
P U B L I S H I N G

community experience dist i l led

Agile Web Application Development
with Yii 1.1 and PHP5

Jeffery Winesett

Chapter No.9

"Iteration 6: Adding User Comments"

In this package, you will find:
A Biography of the author of the book

A preview chapter from the book, Chapter NO.9 "Iteration 6: Adding User Comments"

A synopsis of the book’s content

Information on where to buy this book

About the Author
Jeffery Winesett is the director of software engineering and application development at

Control Group Inc., a New York based consulting firm specializing in delivering

technology for big ideas. He has spent the last five of his twelve years of software

development focused on delivering large-scale PHP-based applications. Jeffery also

writes articles on the topics of PHP, web application frameworks, and software

development. He has enjoyed being a Yii evangelist since its early alpha version.

I'd like to thank all of the technical reviewers, editors, and staff at Packt

for their fantastic contributions, suggestions, and improvements. I'd like

to thank Qiang Xue and the entire Yii Framework developer team for

creating and maintaining this brilliant framework. Ryan Trammel at

Scissortail design for his attention to detail and CSS assistance. My

lovely wife Tiffany, for her endless patience throughout this project and

Lemmy and Lucie for providing me with an endless supply of sunshine.

For More Information:
www.PacktPub.com/oracle-11g-database-implementations-guide/book

https://www.packtpub.com/yii-1-1-and-php5-for-agile-web-application-development/book

Agile Web Application Development
with Yii 1.1 and PHP5
Yii is a high-performance, component-based application development framework written

in PHP. It helps ease the complexity of building large-scale applications. It enables

maximum reusability in web programming, and can significantly accelerate the

development process. It does so by allowing the developer to build on top of already

well-written, well-tested, and production-ready code. It prevents you from having to

rewrite core functionality that is common across many of today's web-based applications,

allowing you to concentrate on the business rules and logic specific to the unique

application being built.

This book takes a very pragmatic approach to learning the Yii Framework. Throughout

the chapters we introduce the reader to many of the core features of Yii by taking a test-

first approach to building a real-world task tracking and issue management application

called TrackStar. All of the code is provided. The reader should be able to borrow from

all of the examples provided to get up and running quickly, but will also be exposed to

deeper discussion and explanation to fully understand what is happening behind the

scenes.

What This Book Covers
Chapter 1—Meet Yii introduces Yii at a high level. We learn the importance and utility of

using application development frameworks, and the characteristics of Yii that make it

incredibly powerful and useful.

Chapter 2—Getting Started walks through a simple Hello, World! style application using

the Yii Framework.

Chapter 3—The TrackStar Application provides an introduction to the task management

and issue tracking application, TrackStar, that will be built throughout the remainder of

the chapters. It also introduces the Test Driven Development (TDD) approach.

Chapter 4—Iteration 1:Creating The Initial TrackStar Application demonstrates the

creation of a new database-driven, Yii web application.

Chapter 5—Iteration 2: Project CRUD introduces the automated code generation

features of Yii, as we work to build out the "C"reate, "R"ead, "U"pdate and "D"elete

functionality for the project entity in our TrackStar application.

Chapter 6—Iteration 3: Adding Tasks introduces us to relational active record and

controller class fi lters in Yii, as we add in the management issues into TrackStar.

For More Information:
www.PacktPub.com/oracle-11g-database-implementations-guide/book

https://www.packtpub.com/yii-1-1-and-php5-for-agile-web-application-development/book

Chapter 7—Iteration 4: User Management and Authentication covers the fi rst part of

Yii's user authentication and authorization framework, Authentication.

Chapter 8—Iteration 5: User Access Control covers the second part of the user

authentication and authentication framework, Authorization. Both Yii's simple access

control and role-based access control are covered.

Chapter 9—Iteration 6: Adding User Comments takes a deeper dive into writing

relational Active Record queries in Yii as well as introduce a basic portlet architecture for

reusing content across multiple pages.

Chapter 10—Iteration 7: Adding an RSS Web Feed demonstrates how easy it is to

integrate other third-party frameworks into a Yii application by integrating the Zend

Framework's Web Feed library to create simple RSS feed within our application.

Chapter 11—Iteration 8: Making It Pretty: Design, Layout, Themes and

Iternationalization (i18n) delves deeper into the presentation tier of Yii, introducing

layout views, themes as well as internationalization and localization in Yii.

Chapter 12—Iteration 9: Modules – Adding Administration introduces the concept of a

module in Yii by using one to add administrative functionality to the application.

Chapter 13—Iteration 10: Production Readiness covers error handling, logging, caching

and, security as we prepare our TrackStar application for production.

For More Information:
www.PacktPub.com/oracle-11g-database-implementations-guide/book

https://www.packtpub.com/yii-1-1-and-php5-for-agile-web-application-development/book

Iteration 6: Adding User
Comments

With the implementation of user management in the past two iterations, our
Trackstar application is really starting to take shape. The bulk of our primary
application feature functionality is now behind us. We can now start to focus on
some of the nice-to-have features. The fi rst of these features that we will tackle is
the ability for users to leave comments on project issues.

