BitSet.java in  » 6.0-JDK-Core » Collections-Jar-Zip-Logging-regex » java » util » Java Source Code / Java Documentation Java Source Code and Java Documentation

Home
Java Source Code / Java Documentation
1.6.0 JDK Core
2.6.0 JDK Modules
3.6.0 JDK Modules com.sun
4.6.0 JDK Modules com.sun.java
5.6.0 JDK Modules sun
6.6.0 JDK Platform
7.Ajax
8.Apache Harmony Java SE
9.Aspect oriented
10.Authentication Authorization
11.Blogger System
12.Build
13.Byte Code
14.Cache
15.Chart
16.Chat
17.Code Analyzer
18.Collaboration
19.Content Management System
20.Database Client
21.Database DBMS
22.Database JDBC Connection Pool
23.Database ORM
24.Development
25.EJB Server
26.ERP CRM Financial
27.ESB
28.Forum
29.Game
30.GIS
31.Graphic 3D
32.Graphic Library
33.Groupware
34.HTML Parser
35.IDE
36.IDE Eclipse
37.IDE Netbeans
38.Installer
39.Internationalization Localization
40.Inversion of Control
41.Issue Tracking
42.J2EE
43.J2ME
44.JBoss
45.JMS
46.JMX
47.Library
48.Mail Clients
49.Music
50.Natural Language Processing
51.Net
52.Parser
53.PDF
54.Portal
55.Profiler
56.Project Management
57.Report
58.RSS RDF
59.Rule Engine
60.Science
61.Scripting
62.Search Engine
63.Security
64.Sevlet Container
65.Source Control
66.Swing Library
67.Template Engine
68.Test Coverage
69.Testing
70.UML
71.Web Crawler
72.Web Framework
73.Web Mail
74.Web Server
75.Web Services
76.Web Services apache cxf 2.2.6
77.Web Services AXIS2
78.Wiki Engine
79.Workflow Engines
80.XML
81.XML UI
Java Source Code / Java Documentation  » 6.0 JDK Core » Collections Jar Zip Logging regex » java.util 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


        /*
         * Copyright 1995-2007 Sun Microsystems, Inc.  All Rights Reserved.
         * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
         *
         * This code is free software; you can redistribute it and/or modify it
         * under the terms of the GNU General Public License version 2 only, as
         * published by the Free Software Foundation.  Sun designates this
         * particular file as subject to the "Classpath" exception as provided
         * by Sun in the LICENSE file that accompanied this code.
         *
         * This code is distributed in the hope that it will be useful, but WITHOUT
         * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
         * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
         * version 2 for more details (a copy is included in the LICENSE file that
         * accompanied this code).
         *
         * You should have received a copy of the GNU General Public License version
         * 2 along with this work; if not, write to the Free Software Foundation,
         * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
         *
         * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
         * CA 95054 USA or visit www.sun.com if you need additional information or
         * have any questions.
         */

        package java.util;

        import java.io.*;
        import java.nio.ByteBuffer;
        import java.nio.ByteOrder;
        import java.nio.LongBuffer;

        /**
         * This class implements a vector of bits that grows as needed. Each
         * component of the bit set has a {@code boolean} value. The
         * bits of a {@code BitSet} are indexed by nonnegative integers.
         * Individual indexed bits can be examined, set, or cleared. One
         * {@code BitSet} may be used to modify the contents of another
         * {@code BitSet} through logical AND, logical inclusive OR, and
         * logical exclusive OR operations.
         *
         * <p>By default, all bits in the set initially have the value
         * {@code false}.
         *
         * <p>Every bit set has a current size, which is the number of bits
         * of space currently in use by the bit set. Note that the size is
         * related to the implementation of a bit set, so it may change with
         * implementation. The length of a bit set relates to logical length
         * of a bit set and is defined independently of implementation.
         *
         * <p>Unless otherwise noted, passing a null parameter to any of the
         * methods in a {@code BitSet} will result in a
         * {@code NullPointerException}.
         *
         * <p>A {@code BitSet} is not safe for multithreaded use without
         * external synchronization.
         *
         * @author  Arthur van Hoff
         * @author  Michael McCloskey
         * @author  Martin Buchholz
         * @version 1.74, 06/12/07
         * @since   JDK1.0
         */
        public class BitSet implements  Cloneable, java.io.Serializable {
            /*
             * BitSets are packed into arrays of "words."  Currently a word is
             * a long, which consists of 64 bits, requiring 6 address bits.
             * The choice of word size is determined purely by performance concerns.
             */
            private final static int ADDRESS_BITS_PER_WORD = 6;
            private final static int BITS_PER_WORD = 1 << ADDRESS_BITS_PER_WORD;
            private final static int BIT_INDEX_MASK = BITS_PER_WORD - 1;

            /* Used to shift left or right for a partial word mask */
            private static final long WORD_MASK = 0xffffffffffffffffL;

