

Nginx 1 Web Server Implementation
Cookbook

Dipankar Sarkar

Chapter No.7

"Nginx as a Reverse Proxy"

In this package, you will find:
A Biography of the author of the book

A preview chapter from the book, Chapter NO.7 "Nginx as a Reverse Proxy"

A synopsis of the book’s content

Information on where to buy this book

About the Author
Dipankar Sarkar is a web and mobile entrepreneur. He has a Bachelor's degree in

Computer Science and Engineering from the Indian Institute of Technology, Delhi. He is

a firm believer in the Open source movement and has participated in the Google Summer

of Code, 2005-06 and 2006-07. He has conducted technical workshops for Windows

mobile and Python at various technical meet ups. He recently took part in the Startup

Leadership Program, Delhi Chapter.

He has worked with Slideshare LLC, one of the world's largest online presentation

hosting and sharing service as an early engineering employee. He has since then worked

with Mpower Mobile LLC, a mobile payment startup and Clickable LLC, a leading

search engine marketing startup. He was a co-founder at Kwippy, which was one of the

top micro-blogging sites. He is currently working in the social TV space and has co-

founded Jaja.

For More Information:
www.PacktPub.com/nginx-1-web-server-implementation-cookbook/book

http://www.packtpub.com/nginx-1-web-server-implementation-cookbook/book

This is his first technical publication

I would like to thank my patient and long suffering wife, Maitrayee, for

putting up with my insane working hours and for being there for me

throughout. My mother and my sister, Rickta and Amrita, whose belief

and support sustains me. My in laws, Amal and Ruchira Roychoudhury,

for opening their homes and hearts to me so generously. Also to my

father, the late A. C. Sarkar, who co-authored the first chapter of my life

and without whom none of this would have been possible.

I would also like to thank Usha, Hyacintha, Srimoyee, and Kavita from

Packt who made this opportunity possible and have been fantastic to

work with. I am deeply grateful to the technical reviewers whose insights

have been invaluable. Needless to say, errors, if any, are mine.

For More Information:
www.PacktPub.com/nginx-1-web-server-implementation-cookbook/book

http://www.packtpub.com/nginx-1-web-server-implementation-cookbook/book

Nginx 1 Web Server Implementation
Cookbook
Nginx is an open source high-performance web server, which has gained quite some

popularity recently. Due to its modular architecture and small footprint, it has been the

default choice for a lot of smaller Web 2.0 companies to be used as a load-balancing

proxy server. It supports most of the existing backend web protocols such as FCGI,

WSGI, and SCGI. This book is for you if you want to have in-depth knowledge of the

Nginx server.

Nginx 1 Web Server Implementation Cookbook covers the whole range of techniques

that would prove useful for you in setting up a very effective web application with the

Nginx web server. It has recipes for lesser-known applications of Nginx like a mail proxy

server, streaming of video fi les, image resizing on the fl y, and much more.

The first chapter of the book covers the basics that would be useful for anyone who is

starting with Nginx. Each recipe is designed to be independent of the others.

The book has recipes based on broad areas such as core, logging, rewrites, security, and

others. We look at ways to optimize your Nginx setup, setting up your WordPress blog,

blocking bots that post spam on your site, setting up monitoring using munin, and much

more.

Nginx 1 Web Server Implementation Cookbook makes your entry into the Nginx world

easy with step-by-step recipes for nearly all the tasks necessary to run your own web

application.

A practical guide for system administrators and web developers alike to get the best out

of the open source Nginx web server.

What This Book Covers
Chapter 1, The Core HTTP Module, deals with the basics of Nginx configuration and

implementation. By the end of it you should be able to compile Nginx on your machine,

create virtual hosts, set up user tracking, and get PHP to work.

Chapter 2, All About Rewrites: The Rewrite Module, is devoted to the rewrite module; it

will teach you the basics and also allow you to configure various commonly available

web development frameworks to work correctly with your Nginx setup using the correct

rewrite rules.

