        return false;
1620:                    }
1621:                }
1622:
1623:                /**
1624:                 * Iterators for SubMaps
1625:                 */
1626:                abstract class SubMapIterator<T> implements  Iterator<T> {
1627:                    TreeMap.Entry<K, V> lastReturned;
1628:                    TreeMap.Entry<K, V> next;
1629:                    final Object fenceKey;
1630:                    int expectedModCount;
1631:
1632:                    SubMapIterator(TreeMap.Entry<K, V> first,
1633:                            TreeMap.Entry<K, V> fence) {
1634:                        expectedModCount = m.modCount;
1635:                        lastReturned = null;
1636:                        next = first;
1637:                        fenceKey = fence == null ? UNBOUNDED : fence.key;
1638:                    }
1639:
1640:                    public final boolean hasNext() {
1641:                        return next != null && next.key != fenceKey;
1642:                    }
1643:
1644:                    final TreeMap.Entry<K, V> nextEntry() {
1645:                        TreeMap.Entry<K, V> e = next;
1646:                        if (e == null || e.key == fenceKey)
1647:                            throw new NoSuchElementException();
1648:                        if (m.modCount != expectedModCount)
1649:                            throw new ConcurrentModificationException();
1650:                        next = successor(e);
1651:                        lastReturned = e;
1652:                        return e;
1653:                    }
1654:
1655:                    final TreeMap.Entry<K, V> prevEntry() {
1656:                        TreeMap.Entry<K, V> e = next;
1657:                        if (e == null || e.key == fenceKey)
1658:                            throw new NoSuchElementException();
1659:                        if (m.modCount != expectedModCount)
1660:                            throw new ConcurrentModificationException();
1661:                        next = predecessor(e);
1662:                        lastReturned = e;
1663:                        return e;
1664:                    }
1665:
1666:                    final void removeAscending() {
1667:                        if (lastReturned == null)
1668:                            throw new IllegalStateException();
1669:                        if (m.modCount != expectedModCount)
1670:                            throw new ConcurrentModificationException();
1671:                        // deleted entries are replaced by their successors
1672:                        if (lastReturned.left != null
1673:                                && lastReturned.right != null)
1674:                            next = lastReturned;
1675:                        m.deleteEntry(lastReturned);
1676:                        lastReturned = null;
1677:                        expectedModCount = m.modCount;
1678:                    }
1679:
1680:                    final void removeDescending() {
1681:                        if (lastReturned == null)
1682:                            throw new IllegalStateException();
1683:                        if (m.modCount != expectedModCount)
1684:                            throw new ConcurrentModificationException();
1685:                        m.deleteEntry(lastReturned);
1686:                        lastReturned = null;
1687:                        expectedModCount = m.modCount;
1688:                    }
1689:
1690:                }
1691:
1692:                final class SubMapEntryIterator extends
1693:                        SubMapIterator<Map.Entry<K, V>> {
1694:                    SubMapEntryIterator(TreeMap.Entry<K, V> first,
1695:                            TreeMap.Entry<K, V> fence) {
1696:                        super (first, fence);
1697:                    }
1698:
1699:                    public Map.Entry<K, V> next() {
1700:                        return nextEntry();
1701:                    }
1702:
1703:                    public void remove() {
1704:                        removeAscending();
1705:                    }
1706:                }
1707:
1708:                final class SubMapKeyIterator extends SubMapIterator<K> {
1709:                    SubMapKeyIterator(TreeMap.Entry<K, V> first,
1710:                            TreeMap.Entry<K, V> fence) {
1711:                        super (first, fence);
1712:                    }
1713:
1714:                    public K next() {
1715:                        return nextEntry().key;
1716:                    }
1717:
1718:                    public void remove() {
1719:                        removeAscending();
1720:                    }
1721:                }
1722:
1723:                final class DescendingSubMapEntryIterator extends
1724:                        SubMapIterator<Map.Entry<K, V>> {
1725:                    DescendingSubMapEntryIterator(TreeMap.Entry<K, V> last,
1726:                            TreeMap.Entry<K, V> fence) {
1727:                        super (last, fence);
1728:                    }
1729:
1730:                    public Map.Entry<K, V> next() {