            /**
             * @serialField bits long[]
             *
             * The bits in this BitSet.  The ith bit is stored in bits[i/64] at
             * bit position i % 64 (where bit position 0 refers to the least
             * significant bit and 63 refers to the most significant bit).
             */
            private static final ObjectStreamField[] serialPersistentFields = { new ObjectStreamField(
                    "bits", long[].class), };

            /**
             * The internal field corresponding to the serialField "bits".
             */
            private long[] words;

            /**
             * The number of words in the logical size of this BitSet.
             */
            private transient int wordsInUse = 0;

            /**
             * Whether the size of "words" is user-specified.  If so, we assume
             * the user knows what he's doing and try harder to preserve it.
             */
            private transient boolean sizeIsSticky = false;

            /* use serialVersionUID from JDK 1.0.2 for interoperability */
            private static final long serialVersionUID = 7997698588986878753L;

            /**
             * Given a bit index, return word index containing it.
             */
            private static int wordIndex(int bitIndex) {
                return bitIndex >> ADDRESS_BITS_PER_WORD;
            }

            /**
             * Every public method must preserve these invariants.
             */
            private void checkInvariants() {
                assert (wordsInUse == 0 || words[wordsInUse - 1] != 0);
                assert (wordsInUse >= 0 && wordsInUse <= words.length);
                assert (wordsInUse == words.length || words[wordsInUse] == 0);
            }

            /**
             * Sets the field wordsInUse to the logical size in words of the bit set.
             * WARNING:This method assumes that the number of words actually in use is
             * less than or equal to the current value of wordsInUse!
             */
            private void recalculateWordsInUse() {
                // Traverse the bitset until a used word is found
                int i;
                for (i = wordsInUse - 1; i >= 0; i--)
                    if (words[i] != 0)
                        break;

                wordsInUse = i + 1; // The new logical size
            }

            /**
             * Creates a new bit set. All bits are initially {@code false}.
             */
            public BitSet() {
                initWords(BITS_PER_WORD);
                sizeIsSticky = false;
            }

            /**
             * Creates a bit set whose initial size is large enough to explicitly
             * represent bits with indices in the range {@code 0} through
             * {@code nbits-1}. All bits are initially {@code false}.
             *
             * @param  nbits the initial size of the bit set
             * @throws NegativeArraySizeException if the specified initial size
             *         is negative
             */
            public BitSet(int nbits) {
                // nbits can't be negative; size 0 is OK
                if (nbits < 0)
                    throw new NegativeArraySizeException("nbits < 0: " + nbits);

                initWords(nbits);
                sizeIsSticky = true;
            }

            private void initWords(int nbits) {
                words = new long[wordIndex(nbits - 1) + 1];
            }

            /**
             * Creates a bit set using words as the internal representation.
             * The last word (if there is one) must be non-zero.
             */
            private BitSet(long[] words) {
                this .words = words;
                this .wordsInUse = words.length;
                checkInvariants();
            }

            /**
             * Returns a new bit set containing all the bits in the given long array.
             *
             * <p>More precisely,
             * <br>{@code BitSet.valueOf(longs).get(n) == ((longs[n/64] & (1L<<(n%64))) != 0)}
             * <br>for all {@code n < 64 * longs.length}.
             *
             * <p>This method is equivalent to
             * {@code BitSet.valueOf(LongBuffer.wrap(longs))}.
             *
             * @param longs a long array containing a little-endian representation
             *        of a sequence of bits to be used as the initial bits of the
             *        new bit set
             * @since 1.7
             */
            public static BitSet valueOf(long[] longs) {
                int n;
                for (n = longs.length; n > 0 && longs[n - 1] == 0; n--)
                    ;
                return new BitSet(Arrays.copyOf(longs, n));
            }

            /**
             * Returns a new bit set containing all the bits in the given long
             * buffer between its position and limit.
             *
             * <p>More precisely,
             * <br>{@code BitSet.valueOf(lb).get(n) == ((lb.get(lb.position()+n/64) & (1L<<(n%64))) != 0)}
             * <br>for all {@code n < 64 * lb.remaining()}.
             *
             * <p>The long buffer is not modified by this method, and no
             * reference to the buffer is retained by the bit set.
             *
             * @param lb a long buffer containing a little-endian representation
             *        of a sequence of bits between its position and limit, to be
             *        used as the initial bits of the new bit set
             * @since 1.7
             */
            public static BitSet valueOf(LongBuffer lb) {
                lb = lb.slice();
                int n;
                for (n = lb.remaining(); n > 0 && lb.get(n - 1) == 0; n--)
                    ;
                long[] words = new long[n];
                lb.get(words);
                return new BitSet(words);
            }