Chapter 3, Get It All Logged: The Logging Module, aims to teach the basics as well as

the advanced configurations that can be done around the Nginx logging module, like log

management, backup, rotation, and more. Logging is very crucial as it can help you

For More Information:
www.PacktPub.com/nginx-1-web-server-implementation-cookbook/book

http://www.packtpub.com/nginx-1-web-server-implementation-cookbook/book

identify and track various attributes of your application like performance, user behavior,

and much more. It also helps you as a system administrator to identify, both reactively

and proactively, potential security issues.

Chapter 4, Slow Them Down: Access and Rate Limiting Module, explains how Nginx

provides good protection against cases such as bringing down sites by providing rate

limiting and server access based on IP.

Chapter 5, Let's be Secure: Security Modules, looks at how we can use the security

modules built-in Nginx to secure your site and user's data.

Chapter 6, Setting Up Applications: FCGI and WSGI Modules, has a practical section

devoted to helping programmers and system administrators understand and install their

applications using Nginx as the web server. Due to the lack of integrated modules for

running PHP and Python, the setting up of such systems can be an issue for non-

experienced system administrators.

Chapter 7, Nginx as a Reverse Proxy, deals with the usage of Nginx as a reverse proxy in

various common scenarios. We will have a look at how we can set up a rail application;

set up load balancing, and also have a look at caching setup using Nginx, which will

potentially enhance the performance of your existing site without any codebase changes.

Chapter 8, Improving Performance and SEO Using Nginx, is all about how you can make

your site load faster and possibly get more traffic on your site. We will cover the basics

of optimizing your Nginx setup and some SEO tricks. These techniques will not only be

useful for your SEO, but also for the overall health of your site and applications.

Chapter 9, Using Other Third-party Modules, a look at some inbuilt and third-party

modules which allow us to extend and use Nginx with other protocols such as IMAP,

POP3, WebDAV, and much more. Due to the flexible and well-defined module API,

many module developers have used Nginx for interesting web-based tasks such as XSLT

transformations, image resizing, and HTTP publish-subscribe server.

Chapter 10, Some More Third-party Modules, looks at various web situations such as

load balancing, server health checks, and more which will be very useful in a production

environment. These simple recipes will be highly applicable in enterprise scenarios where

you may need to have analytics, external authentication schemes, and many other

situations.

For More Information:
www.PacktPub.com/nginx-1-web-server-implementation-cookbook/book

http://www.packtpub.com/nginx-1-web-server-implementation-cookbook/book

7
 Nginx as a Reverse

Proxy

In this chapter, we will cover:

  Using Nginx as a simple reverse proxy

  Setting up a rails site using Nginx as a reverse proxy

  Setting up correct reverse proxy timeouts

  Setting up caching on the reverse proxy

  Using multiple backends for the reverse proxy

  Serving CGI fi les using thttpd and Nginx

  Setting up load balancing with reverse proxy

  Splitting requests based on various conditions using split-clients

Introduction
Nginx has found most applications acting as a reverse proxy for many sites. A reverse proxy
is a type of proxy server that retrieves resources for a client from one or more servers. These
resources are returned to the client as though they originated from the proxy server itself.

Due to its event driven architecture and C codebase, it consumes signifi cantly lower CPU power
and memory than many other better known solutions out there. This chapter will deal with the
usage of Nginx as a reverse proxy in various common scenarios. We will have a look at how
we can set up a rail application, set up load balancing, and also look at a caching setup using
Nginx, which will potentially enhance the performance of your existing site without any codebase
changes.

For More Information:
www.PacktPub.com/nginx-1-web-server-implementation-cookbook/book

http://www.packtpub.com/nginx-1-web-server-implementation-cookbook/book

Nginx as a Reverse Proxy

120

Using Nginx as a simple reverse proxy
 Nginx in its simplest form can be used as a reverse proxy for any site; it acts as an
intermediary layer for security, load distribution, caching, and compression purposes. In effect,
it can potentially enhance the overall quality of the site for the end user without any change of
application source code by distributing the load from incoming requests to multiple backend
servers, and also caching static, as well as dynamic content.