1731:                        return prevEntry();
1732:                    }
1733:
1734:                    public void remove() {
1735:                        removeDescending();
1736:                    }
1737:                }
1738:
1739:                final class DescendingSubMapKeyIterator extends
1740:                        SubMapIterator<K> {
1741:                    DescendingSubMapKeyIterator(TreeMap.Entry<K, V> last,
1742:                            TreeMap.Entry<K, V> fence) {
1743:                        super (last, fence);
1744:                    }
1745:
1746:                    public K next() {
1747:                        return prevEntry().key;
1748:                    }
1749:
1750:                    public void remove() {
1751:                        removeDescending();
1752:                    }
1753:                }
1754:            }
1755:
1756:            /**
1757:             * @serial include
1758:             */
1759:            static final class AscendingSubMap<K, V> extends
1760:                    NavigableSubMap<K, V> {
1761:                private static final long serialVersionUID = 912986545866124060L;
1762:
1763:                AscendingSubMap(TreeMap<K, V> m, boolean fromStart, K lo,
1764:                        boolean loInclusive, boolean toEnd, K hi,
1765:                        boolean hiInclusive) {
1766:                    super (m, fromStart, lo, loInclusive, toEnd, hi, hiInclusive);
1767:                }
1768:
1769:                public Comparator<? super  K> comparator() {
1770:                    return m.comparator();
1771:                }
1772:
1773:                public NavigableMap<K, V> subMap(K fromKey,
1774:                        boolean fromInclusive, K toKey, boolean toInclusive) {
1775:                    if (!inRange(fromKey, fromInclusive))
1776:                        throw new IllegalArgumentException(
1777:                                "fromKey out of range");
1778:                    if (!inRange(toKey, toInclusive))
1779:                        throw new IllegalArgumentException("toKey out of range");
1780:                    return new AscendingSubMap(m, false, fromKey,
1781:                            fromInclusive, false, toKey, toInclusive);
1782:                }
1783:
1784:                public NavigableMap<K, V> headMap(K toKey, boolean inclusive) {
1785:                    if (!inRange(toKey, inclusive))
1786:                        throw new IllegalArgumentException("toKey out of range");
1787:                    return new AscendingSubMap(m, fromStart, lo, loInclusive,
1788:                            false, toKey, inclusive);
1789:                }
1790:
1791:                public NavigableMap<K, V> tailMap(K fromKey, boolean inclusive) {
1792:                    if (!inRange(fromKey, inclusive))
1793:                        throw new IllegalArgumentException(
1794:                                "fromKey out of range");
1795:                    return new AscendingSubMap(m, false, fromKey, inclusive,
1796:                            toEnd, hi, hiInclusive);
1797:                }
1798:
1799:                public NavigableMap<K, V> descendingMap() {
1800:                    NavigableMap<K, V> mv = descendingMapView;
1801:                    return (mv != null) ? mv
1802:                            : (descendingMapView = new DescendingSubMap(m,
1803:                                    fromStart, lo, loInclusive, toEnd, hi,
1804:                                    hiInclusive));
1805:                }
1806:
1807:                Iterator<K> keyIterator() {
1808:                    return new SubMapKeyIterator(absLowest(), absHighFence());
1809:                }
1810:
1811:                Iterator<K> descendingKeyIterator() {
1812:                    return new DescendingSubMapKeyIterator(absHighest(),
1813:                            absLowFence());
1814:                }
1815:
1816:                final class AscendingEntrySetView extends EntrySetView {
1817:                    public Iterator<Map.Entry<K, V>> iterator() {
1818:                        return new SubMapEntryIterator(absLowest(),
1819:                                absHighFence());
1820:                    }
1821:                }
1822:
1823:                public Set<Map.Entry<K, V>> entrySet() {
1824:                    EntrySetView es = entrySetView;
1825:                    return (es != null) ? es : new AscendingEntrySetView();
1826:                }
1827:
1828:                TreeMap.Entry<K, V> subLowest() {
1829:                    return absLowest();
1830:                }
1831:
1832:                TreeMap.Entry<K, V> subHighest() {
1833:                    return absHighest();
1834:                }
1835:
1836:                TreeMap.Entry<K, V> subCeiling(K key) {
1837:                    return absCeiling(key);
1838:                }
1839:
1840:                TreeMap.Entry<K, V> subHigher(K key) {
1841:                    return absHigher(key);
1842:                }
1843:
1844:                TreeMap.Entry<K, V> subFloor(K key) {
1845:                    return absFloor(key);
1846:                }