            /**
             * Returns a new bit set containing all the bits in the given byte array.
             *
             * <p>More precisely,
             * <br>{@code BitSet.valueOf(bytes).get(n) == ((bytes[n/8] & (1<<(n%8))) != 0)}
             * <br>for all {@code n <  8 * bytes.length}.
             *
             * <p>This method is equivalent to
             * {@code BitSet.valueOf(ByteBuffer.wrap(bytes))}.
             *
             * @param bytes a byte array containing a little-endian
             *        representation of a sequence of bits to be used as the
             *        initial bits of the new bit set
             * @since 1.7
             */
            public static BitSet valueOf(byte[] bytes) {
                return BitSet.valueOf(ByteBuffer.wrap(bytes));
            }

            /**
             * Returns a new bit set containing all the bits in the given byte
             * buffer between its position and limit.
             *
             * <p>More precisely,
             * <br>{@code BitSet.valueOf(bb).get(n) == ((bb.get(bb.position()+n/8) & (1<<(n%8))) != 0)}
             * <br>for all {@code n < 8 * bb.remaining()}.
             *
             * <p>The byte buffer is not modified by this method, and no
             * reference to the buffer is retained by the bit set.
             *
             * @param bb a byte buffer containing a little-endian representation
             *        of a sequence of bits between its position and limit, to be
             *        used as the initial bits of the new bit set
             * @since 1.7
             */
            public static BitSet valueOf(ByteBuffer bb) {
                bb = bb.slice().order(ByteOrder.LITTLE_ENDIAN);
                int n;
                for (n = bb.remaining(); n > 0 && bb.get(n - 1) == 0; n--)
                    ;
                long[] words = new long[(n + 7) / 8];
                bb.limit(n);
                int i = 0;
                while (bb.remaining() >= 8)
                    words[i++] = bb.getLong();
                for (int remaining = bb.remaining(), j = 0; j < remaining; j++)
                    words[i] |= (bb.get() & 0xffL) << (8 * j);
                return new BitSet(words);
            }

            /**
             * Returns a new byte array containing all the bits in this bit set.
             *
             * <p>More precisely, if
             * <br>{@code byte[] bytes = s.toByteArray();}
             * <br>then {@code bytes.length == (s.length()+7)/8} and
             * <br>{@code s.get(n) == ((bytes[n/8] & (1<<(n%8))) != 0)}
             * <br>for all {@code n < 8 * bytes.length}.
             *
             * @return a byte array containing a little-endian representation
             *         of all the bits in this bit set
             * @since 1.7
             */
            public byte[] toByteArray() {
                int n = wordsInUse;
                if (n == 0)
                    return new byte[0];
                int len = 8 * (n - 1);
                for (long x = words[n - 1]; x != 0; x >>>= 8)
                    len++;
                byte[] bytes = new byte[len];
                ByteBuffer bb = ByteBuffer.wrap(bytes).order(
                        ByteOrder.LITTLE_ENDIAN);
                for (int i = 0; i < n - 1; i++)
                    bb.putLong(words[i]);
                for (long x = words[n - 1]; x != 0; x >>>= 8)
                    bb.put((byte) (x & 0xff));
                return bytes;
            }

            /**
             * Returns a new long array containing all the bits in this bit set.
             *
             * <p>More precisely, if
             * <br>{@code long[] longs = s.toLongArray();}
             * <br>then {@code longs.length == (s.length()+63)/64} and
             * <br>{@code s.get(n) == ((longs[n/64] & (1L<<(n%64))) != 0)}
             * <br>for all {@code n < 64 * longs.length}.
             *
             * @return a long array containing a little-endian representation
             *         of all the bits in this bit set
             * @since 1.7
             */
            public long[] toLongArray() {
                return Arrays.copyOf(words, wordsInUse);
            }

            /**
             * Ensures that the BitSet can hold enough words.
             * @param wordsRequired the minimum acceptable number of words.
             */
            private void ensureCapacity(int wordsRequired) {
                if (words.length < wordsRequired) {
                    // Allocate larger of doubled size or required size
                    int request = Math.max(2 * words.length, wordsRequired);
                    words = Arrays.copyOf(words, request);
                    sizeIsSticky = false;
                }
            }

            /**
             * Ensures that the BitSet can accommodate a given wordIndex,
             * temporarily violating the invariants.  The caller must
             * restore the invariants before returning to the user,
             * possibly using recalculateWordsInUse().
             * @param wordIndex the index to be accommodated.
             */
            private void expandTo(int wordIndex) {
                int wordsRequired = wordIndex + 1;
                if (wordsInUse < wordsRequired) {
                    ensureCapacity(wordsRequired);
                    wordsInUse = wordsRequired;
                }
            }

            /**
             * Checks that fromIndex ... toIndex is a valid range of bit indices.
             */
            private static void checkRange(int fromIndex, int toIndex) {
                if (fromIndex < 0)
                    throw new IndexOutOfBoundsException("fromIndex < 0: "
                            + fromIndex);
                if (toIndex < 0)
                    throw new IndexOutOfBoundsException("toIndex < 0: "
                            + toIndex);
                if (fromIndex > toIndex)
                    throw new IndexOutOfBoundsException("fromIndex: "
                            + fromIndex + " > toIndex: " + toIndex);
            }