How to do it...
 You will need to fi rst defi ne proxy.conf , which will be later included in the main
confi guration of the reverse proxy that we are setting up:

proxy_redirect off;
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
client_max_body_size 10m;
client_body_buffer_size 128k;
proxy_connect_timeout 90;
proxy_send_timeout 90;
proxy_read_timeout 90;s
proxy_buffers 32 4k

To use Nginx as a reverse proxy for a site running on a local port of the server, the following
confi guration will suffi ce:

server {
 listen 80;
 server_name example1.com;
 access_log /var/www/example1.com/log/nginx.access.log;

For More Information:
www.PacktPub.com/nginx-1-web-server-implementation-cookbook/book

http://www.packtpub.com/nginx-1-web-server-implementation-cookbook/book

Chapter 7

121

 error_log /var/www/example1.com/log/nginx_error.log debug;

location / {
 include proxy.conf;
 proxy_pass http://127.0.0.1:8080;
 }
}

How it works...
In this recipe, Nginx simply acts as a proxy for the defi ned backend server which is running
on the 8080 port of the server, which can be any HTTP web application. Later in this chapter,
other advanced recipes will have a look at how one can defi ne more backend servers, and
how we can set them up to respond to requests.

Setting up a rails site using Nginx as
a reverse proxy

In this recipe, we will set up a working rails site and set up Nginx working on top of the
application. This will assume that the reader has some knowledge of rails and thin. There are
other ways of running Nginx and rails, as well, like using Passenger Phusion .

How to do it...
This will require you to set up thin fi rst, then to confi gure thin for your application, and then to
confi gure Nginx.

1. If you already have gems installed then the following command will install thin,
otherwise you will need to install it from source:

sudo gem install thin

For More Information:
www.PacktPub.com/nginx-1-web-server-implementation-cookbook/book

http://www.packtpub.com/nginx-1-web-server-implementation-cookbook/book

Nginx as a Reverse Proxy

122

2. Now you need to generate the thin confi guration. This will create a confi guration in
the /etc/thin directory:

sudo thin config -C /etc/thin/myapp.yml -c /var/rails/myapp
--servers 5 -e production

3. Now you can start the thin service. Depending on your operating system the start up
command will vary.

4. Assuming that you have Nginx installed, you will need to add the following to the
confi guration fi le:

upstream thin_cluster {

 server unix:/tmp/thin.0.sock;

 server unix:/tmp/thin.1.sock;

 server unix:/tmp/thin.2.sock;

 server unix:/tmp/thin.3.sock;

 server unix:/tmp/thin.4.sock;

 }

 server {

 listen 80;

 server_name www.example1.com;

 root /var/www.example1.com/public;

 location / {

 proxy_set_header X-Real-IP $remote_addr;

 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

 proxy_set_header Host $http_host;

 proxy_redirect false;

 try_files $uri $uri/index.html $uri.html @thin;

 location @thin {

 include proxy.conf;

 proxy_pass http://thin_cluster;

 }

 }

 error_page 500 502 503 504 /50x.html;

 location = /50x.html {

 root html;

 }

 }

For More Information:
www.PacktPub.com/nginx-1-web-server-implementation-cookbook/book

http://www.packtpub.com/nginx-1-web-server-implementation-cookbook/book

Chapter 7

123

How it works...
 This is a fairly simple rails stack, where we basically confi gure and run fi ve upstream thin
threads which interact with Nginx through socket connections .

There are a few rewrites that ensure that Nginx serves the static fi les, and all dynamic
requests are processed by the rails backend. It can also be seen how we set proxy headers
correctly to ensure that the client IP is forwarded correctly to the rails application. It is
important for a lot of applications to be able to access the client IP to show geo-located
information, and logging this IP can be useful in identifying if geography is a problem when the
site is not working properly for specifi c clients.