The ability for users to engage in a dialogue about project issues is an important
part of what any issue tracking tool should provide. One way to achieve this is to
allow users to leave comments directly on the issues. The comments will form a
conversation about the issue and provide an immediate, as well as historical context
to help track the full lifespan of any issue. We will also use comments to demonstrate
using Yii widgets and establishing a portlet model for delivering content to the user
(for more information on Portlets, visit http://en.wikipedia.org/wiki/Portlet).

Iteration planning
 The goal of this iteration is to implement feature functionality in the Trackstar
application to allow users to leave and read comments on issues. When a user is
viewing the details of any project issue, they should be able to read all comments
previously added as well as create a new comment on the issue. We also want to
add a small fragment of content, or portlet, to the project-listing page that displays
a list of recent comments left on all of the issues. This will be a nice way to provide
a window into recent user activity and allow easy access to the latest issues that have
active conversations.

For More Information:
www.PacktPub.com/oracle-11g-database-implementations-guide/book

https://www.packtpub.com/yii-1-1-and-php5-for-agile-web-application-development/book

Iteration 6: Adding User Comments

[216]

The following is a list of high-level tasks that we will need to complete in order to
achieve these goals:

• Design and create a new database table to support comments
• Create the Yii AR class associated with our new comments table
• Add a form directly to the issue details page to allow users to

submit comments
• Display a list of all comments associated with an issue directly on the issues

details page
• Take advantage of Yii widgets to display a list of the most recent comments

on the projects listing page

Creating the model
 As always, we should run our existing test suite at the start of our iteration to
ensure all of our previously written tests are still passing as expected. By this time,
you should be familiar with how to do that, so we will leave it to the reader to ensure
that all the unit tests are passing before proceeding.

We fi rst need to create a new table to house our comments. Below is the basic DDL
defi nition for the table that we will be using:

CREATE TABLE tbl_comment
(
 `id` INTEGER NOT NULL PRIMARY KEY AUTO_INCREMENT,
 `content` TEXT NOT NULL,
 `issue_id` INTEGER,
 `create_time` DATETIME,
 `create_user_id` INTEGER,
 `update_time` DATETIME,
 `update_user_id` INTEGER
)

As each comment belongs to a specifi c issue, identifi ed by the issue_id, and is
written by a specifi c user, indicated by the create_user_id identifi er, we also need
to defi ne the following foreign key relationships:

ALTER TABLE `tbl_comment` ADD CONSTRAINT `FK_comment_issue` FOREIGN
KEY (`issue_id`) REFERENCES `tbl_issue` (`id`);

ALTER TABLE `tbl_comment` ADD CONSTRAINT `FK_comment_author` FOREIGN
KEY (`create_user_id`) REFERENCES `tbl_user` (`id`);

For More Information:
www.PacktPub.com/oracle-11g-database-implementations-guide/book

https://www.packtpub.com/yii-1-1-and-php5-for-agile-web-application-development/book

Chapter 9

[217]

If you are following along, please ensure this table is created in both the
trackstar_dev and trackstar_test databases.

Once a database table is in place, creating the associated AR class is a snap. We have
seen this many times in previous iterations. We know exactly how to do this. We
simply use the Gii code creation tool's Model Generator command and create an
AR class called Comment. If needed, refer back to Chapters 5 and 6 for all the details
on using this tool to create model classes.

Since we have already created the model class for issues, we will need to explicitly add
the relations to to the Issue model class for comments. We will also add a relationship
as a statistical query to easily retrieve the number of comments associated with a given
issue (just as we did in the Project AR class for issues). Alter the Issue::relations()
metho d as such:

public function relations()

{

 return array(

 'requester' => array(self::BELONGS_TO, 'User', 'requester_id'),

 'owner' => array(self::BELONGS_TO, 'User', 'owner_id'),

 'project' => array(self::BELONGS_TO, 'Project', 'project_id'),

 'comments' => array(self::HAS_MANY, 'Comment', 'issue_id'),

 'commentCount' => array(self::STAT, 'Comment', 'issue_id'),

);

}

 Also, we need to change our newly created Comment AR class to extend our custom
TrackStarActiveRecord base class , so that it benefi ts from the logic we placed in
the beforeValidate() method . Simply alter the beginning of the class defi nition
as such:

<?php

 /**

 * This is the model class for table "tbl_comment".

