

ASP.NET 4 Social Networking

Atul Gupta

Sudhanshu Hate

Andrew Siemer

Chapter No.3

"User Accounts"

In this package, you will find:
A Biography of the authors of the book

A preview chapter from the book, Chapter NO.3 "User Accounts"

A synopsis of the book’s content

Information on where to buy this book

About the Authors
Atul Gupta is a Principal Technology Architect at Infosys Technologies Limited. He

has more than 15 years of experience working on Microsoft Technologies. The

technology experience is spread across VC++, MFC, COM/DCOM, SQL, .NET,

Microsoft ASP.NET, Microsoft ASP.NET AJAX, Microsoft ASP.NET MVC, C#, ADO.

NET, VS (various versions), BizTalk Server, Commerce Server and he has worked across

all SDLC life cycle phases like architecture definition, design, development, and testing.

His current focus is User Experience Technologies from Microsoft like Windows

Presentation Foundation and Silverlight. He is also exploring Microsoft Surface,

Windows Touch, Windows Phone 7, Pivot, and Augmented Reality. He blogs on latest

technologies at: http://blogs.infosys.com/microsoft. Some of his other

publications can be accessed at Infosys' Technology Showcase

(http://www.infosys.com/microsoft/resource-

center/Pages/technology-showcase. aspx). Working on latest technologies is

his passion and this had helped him bag the Microsoft's Most Valuable Professional

(MVP) award for six consecutive years. He has also spoken on events like Microsoft

Virtual Tech Days.

For More Information:
www.PacktPub.com/asp-net-4-social-networking/book

https://www.packtpub.com/asp-net-4-social-networking/book

Atul holds a Bachelor's degree in Chemical Engineering and Master's in Software

Systems from Premier Universities in India.

He recently helped review the book titled Refactoring with Microsoft Visual Studio 2010

from Packt Publishing.

For More Information:
www.PacktPub.com/asp-net-4-social-networking/book

https://www.packtpub.com/asp-net-4-social-networking/book

ASP.NET 4 Social Networking
Social networking has become a driving force on the Internet. Many people are part of at

least one social network, while more often people are members of many different

communities. For this reason many business people are trying to capitalize on this

movement and are in a rush to put up their own social network. As the growth of social

networks continues, we have started to see more and more niche communities popping up

all over in favor of the larger, all-encompassing networks in an attempt to capture a sliver

of the market.

In this book, we will discuss the many aspects and features of what makes up the

majority of today's social networks or online communities. Not only will we discuss the

features, their purpose, and how to go about building them, but we will also take a look at

the construction of these features from a large scale enterprise perspective. The goal is to

discuss the creation of a community in a scalable fashion.

What This Book Covers
Chapter 1, Social Networking gives you an overall structure of this book, that is, what a

reader can expect from this book.

Chapter 2, An Enterprise Approach to our Community Framework helps you create an

enterprise framework to handle the needs of most web applications. It discusses design

patterns, best practices, and certain tools to make things easier. It also covers error

handling and logging.

Chapter 3, User Accounts covers registration and account creation process by means of

an email verification system and a permission system to ensure security. It also touches

upon password encryption/decryption techniques.

Chapter 4, User Profiles covers the creation of a user's profile and an avatar in a manner

that is flexible enough for all systems to use. In this chapter, we also implement some

form of privacy to allow users to hide parts of their profile that they don't want to share

with others.

Chapter 5, Friends shows you how to implement friends, how to search for them, find

them in the site's listings, and import your contacts into the site to find your friends.

Chapter 6, Messaging helps you create a messaging system that will resemble a webbased

email application similar to Hotmail or Gmail. We will also learn how to implement the

Xinha WYSIWYG editor in a way that can be re-used easily across the site for complex

inputs.

Chapter 7, Media Galleries covers details on how to build a generic media management

system that will allow you to host video, photos, resumes, or any number of physical fi

For More Information:
www.PacktPub.com/asp-net-4-social-networking/book

https://www.packtpub.com/asp-net-4-social-networking/book

les with minimal tweaking. It also addresses the issue of multi-fi le uploads via RIA

technologies like Flash and Silverlight.

Chapter 8, Blogs is all about Blogging. With search engines, users, and security in mind,

we invest a part of this chapter to address an issue that plagues many dynamic websites—

query string data being used to determine page output.

Chapter 9, Forums discusses the creation of the core features of a discussion forum—

categories, forums, threads, and posts. Along with these features, the chapter also extends

the friendly URLs concept to make our content more suitable for search engine

optimization.

Chapter 10, Groups covers the concept of Groups. It focuses on how groups can be used

to bring many different systems together in a way to start creation of sub communities.