Setting up correct reverse proxy timeouts
 In this section we will set up correct reverse proxy timeouts which will affect your user's
interaction when your backend application is unable to respond to the client's request.

In such a case, it is advisable to set up some sensible timeout pages so that the user can
understand that further refreshing may only aggravate the issues on the web application.

How to do it...
You will fi rst need to set up proxy.conf which will later be included in the confi guration:

proxy_redirect off;
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
client_max_body_size 10m;
client_body_buffer_size 128k;
proxy_connect_timeout 90;
proxy_send_timeout 90;
proxy_read_timeout 90;s
proxy_buffers 32 4k

Reverse proxy timeouts are some fairly simple fl ags that we need to set up in the Nginx
confi guration like in the following example:

server {
 listen 80;
 server_name example1.com;
 access_log /var/www/example1.com/log/nginx.access.log;
 error_log /var/www/example1.com/log/nginx_error.log debug;

 #set your default location

For More Information:
www.PacktPub.com/nginx-1-web-server-implementation-cookbook/book

http://www.packtpub.com/nginx-1-web-server-implementation-cookbook/book

Nginx as a Reverse Proxy

124

 location / {
 include proxy.conf;
 proxy_read_timeout 120;
 proxy_connect_timeout 120;
 proxy_pass http://127.0.0.1:8080;
 }
}

How it works...
 In the preceding confi guration we have set the following variables, it is fairly clear what these
variables achieve in the context of the confi gurations:

Directive Use
proxy_read_timeout This directive sets the read timeout for the response of the

proxied server. It determines how long Nginx will wait to get the
response to a request. The timeout is established not for the
entire response, but only between two operations of reading.

proxy_connect_
timeout

This directive assigns timeout with the transfer of request to the
upstream server. Timeout is established not on the entire transfer
of request, but only between two write operations. If after this
time the upstream server does not take new data, then Nginx
shuts down the connection.

Setting up caching on the reverse proxy
 In a setup where Nginx acts as the layer between the client and the backend web application,
it is clear that caching can be one of the benefi ts that can be achieved. In this recipe, we will
have a look at setting up caching for any site to which Nginx is acting as a reverse proxy. Due
to extremely small footprint and modular architecture, Nginx has become quite the Swiss knife
of the modern web stack.

For More Information:
www.PacktPub.com/nginx-1-web-server-implementation-cookbook/book

http://www.packtpub.com/nginx-1-web-server-implementation-cookbook/book

Chapter 7

125

How to do it...
 This example confi guration shows how we can use caching when utilizing Nginx as a reverse
proxy web server:

http {
 proxy_cache_path /var/www/cache levels=1:2 keys_zone=my-cache:8m
max_size=1000m inactive=600m;
 proxy_temp_path /var/www/cache/tmp;

...

server {
 listen 80;
 server_name example1.com;
 access_log /var/www/example1.com/log/nginx.access.log;
 error_log /var/www/example1.com/log/nginx_error.log debug;

 #set your default location
 location / {
 include proxy.conf;
 proxy_pass http://127.0.0.1:8080/;
 proxy_cache my-cache;
 proxy_cache_valid 200 302 60m;
 proxy_cache_valid 404 1m;

 }
}
}

How it works...
 This confi guration implements a simple cache with 1000MB maximum size, and keeps all
HTTP response 200 pages in the cache for 60 minutes and HTTP response 404 pages in
cache for 1 minute.

There is an initial directive that creates the cache fi le on initialization, in further directives we
basically confi gure the location that is going to be cached.

It is possible to actually set up more than one cache path
for multiple locations.