 */

class Comment extends TrackStarActiveRecord

{

For More Information:
www.PacktPub.com/oracle-11g-database-implementations-guide/book

https://www.packtpub.com/yii-1-1-and-php5-for-agile-web-application-development/book

Iteration 6: Adding User Comments

[218]

 We'll make one last small change to the defi nitions in the Comment::relations()
method. The relational attributes were named for us when the class was created.
Let's change the one named createUser to be author, as this related user does
represent the author of the comment. This is just a semantic change, but will help
to make our code easier to read and understand. Change the method as such:

 /**
 * @return array relational rules.
 */
 public function relations()
 {
 // NOTE: you may need to adjust the relation name and the related
 // class name for the relations automatically generated below.
 return array(
 'author' => array(self::BELONGS_TO, 'User', 'create_user_id'),
 'issue' => array(self::BELONGS_TO, 'Issue', 'issue_id'),
);
 }

Creating the Comment CRUD
 Once we have an AR class in place, creating the CRUD scaffolding for managing
the related entity is equally as easy. Again, use the Gii code generation tool's Crud
Generator command with the AR class name, Comment, as the argument. Again, we
have seen this many times in previous iterations, so we will leave this as an exercise
for the reader. Again, if needed, refer back to Chapters 5 and 6 for all the details on
using this tool to create CRUD scaffolding code. Although we will not immediately
implement full CRUD operations for our comments, it is nice to have the scaffolding
for the other operations in place.

As long as we are logged in, we should now be able to view the autogenerated
comment submission form via the following URL:

http://localhost/trackstar/index.php?r=comment/create

Altering the scaffolding to meet
requirements
 As we have seen many times before, we often have to make adjustments to the
autogenerated scaffolding code in order to meet the specifi c requirements of the
application. For one, our autogenerated form for creating a new comment has an
input fi eld for every single column defi ned in the tbl_comment database table.

For More Information:
www.PacktPub.com/oracle-11g-database-implementations-guide/book

https://www.packtpub.com/yii-1-1-and-php5-for-agile-web-application-development/book

Chapter 9

[219]

We don't actually want all of these fi elds to be part of the form. In fact, we want to
greatly simplify this form to have only a single input fi eld for the comment content.
What's more, we don't want the user to access the form via the above URL, but rather
only by visiting an issue details page. The user will add comments on the same page
where they are viewing the details of the issue. We want to build towards something
similar to what is depicted in the following screenshot:

In order to achieve this, we are going to alter our Issue controller class to handle
the post of the comment form as well as alter the issue details view to display the
existing comments and new comment creation form. Also, as comments should only
be created within the context of an issue, we'll add a new method to the Issue model
class to create new comments.

For More Information:
www.PacktPub.com/oracle-11g-database-implementations-guide/book

https://www.packtpub.com/yii-1-1-and-php5-for-agile-web-application-development/book

Iteration 6: Adding User Comments

[220]

Adding a comment
 Let's start by writing a test for this new public method on the Issue model class.
Open up the IssueTest.php fi le and add the following test method:

public function testAddComment()
{
 $comment = new Comment;
 $comment->content = "this is a test comment";
 $this->assertTrue($this->issues('issueBug')->addComment($comment));
}

 This, of course, will fail until we add the method to our Issue AR class . Add the
following method to the Issue AR class:

/**
 * Adds a comment to this issue
 */
public function addComment($comment)
{
 $comment->issue_id=$this->id;
 return $comment->save();
}

This method ensures the proper setting of the comment issue ID before saving the
new comment. Run the test again to ensure it now passes.

With this method in place, we can now turn focus to the issue controller class. As
we want the comment creation form to display from and post its data back to the
IssueController::actionView() method , we will need to alter that method. We
will also add a new protected method to handle the form POST request. First, alter
the actionView() method to be the following:

public function actionView()
{
 $issue=$this->loadModel();
 $comment=$this->createComment($issue);

 $this->render('view',array(
 'model'=>$issue,
 'comment'=>$comment,
));
}

For More Information:
www.PacktPub.com/oracle-11g-database-implementations-guide/book

https://www.packtpub.com/yii-1-1-and-php5-for-agile-web-application-development/book

Chapter 9

[221]

Then add the following protected method to create a new comment and handle the
form post request for creating a new comment for this issue:

protected function createComment($issue)
{
 $comment=new Comment;
 if(isset($_POST['Comment']))
 {
 $comment->attributes=$_POST['Comment'];
 if($issue->addComment($comment))
 {
 Yii::app()->user->setFlash('commentSubmitted',"Your comment has
been added.");
 $this->refresh();
 }
 }
 return $comment;
}

Our new protected method, createComment() is responsible for handling the
POST request for creating a new comment based on the user input. If the comment
is successfully created, the page will be refreshed displaying the newly created
comment. The changes made to IssueController::actionView() are responsible
for calling this new method and also feeding the new comment instance to the view.