Chapter 11, User Interactivity helps us build controls to allow our users to express their

opinions about various content areas of our site—tagging, rating, commenting, voting and

mark as answer. It also discusses how these in turn allow users to earn medals and hence

reputation on the site.

Chapter 12, Moderation focuses on Moderation, that is, the means to manage community

provided content using a very simple flagging tool. It also covers methods such as

Gagging to deal with habitual rule breakers. It also takes a look at how to filter specific

words from content on the site.

Chapter 13, Scaling discusses some concepts to help you support a large number of users

on your social network. It starts by looking at some key concepts of tiered architecture

and web farming. It also discusses ways to create and search indexed data, methods to

optimize data retrieval and content creation, and some mail queuing concepts.

Appendix covers a discussion on the Microsoft ASP.NET MVP and MVC patterns and

explains why we continued to use the MVP pattern for this book.

For More Information:
www.PacktPub.com/asp-net-4-social-networking/book

https://www.packtpub.com/asp-net-4-social-networking/book

User Accounts
Without people, your community doesn't exist!

For any community site to be considered successful, it must fi rst have a group of
dedicated users. While there are other measures, however in most cases the larger
the community's population the more successful it is considered to be. It would then
make sense that we create a way for users to come to our site, create an account, and
become a part of our community. The following screenshot shows how the registra-
tion page will look like:

For More Information:
www.PacktPub.com/asp-net-4-social-networking/book

https://www.packtpub.com/asp-net-4-social-networking/book

User Accounts

[56]

 In this chapter, we will discuss many of the common features that are related to user
accounts. This will include handling registration, authentication, permissions, and
security. We will also go over some basic tools such as password reminders, account
administration, and reCAPTCHA. This chapter will provide the foundation for our
users upon which we will be able to build all of our other features.

Problem
With most sites these days, regardless of their purpose, you need to know who
your users are. You need to know this so that you can restrict how users interact
with the site, or you might need this information so that you can provide a dynamic
experience to your user. No matter what your reason is, the task of identifying and
controlling the users has a few basic requirements.

In order to get to know our users, we will need a way to register them on our
site. This would give us a footprint for that user, that we can use each time the
user returns. The registration process is fairly straightforward most of the time so
that we can easily bring onboard new users. We need to capture the data that we
are interested in (such as username, password, email, and so on). We must make
sure that we store their password properly so that their identifi cation is safe not
only from the other users of the site but also from the administrators and staff of
the site. Also, given the amount of fraud and spam on the Internet these days, we
need to equip our site with some form of intelligence to guard it from automated
registrations. In another attempt to protect the site, we need to make sure that our
users are providing us with valid information. We can do this by validating the email
provided by them to check if it is a functioning account under their control. As part
of the registration process, we also need to inform the user about our current terms
and conditions so that they know the rules of our site up-front.

When we refer to automated registrations, we are really
describing the act of a bot (or program) that is used to create
accounts with the sole purpose of posting advertisements to
public areas such as message boards, blogs, and so on.

Once a user has successfully registered, we will need to provide them with tools so
that they can identify themselves to us each time they return. This is typically done
using a centralized login screen. Upon successful authentication, we can track that
user through the site. Knowing that users frequently forget the information that
they provided us with, we will need to offer tools to remind the users how to get
into our site with a password reminder feature. After the users have authenticated
themselves, we would need to defi ne where a user can go and what they can do on
our site with some kind of permissions-based system.

For More Information:
www.PacktPub.com/asp-net-4-social-networking/book

https://www.packtpub.com/asp-net-4-social-networking/book

Chapter 3

[57]

Once the users are registered and authenticated, we will need to provide them
with a way to administer their account data. In addition to the users being able to
administer their own data, the staff that runs the site will also need tools to manage
all the users and their data. In addition to managing user data, administrators should
be able to control the users' permissions and update the terms and conditions.

Design
 In this section, we will discuss the various aspects that are required to implement
our new features. Once we are fi nished, we should have a good idea of what will be
required from each area.

Registration
 Registration includes the task of acquiring user information, allowing them to pick
a username, password, and email verifi cation. In addition, we will require that our
users agree to our terms and provide verifi cation that they are human and not a
bot by reading our reCAPTCHA image. Once we have all this information, we will
create the user account and assign appropriate permissions to the account.

Accounts
While ASP.NET provides various pre-built tools for handling your users via the
membership controls, we have decided to explore a custom way to handle our
users with regards to logging them in, encrypting their passwords, and so on.
The reason for this is to demonstrate that it is fairly simple to build custom
authentication logic, and there is suffi cient literature available on regular
ASP.NET authentication anyway.

