
P U B L I S H I N G

community experience dist i l led

Nginx HTTP Server

Clément Nedelcu

Chapter No.3

"Basic Nginx Configuration"

In this package, you will find:
A Biography of the author of the book

A preview chapter from the book, Chapter NO.3 "Basic Nginx Configuration"

A synopsis of the book’s content

Information on where to buy this book

About the Author
Clément Nedelcu was born and raised in France, and studied in U.K., French, and

Chinese universities. He is now a computer science teacher at Jiangsu University of

Science and Technology in Zhenjiang, a southwestern city of China. He also works as

technology consultant in France, specialized in web and Microsoft .NET development as

well as Linux server administration. Since 2005, he has been administering a major

network of websites in his spare time. This eventually led him to discover Nginx: it made

such a difference that he started his own blog about it. One thing leading to another…

The author's blog can be visited at http://cnedelcu.net and contains articles about

Nginx and other web development topics.

I would like to express my gratitude to my girlfriend, my family and my friends who

have been very supportive all along the writing stage. This book is dedicated to Martin

Fjordvald for originally directing me to Nginx when my servers were about to kick the

bucket. Special thanks to Maxim Dounin, Jérémie Bertrand, Shaun James, Zhang Yichun,

Brendan, and all the folks on the #Nginx IRC channel on Freenode.

For More Information:
www.PacktPub.com/nginx-http-server-for-web-applications/book

https://www.packtpub.com/nginx-http-server-for-web-applications/book

Nginx HTTP Server
It is a well-known fact that the market of web servers has a long-established leader:

Apache. According to recent surveys, as of October 2009 over 45 percent of the World

Wide Web is served by this fifteen years old open source application. However, for the

past few months the same reports reveal the rise of a new competitor: Nginx, a

lightweight HTTP server originating from Russia— pronounced "engine X". There have

been many interrogations surrounding the pronounced newborn. Why has the

blogosphere become so effervescent about it? What is the reason causing so many server

administrators to switch to Nginx since the beginning of year 2009? Is this apparently

tiny piece of software mature enough to run my high-traffic website?

To begin with, Nginx is not as young as one might think. Originally started in 2002, the

project was first carried out by a standalone developer, Igor Sysoev, for the needs of an

extremely high-traffic Russian website, namely Rambler, which received as of September

2008 over 500 million HTTP requests per day. The application is now used to serve some

of the most popular websites on the Web such as WordPress, Hulu, SourceForge, and

many more. Nginx has proven to be a very efficient, lightweight yet powerful web server.

Along the chapters of this book, you will discover the many features of Nginx and

progressively understand why so many administrators have decided to place their trust in

this new HTTP server, often at the expense of Apache.

There are many aspects in which Nginx is more efficient than its competitors. First and

foremost, speed. Making use of asynchronous sockets, Nginx does not spawn as many

times as it receives requests. One process per core suffices to handle thousands of

connections, allowing for a much lighter CPU load and memory consumption. Secondly,

ease of use—configuration fi les are much simpler to read and tweak than with other web

server solutions such as Apache. A couple of lines are enough to set up a complete virtual

host configuration. Last but not least, modularity. Not only is Nginx a completely open

source project released under a BSD-like license, but it also comes with a powerful plug-

in system—referred to as "modules". A large variety of modules are included with the

original distribution archive, and many third-party ones can be downloaded online. All in

all, Nginx combines speed, efficiency, and power, providing you the perfect ingredients

for a successful web server; it appears to be the best Apache alternative as of today.

Although Nginx is available for Windows since version 0.7.52, it is common knowledge

that Linux distributions are preferred for hosting production sites. During the various

processes described in this book, we will thus assume that you are hosting your website

on a Linux operating system such as Debian, Fedora, CentOS, Mandriva, or other well-

known distributions.

For More Information:
www.PacktPub.com/nginx-http-server-for-web-applications/book

https://www.packtpub.com/nginx-http-server-for-web-applications/book

What This Book Covers
Chapter 1, Preparing your Work Environment provides a basic approach of the Linux

command-line environment that we will be using throughout this book.

Chapter 2, Downloading and Installing Nginx guides you through the setup process, by

downloading and installing Nginx as well as its prerequisites.

Chapter 3, Basic Nginx Configuration helps you discover the fundamentals of Nginx

configuration and set up the Core module.

Chapter 4, HTTP Configuration details the HTTP Core module which contains most of

the major configuration sections and directives.

Chapter 5, Module Configuration helps you discover the many first-party modules of

Nginx among which are the Rewrite and the SSI modules.

Chapter 6, PHP and Python with Nginx explains how to set up PHP and other third-party

applications (if you are interested in serving dynamic websites) to work together with

Nginx via FastCGI.

Chapter 7, Apache and Nginx Together teaches you to set up Nginx as reverse proxy

server working together with Apache.

Chapter 8, From Apache to Nginx provides a detailed guide to switching from Apache to

Nginx.

Appendix A, Directive Index lists and describes all configuration directives, sorted

alphabetically. Module directives are also described in their respective chapters too.

Appendix B, Module reference lists available modules.

Appendix C, Troubleshooting discusses the most common issues that administrators face

when they configure Nginx

For More Information:
www.PacktPub.com/nginx-http-server-for-web-applications/book

https://www.packtpub.com/nginx-http-server-for-web-applications/book

Basic Nginx Configuration
In this chapter, we will begin to establish an appropriate confi guration for the web
server. For this purpose, we fi rst need to approach the topic of syntax in use in the
confi guration fi les. Then we need to understand the various directives that will let
you optimize your server for different traffi c patterns and hardware setups. Finally,
create some test pages to make sure that everything has been done correctly and that
the confi guration is valid. We will only approach the basic confi guration directives
here; the next chapters will detail more advanced topics such as HTTP module
confi guration and usage, creating virtual hosts, and more.