1847:
1848:                TreeMap.Entry<K, V> subLower(K key) {
1849:                    return absLower(key);
1850:                }
1851:            }
1852:
1853:            /**
1854:             * @serial include
1855:             */
1856:            static final class DescendingSubMap<K, V> extends
1857:                    NavigableSubMap<K, V> {
1858:                private static final long serialVersionUID = 912986545866120460L;
1859:
1860:                DescendingSubMap(TreeMap<K, V> m, boolean fromStart, K lo,
1861:                        boolean loInclusive, boolean toEnd, K hi,
1862:                        boolean hiInclusive) {
1863:                    super (m, fromStart, lo, loInclusive, toEnd, hi, hiInclusive);
1864:                }
1865:
1866:                private final Comparator<? super  K> reverseComparator = Collections
1867:                        .reverseOrder(m.comparator);
1868:
1869:                public Comparator<? super  K> comparator() {
1870:                    return reverseComparator;
1871:                }
1872:
1873:                public NavigableMap<K, V> subMap(K fromKey,
1874:                        boolean fromInclusive, K toKey, boolean toInclusive) {
1875:                    if (!inRange(fromKey, fromInclusive))
1876:                        throw new IllegalArgumentException(
1877:                                "fromKey out of range");
1878:                    if (!inRange(toKey, toInclusive))
1879:                        throw new IllegalArgumentException("toKey out of range");
1880:                    return new DescendingSubMap(m, false, toKey, toInclusive,
1881:                            false, fromKey, fromInclusive);
1882:                }
1883:
1884:                public NavigableMap<K, V> headMap(K toKey, boolean inclusive) {
1885:                    if (!inRange(toKey, inclusive))
1886:                        throw new IllegalArgumentException("toKey out of range");
1887:                    return new DescendingSubMap(m, false, toKey, inclusive,
1888:                            toEnd, hi, hiInclusive);
1889:                }
1890:
1891:                public NavigableMap<K, V> tailMap(K fromKey, boolean inclusive) {
1892:                    if (!inRange(fromKey, inclusive))
1893:                        throw new IllegalArgumentException(
1894:                                "fromKey out of range");
1895:                    return new DescendingSubMap(m, fromStart, lo, loInclusive,
1896:                            false, fromKey, inclusive);
1897:                }
1898:
1899:                public NavigableMap<K, V> descendingMap() {
1900:                    NavigableMap<K, V> mv = descendingMapView;
1901:                    return (mv != null) ? mv
1902:                            : (descendingMapView = new AscendingSubMap(m,
1903:                                    fromStart, lo, loInclusive, toEnd, hi,
1904:                                    hiInclusive));
1905:                }
1906:
1907:                Iterator<K> keyIterator() {
1908:                    return new DescendingSubMapKeyIterator(absHighest(),
1909:                            absLowFence());
1910:                }
1911:
1912:                Iterator<K> descendingKeyIterator() {
1913:                    return new SubMapKeyIterator(absLowest(), absHighFence());
1914:                }
1915:
1916:                final class DescendingEntrySetView extends EntrySetView {
1917:                    public Iterator<Map.Entry<K, V>> iterator() {
1918:                        return new DescendingSubMapEntryIterator(absHighest(),
1919:                                absLowFence());
1920:                    }
1921:                }
1922:
1923:                public Set<Map.Entry<K, V>> entrySet() {
1924:                    EntrySetView es = entrySetView;
1925:                    return (es != null) ? es : new DescendingEntrySetView();
1926:                }
1927:
1928:                TreeMap.Entry<K, V> subLowest() {
1929:                    return absHighest();
1930:                }
1931:
1932:                TreeMap.Entry<K, V> subHighest() {
1933:                    return absLowest();
1934:                }
1935:
1936:                TreeMap.Entry<K, V> subCeiling(K key) {
1937:                    return absFloor(key);
1938:                }
1939:
1940:                TreeMap.Entry<K, V> subHigher(K key) {
1941:                    return absLower(key);
1942:                }
1943:
1944:                TreeMap.Entry<K, V> subFloor(K key) {
1945:                    return absCeiling(key);
1946:                }
1947:
1948:                TreeMap.Entry<K, V> subLower(K key) {
1949:                    return absHigher(key);
1950:                }
1951:            }
1952:
1953:            /**
1954:             * This class exists solely for the sake of serialization
1955:             * compatibility with previous releases of TreeMap that did not
1956:             * support NavigableMap.  It translates an old-version SubMap into
1957:             * a new-version AscendingSubMap. This class is never otherwise
1958:             * used.