For More Information:
www.PacktPub.com/nginx-1-web-server-implementation-cookbook/book

http://www.packtpub.com/nginx-1-web-server-implementation-cookbook/book

Nginx as a Reverse Proxy

126

There's more...
This was a relatively small show of what can be achieved with the caching aspect of the proxy
module. Here are some more directives that can be really useful in optimizing and making
your stack faster and more effi cient:

Directive Use
proxy_cache_bypass The directive specifi es the conditions under which the answer will

not be taken from the cache. If one string variable is not empty
and not equal to "0", the answer is not taken from the cache.

proxy_cache_min_
uses

This directive determines the number of accesses before a page
is cached.

proxy_cache_use_
stale

This directive tells Nginx when to serve a stale item from the proxy
cache. For example, when an Application error HTTP Code 500
occurs.

proxy_cache_
methods

This directive lets you choose what directives to cache [GET, PUT,
and so on].

Using multiple backends for the reverse
proxy

 As traffi c increases, the need to scale the site up becomes a necessity. With a transparent
reverse proxy like Nginx in front, most users never even see the scaling affecting their
interactions with the site. Usually, for smaller sites one backend process is suffi cient to handle
the oncoming traffi c. As the site popularity increases, the fi rst solution is to increase the
number of backend processes and let Nginx multiplex the client requests. This recipe takes a
look at how to add new backend processes to Nginx.

For More Information:
www.PacktPub.com/nginx-1-web-server-implementation-cookbook/book

http://www.packtpub.com/nginx-1-web-server-implementation-cookbook/book

Chapter 7

127

How to do it...
The confi guration below adds three upstream servers to which client requests will be sent
for processing:

upstream backend {
 server backend1.example1.com weight=5;
 server backend2.example1.com max_fails=3 fail_timeout=30s;
 server backend3.example1.com;
}

server {
 listen 80;
 server_name example1.com;
 access_log /var/www/example1.com/log/nginx.access.log;
 error_log /var/www/example1.com/log/nginx_error.log debug;

 #set your default location
 location / {
 include proxy.conf;
 proxy_pass http://backend;
 }
}

How it works...
 In this confi guration we set up an upstream, which is nothing but a set of servers with some
proxy parameters. For the server http://backend1.example1.com, we have set a weight
of fi ve, which means that the majority of the requests will be directed to that server. This can
be useful in cases where there are some powerful servers and some weaker ones. In the next
server http://backend2.example1.com, we have set the parameters such that three
failed requests over a time period of 30 seconds will result in the server being considered
inoperative. The last one is a plain vanilla setup, where one error in a ten second window will
make the server inoperative!

This displays the thought put in behind the design of Nginx. It seamlessly handles servers
which are problematic and puts them in the set of inoperative servers. All requests to the
server are sent in a round robin fashion. We will discuss modules in future recipes that ensure
that the requests are sent using other queue mechanisms based on server load and other
upstream server performance metrics.

For More Information:
www.PacktPub.com/nginx-1-web-server-implementation-cookbook/book

http://www.packtpub.com/nginx-1-web-server-implementation-cookbook/book

Nginx as a Reverse Proxy

128

Serving CGI fi les using thttpd and Nginx
At some point in time in Internet history, most applications were CGI based. Nginx does not
serve CGI scripts, so the workaround is to use a really effi cient and simple HTTP server called
thttpd and to get Nginx to act as a proxy to it.

How to do it...
The best way to go about it is to set up thttpd from source code, apply the IP forwarding patch,
and then to use the confi guration below:

1. Download thttpd and apply the patch.

wget http://www.acme.com/software/thttpd/thttpd-2.25b.tar.gz

tar –xvzf thttpd-2.25b.tar.gz

2. Save the code below in a fi le called thttpd.patch:

--- thttpd-2.25b/libhttpd.c 2003-12-25 20:06:05.000000000 +0100

+++ thttpd-2.25b-patched/libhttpd.c 2005-01-09
00:26:04.867255248 +0100

@@ -2207,6 +2207,12 @@

 if (strcasecmp(cp, "keep-alive") == 0)

 hc->keep_alive = 1;

 }

+ else if (strncasecmp(buf, "X-Forwarded-For:", 16) == 0
)

+ { // Use real IP if available

+ cp = &buf[16];

+ cp += strspn(cp, " \t");