This chapter covers:

Presentation of the confi guration syntax
Basic confi guration directives
Establishing an appropriate confi guration for your profi le
Serving a test website
Testing and maintaining your server

Configuration file syntax
 A confi guration fi le is generally a text fi le that is edited by the administrator and
parsed by a program. By specifying a set of values, you defi ne the behavior of the
program. In Linux-based operating systems, a large share of applications rely on
vast, complex confi guration fi les, which often turn out to be a nightmare to manage.
Apache, PHP, MySQL, Qmail, and Bind—all these names bring up bad memories.
The fact is that all these applications use their own confi guration fi le with different
syntaxes and styles. PHP works with a Windows-style .ini fi le, sendmail uses the
M4 macro-processor to compile confi guration fi les, Zabbix pulls its confi guration from
a MySQL database, and so on. There is, unfortunately, no well-established standard.
The same applies to Nginx—you will be required to study a new syntax with its own
particularities, its own vocabulary.

•

•

•

•

•

For More Information:
www.PacktPub.com/nginx-http-server-for-web-applications/book

https://www.packtpub.com/nginx-http-server-for-web-applications/book

Basic Nginx Confi guration

[80]

On the other hand (and this is one of its advantages), confi guring Nginx turns out to
be rather simple—at least in comparison to Apache or other mainstream web servers.
There are only a few mechanisms that need to be mastered—directives, blocks, and
the overall logical structure. Most of the actual confi guration process will consist of
writing values for directives.

Configuration Directives
 The Nginx confi guration fi le can be described as a list of directives organized in a
logical structure. The entire behavior of the application is defi ned by the values that
you give to those directives.

By default, Nginx makes use of one main confi guration fi le. The path of this fi le was
defi ned in the steps described in Chapter 2, Downloading and Installing Nginx under
the Build confi guration section. If you did not edit the confi guration fi le path and
prefi x options, it should be located at /usr/local/nginx/conf/nginx.conf.
Now let's take a quick peek at the fi rst few lines of this initial setup.

A closer look at the fi rst two lines:

#user nobody;
worker_processes 1;

As you can probably make out from the # character, the fi rst line is a comment. In
other words, a piece of text that is not interpreted and has no value whatsoever; its
sole purpose is to be read by whoever opens the fi le. You may use the # character at
the beginning of a line or following a directive.

For More Information:
www.PacktPub.com/nginx-http-server-for-web-applications/book

https://www.packtpub.com/nginx-http-server-for-web-applications/book

Chapter 3

[81]

T he second line is an actual statement—a directive. The fi rst bit (worker_processes)
represents a setting key to which you append one or more values. In this case, the
value is 1, indicating that Nginx should function with a single worker process
(more information about this particular directive is given in further sections).

Directives always end with a semicolon (';').

Each directive has a special meaning and defi nes a particular feature of the
application. It may also have a particular syntax. For example, the worker_process
directive only accepts one numeric value, whereas the user directive lets you specify
up to two character strings—one for the user account (the Nginx worker processes
should run as) and a second one for the user group.

 Nginx works in a modular way, and as such, each module comes with a specifi c set
of directives. The most fundamental directives are part of the Nginx Core module and
will be detailed in this chapter. As for other directives brought in by other modules,
they will be explored in later chapters.

Organization and inclusions
I n the preceding screenshot, you may have noticed a particular d irective—include.

include mime.types;

As the name suggests, this directive will perform an inclusion of the specifi ed fi le. In
other words, the contents of the fi le will be inserted at this exact location. Here is a
practical example that will help you understand.

nginx.conf:

user nginx nginx;
worker_processes 4;
include other_settings.conf;

other_settings.conf:

error_log logs/error.log;
pid logs/nginx.pid;

Final result, as interpreted by Nginx, is as follows:

user nginx nginx;
worker_processes 4;
error_log logs/error.log;
pid logs/nginx.pid;

For More Information:
www.PacktPub.com/nginx-http-server-for-web-applications/book

https://www.packtpub.com/nginx-http-server-for-web-applications/book

Basic Nginx Confi guration

[82]

Inclusions are processed recursively. In this case, you have the possibility to use the
include directive again in the other_settings.conf fi le in order to include yet
another fi le.

In the initial confi guration setup, there are two fi les at use—nginx.conf and
mime.types. However, in the case of a more advanced confi guration, there
may be fi ve or more fi les, as described in the table below.

Standard name Description
nginx.conf Base confi guration of the application
mime.types A list of fi le extensions and their associated MIME types
fastcgi.conf FastCGI-related confi guration
proxy.conf Proxy-related confi guration

sites.conf Confi guration of the websites served by Nginx, also
known as virtual hosts. It's recommended to create
separate fi les for each domain.

These fi lenames were defi ned conventionally; nothing actually prevents you
from regrouping your FastCGI and proxy settings into a common fi le named
proxy_and_fastcgi_config.conf.

 Note that the include directive supports fi lename globbing, in other words, fi lenames
with the * wildcard, where * may match zero, one, or more consecutive characters:

include sites/*.conf;

This will include all fi les with a name that ends with .conf in the sites folder. This
mechanism allows you to create a separate fi le for each of your websites and include
them all at once.