Displaying the form
 Now we need to alter our view. First we are going to create a new view fi le to render
the display of our comments and the comment input form. As we'll render this as a
partial view, we'll stick with the naming conventions and begin the fi lename with a
leading underscore. Create a new fi le called _comments.php under the protected/
views/issue/ folder and add the following code to that fi le:

<?php foreach($comments as $comment): ?>
<div class="comment">
 <div class="author">
 <?php echo $comment->author->username; ?>:
 </div>

 <div class="time">
 on <?php echo date('F j, Y \a\t h:i a',strtotime($comment->create_
time)); ?>
 </div>

 <div class="content">

For More Information:
www.PacktPub.com/oracle-11g-database-implementations-guide/book

https://www.packtpub.com/yii-1-1-and-php5-for-agile-web-application-development/book

Iteration 6: Adding User Comments

[222]

 <?php echo nl2br(CHtml::encode($comment->content)); ?>
 </div>
 <hr>
</div><!-- comment -->
<?php endforeach; ?>

This fi le expects as an input parameter an array of comment instances and displays
them one by one. We now need to alter the view fi le for the issue detail to use this
new fi le. We do this by opening protected/views/issue/view.php and adding
the following to the end of the fi le:

<div id="comments">
 <?php if($model->commentCount>=1): ?>
 <h3>
 <?php echo $model->commentCount>1 ? $model->commentCount . '
comments' : 'One comment'; ?>
 </h3>

 <?php $this->renderPartial('_comments',array(
 'comments'=>$model->comments,
)); ?>
 <?php endif; ?>

 <h3>Leave a Comment</h3>

 <?php if(Yii::app()->user->hasFlash('commentSubmitted')): ?>
 <div class="flash-success">
 <?php echo Yii::app()->user->getFlash('commentSubmitted'); ?>
 </div>
 <?php else: ?>
 <?php $this->renderPartial('/comment/_form',array(
 'model'=>$comment,
)); ?>
 <?php endif; ?>

</div>

 Here we are taking advantage of the statistical query property, commentCount, we
added earlier to our Issue AR model class. This allows us to quickly determine if
there are any comments available for the specifi c issue. If there are comments, it
proceeds to render them using our _comments.php display view fi le. It then displays
the input form that was created for us when we used the Gii Crud Generator
functionality. It will also display the simple fl ash message set upon a successfully
saved comment.

For More Information:
www.PacktPub.com/oracle-11g-database-implementations-guide/book

https://www.packtpub.com/yii-1-1-and-php5-for-agile-web-application-development/book

Chapter 9

[223]

One last change we need to make is to the comment input form itself. As we have
seen many times in the past, the form created for us has an input fi eld for every
column defi ned in the underlying tbl_comment table. This is not what we want to
display to the user. We want to make this a simple input form where the user only
needs to submit the comment content. So, open up the view fi le that houses the input
form, that is, protected/views/comment/_form.php and edit it to be simply:

<div class="form">
<?php $form=$this->beginWidget('CActiveForm', array(
 'id'=>'comment-form',
 'enableAjaxValidation'=>false,
)); ?>
 <p class="note">Fields with * are
required.</p>
 <?php echo $form->errorSummary($model); ?>
 <div class="row">
 <?php echo $form->labelEx($model,'content'); ?>
 <?php echo $form->textArea($model,'content',array('rows'=>6,
'cols'=>50)); ?>
 <?php echo $form->error($model,'content'); ?>
 </div>

 <div class="row buttons">
 <?php echo CHtml::submitButton($model->isNewRecord ? 'Create' :
'Save'); ?>
 </div>

<?php $this->endWidget(); ?>

</div>

With all of this in place, we can visit an issue listing page, for example
http://hostname/trackstar/index.php?r=issue/view&id=1

And we see the following comment input form at the bottom of the page:

For More Information:
www.PacktPub.com/oracle-11g-database-implementations-guide/book

https://www.packtpub.com/yii-1-1-and-php5-for-agile-web-application-development/book

Iteration 6: Adding User Comments

[224]

If we attempt to submit the comment without specifying any content, we see an error
as depicted in the following screenshot:

And then, if we are logged in as Test User One and we submit the comment My fi rst
test comment, we are presented with the following display:

Creating a recent comments widget
 Now that we have the ability to leave comments on issues, we are going to turn our
focus to the second primary goal of this iteration. We want to display to the user a
list of all of the recent comments that have been left on various issues across all of the
projects. This will provide a nice snapshot of user communication activity within the
application. We also want to build this small block of content in a manner that will
allow it to be re-used in various different locations throughout the site. This is very
much in the style of web portal applications such as news forums, weather reporting
applications and sites such as Yahoo and iGoogle. These small snippets of content
are often referred to as portlets, and this is why we referred to building a portlet
architecture at the beginning of this iteration. Again, you can refer to
http://en.wikipedia.org/wiki/Portlet for more information on this topic.

For More Information:
www.PacktPub.com/oracle-11g-database-implementations-guide/book

https://www.packtpub.com/yii-1-1-and-php5-for-agile-web-application-development/book

Chapter 9

[225]

Introducing CWidget
 Lucky for us, Yii is readymade to help us achieve this architecture. Yii provides
a component class, called CWidget, which is intended for exactly this purpose.
A Yii widget is an instance of this class (or its child class), and is a presentational
component typically embedded in a view fi le to display self-contained, reusable
user interface features. We are going to use a Yii widget to build a recent comments
portlet and display it on the main project details page so we can see comment
activity across all issues related to the project. To demonstrate the ease of re-use,
we'll take it one step further and also display a list of project-specifi c comments on
the project details page.