            /**
             * Sets the bit at the specified index to the complement of its
             * current value.
             *
             * @param  bitIndex the index of the bit to flip
             * @throws IndexOutOfBoundsException if the specified index is negative
             * @since  1.4
             */
            public void flip(int bitIndex) {
                if (bitIndex < 0)
                    throw new IndexOutOfBoundsException("bitIndex < 0: "
                            + bitIndex);

                int wordIndex = wordIndex(bitIndex);
                expandTo(wordIndex);

                words[wordIndex] ^= (1L << bitIndex);

                recalculateWordsInUse();
                checkInvariants();
            }

            /**
             * Sets each bit from the specified {@code fromIndex} (inclusive) to the
             * specified {@code toIndex} (exclusive) to the complement of its current
             * value.
             *
             * @param  fromIndex index of the first bit to flip
             * @param  toIndex index after the last bit to flip
             * @throws IndexOutOfBoundsException if {@code fromIndex} is negative,
             *         or {@code toIndex} is negative, or {@code fromIndex} is
             *         larger than {@code toIndex}
             * @since  1.4
             */
            public void flip(int fromIndex, int toIndex) {
                checkRange(fromIndex, toIndex);

                if (fromIndex == toIndex)
                    return;

                int startWordIndex = wordIndex(fromIndex);
                int endWordIndex = wordIndex(toIndex - 1);
                expandTo(endWordIndex);

                long firstWordMask = WORD_MASK << fromIndex;
                long lastWordMask = WORD_MASK >>> -toIndex;
                if (startWordIndex == endWordIndex) {
                    // Case 1: One word
                    words[startWordIndex] ^= (firstWordMask & lastWordMask);
                } else {
                    // Case 2: Multiple words
                    // Handle first word
                    words[startWordIndex] ^= firstWordMask;

                    // Handle intermediate words, if any
                    for (int i = startWordIndex + 1; i < endWordIndex; i++)
                        words[i] ^= WORD_MASK;

                    // Handle last word
                    words[endWordIndex] ^= lastWordMask;
                }

                recalculateWordsInUse();
                checkInvariants();
            }

            /**
             * Sets the bit at the specified index to {@code true}.
             *
             * @param  bitIndex a bit index
             * @throws IndexOutOfBoundsException if the specified index is negative
             * @since  JDK1.0
             */
            public void set(int bitIndex) {
                if (bitIndex < 0)
                    throw new IndexOutOfBoundsException("bitIndex < 0: "
                            + bitIndex);

                int wordIndex = wordIndex(bitIndex);
                expandTo(wordIndex);

                words[wordIndex] |= (1L << bitIndex); // Restores invariants

                checkInvariants();
            }

            /**
             * Sets the bit at the specified index to the specified value.
             *
             * @param  bitIndex a bit index
             * @param  value a boolean value to set
             * @throws IndexOutOfBoundsException if the specified index is negative
             * @since  1.4
             */
            public void set(int bitIndex, boolean value) {
                if (value)
                    set(bitIndex);
                else
                    clear(bitIndex);
            }

            /**
             * Sets the bits from the specified {@code fromIndex} (inclusive) to the
             * specified {@code toIndex} (exclusive) to {@code true}.
             *
             * @param  fromIndex index of the first bit to be set
             * @param  toIndex index after the last bit to be set
             * @throws IndexOutOfBoundsException if {@code fromIndex} is negative,
             *         or {@code toIndex} is negative, or {@code fromIndex} is
             *         larger than {@code toIndex}
             * @since  1.4
             */
            public void set(int fromIndex, int toIndex) {
                checkRange(fromIndex, toIndex);

                if (fromIndex == toIndex)
                    return;

                // Increase capacity if necessary
                int startWordIndex = wordIndex(fromIndex);
                int endWordIndex = wordIndex(toIndex - 1);
                expandTo(endWordIndex);

                long firstWordMask = WORD_MASK << fromIndex;
                long lastWordMask = WORD_MASK >>> -toIndex;
                if (startWordIndex == endWordIndex) {
                    // Case 1: One word
                    words[startWordIndex] |= (firstWordMask & lastWordMask);
                } else {
                    // Case 2: Multiple words
                    // Handle first word
                    words[startWordIndex] |= firstWordMask;

                    // Handle intermediate words, if any
                    for (int i = startWordIndex + 1; i < endWordIndex; i++)
                        words[i] = WORD_MASK;