Be careful when including a fi le—if the specifi ed fi le does not exist, the confi guration
checks will fail and Nginx will not start:

[alex@example sbin]# ./nginx -t

[emerg]: open() "/usr/local/nginx/conf/dummyfile.conf" failed (2: No
such file or directory) in /usr/local/nginx/conf/nginx.conf:48

The previous statement is not true for inclusions with wildcards. Moreover, if you
insert include dummy*.conf in your confi guration and test it (whether there is any
fi le matching this pattern on your system or not), here is what should happen:

[alex@example sbin]# ./nginx –t

the configuration file /usr/local/nginx/conf/nginx.conf syntax is ok
configuration file /usr/local/nginx/conf/nginx.conf test is successful

For More Information:
www.PacktPub.com/nginx-http-server-for-web-applications/book

https://www.packtpub.com/nginx-http-server-for-web-applications/book

Chapter 3

[83]

Directive blocks
 Directives are brought in by modules—if you activate a new module, a specifi c set
of directives becomes available. Modules may also enable directive blocks, which
allow for a logical construction of the confi guration.

events {
 worker_connections 1024;
}

The events block that you can fi nd in the default confi guration fi le is brought in by
the Events module. The directives that the module enables can only be used within
that block—in the preceding example, worker_connections will only make sense
in the context of the events block. There is one important exception though—some
directives may be placed at the root of the confi guration fi le because they have a
global effect on the server. The root of the confi guration fi le is also known as the
main block.

This chapter will detail blocks and directives available in the Core
modules—modules that are necessary for the smooth functioning of
the server. Optional modules (whether they are enabled by default
or not) are discussed in later chapters.

Note that in some cases, blocks can be nested into each other, following a
specifi c logic:

http {
 server {
 listen 80;
 server_name example.com;
 access_log /var/log/nginx/example.com.log;
 location ^~ /admin/ {
 index index.php;
 }
 }
}

 This example shows how to confi gure Nginx to serve a website, as you can tell from
the http block (as opposed to, say, imap, if you want to make use of the mail server
proxy features).

Within the http block, you may declare one or more server blocks. A server block
allows you to confi gure a virtual host. The server block , in this example, contains
some confi guration that applies to all requests with a Host HTTP header exactly
matching example.com.

For More Information:
www.PacktPub.com/nginx-http-server-for-web-applications/book

https://www.packtpub.com/nginx-http-server-for-web-applications/book

Basic Nginx Confi guration

[84]

Within this server block, you may insert one or more location blocks. These allow
you to enable settings only when the requested URI matches the specifi ed path. More
information is provided in Chapter 4, HTTP Confi guration the Location Block section.

Last but not least, confi guration is inherited within children blocks. The access_log
directive (defi ned at the server block level in this example) specifi es that all HTTP
requests for this server should be logged into a text fi le. This is still true within the
location child block, although you have the possibility to disable it by reusing the
access_log directive:

[…]
 location ^~ /admin/ {
 index index.php;
 access_log off;
 }
[…]

In this case, logging will be enabled everywhere on the website, except for the
/admin/ location path. The value set for the access_log directive at the server
block level is overridden by the one at the location block level.

Advanced language rules
 There are a number of important observations regarding the Nginx confi guration fi le
syntax. These will help you understand certain syntax rules that may seem confusing
if you have never worked with Nginx before.

Directives accept specific syntaxes
 You may indeed stumble upon complex syntaxes that can be confusing at fi rst sight.

rewrite ^/(.*)\.(png|jpg|gif)$ /image.php? file=$1&format=$2 last;

Syntaxes are directive-specifi c. While the listen directive may only accept a port
number to open a listening socket, the location block or the rewrite directive
support complex expressions in order to match particular patterns. Syntaxes
will be explained along with directives in their respective chapters.

For More Information:
www.PacktPub.com/nginx-http-server-for-web-applications/book

https://www.packtpub.com/nginx-http-server-for-web-applications/book

Chapter 3

[85]

Later on, we will approach a module (the Rewrite module) that allows for a much
more advanced logical structure through the if, set, break, and return directives
and the use of variables. With all these new elements, confi guration fi les will begin
to look like programming scripts. Anyhow, the more modules we discover, the richer
the syntax becomes.

Diminutives in directive values
 Finally, you may use the following diminutives for specifying a fi le size in the
context of a directive value:

k or K: Kilobytes
m or M: Megabytes

As a result, the following two syntaxes are correct and equal:

client_max_body_size 2M;
client_max_body_size 2048k;

Additionally, when specifying a time value, you may use the following shortcuts:

ms: Milliseconds
s: Seconds
m: Minutes
h: Hours
d: Days
w: Weeks
M: Months (30 days)
y: Years (365 days)

 This becomes especially useful in the case of directives accepting a period of time as
a value:

client_body_timeout 3m;
client_body_timeout 180s;
client_body_timeout 180;

Note that the default time unit is seconds; the last two lines above thus result in an
identical behavior.

•

•

•

•

•

•

•

•

•

•

For More Information:
www.PacktPub.com/nginx-http-server-for-web-applications/book

https://www.packtpub.com/nginx-http-server-for-web-applications/book

Basic Nginx Confi guration

[86]

Variables
 Modules also provide variables that can be used in the defi nition of directive values.
For example, the Nginx HTTP Core module defi nes the $nginx_version variable.
When setting the log_format directive, you may include all kinds of variables in
the format string:

[…]
location ^~ /admin/ {
 access_log logs/main.log;
 log_format main '$pid - $nginx_version - $remote_addr';
}
[…]

Note that some directives do not allow you to use variables:

error_log logs/error-$nginx_version.log;

This is a valid confi guration directive. However, it simply generates a fi le named
error-$nginx_version.log, without parsing the variable.

String values
 Character strings that you use as directive values can be written in three forms. First,
you may enter the value without quotes:

root /home/example.com/www;

However, if you want to use a particular character, such as a blank space (" "), a
semicolon (;), or curly brace ({ and }), you will need to enclose the value in single
or double quotes:

root '/home/example.com/my web pages';

 Nginx makes no difference whether you use single or double quotes.

Base module directives
In this section, we will take a closer look at the base modules. We are particularly
interested in answering two questions—what are base modules and what directives
are made available.