 To begin creating our widget, we are going to fi rst add a new public method on our
Comment AR model class to return the most recently added comments. As expected,
we will begin by writing a test.

But before we write the test method, let's update our comment fi xtures data so that
we have a couple of comments to use throughout our testing. Create a new fi le called
tbl_comment.php within the protected/tests/fixtures folder. Open that fi le and
add the following content:

<?php

return array(
 'comment1'=>array(
 'content' => 'Test comment 1 on issue bug number 1',
 'issue_id' => 1,
 'create_time' => '',
 'create_user_id' => 1,
 'update_time' => '',
 'update_user_id' => '',
),
 'comment2'=>array(
 'content' => 'Test comment 2 on issue bug number 1',
 'issue_id' => 1,
 'create_time' => '',
 'create_user_id' => 1,
 'update_time' => '',
 'update_user_id' => '',
),
);

Now we have consistent, predictable, and repeatable comment data to work with.

For More Information:
www.PacktPub.com/oracle-11g-database-implementations-guide/book

https://www.packtpub.com/yii-1-1-and-php5-for-agile-web-application-development/book

Iteration 6: Adding User Comments

[226]

Create a new unit test fi le, protected/tests/unit/CommentTest.php and add the
following content:

<?php
class CommentTest extends CDbTestCase
{
 public $fixtures=array(
 'comments'=>'Comment',
);
 public function testRecentComments()
 {
 $recentComments=Comment::findRecentComments();
 $this->assertTrue(is_array($recentComments));
 }
}

This test will of course fail, as we have not yet added the
Comment::findRecentComments() method to the Comment model class. So, let's add
that now. We'll go ahead and add the full method we need, rather than adding just
enough to get the test to pass. But if you are following along, feel free to move at your
own TDD pace. Open Comment.php and add the following public static method:

public static function findRecentComments($limit=10, $projectId=null)
{
 if($projectId != null)
 {
 return self::model()->with(array(
 'issue'=>array('condition'=>'project_id='.$projectId)))-
>findAll(array(
 'order'=>'t.create_time DESC',
 'limit'=>$limit,
));
 }
 else
 {
 //get all comments across all projects
 return self::model()->with('issue')->findAll(array(
 'order'=>'t.create_time DESC',
 'limit'=>$limit,
));
 }
}

For More Information:
www.PacktPub.com/oracle-11g-database-implementations-guide/book

https://www.packtpub.com/yii-1-1-and-php5-for-agile-web-application-development/book

Chapter 9

[227]

 Our new method takes in two optional parameters, one to limit the number of returned
comments, the other to specify a specifi c project ID to which all of the comments
should belong. The second parameter will allow us to use our new widget to display
all comments for a project on the project details page. So, if the input project id was
specifi ed, it restricts the returned results to only those comments associated with the
project, otherwise, all comments across all projects are returned.

More on relational AR queries in Yii
 The above two relational AR queries are a little new to us. We have not been using
many of these options in our previous queries. Previously we have been using the
simplest approach to executing relational queries:

1. Load the AR instance.
2. Access the relational properties defi ned in the relations() method.

For example if we wanted to query for all of the issues associated with, say, project
id #1, we would execute the following two lines of code:

// retrieve the project whose ID is 1
$project=Project::model()->findByPk(1);

// retrieve the project's issues: a relational query is actually being
performed behind the scenes here
$issues=$project->issues;

 This familiar approach uses what is referred to as a Lazy Loading. When we fi rst
create the project instance, the query does not return all of the associated issues. It
only retrieves the associated issues upon an initial, explicit request for them, that is,
when $project->issues is executed. This is referred to as lazy because it waits to
load the issues.

This approach is convenient and can also be very effi cient, especially in those cases
where the associated issues may not be required. However, in other circumstances, this
approach can be somewhat ineffi cient. For example, if we wanted to retrieve the issue
information across N projects, then using this lazy approach would involve executing
N join queries. Depending on how large N is, this could be very ineffi cient. In these
situations, we have another option. We can use what is called Eager Loading.

For More Information:
www.PacktPub.com/oracle-11g-database-implementations-guide/book

https://www.packtpub.com/yii-1-1-and-php5-for-agile-web-application-development/book

Iteration 6: Adding User Comments

[228]

 The Eager Loading approach retrieves the related AR instances at the same time
as the main AR instances are requested. This is accomplished by using the with()
method in concert with either the find() or findAll() methods for AR query.
Sticking with our project example, we could use Eager Loading to retrieve all
issues for all projects by executing the following single line of code:

//retrieve all project AR instances along with their associated issue
AR instances
$projects = Project::model()->with('issues')->findAll();

 Now, in this case, every project AR instance in the $projects array already has
its associated issues property populated with an array of issues AR instances. This
result has been achieved by using just a single join query.