                    // Handle last word (restores invariants)
                    words[endWordIndex] |= lastWordMask;
                }

                checkInvariants();
            }

            /**
             * Sets the bits from the specified {@code fromIndex} (inclusive) to the
             * specified {@code toIndex} (exclusive) to the specified value.
             *
             * @param  fromIndex index of the first bit to be set
             * @param  toIndex index after the last bit to be set
             * @param  value value to set the selected bits to
             * @throws IndexOutOfBoundsException if {@code fromIndex} is negative,
             *         or {@code toIndex} is negative, or {@code fromIndex} is
             *         larger than {@code toIndex}
             * @since  1.4
             */
            public void set(int fromIndex, int toIndex, boolean value) {
                if (value)
                    set(fromIndex, toIndex);
                else
                    clear(fromIndex, toIndex);
            }

            /**
             * Sets the bit specified by the index to {@code false}.
             *
             * @param  bitIndex the index of the bit to be cleared
             * @throws IndexOutOfBoundsException if the specified index is negative
             * @since  JDK1.0
             */
            public void clear(int bitIndex) {
                if (bitIndex < 0)
                    throw new IndexOutOfBoundsException("bitIndex < 0: "
                            + bitIndex);

                int wordIndex = wordIndex(bitIndex);
                if (wordIndex >= wordsInUse)
                    return;

                words[wordIndex] &= ~(1L << bitIndex);

                recalculateWordsInUse();
                checkInvariants();
            }

            /**
             * Sets the bits from the specified {@code fromIndex} (inclusive) to the
             * specified {@code toIndex} (exclusive) to {@code false}.
             *
             * @param  fromIndex index of the first bit to be cleared
             * @param  toIndex index after the last bit to be cleared
             * @throws IndexOutOfBoundsException if {@code fromIndex} is negative,
             *         or {@code toIndex} is negative, or {@code fromIndex} is
             *         larger than {@code toIndex}
             * @since  1.4
             */
            public void clear(int fromIndex, int toIndex) {
                checkRange(fromIndex, toIndex);

                if (fromIndex == toIndex)
                    return;

                int startWordIndex = wordIndex(fromIndex);
                if (startWordIndex >= wordsInUse)
                    return;

                int endWordIndex = wordIndex(toIndex - 1);
                if (endWordIndex >= wordsInUse) {
                    toIndex = length();
                    endWordIndex = wordsInUse - 1;
                }

                long firstWordMask = WORD_MASK << fromIndex;
                long lastWordMask = WORD_MASK >>> -toIndex;
                if (startWordIndex == endWordIndex) {
                    // Case 1: One word
                    words[startWordIndex] &= ~(firstWordMask & lastWordMask);
                } else {
                    // Case 2: Multiple words
                    // Handle first word
                    words[startWordIndex] &= ~firstWordMask;

                    // Handle intermediate words, if any
                    for (int i = startWordIndex + 1; i < endWordIndex; i++)
                        words[i] = 0;

                    // Handle last word
                    words[endWordIndex] &= ~lastWordMask;
                }

                recalculateWordsInUse();
                checkInvariants();
            }

            /**
             * Sets all of the bits in this BitSet to {@code false}.
             *
             * @since 1.4
             */
            public void clear() {
                while (wordsInUse > 0)
                    words[--wordsInUse] = 0;
            }

            /**
             * Returns the value of the bit with the specified index. The value
             * is {@code true} if the bit with the index {@code bitIndex}
             * is currently set in this {@code BitSet}; otherwise, the result
             * is {@code false}.
             *
             * @param  bitIndex   the bit index
             * @return the value of the bit with the specified index
             * @throws IndexOutOfBoundsException if the specified index is negative
             */
            public boolean get(int bitIndex) {
                if (bitIndex < 0)
                    throw new IndexOutOfBoundsException("bitIndex < 0: "
                            + bitIndex);

                checkInvariants();

                int wordIndex = wordIndex(bitIndex);
                return (wordIndex < wordsInUse)
                        && ((words[wordIndex] & (1L << bitIndex)) != 0);
            }

            /**
             * Returns a new {@code BitSet} composed of bits from this {@code BitSet}
             * from {@code fromIndex} (inclusive) to {@code toIndex} (exclusive).
             *
             * @param  fromIndex index of the first bit to include
             * @param  toIndex index after the last bit to include
             * @return a new {@code BitSet} from a range of this {@code BitSet}
             * @throws IndexOutOfBoundsException if {@code fromIndex} is negative,
             *         or {@code toIndex} is negative, or {@code fromIndex} is
             *         larger than {@code toIndex}
             * @since  1.4
             */
            public BitSet get(int fromIndex, int toIndex) {
                checkRange(fromIndex, toIndex);

                checkInvariants();

                int len = length();

                // If no set bits in range return empty bitset
                if (len <= fromIndex || fromIndex == toIndex)
                    return new BitSet(0);

                // An optimization
                if (toIndex > len)
                    toIndex = len;

                BitSet result = new BitSet(toIndex - fromIndex);
                int targetWords = wordIndex(toIndex - fromIndex - 1) + 1;
                int sourceIndex = wordIndex(fromIndex);
                boolean wordAligned = ((fromIndex & BIT_INDEX_MASK) == 0);