1959:             *
1960:             * @serial include
1961:             */
1962:            private class SubMap extends AbstractMap<K, V> implements 
1963:                    SortedMap<K, V>, java.io.Serializable {
1964:                private static final long serialVersionUID = -6520786458950516097L;
1965:                private boolean fromStart = false, toEnd = false;
1966:                private K fromKey, toKey;
1967:
1968:                private Object readResolve() {
1969:                    return new AscendingSubMap(TreeMap.this , fromStart,
1970:                            fromKey, true, toEnd, toKey, false);
1971:                }
1972:
1973:                public Set<Map.Entry<K, V>> entrySet() {
1974:                    throw new InternalError();
1975:                }
1976:
1977:                public K lastKey() {
1978:                    throw new InternalError();
1979:                }
1980:
1981:                public K firstKey() {
1982:                    throw new InternalError();
1983:                }
1984:
1985:                public SortedMap<K, V> subMap(K fromKey, K toKey) {
1986:                    throw new InternalError();
1987:                }
1988:
1989:                public SortedMap<K, V> headMap(K toKey) {
1990:                    throw new InternalError();
1991:                }
1992:
1993:                public SortedMap<K, V> tailMap(K fromKey) {
1994:                    throw new InternalError();
1995:                }
1996:
1997:                public Comparator<? super  K> comparator() {
1998:                    throw new InternalError();
1999:                }
2000:            }
2001:
2002:            // Red-black mechanics
2003:
2004:            private static final boolean RED = false;
2005:            private static final boolean BLACK = true;
2006:
2007:            /**
2008:             * Node in the Tree.  Doubles as a means to pass key-value pairs back to
2009:             * user (see Map.Entry).
2010:             */
2011:
2012:            static final class Entry<K, V> implements  Map.Entry<K, V> {
2013:                K key;
2014:                V value;
2015:                Entry<K, V> left = null;
2016:                Entry<K, V> right = null;
2017:                Entry<K, V> parent;
2018:                boolean color = BLACK;
2019:
2020:                /**
2021:                 * Make a new cell with given key, value, and parent, and with
2022:                 * <tt>null</tt> child links, and BLACK color.
2023:                 */
2024:                Entry(K key, V value, Entry<K, V> parent) {
2025:                    this .key = key;
2026:                    this .value = value;
2027:                    this .parent = parent;
2028:                }
2029:
2030:                /**
2031:                 * Returns the key.
2032:                 *
2033:                 * @return the key
2034:                 */
2035:                public K getKey() {
2036:                    return key;
2037:                }
2038:
2039:                /**
2040:                 * Returns the value associated with the key.
2041:                 *
2042:                 * @return the value associated with the key
2043:                 */
2044:                public V getValue() {
2045:                    return value;
2046:                }
2047:
2048:                /**
2049:                 * Replaces the value currently associated with the key with the given
2050:                 * value.
2051:                 *
2052:                 * @return the value associated with the key before this method was
2053:                 *         called
2054:                 */
2055:                public V setValue(V value) {
2056:                    V oldValue = this .value;
2057:                    this .value = value;
2058:                    return oldValue;
2059:                }
2060:
2061:                public boolean equals(Object o) {
2062:                    if (!(o instanceof  Map.Entry))
2063:                        return false;
2064:                    Map.Entry<?, ?> e = (Map.Entry<?, ?>) o;
2065:
2066:                    return valEquals(key, e.getKey())
2067:                            && valEquals(value, e.getValue());
2068:                }
2069:
2070:                public int hashCode() {
2071:                    int keyHash = (key == null ? 0 : key.hashCode());
2072:                    int valueHash = (value == null ? 0 : value.hashCode());
2073:                    return keyHash ^ valueHash;
2074:                }
2075:
2076:                public String toString() {
2077:                    return key + "=" + value;
2078:                }
2079:            }
2080:
2081:            /**
2082:             * Returns the first Entry in the TreeMap (according to the TreeMap's
2083:             * key-sort function).  Returns null if the TreeMap is empty.
2084:             */
2085:            final Entry<K, V> getFirstEntry() {
2086:                Entry<K, V> p = root;
2087:                if (p != null)
2088:                    while (p.left != null)
2089:                        p = p.left;
2090:                return p;
2091:            }
2092:
2093:            /**
2094:             * Returns the last Entry in the TreeMap (according to the TreeMap's
2095:             * key-sort function).  Returns null if the TreeMap is empty.
2096:             */
2097:            final Entry<K, V> getLastEntry() {
2098:                Entry<K, V> p = root;
2099:                if (p != null)
2100:                    while (p.right != null)
2101:                        p = p.right;
2102:                return p;
2103:            }
2104:
2105:            /**
2106:             * Returns the successor of the specified Entry, or null if no such.