+ inet_aton(cp, &(hc->client_addr.sa_in.sin_addr));

+ }

 #ifdef LOG_UNKNOWN_HEADERS

 else if (strncasecmp(buf, "Accept-Charset:", 15) == 0
||

 strncasecmp(buf, "Accept-Language:", 16) == 0 ||

3. Apply the patch and install thttpd:

patch -p 1 -i thttpd.patch

cd thttpd-2.25b

make

sudo make install

For More Information:
www.PacktPub.com/nginx-1-web-server-implementation-cookbook/book

http://www.packtpub.com/nginx-1-web-server-implementation-cookbook/book

Chapter 7

129

4. Use the following confi guration for /etc/thttpd.conf:

BEWARE : No empty lines are allowed!

This section overrides defaults

This section _documents_ defaults in effect

port=80

nosymlink # default = !chroot

novhost

nocgipat

nothrottles

host=0.0.0.0

charset=iso-8859-1

host=127.0.0.1

port=8000

user=thttpd

logfile=/var/log/thttpd.log

pidfile=/var/run/thttpd.pid

dir=/var/www

cgipat=**.cgi|**.pl

5. Set up Nginx as a proxy for the port 8000.

server {

 listen 80;

 server_name example1.com;

 access_log /var/www/example1.com/log/nginx.access.log;

 error_log /var/www/example1.com/log/nginx_error.log debug;

location /cgi-bin {

 include proxy.conf;

 proxy_pass http://127.0.0.1:8000;

 }

}

How it works...
 The setup above allows you to enjoy the best of CGI and Nginx. You initially set up thttpd,
which will run on port 8000 of the server, which will effectively be the core CGI web server
and you can run Nginx as the proxy for the user requests.

All you need to do is place the perl scripts in the /var/www directory and you will be running
CGI using Nginx and thttpd.

For More Information:
www.PacktPub.com/nginx-1-web-server-implementation-cookbook/book

http://www.packtpub.com/nginx-1-web-server-implementation-cookbook/book

Nginx as a Reverse Proxy

130

You can also use the same technique as above to run CGI scripts using other
CGI-capable servers like Apache and lightHTTPD as well. You will be required
to change the operating ports of those servers to 8000 and the same
confi guration like above will work.

Setting up load balancing with reverse proxy
 In most reverse proxy systems one wants to have some notion of load balancing in the system.
In one of the preceding recipes, we have seen how to set up and run multiple upstream
servers in a round robin mechanism of sending over the requests.

In this recipe, we will install a load balancing module which will allow us to set up a fair load
balancing with the upstream servers.

How to do it...
For this particular recipe we will install a third-party module called "upstream fair module".

1. You will need to go an download the module:

wget https://github.com/gnosek/nginx-upstream-fair/tarball/master

For More Information:
www.PacktPub.com/nginx-1-web-server-implementation-cookbook/book

http://www.packtpub.com/nginx-1-web-server-implementation-cookbook/book

Chapter 7

131

2. Compile Nginx with the new module:

Tar –xvzf nginx-upstream-fair.tgz

Cd nginx

./configure --with-http_ssl_module --add-module=../nginx-upstream-
fair/

Make && make install

3. You will need to add the following confi guration to your nginx.conf:

upstream backend {

 server backend1.example1.com;

 server backend2.example1.com;

 server backend3.example1.com;

 fair no_rr;

}

server {

 listen 80;

 server_name example1.com;

 access_log /var/www/example1.com/log/nginx.access.log;

 error_log /var/www/example1.com/log/nginx_error.log debug;

 #set your default location

 location / {

 proxy_pass http://backend;

 }

}

How it works...
 This is a fairly straightforward setup once you understand the basics of setting up multiple
upstream servers. In this particular "fair" mode, which is no_rr, the server will send the
request to the fi rst backend whenever it is idle. The goal of this module is to not send requests
to already busy backends as it keeps information of how many requests a current backend
is already processing. This is a much better model than the default round robin that is
implemented in the default upstream directive.