To begin with, we need a way to describe our accounts. From the database point of
view, it will be fairly simple. All we need is an "Accounts" table where we can hold a
username, password, and a few other bits of information.

Password strength
 Password strength is not only an issue for the account's security but also for the site
owner. The weaker your user's password is, the more likely someone performs a
brute force attack on your site. If an account with a high-level permission (such as
Administrator) is compromised due to a weak password, you will look pretty silly! It
doesn't make much sense on your part to create a secure site in every other way and
then allow your users to bypass all your efforts!

For More Information:
www.PacktPub.com/asp-net-4-social-networking/book

https://www.packtpub.com/asp-net-4-social-networking/book

User Accounts

[58]

Having said that forcing your users to have a strong password, can become an
inconvenience to them. Believe it or not, there are many users who would prefer
to have a password as "password". While we are not for letting your users become
lazy and placing their account at risk, you do need to be aware that there is a chance
that you will lose signups due to this requirement. It is up to you to decide how
important a secure site is.

Terms and conditions
While terms and conditions are not a necessary requirement for a good site, this
section is the place to cover the concept. We will create a simple way to manage your
terms and conditions. Terms and conditions are a legal thing. Knowing that terms
and conditions can change over time, it is important that you track which version
of terms and conditions your users last agreed to. It is also important that you track
when they agreed to them.

reCAPTCHA
CAPTCHA, or Completely Automated Public Turing test to tell Computers and
Humans Apart , is a form of challenge-response test to determine if the user of your
site is a computer or human. reCAPTCHA is a CAPTCHA service from Google, that
helps in digitizing books, newspapers, and old time radio shows.

reCAPTCHA presents two words to the user and of these two, one is a word that the
Optical Character Recognition (OCR) process is able to convert from image to text.
The other is the word that the OCR cannot translate. The system assumes that if the
user provided the right answer for the word for which the translation was known,
the other one for which it wasn't known is also translated correctly. The system
will then reuse this new word in multiple instances to gain higher confi dence in
correctness of translation. reCAPTCHA provides plugins for various programming
environments and we will be using the one for ASP.NET. For more details check out
this website: http://www.google.com/recaptcha.

Here is an example of an image that will be generated by our system:

For More Information:
www.PacktPub.com/asp-net-4-social-networking/book

https://www.packtpub.com/asp-net-4-social-networking/book

Chapter 3

[59]

Email confi rmation and verifi cation
 There are several reasons to use email communications in our community. For
example, our site will require registration confi rmation and email validation.

When a user signs up at our site, we need to be able to let them know that the
registration was completed successfully. This email will usually welcome a user to
the site. It may also provide them with some frequently asked questions, a list of
benefi ts received upon registration, and any other pertinent information that a user
may need prior to using your site.

In addition to the registration receipt, we need a way to check whether the email
address that the user has provided is a valid account (that it actually exists), and one
to which the user actually has access. We will validate this by embedding a link in
the email that the user will have to click. Once this link is clicked, we will assume
that the email address is valid!

Security
 Security is obviously one of the most important aspects of building a site. Not only
should you be able to provide access to certain areas of your site a specifi c user, but
more important is the ability to deny access to various users of your site. All sites
have areas that need to be locked down. For example, one of the most important
areas could be the administration section of your site, or paid areas of your site.
Therefore, it is very important to make sure that you have some form of security.

Permissions
 There are a number of ways to handle permissions (also called as authorization). We
could make something really complex by implementing a permission-based system
using permissions, roles, groups, and so on. We could even make it as complex as
Microsoft's Active Directory system. However, I fi nd that keeping something only as
complex as your current requirement is the best thing to do. We can always add to
the system as our needs increase.

Our permissions system will simply encompass a name/role (Administrator, Editor,
Restricted, and so on). This permission name will then be statically mapped to each
page (using the Sitemap fi le that .NET provides us!). As long as we keep our pages
to serve a single functionality, this should always suit our needs. As this is a good
design practice anyway, we shouldn't have any problems here. Of course, a user
can have many permissions tied to their accounts so that they can traverse various
sections of our site. Once this is in place, all we need to do is have a system that
checks a user's permissions upon entering each page to ensure that they have the
permission that the page requires.

For More Information:
www.PacktPub.com/asp-net-4-social-networking/book

https://www.packtpub.com/asp-net-4-social-networking/book

User Accounts

[60]

We will have a Permissions table, that relates to the Accounts table through the
AccountPermissions table. This is a pretty straightforward and simple design.

Password encryption/decryption
 When working with passwords, there is an important question to answer. Do we
have one way hashing, or do we store encrypted passwords and provide a way to
decrypt them? If we don't provide decryption facilities, then we won't be able to
send reminder emails to our users who have their passwords. If we were creating a
banking system, sending passwords via email would not be acceptable. However,
as we are creating something slightly less confi dential, the convenience for users
to be able to retrieve their passwords without too much hassle is a great reason for
decrypting the password and sending it to the user.