For More Information:
www.PacktPub.com/nginx-http-server-for-web-applications/book

https://www.packtpub.com/nginx-http-server-for-web-applications/book

Chapter 3

[87]

What are base modules?
 The base modules offer directives that allow you to defi ne parameters of the
basic functionality of Nginx. They cannot be disabled at compile time; as a result,
the directives and blocks they offer are always available. Three base modules
are distinguished:

Core module: Essential features and directives such as process management
and security
Events module: It lets you confi gure the inner mechanisms of the
networking capabilities
Confi guration module: Enables the inclusion mechanism

These modules offer a large range of directives; we will be detailing them
individually with their syntaxes and default values.

Nginx process architecture
 Before we start detailing the basic confi guration directives, it's necessary to
understand the process architecture, that is, how Nginx works behind the scenes.
Although the application comes as a simple binary fi le, (apparently lightweight
background process) the way it functions at runtime is rather intricate.

•

•

•

For More Information:
www.PacktPub.com/nginx-http-server-for-web-applications/book

https://www.packtpub.com/nginx-http-server-for-web-applications/book

Basic Nginx Confi guration

[88]

At the very moment of starting Nginx, one unique process exists in memory—the
M aster Process. It is launched with the current user and group permissions—usually
root/root if the service is launched at boot time by an init script. The master
process itself does not process any client request; instead, it spawns processes that
do—the W orker Processes, which are affected to a customizable user and group.
From the confi guration fi le, you are able to defi ne the amount of worker processes,
the maximum connections per worker process, and more.

Core module directives
Be low is the list of directives made available by the Core module. Most of these
directives must be placed at the root of the confi guration fi le and can only be used
once. However, some of them are valid in multiple contexts. If that is the case, the list
of valid contexts is mentioned below the directive name.root of the confi guration
fi le and can only be used once.

Name and context Syntax and description
daemon Accepted values: on or off

Syntax:
daemon on;

Default value: on
Enables or disables daemon mode. If you disable it, the program
will not be started in the background; it will stay in the foreground
when launched from the shell.

For More Information:
www.PacktPub.com/nginx-http-server-for-web-applications/book

https://www.packtpub.com/nginx-http-server-for-web-applications/book

Chapter 3

[89]

Name and context Syntax and description
debug_points Accepted values: stop or abort

Syntax:
debug_points stop;

Default value: None.
Activates debug points in Nginx. Use stop to interrupt the
application when a debug point comes about in order to attach a
debugger. Use abort to abort the debug point and create a core
dump fi le.
To disable this option, simply do not use the directive.

env Syntax:
env MY_VARIABLE;

env MY_VARIABLE=my_value;

Lets you (re)defi ne environment variables.
error_log

Context: main,
http, server,
and location

Syntax:
error_log /file/path level;

Default value: logs/error.log error.
Where level is one of the following values: debug, info, notice,
warn, error, and crit (from most to least detailed: debug
provides frequent log entries, crit only reports critical errors).
Enables error logging at different levels: Application, HTTP server,
virtual host, and virtual host directory.
By redirecting the log output to /dev/null, you can disable
error logging. Use the following directive at the root of the
confi guration fi le:

error_log /dev/null crit;

lock_file Syntax: File path
lock_file logs/nginx.lock;

Default value: Defi ned at compile time
Use a lock fi le for mutual exclusion. Disabled by default, unless
you enabled it at compile time.

log_not_found

Context: main,
http, server, and
location

Accepted values: on or off
log_not_found on;

Default value: on
Enables or disables logging of 404 not found HTTP errors. If your
logs get fi lled with 404 errors due to missing favicon.ico or
robots.txt fi les, you might want to turn this off.

For More Information:
www.PacktPub.com/nginx-http-server-for-web-applications/book

https://www.packtpub.com/nginx-http-server-for-web-applications/book

Basic Nginx Confi guration

[90]

Name and context Syntax and description
master_process Accepted values: on or off

master_process on;

Default value: on
If enabled, Nginx will start multiple processes: A main process
(the master process) and worker processes. If disabled, Nginx
works with a unique process. This directive should be used for
testing purposes only as it disables the master process—clients
thus cannot connect to your server.

pid Syntax: File path
pid logs/nginx.pid;

Default value: Defi ned at compile time.
Path of the pid fi le for the Nginx daemon. The default value can be
confi gured at compile time.

ssl_engine Syntax: Character string
ssl_engine enginename;

Default value: None
Where enginename is the name of an available hardware SSL
accelerator on your system. To check for available hardware SSL
accelerators, run this command from the shell:
openssl engine –t

thread_stack_
size

Syntax: Numeric (size)
thread_stack_size 1m;

Default value: None
Defi nes the size of thread stack; please refer to the
worker_threads directive below

timer_
resolution

Syntax: Numeric (time)
timer_resolution 100ms;

Default value: None
Controls the interval between system calls to gettimeofday()
to synchronize the internal clock. If this value is not specifi ed, the
clock is refreshed after each kernel event notifi cation.

For More Information:
www.PacktPub.com/nginx-http-server-for-web-applications/book

https://www.packtpub.com/nginx-http-server-for-web-applications/book

Chapter 3

[91]

Name and context Syntax and description
user Syntax:

user username groupname;

user username;

Default value: Defi ned at compile time. If still undefi ned, the user
and group of the Nginx master process are used.
Lets you defi ne the user account and optionally the user group
used for starting the Nginx worker processes.

worker_threads Syntax: Numeric
worker_threads 8;

Default value: None
Defi nes the amount of threads per worker process.
Warning! Threads are disabled by default. The author stated that
"the code is currently broken".

worker_cpu_
affinity

Syntax:
worker_cpu_affinity 1000 0100 0010 0001;

worker_cpu_affinity 10 10 01 01;

worker_cpu_affinity;

Default value: None
This directive works in conjunction with worker_processes. It
lets you affect worker processes to CPU cores.
There are as many series of digit blocks as worker processes; there
are as many digits in a block as your CPU has cores.
If you confi gure Nginx to use three worker processes, there
are three blocks of digits. For a dual-core CPU, each block has
two digits.

worker_cpu_affinity 01 01 10;

The fi rst block (01) indicates that the fi rst worker process should be
affected to the second core.
The second block (01) indicates that the second worker process
should be affected to the second core.
The third block (10) indicates that the third worker process should
be affected to the fi rst core.
Note that affi nity is only recommended for multi-core CPUs, not
for processors with hyper-treading or similar technologies.