                // Process all words but the last word
                for (int i = 0; i < targetWords - 1; i++, sourceIndex++)
                    result.words[i] = wordAligned ? words[sourceIndex]
                            : (words[sourceIndex] >>> fromIndex)
                                    | (words[sourceIndex + 1] << -fromIndex);

                // Process the last word
                long lastWordMask = WORD_MASK >>> -toIndex;
                result.words[targetWords - 1] = ((toIndex - 1) & BIT_INDEX_MASK) < (fromIndex & BIT_INDEX_MASK) ? /* straddles source words */
                ((words[sourceIndex] >>> fromIndex) | (words[sourceIndex + 1] & lastWordMask) << -fromIndex)
                        : ((words[sourceIndex] & lastWordMask) >>> fromIndex);

                // Set wordsInUse correctly
                result.wordsInUse = targetWords;
                result.recalculateWordsInUse();
                result.checkInvariants();

                return result;
            }

            /**
             * Returns the index of the first bit that is set to {@code true}
             * that occurs on or after the specified starting index. If no such
             * bit exists then -1 is returned.
             *
             * To iterate over the {@code true} bits in a {@code BitSet},
             * use the following loop:
             *
             * <pre>
             * for (int i = bs.nextSetBit(0); i >= 0; i = bs.nextSetBit(i+1)) {
             *     // operate on index i here
             * }</pre>
             *
             * @param  fromIndex the index to start checking from (inclusive)
             * @return the index of the next set bit
             * @throws IndexOutOfBoundsException if the specified index is negative
             * @since  1.4
             */
            public int nextSetBit(int fromIndex) {
                if (fromIndex < 0)
                    throw new IndexOutOfBoundsException("fromIndex < 0: "
                            + fromIndex);

                checkInvariants();

                int u = wordIndex(fromIndex);
                if (u >= wordsInUse)
                    return -1;

                long word = words[u] & (WORD_MASK << fromIndex);

                while (true) {
                    if (word != 0)
                        return (u * BITS_PER_WORD)
                                + Long.numberOfTrailingZeros(word);
                    if (++u == wordsInUse)
                        return -1;
                    word = words[u];
                }
            }

            /**
             * Returns the index of the first bit that is set to {@code false}
             * that occurs on or after the specified starting index.
             *
             * @param  fromIndex the index to start checking from (inclusive)
             * @return the index of the next clear bit
             * @throws IndexOutOfBoundsException if the specified index is negative
             * @since  1.4
             */
            public int nextClearBit(int fromIndex) {
                // Neither spec nor implementation handle bitsets of maximal length.
                // See 4816253.
                if (fromIndex < 0)
                    throw new IndexOutOfBoundsException("fromIndex < 0: "
                            + fromIndex);

                checkInvariants();

                int u = wordIndex(fromIndex);
                if (u >= wordsInUse)
                    return fromIndex;

                long word = ~words[u] & (WORD_MASK << fromIndex);

                while (true) {
                    if (word != 0)
                        return (u * BITS_PER_WORD)
                                + Long.numberOfTrailingZeros(word);
                    if (++u == wordsInUse)
                        return wordsInUse * BITS_PER_WORD;
                    word = ~words[u];
                }
            }

            /**
             * Returns the "logical size" of this {@code BitSet}: the index of
             * the highest set bit in the {@code BitSet} plus one. Returns zero
             * if the {@code BitSet} contains no set bits.
             *
             * @return the logical size of this {@code BitSet}
             * @since  1.2
             */
            public int length() {
                if (wordsInUse == 0)
                    return 0;

                return BITS_PER_WORD
                        * (wordsInUse - 1)
                        + (BITS_PER_WORD - Long
                                .numberOfLeadingZeros(words[wordsInUse - 1]));
            }

            /**
             * Returns true if this {@code BitSet} contains no bits that are set
             * to {@code true}.
             *
             * @return boolean indicating whether this {@code BitSet} is empty
             * @since  1.4
             */
            public boolean isEmpty() {
                return wordsInUse == 0;
            }

            /**
             * Returns true if the specified {@code BitSet} has any bits set to
             * {@code true} that are also set to {@code true} in this {@code BitSet}.
             *
             * @param  set {@code BitSet} to intersect with
             * @return boolean indicating whether this {@code BitSet} intersects
             *         the specified {@code BitSet}
             * @since  1.4
             */
            public boolean intersects(BitSet set) {
                for (int i = Math.min(wordsInUse, set.wordsInUse) - 1; i >= 0; i--)
                    if ((words[i] & set.words[i]) != 0)
                        return true;
                return false;
            }

            /**
             * Returns the number of bits set to {@code true} in this {@code BitSet}.
             *
             * @return the number of bits set to {@code true} in this {@code BitSet}
             * @since  1.4
             */
            public int cardinality() {
                int sum = 0;
                for (int i = 0; i < wordsInUse; i++)
                    sum += Long.bitCount(words[i]);
                return sum;
            }