For More Information:
www.PacktPub.com/nginx-1-web-server-implementation-cookbook/book

http://www.packtpub.com/nginx-1-web-server-implementation-cookbook/book

Nginx as a Reverse Proxy

132

There's more...
You can choose to run this load balancer module in a few other modes, as described
below, based on your needs! This is a very simple way of ensuring that none of the backend
experiences load unevenly as compared to the rest:

Mode Meaning

default (that
is fair;)

The default mode is a simple WLC-RR (weighted least-connection round-robin)
algorithm with a caveat that the weighted part isn't actually too fair under low
load.

no_rr This means that whenever the fi rst backend is idle, it's going to get the next
request. If it's busy, the request will go to the second backend unless it's busy
too, and so on.

weight_
mode=idle
no_rr

This mode redefi nes the meaning of "idle". It now means "less than weight
concurrent requests". So you can easily benchmark your backends and
determine that X concurrent requests are the maximum for you.

weight_
mode=peak

This means that Nginx will never send more than weight requests to any single
backend. If all backends are full, you will start receiving 502 errors.

Here is an example of a peak weight mode setup:

upstream backend {
 server backend1.example1.com weight=4;
 server backend2.example1.com weight=3;
 server backend3.example1.com weight=4;
 fair weight_mode=idle no_rr;
}

Splitting requests based on various
conditions using split-clients

 This recipe will take a look at how we can potentially separate client requests based on
various conditions that can arise.

We will also understand how we can potentially set up a simple page for A-B testing using this
module.

For More Information:
www.PacktPub.com/nginx-1-web-server-implementation-cookbook/book

http://www.packtpub.com/nginx-1-web-server-implementation-cookbook/book

Chapter 7

133

How to do it...
 This module is fairly simple to use and comes inbuilt with Nginx. All you need to do is to insert
the following confi guration in your nginx.conf:

http {

 split-clients "${remote-addr}AAA" $variant {
 50.0% .one;
 50,0% .two;
 - "";
 }
...

server {
 listen 80;
 server_name example1.com;
 access_log /var/www/example1.com/log/nginx.access.log;
 error_log /var/www/example1.com/log/nginx_error.log debug;

location / {
 root /var/www/example1.com;
 index index${variant}.html;
 }
}

}

How it works...
 This particular confi guration sets up a system which is based upon the remote client address,
assigns the values .one, .two, or "" to a variable $variant. Based upon the variable value,
a different page is picked up from the fi le location.

For More Information:
www.PacktPub.com/nginx-1-web-server-implementation-cookbook/book

http://www.packtpub.com/nginx-1-web-server-implementation-cookbook/book

Nginx as a Reverse Proxy

134

The following table shows the various probabilities and actions from the above confi guration:

Variable value Probability Page served
.one 50% /var/www/example1.com/index.one.html

.two 50% /var/www/example1.com/index.two.html

"" 0% /var/www/example1.com/index.html

The preceding pie chart clearly displays the split across the two pages. Utilizing this approach,
we are able to test out interactions with the page changes that you have made. This forms the
basis of usability testing.

For More Information:
www.PacktPub.com/nginx-1-web-server-implementation-cookbook/book

http://www.packtpub.com/nginx-1-web-server-implementation-cookbook/book

Where to buy this book
You can buy Nginx 1 Web Server Implementation Cookbook from the Packt Publishing

website: http://www.packtpub.com/nginx-1-web-server-
implementation-cookbook/book.

Free shipping to the US, UK, Europe and selected Asian countries. For more information, please

read our shipping policy.

Alternatively, you can buy the book from Amazon, BN.com, Computer Manuals and

most internet book retailers.

www.PacktPub.com

For More Information:
www.PacktPub.com/nginx-1-web-server-implementation-cookbook/book

http://www.packtpub.com/nginx-1-web-server-implementation-cookbook/book
http://www.packtpub.com/Shippingpolicy