For More Information:
www.PacktPub.com/nginx-http-server-for-web-applications/book

https://www.packtpub.com/nginx-http-server-for-web-applications/book

Basic Nginx Confi guration

[92]

Name and context Syntax and description
worker_priority Syntax: Numeric

worker_priority 0;

Default value: 0
Defi nes the priority of the worker processes, from -20 (highest)
to 19 (lowest). The default value is 0. Note that kernel processes
run at priority level -5, so it's not recommended that you set the
priority to -5 or less.

worker_
processes

Syntax: Numeric
worker_processes 4;

Default value: 1
Defi nes the amount of worker processes. Nginx offers to separate
the treatment of requests into multiple processes. The default value
is 1, but it's recommended to increase this value if your CPU has
more than one core.
Besides, if a process gets blocked due to slow I/O operations,
incoming requests can be delegated to the other worker processes.

worker_rlimit_
core

Syntax: Numeric (size)
worker_rlimit_core 100m;

Default value: None
Defi nes the size of core fi les per worker process.

worker_rlimit_
nofile

Syntax: Numeric
worker_rlimit_nofile 10000;

Default value: None
Defi nes the amount of fi les a worker process may use
simultaneously.

worker_rlimit_
sigpending

Syntax: Numeric
worker_rlimit_sigpending 10000;

Default value: None
Defi nes the amount of signals that can be queued per user (user ID
of the calling process). If the queue is full, signals are ignored past
this limit.

working_
directory

Syntax: Directory path
working_directory /usr/local/nginx/;

Default value: The prefi x switch defi ned at compile time.
Working directory used for worker processes; only used to defi ne
the location of core fi les. The worker process user account (user
directive) must have write permissions on this folder in order to be
able to write core fi les.

For More Information:
www.PacktPub.com/nginx-http-server-for-web-applications/book

https://www.packtpub.com/nginx-http-server-for-web-applications/book

Chapter 3

[93]

Events module
 The Events module comes with directives that allow you to confi gure network
mechanisms. Some of the parameters have an important impact on the
application's performance.

All of the directives listed below must be placed in the events block, which is
located at the root of the confi guration fi le:

user nginx nginx;
master_process on;
worker_processes 4;
events {
 worker_connections 1024;
 use epoll;
}
[...]

These directives cannot be placed elsewhere (if you do so, the confi guration test
will fail).

Directive name Syntax and description
accept_mutex Accepted values: on or off

accept_mutex on;

Default value: on
Enables or disables the use of an accept mutex (mutual exclusion)
to open listening sockets.

accept_mutex_
delay

Syntax: Numeric (time)
accept_mutex_delay 500ms;

Default value: 500 milliseconds
Defi nes the amount of time a worker process should wait before
trying to acquire the resource again. This value is not used if the
accept_mutex directive is set to off.

connections Replaced by worker_connections. This directive is now
deprecated.

For More Information:
www.PacktPub.com/nginx-http-server-for-web-applications/book

https://www.packtpub.com/nginx-http-server-for-web-applications/book

Basic Nginx Confi guration

[94]

Directive name Syntax and description
debug_connection Syntax: IP address or CIDR block.

debug_connection 172.63.155.21;

debug_connection 172.63.155.0/24;

Default value: None.
Writes detailed logs for clients matching this IP address or address
block. The debug information is stored in the fi le specifi ed with the
error_log directive, enabled with the debug level.
Note: Nginx must be compiled with the --debug switch in order
to enable this feature.

multi_accept Syntax: on or off
multi_accept off;

Default value: off
Defi nes whether or not Nginx should accept all incoming
connections from the listening queue at once.

use Accepted values: /dev/poll, epoll, eventport,
kqueue, rtsig, or select

use kqueue;

Default value: Defi ned at compile time
Selects the event model among the available ones (the ones that
you enabled at compile time), though Nginx automatically selects
the most appropriate one.
The supported models are:

select: The default and standard module, it is used if
the OS does not support a more effi cient one (it's the only
available method under Windows)
poll: It is automatically preferred over select, but not
available on all systems
kqueue: An effi cient method for FreeBSD 4.1+, OpenBSD
2.9+, NetBSD 2.0, and MacOS X operating systems
epoll: An effi cient method for Linux 2.6+ based
operating systems
rtsig: Real time signals, available as of Linux 2.2.19,
but unsuited for high-traffi c profi les as default system
settings only allow 1,024 queued signals
/dev/poll: An effi cient method for Solaris 7 11/99+,
HP/UX 11.22+, IRIX 6.5.15+, and Tru64 UNIX 5.1A+
operating systems
eventport: An effi cient method for Solaris 10, though a
security patch is required

•

•

•

•

•

•

•

For More Information:
www.PacktPub.com/nginx-http-server-for-web-applications/book

https://www.packtpub.com/nginx-http-server-for-web-applications/book

Chapter 3

[95]

Directive name Syntax and description
worker_
connections

Syntax: Numeric
worker_connections 1024;

Default value: None
Defi nes the amount of connections that a worker process may
treat simultaneously.

Configuration module
 The Nginx Confi guration module is a simple module enabling fi le inclusions with
the include directive, as previously described in the Organization and inclusions
section. The directive can be inserted anywhere in the confi guration fi le and
accepts a single parameter—the fi le's path.

include /file/path.conf;
include sites/*.conf;

Note that if you do not specify an absolute path, the fi le path is relative to the
confi guration directory. By default, include sites/example.conf will include
the following fi le:

/usr/local/nginx/conf/sites/example.conf.