2107:             */
2108:            static <K, V> TreeMap.Entry<K, V> successor(Entry<K, V> t) {
2109:                if (t == null)
2110:                    return null;
2111:                else if (t.right != null) {
2112:                    Entry<K, V> p = t.right;
2113:                    while (p.left != null)
2114:                        p = p.left;
2115:                    return p;
2116:                } else {
2117:                    Entry<K, V> p = t.parent;
2118:                    Entry<K, V> ch = t;
2119:                    while (p != null && ch == p.right) {
2120:                        ch = p;
2121:                        p = p.parent;
2122:                    }
2123:                    return p;
2124:                }
2125:            }
2126:
2127:            /**
2128:             * Returns the predecessor of the specified Entry, or null if no such.
2129:             */
2130:            static <K, V> Entry<K, V> predecessor(Entry<K, V> t) {
2131:                if (t == null)
2132:                    return null;
2133:                else if (t.left != null) {
2134:                    Entry<K, V> p = t.left;
2135:                    while (p.right != null)
2136:                        p = p.right;
2137:                    return p;
2138:                } else {
2139:                    Entry<K, V> p = t.parent;
2140:                    Entry<K, V> ch = t;
2141:                    while (p != null && ch == p.left) {
2142:                        ch = p;
2143:                        p = p.parent;
2144:                    }
2145:                    return p;
2146:                }
2147:            }
2148:
2149:            /**
2150:             * Balancing operations.
2151:             *
2152:             * Implementations of rebalancings during insertion and deletion are
2153:             * slightly different than the CLR version.  Rather than using dummy
2154:             * nilnodes, we use a set of accessors that deal properly with null.  They
2155:             * are used to avoid messiness surrounding nullness checks in the main
2156:             * algorithms.
2157:             */
2158:
2159:            private static <K, V> boolean colorOf(Entry<K, V> p) {
2160:                return (p == null ? BLACK : p.color);
2161:            }
2162:
2163:            private static <K, V> Entry<K, V> parentOf(Entry<K, V> p) {
2164:                return (p == null ? null : p.parent);
2165:            }
2166:
2167:            private static <K, V> void setColor(Entry<K, V> p, boolean c) {
2168:                if (p != null)
2169:                    p.color = c;
2170:            }
2171:
2172:            private static <K, V> Entry<K, V> leftOf(Entry<K, V> p) {
2173:                return (p == null) ? null : p.left;
2174:            }
2175:
2176:            private static <K, V> Entry<K, V> rightOf(Entry<K, V> p) {
2177:                return (p == null) ? null : p.right;
2178:            }
2179:
2180:            /** From CLR */
2181:            private void rotateLeft(Entry<K, V> p) {
2182:                if (p != null) {
2183:                    Entry<K, V> r = p.right;
2184:                    p.right = r.left;
2185:                    if (r.left != null)
2186:                        r.left.parent = p;
2187:                    r.parent = p.parent;
2188:                    if (p.parent == null)
2189:                        root = r;
2190:                    else if (p.parent.left == p)
2191:                        p.parent.left = r;
2192:                    else
2193:                        p.parent.right = r;
2194:                    r.left = p;
2195:                    p.parent = r;
2196:                }
2197:            }
2198:
2199:            /** From CLR */
2200:            private void rotateRight(Entry<K, V> p) {
2201:                if (p != null) {
2202:                    Entry<K, V> l = p.left;
2203:                    p.left = l.right;
2204:                    if (l.right != null)
2205:                        l.right.parent = p;
2206:                    l.parent = p.parent;
2207:                    if (p.parent == null)
2208:                        root = l;
2209:                    else if (p.parent.right == p)
2210:                        p.parent.right = l;
2211:                    else
2212:                        p.parent.left = l;
2213:                    l.right = p;
2214:                    p.parent = l;
2215:                }
2216:            }
2217:
2218:            /** From CLR */
2219:            private void fixAfterInsertion(Entry<K, V> x) {
2220:                x.color = RED;
2221:
2222:                while (x != null && x != root && x.parent.color == RED) {
2223:                    if (parentOf(x) == leftOf(parentOf(parentOf(x)))) {
2224:                        Entry<K, V> y = rightOf(parentOf(parentOf(x)));
2225:                        if (colorOf(y) == RED) {
2226:                            setColor(parentOf(x), BLACK);
2227:                            setColor(y, BLACK);
2228:                            setColor(parentOf(parentOf(x)), RED);
2229:                            x = parentOf(parentOf(x));
2230:                        } else {
2231:                            if (x == rightOf(parentOf(x))) {
2232:                                x = parentOf(x);
2233:                                rotateLeft(x);
2234:                            }
2235:                            setColor(parentOf(x), BLACK);
2236:                            setColor(parentOf(parentOf(x)), RED);
2237:                            rotateRight(parentOf(parentOf(x)));
2238:                        }
2239:                    } else {
2240:                        Entry<K, V> y = leftOf(parentOf(parentOf(x)));
2241:                        if (colorOf(y) == RED) {
2242:                            setColor(parentOf(x), BLACK);
2243:                            setColor(y, BLACK);
2244:                            setColor(parentOf(parentOf(x)), RED);
2245:                            x = parentOf(parentOf(x));
2246:                        } else {
2247:                            if (x == leftOf(parentOf(x))) {
2248:                                x = parentOf(x);
2249:                                rotateRight(x);
2250:                            }
2251:                            setColor(parentOf(x), BLACK);
2252:                            setColor(parentOf(parentOf(x)), RED);
2253:                            rotateLeft(parentOf(parentOf(x)));
2254:                        }
2255:                    }
2256:                }
2257:                root.color = BLACK;
2258:            }
2259:
2260:            /**
2261:             * Delete node p, and then rebalance the tree.