We are using this approach in both of the relational queries executed in our
findRecentComments() method . The one we are using to restrict the comments to
a specifi c project is slightly more complex. As you can see, we are specifying a query
condition on the eagerly loaded issue property for the comments. Let's look at the
following line:

Comment::model()->with(array('issue'=>array('condition'=>'project_
id='.$projectId)))->findAll();

This query specifi es a single join between the tbl_comment and the tbl_issue
tables. Sticking with project id #1 for this example, the previous relational AR query
would basically execute something similar to the following SQL statement:

SELECT tbl_comment.*, tbl_issue.* FROM tbl_comment LEFT OUTER JOIN
tbl_issue ON (tbl_comment.issue_id=tbl_issue.id) WHERE (tbl_issue.
project_id=1)

The added array we specify in the findAll() method simply sets an order by
clause and a limit clause to the executed SQL statement.

One last thing to note about the two queries we are using is how the column
names that are common to both tables are disambiguated. Obviously when the
two tables that are being joined have columns with the same name, we have to
make a distinction between the two in our query. In our case, both tables have
 the create_time column defi ned. We are trying to order by this column in the
tbl_comment table and not the one defi ned in the issue table. In a relational AR
query in Yii, the alias name for the primary table is fi xed as t, while the alias name
for a relational table, by default, is the same as the corresponding relation name.
So, in our two queries, we specify t.create_time to indicate we want to use the
primary table's column. If we wanted to instead order by the issue create_time
column, we would alter, the second query for example, as such:

For More Information:
www.PacktPub.com/oracle-11g-database-implementations-guide/book

https://www.packtpub.com/yii-1-1-and-php5-for-agile-web-application-development/book

Chapter 9

[229]

return Comment::model()->with('issue')->findAll(array(
 'order'=>'issue.create_time DESC',
 'limit'=>$limit,
));

Completing the test
 Okay, now that we fully understand what our new method is doing, we need to
complete testing of it. In order to fully test our new method, we need to make a few
changes to our fi xture data. Open each of the fi xture data fi les: tbl_project.php,
tbl_issue.php, and tbl_comment.php and ensure each of these entries is in place:

Add the following code in tbl_project:

'project3'=>array(

 'name' => 'Test Project 3',

 'description' => 'This is test project 3',

 'create_time' => '',

 'create_user_id' => '',

 'update_time' => '',

 'update_user_id' => '',

),

In tbl_issue, add the following code:

'issueFeature2'=>array(

 'name' => 'Test Feature For Project 3',

 'description' => 'This is a test feature issue associated with
project # 3 that is completed',

 'project_id' => 3,

 'type_id' => 1,

 'status_id' => 2,

 'owner_id' => 1,

 'requester_id' => 1,

 'create_time' => '',

 'create_user_id' => '',

 'update_time' => '',

 'update_user_id' => '',

),

For More Information:
www.PacktPub.com/oracle-11g-database-implementations-guide/book

https://www.packtpub.com/yii-1-1-and-php5-for-agile-web-application-development/book

Iteration 6: Adding User Comments

[230]

Finally, add the following code in tbl_comment:

'comment3'=>array(
 'content' => 'The first test comment on the first feature issue
associated with Project #3',
 'issue_id' => 3,
 'create_time' => '',
 'create_user_id' => '',
 'update_time' => '',
 'update_user_id' => '',
),

We now have a total of three comments in our test database. Two of them associated
with project #1 and one associated with project #3.

Now we can alter our test method to test:

• Requesting all comments
• Limiting the number of returned comments to just two
• Restricting the returned comments to only those associated with project #3

 The following method tests all three scenarios:

public function testRecentComments()
{
 //retrieve all the comments for all projects
 $recentComments = Comment::findRecentComments();
 $this->assertTrue(is_array($recentComments));
 $this->assertEquals(count($recentComments),3);

 //make sure the limit is working
 $recentComments = Comment::findRecentComments(2);
 $this->assertTrue(is_array($recentComments));
 $this->assertEquals(count($recentComments),2);

 //test retrieving comments only for a specific project
 $recentComments = Comment::findRecentComments(5, 3);
 $this->assertTrue(is_array($recentComments));
 $this->assertEquals(count($recentComments),1);
}

For More Information:
www.PacktPub.com/oracle-11g-database-implementations-guide/book

https://www.packtpub.com/yii-1-1-and-php5-for-agile-web-application-development/book

Chapter 9

[231]

We also need to ensure that our CommentTest class is using the fi xture data for
comments, issues, and projects. Make sure the following fi xtures are defi ned
at the top of our CommentTest class:

<?php
class CommentTest extends CDbTestCase
{
 public $fixtures=array(
 'comments'=>'Comment',
 'projects'=>'Project',
 'issues'=>'Issue',
);

Now, if we run this test again, we should have all six assertions passing:

>>phpunit unit/CommentTest.php

PHPUnit 3.4.12 by Sebastian Bergmann.