A configuration for your profile
Following this long list of directives from the base modules, we can begin to envision
a fi rst confi guration adapted to your profi le in terms of targeted traffi c and, more
importantly, to your hardware. In this section, we will fi rst take a closer look at the
default confi guration fi le to understand the implications of each setting.

Understanding the default configuration
 There is a reason why Nginx stands apart from other web servers—it's extremely
lightweight, optimized, and to put it simply, fast. As such, the default confi guration
is effi cient, and in many cases, you will not need to apply radical changes to the
initial setup.

For More Information:
www.PacktPub.com/nginx-http-server-for-web-applications/book

https://www.packtpub.com/nginx-http-server-for-web-applications/book

Basic Nginx Confi guration

[96]

We will study the default confi guration by opening up the main confi guration fi le
nginx.conf, although you will fi nd this fi le to be almost empty. The reason lies in
the fact that when a directive does not appear in the confi guration fi le, the default
value is employed. We will thus consider the default values here as well as the
directives found in the original setup.

user root root;
worker_processes 1;
worker_priority 0;
error_log logs/error.log error;
log_not_found on;
events {
 accept_mutex on;
 accept_mutex_delay 500ms;
 multi_accept off;
 worker_connections 1024;
}

While this confi guration may work out of the box, there are some issues you need
to address right away.

Necessary adjustments
 We will review some of the confi guration directives that need immediate changing
and the possible values you may set:

user root root;

This directive specifi es that the worker processes will be started as root.
It is dangerous for security as it grants full permissions over the fi lesystem.
You need to create a new user account on your system and make use of
it here. Refer to Chapter 1, Preparing your Work Environment, the User and group
management section for more information on creating users and groups.
Recommended value (granted that you created an nginx user account
and group on the system beforehand): user nginx nginx;
worker_processes 1;

With this setting, only one worker process will be started, which implies
that all requests will be processed by a unique execution fl ow (the current
version of Nginx is not multi-threaded, by choice). This also implies that
the execution is delegated to only one core of your CPU. It is highly
recommended to increase this value; you should have at least one process
per CPU core. Recommended value (granted your server is powered by a
quad-core CPU): worker_processes 4;

•

•

For More Information:
www.PacktPub.com/nginx-http-server-for-web-applications/book

https://www.packtpub.com/nginx-http-server-for-web-applications/book

Chapter 3

[97]

worker_priority 0;

By default, the worker processes are started with a regular priority. If your
system performs other tasks simultaneously, you might want to grant a
higher priority to the Nginx worker processes. In this case, you should
decrease the value—the smaller the value, the higher the priority. Values
range from -20 (highest priority) to 19 (lowest priority). There is no
recommended value here as it totally depends on your situation. However,
you should not set it under -5 as it is the default priority for kernel processes.
log_not_found on;

This directive specifi es whether Nginx should log 404 errors or not.
While these errors may, of course, provide useful information about missing
resources, most of them are generated by web browsers trying to reach the
favicon (the conventional /favicon.ico of a website) or robots trying to
access the indexing instructions (robots.txt). It is recommended that you
disable log_not_found in the case of conventional fi les that may clutter
your log fi les. However, do not disable this at the server level. Note that
this directive is part of the HTTP Core module. Refer to the next chapter
for more information.
worker_connections 1024;

This setting, combined with the amount of worker processes, allows
you to defi ne the total quantity of connections accepted by the server
simultaneously. If you enable four worker processes, each accepting 1,024
connections, your server will treat a total of 4,096 simultaneous c onnections.
You need to adjust this setting to match your hardware: the more RAM
and CPU power your server relies on, the more connections you can
accept concurrently.

Adapting to your hardware
 We will now establish three different setups—a standard one to be used by a regular
website with decent hardware, a low-traffi c setup intended to optimize performance
on modest hardware, and fi nally an adequate setup for production servers in
high-traffi c situations.

•

•

•

For More Information:
www.PacktPub.com/nginx-http-server-for-web-applications/book

https://www.packtpub.com/nginx-http-server-for-web-applications/book

Basic Nginx Confi guration

[98]

It's always diffi cult to classify computer power. Firstly, because each situation has
its own resources. If you work in a large company, talking about a powerful computer
will not have the same meaning as in the case of standalone website administrators
who need to resort to third-party web hosting providers. Secondly, because
computers get more powerful every year: faster CPUs, cheaper RAM, and the rise
of new technologies (SSDs). Consequently, the specifi cations given below are here
for reference and need to be adjusted to your own situation and to your era. The
recommended values for the directives are directly based on the specifi cations—one
worker process per CPU core, maximum connections depending on the RAM,
and so on.

Low-traffi c setup Standard setup High-traffi c setup
CPU: Dual-core
RAM: 2 GB
Requests: ~ 1/s

CPU: Quad-core
RAM: 4 GB
Requests: ~ 50/s

CPU: 8-core
RAM: 12 GB
Requests: ~1000/s

Recommended values
worker_processes 2;
worker_rlimit_
nofile 1024;
worker_priority -5;
worker_cpu_affinity
01 10;
events {
 multi_accept on;
 work
er_connections 128;
}

worker_processes 4;
worker_rlimit_
nofile 8192;
worker_priority 0;
worker_cpu_affinity

0001 0010 0100
1000;
events {
 multi_accept off;
 work
er_connections
1024;
}

worker_
processes 8;
worker_
priority
0;events {
 multi_accept
off;
 work
er_connections
8192;
}

T here are two adjustments that have a critical effect on the performance, namely, the
amount of worker processes and the connection limit. The fi rst one, if set improperly,
may clutter particular cores of your CPU and leave other ones unused or underused.
Make sure the worker_processes match the quantity of cores in your CPU.