2262:             */
2263:            private void deleteEntry(Entry<K, V> p) {
2264:                modCount++;
2265:                size--;
2266:
2267:                // If strictly internal, copy successor's element to p and then make p
2268:                // point to successor.
2269:                if (p.left != null && p.right != null) {
2270:                    Entry<K, V> s = successor(p);
2271:                    p.key = s.key;
2272:                    p.value = s.value;
2273:                    p = s;
2274:                } // p has 2 children
2275:
2276:                // Start fixup at replacement node, if it exists.
2277:                Entry<K, V> replacement = (p.left != null ? p.left : p.right);
2278:
2279:                if (replacement != null) {
2280:                    // Link replacement to parent
2281:                    replacement.parent = p.parent;
2282:                    if (p.parent == null)
2283:                        root = replacement;
2284:                    else if (p == p.parent.left)
2285:                        p.parent.left = replacement;
2286:                    else
2287:                        p.parent.right = replacement;
2288:
2289:                    // Null out links so they are OK to use by fixAfterDeletion.
2290:                    p.left = p.right = p.parent = null;
2291:
2292:                    // Fix replacement
2293:                    if (p.color == BLACK)
2294:                        fixAfterDeletion(replacement);
2295:                } else if (p.parent == null) { // return if we are the only node.
2296:                    root = null;
2297:                } else { //  No children. Use self as phantom replacement and unlink.
2298:                    if (p.color == BLACK)
2299:                        fixAfterDeletion(p);
2300:
2301:                    if (p.parent != null) {
2302:                        if (p == p.parent.left)
2303:                            p.parent.left = null;
2304:                        else if (p == p.parent.right)
2305:                            p.parent.right = null;
2306:                        p.parent = null;
2307:                    }
2308:                }
2309:            }
2310:
2311:            /** From CLR */
2312:            private void fixAfterDeletion(Entry<K, V> x) {
2313:                while (x != root && colorOf(x) == BLACK) {
2314:                    if (x == leftOf(parentOf(x))) {
2315:                        Entry<K, V> sib = rightOf(parentOf(x));
2316:
2317:                        if (colorOf(sib) == RED) {
2318:                            setColor(sib, BLACK);
2319:                            setColor(parentOf(x), RED);
2320:                            rotateLeft(parentOf(x));
2321:                            sib = rightOf(parentOf(x));
2322:                        }
2323:
2324:                        if (colorOf(leftOf(sib)) == BLACK
2325:                                && colorOf(rightOf(sib)) == BLACK) {
2326:                            setColor(sib, RED);
2327:                            x = parentOf(x);
2328:                        } else {
2329:                            if (colorOf(rightOf(sib)) == BLACK) {
2330:                                setColor(leftOf(sib), BLACK);
2331:                                setColor(sib, RED);
2332:                                rotateRight(sib);
2333:                                sib = rightOf(parentOf(x));
2334:                            }
2335:                            setColor(sib, colorOf(parentOf(x)));
2336:                            setColor(parentOf(x), BLACK);
2337:                            setColor(rightOf(sib), BLACK);
2338:                            rotateLeft(parentOf(x));
2339:                            x = root;
2340:                        }
2341:                    } else { // symmetric
2342:                        Entry<K, V> sib = leftOf(parentOf(x));
2343:
2344:                        if (colorOf(sib) == RED) {
2345:                            setColor(sib, BLACK);
2346:                            setColor(parentOf(x), RED);
2347:                            rotateRight(parentOf(x));
2348:                            sib = leftOf(parentOf(x));
2349:                        }
2350:
2351:                        if (colorOf(rightOf(sib)) == BLACK
2352:                                && colorOf(leftOf(sib)) == BLACK) {
2353:                            setColor(sib, RED);
2354:                            x = parentOf(x);
2355:                        } else {
2356:                            if (colorOf(leftOf(sib)) == BLACK) {
2357:                                setColor(rightOf(sib), BLACK);
2358:                                setColor(sib, RED);
2359:                                rotateLeft(sib);
2360:                                sib = leftOf(parentOf(x));
2361:                            }
2362:                            setColor(sib, colorOf(parentOf(x)));
2363:                            setColor(parentOf(x), BLACK);
2364:                            setColor(leftOf(sib), BLACK);
2365:                            rotateRight(parentOf(x));
2366:                            x = root;
2367:                        }
2368:                    }
2369:                }
2370:
2371:                setColor(x, BLACK);
2372:            }
2373:
2374:            private static final long serialVersionUID = 919286545866124006L;
2375:
2376:            /**
2377:             * Save the state of the <tt>TreeMap</tt> instance to a stream (i.e.,
2378:             * serialize it).