.

Time: 0 seconds

OK (1 test, 6 assertions)

Armed with the knowledge of the benefi ts of Lazy Loading versus Eager Loading
in Yii, we should make an adjustment to how the Issue model is loaded within the
IssueController::actionView() method . Since we have altered the issues detail
view to display our comments, including the author of the comment, we know it will
be more effi cient to use the Eager Loading approach to load our comments along with
their respective authors when we make the call to loadModel() in this method. To do
this, we can add a simple input fl ag to this loadModel() method to indicate whether
or not we want to load the comments as well.

 Alter the IssueController::loadModel() method as shown below:

public function loadModel($withComments=false)
 {
 if($this->_model===null)
 {
 if(isset($_GET['id']))
 {
 if($withComments)
 {
 $this->_model=Issue::model()->with(array(
 'comments'=>array('with'=>'author')))
 ->findbyPk($_GET['id']);
 }
 else

For More Information:
www.PacktPub.com/oracle-11g-database-implementations-guide/book

https://www.packtpub.com/yii-1-1-and-php5-for-agile-web-application-development/book

Iteration 6: Adding User Comments

[232]

 {
 $this->_model=Issue::model()->findbyPk($_GET['id']);
 }
 }
 if($this->_model===null)
 throw new CHttpException(404,'The requested page does not
 exist.');
 }
 return $this->_model;
 }

Now we can change the call to this method in IssueController::actionView(),
as such:

public function actionView()
 {
 $issue=$this->loadModel(true);

With this in place, we will load all of our comments, along with their respective
author information, with just one database call.

Creating the widget
 Now we are ready to create our new widget to use our new method to display our
recent comments.

As we previously mentioned a widget in Yii is a class that extend from the
framework class CWidget or one of its child classes. We'll add our new widget to the
protected/components/ directly, as the contents of this folder are already specifi ed
in the main confi guration fi le to be auto-loaded within the application. This way we
won't have to explicitly import the class every time we wish to use it. We'll name
our widget RecentComments, so we need to add a php fi le of the same name to this
directly. Add the following class defi nition to this newly created RecentComment.
php fi le:

<?php
/**
 * RecentComments is a Yii widget used to display a list of recent
comments
 */
class RecentComments extends CWidget
{
 private $_comments;
 public $displayLimit = 5;
 public $projectId = null;
 public function init()

For More Information:
www.PacktPub.com/oracle-11g-database-implementations-guide/book

https://www.packtpub.com/yii-1-1-and-php5-for-agile-web-application-development/book

Chapter 9

[233]

 {
 $this->_comments = Comment::model()
 ->findRecentComments($this->displayLimit,
 $this->projectId);
 }
 public function getRecentComments()
 {
 return $this->_comments;
 }
 public function run()
 {
 // this method is called by CController::endWidget()
 $this->render('recentComments');
 }
}

 The primary work involved when creating a new widget is to override the init()
and run() methods of the base class. The init() method initializes the widget and
is called after its properties have been initialized. The run() method executes the
widget. In this case, we simply initialize the widget by requesting recent comments
based on the $displayLimit and $projectId properties. The execution of the widget
itself simply renders its associated view fi le, which we have yet to create. view fi les,
by convention, are placed in views/ directly within the same folder where the widget
resides, and have the same name as the widget, but start with a lowercase letter.
Sticking with convention, create a new fi le whose fully qualifi ed path is protected/
components/views/renderComments.php. Once created, add the following markup
to that fi le:

 <?php foreach($this->getRecentComments() as $comment): ?>
 <div class="author">
 <?php echo $comment->author->username; ?> added a comment.
 </div>
 <div class="issue">
 <?php echo CHtml::link(CHtml::encode($comment->issue->name),
array('issue/view', 'id'=>$comment->issue->id)); ?>
 </div>
 <?php endforeach; ?>

This calls the RenderComments widget's getRecentComments() method, which
returns an array of comments. It then iterates over each of them displaying who
added the comment and the associated issue on which the comment was left.

For More Information:
www.PacktPub.com/oracle-11g-database-implementations-guide/book

https://www.packtpub.com/yii-1-1-and-php5-for-agile-web-application-development/book

Iteration 6: Adding User Comments

[234]

In order to see the results, we need to embed this widget into an existing controller
view fi le. As previously mentioned, we want to use this widget on the projects listing
page, to display all recent comments across all projects, and also on a specifi c project
details page, to display the recent comments for just that specifi c project.

 Let's start with the project listing page. The view fi le responsible for displaying that
content is protected/views/project/index.php. Open up that fi le and add the
following at the bottom:

<?php $this->widget('RecentComments'); ?>

Now if we view the projects listing page http://localhost/trackstar/index.
php?r=project, we see something similar to the following screenshot:

We have now embedded our new recent comments data within the page simply
by calling the widget. This is nice, but we can take our little widget one step further
to have it display in a consistent manner with all other potential portlets in the
application. We can do this by taking advantage of another class provided to us
by Yii, CPortlet.