The second one, if set too low, could result in connections being refused; if set too
high, could overfl ow the RAM and cause a system-wide crash. Unfortunately, there
is no simple equation to calculate the value of the worker_connections directive;
you will need to base it on expected traffi c estimations.

For More Information:
www.PacktPub.com/nginx-http-server-for-web-applications/book

https://www.packtpub.com/nginx-http-server-for-web-applications/book

Chapter 3

[99]

Testing your server
The base confi guration of your server is now established. In the following chapters,
we will advance to the http modules and how to create virtual hosts. But for now,
let's make sure that our setup is correct and suitable for production.

Creating a test server
 In order to perform simple tests, such as connecting to the server with a web
browser, we need to set up a website for Nginx to serve. A test page comes with the
default package in the html folder (/usr/local/nginx/html/index.html) and the
original nginx.conf is confi gured to serve this page. Here is the section that we are
interested in for now:

http {
 include mime.types;
 default_type application/octet-stream;
 sendfile on;
 keepalive_timeout 65;
 server {
 listen 80;
 server_name localhost;
 location / {
 root html;
 index index.html index.htm;
 }
 error_page 500 502 503 504 /50x.html;
 location = /50x.html {
 root html;
 }
}

 As you can already tell, this segment confi gures Nginx to serve a website:

By opening a listening socket on port 80
Accessible at the address: http://localhost/
The index page is index.html

•

•

•

For More Information:
www.PacktPub.com/nginx-http-server-for-web-applications/book

https://www.packtpub.com/nginx-http-server-for-web-applications/book

Basic Nginx Confi guration

[100]

For more details about these directives, please refer to Chapter 4, HTTP Confi guration
and go to the HTTP module confi guration section. Anyhow, fi re up your favorite web
browser and visit http://localhost/:

You should be greeted with a welcome message; if you aren't, then check the
confi guration again and make sure you reloaded Nginx in order to apply the changes.

Performance tests
Having confi gured the basic functioning and the architecture of your Nginx setup,
you may already want to proceed with running some tests. The methodology here
is experimental—run the tests, edit the confi guration, reload the server, run the tests
again, edit the confi guration again, and so on. Ideally, you should avoid running
the testing tool on the same computer that is used to run Nginx as it may cause the
results to be biased.

One could question the pertinence of running performance tests at this
stage. On one hand, virtual hosts and modules are not fully confi gured
yet and your website might use FastCGI applications (PHP, Python, and
so on). On the other hand, we are testing the raw performance of the
server without additional components, for example, to make sure that it
fully makes use of all CPU cores. Besides, it's always better to come up
with a polished confi guration before the server is put into production.

W e have retained three tools to evaluate the server performance here. All three
applications were specifi cally designed for load tests on web servers and have
different approaches due to their origin:

httperf: A relatively well-known open source utility developed by HP, for
Linux operating systems only
Autobench: P erl wrapper for httperf improving the testing mechanisms and
generating detailed reports
OpenWebLoad: S maller scale open source load testing application; supports
both Windows and Linux platforms

The principle behind each of these tools is to generate a massive amount of HTTP
requests in order to clutter the server and study the results.

•

•

•

For More Information:
www.PacktPub.com/nginx-http-server-for-web-applications/book

https://www.packtpub.com/nginx-http-server-for-web-applications/book

Chapter 3

[101]

Httperf
H ttperf is a simple command-line tool that can be downloaded from its offi cial
website: http://www.hpl.hp.com/research/linux/httperf/. The source
comes as a tar.gz archive and needs to be compiled using the standard method:
./configure, make and make install. Once installed, you may execute the
following command:

[alex@example ~]$ httperf --server 192.168.1.10 --port 80 --uri /
index.html --rate 300 --num-conn 30000 --num-call 1 --timeout 5

Replace the values in the command above with your own:

--server: The website hostname you wish to test
--uri: The path of the fi le that will be downloaded
--rate: How many requests should be sent every second
--num-conn: The total amount of connections
--num-call: How many requests should be sent per connection
--timeout: Quantity of seconds elapsed before a request is considered lost

In this example, httperf will download http://192.168.1.10/index.html
repeatedly, 300 times per second, resulting in a total of 30,000 requests.

•

•

•

•

•

•

For More Information:
www.PacktPub.com/nginx-http-server-for-web-applications/book

https://www.packtpub.com/nginx-http-server-for-web-applications/book

Basic Nginx Confi guration

[102]

Th e results indicate the response times and the amount of successful requests. If the
success ratio is 100 percent or the response time near 0 ms, increase the request rate
and run the test again until the server shows signs of weakness. Once the results
begin to look a little less perfect, tweak the appropriate confi guration directives and
run the test again.

Autobench
Au tobench is a Perl script that makes use of httperf more effi ciently—it runs
continuous tests and automatically increases request rates until your server gets
saturated. One of the interesting features of Autobench is that it generates a .tsv
report that you can open with various applications to generate graphs. You may
download the source code from the author's personal website: http://www.
xenoclast.org/autobench/. Once again, extract the fi les from the archive, run
make then make install.

Although it supports testing of multiple hosts at once, we will only be using the
single host test for more simplicity. The command we will execute resembles the
httperf one:

[alex@example ~]$ autobench --single_host --host1 192.168.1.10 --uri1 /
index.html --quiet --low_rate 20 --high_rate 200 --rate_step 20 --num_
call 10 --num_conn 5000 --timeout 5 --file results.tsv

The switches can be confi gured as follows:

--host1: The website host name you wish to test.
--uri1: The path of the fi le that will be downloaded.
--quiet: Does not display httperf information on the screen.
--low_rate: Connections per second at the beginning of the test.
--high_rate: Connections per second at the end of the test.
--rate_step: The number of connections to increase the rate by after
each test.
--num_call: How many requests should be sent per connection.
--num_conn: Total amount of connections.
--timeout: The number of seconds elapsed before a request is
considered lost.
--file: Export results as specifi ed (.tsv fi le).