2379:             *
2380:             * @serialData The <i>size</i> of the TreeMap (the number of key-value
2381:             *             mappings) is emitted (int), followed by the key (Object)
2382:             *             and value (Object) for each key-value mapping represented
2383:             *             by the TreeMap. The key-value mappings are emitted in
2384:             *             key-order (as determined by the TreeMap's Comparator,
2385:             *             or by the keys' natural ordering if the TreeMap has no
2386:             *             Comparator).
2387:             */
2388:            private void writeObject(java.io.ObjectOutputStream s)
2389:                    throws java.io.IOException {
2390:                // Write out the Comparator and any hidden stuff
2391:                s.defaultWriteObject();
2392:
2393:                // Write out size (number of Mappings)
2394:                s.writeInt(size);
2395:
2396:                // Write out keys and values (alternating)
2397:                for (Iterator<Map.Entry<K, V>> i = entrySet().iterator(); i
2398:                        .hasNext();) {
2399:                    Map.Entry<K, V> e = i.next();
2400:                    s.writeObject(e.getKey());
2401:                    s.writeObject(e.getValue());
2402:                }
2403:            }
2404:
2405:            /**
2406:             * Reconstitute the <tt>TreeMap</tt> instance from a stream (i.e.,
2407:             * deserialize it).
2408:             */
2409:            private void readObject(final java.io.ObjectInputStream s)
2410:                    throws java.io.IOException, ClassNotFoundException {
2411:                // Read in the Comparator and any hidden stuff
2412:                s.defaultReadObject();
2413:
2414:                // Read in size
2415:                int size = s.readInt();
2416:
2417:                buildFromSorted(size, null, s, null);
2418:            }
2419:
2420:            /** Intended to be called only from TreeSet.readObject */
2421:            void readTreeSet(int size, java.io.ObjectInputStream s, V defaultVal)
2422:                    throws java.io.IOException, ClassNotFoundException {
2423:                buildFromSorted(size, null, s, defaultVal);
2424:            }
2425:
2426:            /** Intended to be called only from TreeSet.addAll */
2427:            void addAllForTreeSet(SortedSet<? extends K> set, V defaultVal) {
2428:                try {
2429:                    buildFromSorted(set.size(), set.iterator(), null,
2430:                            defaultVal);
2431:                } catch (java.io.IOException cannotHappen) {
2432:                } catch (ClassNotFoundException cannotHappen) {
2433:                }
2434:            }
2435:
2436:            /**
2437:             * Linear time tree building algorithm from sorted data.  Can accept keys
2438:             * and/or values from iterator or stream. This leads to too many
2439:             * parameters, but seems better than alternatives.  The four formats
2440:             * that this method accepts are:
2441:             *
2442:             *    1) An iterator of Map.Entries.  (it != null, defaultVal == null).
2443:             *    2) An iterator of keys.         (it != null, defaultVal != null).
2444:             *    3) A stream of alternating serialized keys and values.
2445:             *                                   (it == null, defaultVal == null).
2446:             *    4) A stream of serialized keys. (it == null, defaultVal != null).
2447:             *
2448:             * It is assumed that the comparator of the TreeMap is already set prior
2449:             * to calling this method.
2450:             *
2451:             * @param size the number of keys (or key-value pairs) to be read from
2452:             *        the iterator or stream
2453:             * @param it If non-null, new entries are created from entries
2454:             *        or keys read from this iterator.
2455:             * @param str If non-null, new entries are created from keys and
2456:             *        possibly values read from this stream in serialized form.
2457:             *        Exactly one of it and str should be non-null.
2458:             * @param defaultVal if non-null, this default value is used for
2459:             *        each value in the map.  If null, each value is read from
2460:             *        iterator or stream, as described above.