For More Information:
www.PacktPub.com/oracle-11g-database-implementations-guide/book

https://www.packtpub.com/yii-1-1-and-php5-for-agile-web-application-development/book

Chapter 9

[235]

Introducing CPortlet
 CPortlet is part of zii, the offi cial extension class library that comes packaged
with Yii. It provides a nice base class for all portlet-style widgets. It will allow us
to render a nice title as well as consistent HTML markup, so that all portlets across
the application can be easily styled in a similar manner. Once we have a widget that
renders content (like our RecentComments widget), we can simply use the rendered
content of our widget as the content for CPortlet, which itself is a widget, as it also
extends from CWidget. We can do this by placing our call to the RecentComments
widget between a beginWidget() and an endWiget() call for CPortlet, as such:

<?php $this->beginWidget('zii.widgets.CPortlet', array(
 'title'=>'Recent Comments',
));

$this->widget('RecentComments');

$this->endWidget(); ?>

Since CPortlet provides a title property, we set it to be something meaningful
for our portlet. We then use the rendered content of the RecentComments widget
to drive the content for the porlet widget. The end result of this is depicted in the
following screenshot:

For More Information:
www.PacktPub.com/oracle-11g-database-implementations-guide/book

https://www.packtpub.com/yii-1-1-and-php5-for-agile-web-application-development/book

Iteration 6: Adding User Comments

[236]

 This is not a huge change from what we had previously, but we have now placed
our content into a consistent container that is already being used throughout the site.
Notice the similarity between the right column menu content block and our newly
created recent comments content block. I am sure it will come as no surprise to you
that this right column menu block is also displayed within a CPortlet container.
Taking a peek in protected/views/layouts/column2.php, which is a fi le that
the yiic webapp command autogenerated for us when we initially created the
application, reveals the following code:

<?php
 $this->beginWidget('zii.widgets.CPortlet', array(
 'title'=>'Operations',
));
 $this->widget('zii.widgets.CMenu', array(
 'items'=>$this->menu,
 'htmlOptions'=>array('class'=>'operations'),
));
 $this->endWidget();
?>

So it seems that the application has been taking advantage of portlets all along.

Adding our widget to another page
 Let's also add our portlet to the project details page, and restrict the comments to just
those associated with the specifi c project.

Add the following to the bottom of the protected/views/project/view.php fi le:

<?php $this->beginWidget('zii.widgets.CPortlet', array(
 'title'=>'Recent Project Comments',
));

$this->widget('RecentComments', array('projectId'=>$model->id));

$this->endWidget(); ?>

This is basically the same thing we added to the project listings page, except we are
initializing the RecentComments widget's $projectId property by adding an array
of name=>value pairs to the call.

Now if we visit a specifi c project details page, we should see something similar to the
following screenshot:

For More Information:
www.PacktPub.com/oracle-11g-database-implementations-guide/book

https://www.packtpub.com/yii-1-1-and-php5-for-agile-web-application-development/book

Chapter 9

[237]

This screenshot shows the details page for project #3, which has one associated
issue with just one comment on that issue, as depicted in the picture. You may
need to add a few issues and comments on those issues in order to generate a
similar display. We now have a way to display recent comments with a few
different confi gurable parameters anywhere throughout the site in a consistent
and easily maintainable manner.

Summary
With this iteration, we have started to fl esh out our Trackstar application with
functionality that has come to be expected of most user-based web applications
today. The ability for users to communicate with each other within the application is
an essential part of a successful issue management system.

As we created this essential feature, we were able to deeper look into how to write
relational AR queries. We were also introduced to content components called
widgets and portlets. This introduced us to an approach to developing small
content blocks and being able to use them anywhere throughout the site. This
approach greatly increases reuse, consistency, and ease of maintenance.

In the next iteration, we'll build upon the recent comments widget created here, and
expose the content generated by our widget as an RSS feed to allow users to track
application or project activity without having to visit the application.

For More Information:
www.PacktPub.com/oracle-11g-database-implementations-guide/book

https://www.packtpub.com/yii-1-1-and-php5-for-agile-web-application-development/book

Where to buy this book
You can buy Oracle Agile Web Application Development with Yii 1.1 and PHP5 from

the Packt Publishing website: https://www.packtpub.com/yii-1-1-and-

php5-for-agile-web-application-development/book.

Free shipping to the US, UK, Europe and selected Asian countries. For more information, please

read our shipping policy.

Alternatively, you can buy the book from Amazon, BN.com, Computer Manuals and

most internet book retailers.

P U B L I S H I N G

community experience dist i l led

www.PacktPub.com

For More Information:
www.PacktPub.com/oracle-11g-database-implementations-guide/book

https://www.packtpub.com/yii-1-1-and-php5-for-agile-web-application-development/book
https://www.packtpub.com/Shippingpolicy