            /**
             * Performs a logical <b>AND</b> of this target bit set with the
             * argument bit set. This bit set is modified so that each bit in it
             * has the value {@code true} if and only if it both initially
             * had the value {@code true} and the corresponding bit in the
             * bit set argument also had the value {@code true}.
             *
             * @param set a bit set
             */
            public void and(BitSet set) {
                if (this  == set)
                    return;

                while (wordsInUse > set.wordsInUse)
                    words[--wordsInUse] = 0;

                // Perform logical AND on words in common
                for (int i = 0; i < wordsInUse; i++)
                    words[i] &= set.words[i];

                recalculateWordsInUse();
                checkInvariants();
            }

            /**
             * Performs a logical <b>OR</b> of this bit set with the bit set
             * argument. This bit set is modified so that a bit in it has the
             * value {@code true} if and only if it either already had the
             * value {@code true} or the corresponding bit in the bit set
             * argument has the value {@code true}.
             *
             * @param set a bit set
             */
            public void or(BitSet set) {
                if (this  == set)
                    return;

                int wordsInCommon = Math.min(wordsInUse, set.wordsInUse);

                if (wordsInUse < set.wordsInUse) {
                    ensureCapacity(set.wordsInUse);
                    wordsInUse = set.wordsInUse;
                }

                // Perform logical OR on words in common
                for (int i = 0; i < wordsInCommon; i++)
                    words[i] |= set.words[i];

                // Copy any remaining words
                if (wordsInCommon < set.wordsInUse)
                    System.arraycopy(set.words, wordsInCommon, words,
                            wordsInCommon, wordsInUse - wordsInCommon);

                // recalculateWordsInUse() is unnecessary
                checkInvariants();
            }

            /**
             * Performs a logical <b>XOR</b> of this bit set with the bit set
             * argument. This bit set is modified so that a bit in it has the
             * value {@code true} if and only if one of the following
             * statements holds:
             * <ul>
             * <li>The bit initially has the value {@code true}, and the
             *     corresponding bit in the argument has the value {@code false}.
             * <li>The bit initially has the value {@code false}, and the
             *     corresponding bit in the argument has the value {@code true}.
             * </ul>
             *
             * @param  set a bit set
             */
            public void xor(BitSet set) {
                int wordsInCommon = Math.min(wordsInUse, set.wordsInUse);

                if (wordsInUse < set.wordsInUse) {
                    ensureCapacity(set.wordsInUse);
                    wordsInUse = set.wordsInUse;
                }

                // Perform logical XOR on words in common
                for (int i = 0; i < wordsInCommon; i++)
                    words[i] ^= set.words[i];

                // Copy any remaining words
                if (wordsInCommon < set.wordsInUse)
                    System.arraycopy(set.words, wordsInCommon, words,
                            wordsInCommon, set.wordsInUse - wordsInCommon);

                recalculateWordsInUse();
                checkInvariants();
            }

            /**
             * Clears all of the bits in this {@code BitSet} whose corresponding
             * bit is set in the specified {@code BitSet}.
             *
             * @param  set the {@code BitSet} with which to mask this
             *         {@code BitSet}
             * @since  1.2
             */
            public void andNot(BitSet set) {
                // Perform logical (a & !b) on words in common
                for (int i = Math.min(wordsInUse, set.wordsInUse) - 1; i >= 0; i--)
                    words[i] &= ~set.words[i];

                recalculateWordsInUse();
                checkInvariants();
            }

            /**
             * Returns a hash code value for this bit set. The hash code
             * depends only on which bits have been set within this
             * {@code BitSet}. The algorithm used to compute it may
             * be described as follows.
             *
             * <p>Suppose the bits in the {@code BitSet} were to be stored
             * in an array of {@code long} integers called, say,
             * {@code words}, in such a manner that bit {@code k} is
             * set in the {@code BitSet} (for nonnegative values of
             * {@code k}) if and only if the expression
             * <pre>{@code ((k>>6) < words.length) && ((words[k>>6] & (1L << (bit & 0x3F))) != 0)}</pre>
             * is true. Then the following definition of the {@code hashCode}
             * method would be a correct implementation of the actual algorithm:
             *  <pre> {@code
             * public int hashCode() {
             *      long h = 1234;
             *      for (int i = words.length; --i >= 0; ) {
             *           h ^= words[i] * (i + 1);
             *      }
             *      return (int)((h >> 32) ^ h);
             * }}</pre>
             * Note that the hash code values change if the set of bits is altered.
             *
             * @return a hash code value for this bit set
             */
            public int hashCode() {
                long h = 1234;
                for (int i = wordsInUse; --i >= 0;)
                    h ^= words[i] * (i + 1);

                return (int) ((h >> 32) ^ h);
            }

            /**
             * Returns the number of bits of space actually in use by this
             * {@code BitSet} to represent bit values.
             * The maximum element in the set is the size - 1st element.
             *
             * @return the number of bits currently in this bit set
             */
            public int size() {
                return words.length * BITS_PER_WORD;
            }