2461:             * @throws IOException propagated from stream reads. This cannot
2462:             *         occur if str is null.
2463:             * @throws ClassNotFoundException propagated from readObject.
2464:             *         This cannot occur if str is null.
2465:             */
2466:            private void buildFromSorted(int size, Iterator it,
2467:                    java.io.ObjectInputStream str, V defaultVal)
2468:                    throws java.io.IOException, ClassNotFoundException {
2469:                this .size = size;
2470:                root = buildFromSorted(0, 0, size - 1, computeRedLevel(size),
2471:                        it, str, defaultVal);
2472:            }
2473:
2474:            /**
2475:             * Recursive "helper method" that does the real work of the
2476:             * previous method.  Identically named parameters have
2477:             * identical definitions.  Additional parameters are documented below.
2478:             * It is assumed that the comparator and size fields of the TreeMap are
2479:             * already set prior to calling this method.  (It ignores both fields.)
2480:             *
2481:             * @param level the current level of tree. Initial call should be 0.
2482:             * @param lo the first element index of this subtree. Initial should be 0.
2483:             * @param hi the last element index of this subtree.  Initial should be
2484:             *        size-1.
2485:             * @param redLevel the level at which nodes should be red.
2486:             *        Must be equal to computeRedLevel for tree of this size.
2487:             */
2488:            private final Entry<K, V> buildFromSorted(int level, int lo,
2489:                    int hi, int redLevel, Iterator it,
2490:                    java.io.ObjectInputStream str, V defaultVal)
2491:                    throws java.io.IOException, ClassNotFoundException {
2492:                /*
2493:                 * Strategy: The root is the middlemost element. To get to it, we
2494:                 * have to first recursively construct the entire left subtree,
2495:                 * so as to grab all of its elements. We can then proceed with right
2496:                 * subtree.
2497:                 *
2498:                 * The lo and hi arguments are the minimum and maximum
2499:                 * indices to pull out of the iterator or stream for current subtree.
2500:                 * They are not actually indexed, we just proceed sequentially,
2501:                 * ensuring that items are extracted in corresponding order.
2502:                 */
2503:
2504:                if (hi < lo)
2505:                    return null;
2506:
2507:                int mid = (lo + hi) >>> 1;
2508:
2509:                Entry<K, V> left = null;
2510:                if (lo < mid)
2511:                    left = buildFromSorted(level + 1, lo, mid - 1, redLevel,
2512:                            it, str, defaultVal);
2513:
2514:                // extract key and/or value from iterator or stream
2515:                K key;
2516:                V value;
2517:                if (it != null) {
2518:                    if (defaultVal == null) {
2519:                        Map.Entry<K, V> entry = (Map.Entry<K, V>) it.next();
2520:                        key = entry.getKey();
2521:                        value = entry.getValue();
2522:                    } else {
2523:                        key = (K) it.next();
2524:                        value = defaultVal;
2525:                    }
2526:                } else { // use stream
2527:                    key = (K) str.readObject();
2528:                    value = (defaultVal != null ? defaultVal : (V) str
2529:                            .readObject());
2530:                }
2531:
2532:                Entry<K, V> middle = new Entry<K, V>(key, value, null);
2533:
2534:                // color nodes in non-full bottommost level red
2535:                if (level == redLevel)
2536:                    middle.color = RED;
2537:
2538:                if (left != null) {
2539:                    middle.left = left;
2540:                    left.parent = middle;
2541:                }
2542:
2543:                if (mid < hi) {
2544:                    Entry<K, V> right = buildFromSorted(level + 1, mid + 1, hi,
2545:                            redLevel, it, str, defaultVal);
2546:                    middle.right = right;
2547:                    right.parent = middle;
2548:                }
2549:
2550:                return middle;
2551:            }
2552:
2553:            /**
2554:             * Find the level down to which to assign all nodes BLACK.  This is the
2555:             * last `full' level of the complete binary tree produced by
2556:             * buildTree. The remaining nodes are colored RED. (This makes a `nice'
2557:             * set of color assignments wrt future insertions.) This level number is
2558:             * computed by finding the number of splits needed to reach the zeroeth
2559:             * node.  (The answer is ~lg(N), but in any case must be computed by same
2560:             * quick O(lg(N)) loop.)
2561:             */
2562:            private static int computeRedLevel(int sz) {
2563:                int level = 0;
2564:                for (int m = sz - 1; m >= 0; m = m / 2 - 1)
2565:                    level++;
2566:                return level;
2567:            }
2568:        }
ww__w__.___j___a__v__a___2___s_._com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.