Once the test terminates, you end up with a .tsv fi le that you can import in
applications such as Microsoft Excel. Here is a graph generated from results
on a test server (note that the report fi le contains up to 10 series of statistics):

•

•

•

•

•

•

•

•

•

•

For More Information:
www.PacktPub.com/nginx-http-server-for-web-applications/book

https://www.packtpub.com/nginx-http-server-for-web-applications/book

Chapter 3

[103]

As you can tell from the graph, this test server supports up to 600 requests per
second without a loss. Past this limit, some connections get dropped as Nginx cannot
handle the load. It stills gets up to over 1,500 successful requests per second at step 9.

Warning: These tests were carried out on a virtual machine and do not
refl ect the actual capabilities of Nginx running on a production server.

OpenWebLoad
Ope nWebLoad is a free open source application. It is available for both Linux and
Windows platforms and was developed in the early 2000s, back in the days of Web
1.0. A different approach is offered here—instead of throwing loads of requests
at the server and seeing how many are handled correctly, it will simply send as
many requests as possible using a variable amount of connections and report to
you every second.

You may download it from its offi cial website: http://openwebload.
sourceforge.net. Extract the source from the .tar.gz archive, run
./configure, make and make install.

For More Information:
www.PacktPub.com/nginx-http-server-for-web-applications/book

https://www.packtpub.com/nginx-http-server-for-web-applications/book

Basic Nginx Confi guration

[104]

Its usage is simpler than the previous two utilities:

[alex@example ~]$ openload example.com/index.html 10

The fi rst argument is the URL of the website you want to test. The second one is the
amount of connections that should be opened.

A ne w result line is produced every second. Requests are sent continuously until you
press the Enter key, following which, a result summary is displayed. Here is how to
decipher the output:

Tps (transactions per second): A transaction corresponds to a completed
request (back and forth)
MaTps: Average Tps over the last 20 seconds
Resp Time: Average response time for the elapsed second
Err (error rate): Errors occur when the server returns a response that is not
the expected HTTP 200 OK
Count: Total transaction count

You can fi ddle with the amount of simultaneous connections and see how your
server performs in order to establish a balanced confi guration for your setup.
Three tests were run here with a different amount of connections. The results
speak for themselves:

Test 1 Test 2 Test 3
Simultaneous connections 1 20 1000
Transactions per second (Tps) 67.54 205.87 185.07
Average response time 14 ms 91 ms 596 ms

•

•

•

•

•

For More Information:
www.PacktPub.com/nginx-http-server-for-web-applications/book

https://www.packtpub.com/nginx-http-server-for-web-applications/book

Chapter 3

[105]

Too few connections result in a low Tps rate; however, the response times are
optimal. Too many connections produce a relatively high Tps, but the response
times are critically high. You thus need to fi nd a happy medium.

Upgrading Nginx gracefully
 There are many situations where you need to replace the Nginx binary, for example,
when you compile a new version and wish to put it in production or simply after
having enabled new modules and rebuilt the application. What most administrators
would do in this situation is stop the server, copy the new binary over the old
one, and start Nginx again. While this is not considered to be a problem for most
websites, there may be some cases where uptime is critical and connection losses
should be avoided at all costs. Fortunately, Nginx embeds a mechanism allowing
you to switch binaries with uninterrupted uptime—zero percent request loss is
guaranteed if you follow these steps carefully:

1. Replace the old Nginx binary (by default, /usr/local/nginx/sbin/nginx)
with the new one.

2. Find the pid of the Nginx master process, for example, with ps x | grep
nginx | grep master or by looking at the value found in the pid fi le.

3. Send a USR2 (12) signal to the master process—kill –USR2 ***, replacing
*** with the pid found in step 2. This will initiate the upgrade by renaming
the old .pid fi le and running the new binary.

4. Send a WINCH (28) signal to the old master process—kill –WINCH ***,
replacing *** with the pid found in step 2. This will engage a graceful
shutdown of the old worker processes.

5. Make sure that all the old worker processes are terminated, and then send a
QUIT signal to the old master process—kill –QUIT ***, replacing *** with
the pid found in step 2.

Congratulations! You have successfully upgraded Nginx and have not lost a
single connection.

For More Information:
www.PacktPub.com/nginx-http-server-for-web-applications/book

https://www.packtpub.com/nginx-http-server-for-web-applications/book

Basic Nginx Confi guration

[106]

Summary
This chapter provided a fi rst approach of the confi guration architecture by studying
the syntax and the core module directives that have an impact on the overall server
performance. We then went through a series of adjustments in order to fi t your
own profi le, followed by performance tests that have probably led you to fi ne-tune
some more.

This is just the beginning though—practically everything that we will be doing
from now on is to establish confi guration sections. The next chapter will detail
more advanced directives by further exploring the module system and the exciting
possibilities that are offered to you.

For More Information:
www.PacktPub.com/nginx-http-server-for-web-applications/book

https://www.packtpub.com/nginx-http-server-for-web-applications/book

Where to buy this book
You can buy Oracle Nginx HTTP Serverfrom the Packt Publishing website:
https://www.packtpub.com/nginx-http-server-for-web-

applications/book.

Free shipping to the US, UK, Europe and selected Asian countries. For more information, please

read our shipping policy.

Alternatively, you can buy the book from Amazon, BN.com, Computer Manuals and

most internet book retailers.

P U B L I S H I N G

community experience dist i l led

www.PacktPub.com

For More Information:
www.PacktPub.com/nginx-http-server-for-web-applications/book

https://www.packtpub.com/nginx-http-server-for-web-applications/book
https://www.packtpub.com/Shippingpolicy