            /**
             * Compares this object against the specified object.
             * The result is {@code true} if and only if the argument is
             * not {@code null} and is a {@code Bitset} object that has
             * exactly the same set of bits set to {@code true} as this bit
             * set. That is, for every nonnegative {@code int} index {@code k},
             * <pre>((BitSet)obj).get(k) == this.get(k)</pre>
             * must be true. The current sizes of the two bit sets are not compared.
             *
             * @param  obj the object to compare with
             * @return {@code true} if the objects are the same;
             *         {@code false} otherwise
             * @see    #size()
             */
            public boolean equals(Object obj) {
                if (!(obj instanceof  BitSet))
                    return false;
                if (this  == obj)
                    return true;

                BitSet set = (BitSet) obj;

                checkInvariants();
                set.checkInvariants();

                if (wordsInUse != set.wordsInUse)
                    return false;

                // Check words in use by both BitSets
                for (int i = 0; i < wordsInUse; i++)
                    if (words[i] != set.words[i])
                        return false;

                return true;
            }

            /**
             * Cloning this {@code BitSet} produces a new {@code BitSet}
             * that is equal to it.
             * The clone of the bit set is another bit set that has exactly the
             * same bits set to {@code true} as this bit set.
             *
             * @return a clone of this bit set
             * @see    #size()
             */
            public Object clone() {
                if (!sizeIsSticky)
                    trimToSize();

                try {
                    BitSet result = (BitSet) super .clone();
                    result.words = words.clone();
                    result.checkInvariants();
                    return result;
                } catch (CloneNotSupportedException e) {
                    throw new InternalError();
                }
            }

            /**
             * Attempts to reduce internal storage used for the bits in this bit set.
             * Calling this method may, but is not required to, affect the value
             * returned by a subsequent call to the {@link #size()} method.
             */
            private void trimToSize() {
                if (wordsInUse != words.length) {
                    words = Arrays.copyOf(words, wordsInUse);
                    checkInvariants();
                }
            }

            /**
             * Save the state of the {@code BitSet} instance to a stream (i.e.,
             * serialize it).
             */
            private void writeObject(ObjectOutputStream s) throws IOException {

                checkInvariants();

                if (!sizeIsSticky)
                    trimToSize();

                ObjectOutputStream.PutField fields = s.putFields();
                fields.put("bits", words);
                s.writeFields();
            }

            /**
             * Reconstitute the {@code BitSet} instance from a stream (i.e.,
             * deserialize it).
             */
            private void readObject(ObjectInputStream s) throws IOException,
                    ClassNotFoundException {

                ObjectInputStream.GetField fields = s.readFields();
                words = (long[]) fields.get("bits", null);

                // Assume maximum length then find real length
                // because recalculateWordsInUse assumes maintenance
                // or reduction in logical size
                wordsInUse = words.length;
                recalculateWordsInUse();
                sizeIsSticky = (words.length > 0 && words[words.length - 1] == 0L); // heuristic
                checkInvariants();
            }

            /**
             * Returns a string representation of this bit set. For every index
             * for which this {@code BitSet} contains a bit in the set
             * state, the decimal representation of that index is included in
             * the result. Such indices are listed in order from lowest to
             * highest, separated by ",&nbsp;" (a comma and a space) and
             * surrounded by braces, resulting in the usual mathematical
             * notation for a set of integers.
             *
             * <p>Example:
             * <pre>
             * BitSet drPepper = new BitSet();</pre>
             * Now {@code drPepper.toString()} returns "{@code {}}".<p>
             * <pre>
             * drPepper.set(2);</pre>
             * Now {@code drPepper.toString()} returns "{@code {2}}".<p>
             * <pre>
             * drPepper.set(4);
             * drPepper.set(10);</pre>
             * Now {@code drPepper.toString()} returns "{@code {2, 4, 10}}".
             *
             * @return a string representation of this bit set
             */
            public String toString() {
                checkInvariants();

                int numBits = (wordsInUse > 128) ? cardinality() : wordsInUse
                        * BITS_PER_WORD;
                StringBuilder b = new StringBuilder(6 * numBits + 2);
                b.append('{');

                int i = nextSetBit(0);
                if (i != -1) {
                    b.append(i);
                    for (i = nextSetBit(i + 1); i >= 0; i = nextSetBit(i + 1)) {
                        int endOfRun = nextClearBit(i);
                        do {
                            b.append(", ").append(i);
                        } while (++i < endOfRun);
                    }
                }

                b.append('}');
                return b.toString();
            }
        }
w___ww___.j___a__v_a_2_s.c___o___m_ | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.