Logging in
 Once a user has created an account, it is important for them to be able to re-identify
themselves to us. For this reason, we will need to provide a way for them to do this.
This will come in the form of a page that accepts a username and a password. Once
they have authenticated themselves to us, we will need to make sure that they are
still allowed to get into our site (if they are valid users).

Password reminder
 A user will inevitably forget his/her password. As we require a strong password,
and a fair number of users would rather not have a password at all, or would
like to use the word "password" as their password, it is highly possible that they
forget what they registered with. Not a problem! As we decided to use a two-way
encryption, we will be able to decrypt their chosen password and email it to them.
This way, our user will never be locked out for too long!

Manage account
 In order to keep customer service calls to a minimum, we will need a way for our
customers to manage their own accounts. Our customers will need a way to update
most of the information they provide us. While we will not allow them to change
their username, we will allow them to edit the rest. And when we allow them to
change their email address we need to make sure that we force them to validate
their new address.

For More Information:
www.PacktPub.com/asp-net-4-social-networking/book

https://www.packtpub.com/asp-net-4-social-networking/book

Chapter 3

[61]

Solution
Now, let's take a look at how we can go about implementing all the new features.

Implementing the database
 We will start by implementing our database, and we will work our way up from there.

The Accounts table
 The Accounts table will store all the base information for a user. Most of this is easy
to fi gure out as they have indicative names (a sign of good design).

However, there are a few columns that may not be 100 percent clear at fi rst glance.
We will explain those here.

EmailVerifi ed This is a bit fl ag to let us know if a user's email address has been
verifi ed or not.

CreateDate This is the date on which the record was created. It has a default
value of GetDate().

LastUpdateDate This is similar to the CreateDate with the exception that we
should update it every time we update the record. This could be
done with a trigger, or done programmatically.

AgreedToTermsDate This is used to track the date on which the user agreed to the
terms and conditions.

The Permissions table
 The Permissions table primarily acts as a lookup table for the various types of
permissions. It holds the name of each permission with a unique ID.

For More Information:
www.PacktPub.com/asp-net-4-social-networking/book

https://www.packtpub.com/asp-net-4-social-networking/book

User Accounts

[62]

The AccountPermissions table
The AccountPermissions table allows us to create a many-to-many type of
relationship between our Permissions and our Accounts. It simply holds a
reference to a record the end of the relationship.

The Terms table
 The Terms table is a lookup for our terms and conditions. Also, it provides us with a
historical view of the terms our customers have agreed to in the past.

Creating the relationships
 First, while you could work in a database without any enforced relationships, we
wouldn't advise it. Secondly, if you don't have all your database constraints clearly
defi ned, you might fi nd yourself working with corrupt data.

For this set of tables we have relationships between the following tables:

 Accounts and AccountPermissions
 Permissions and AccountPermissions
 Accounts and Terms

Implementing the data access layer
 Now that we have our database defi ned for all the features required by this
chapter, let's take a look at how we go about accessing that data! Keep in mind that
this chapter will not have a step that we discussed in an earlier chapter, i.e. telling
Entity Framework how to connect to our database so that it can generate Entity
classes for us based on our table structure.

Update Model from Database
 In Chapter 2, we created EDMX and added Person table from Database. In this
chapter, so far we have discussed various tables and relationships that we created
in SQL Server. Now it's time to get them refl ected in our EDMX. This can be done by
double clicking Fisharoo.EDMX (you need to fi rst open the solution in Visual Studio
2010) and it will open it in designer interface. Right click the designer interface and
select Update Model from Database. In the wizard that comes up (as shown in the
following screenshot) select the necessary tables that need to be added.

For More Information:
www.PacktPub.com/asp-net-4-social-networking/book

https://www.packtpub.com/asp-net-4-social-networking/book

Chapter 3

[63]

Click Finish and the selected tables are added to the EDMX designer as shown in the
following screenshot:

For More Information:
www.PacktPub.com/asp-net-4-social-networking/book

https://www.packtpub.com/asp-net-4-social-networking/book

User Accounts

[64]

At this time VS 2010 will update Fisharoo.Designer.cs and generate Entity classes
corresponding to all the tables selected. You won't see these classes as fi les in your
project, but we can see them in the class viewer. Open your class viewer by going
into the View menu and selecting Class View. Then expand the DataAccess project.

To start with, you should see a class for each table you put on the Fisharoo.EDMX
design surface. These are partial classes that you can extend by making an additional
partial class of the same name in the same namespace (we will do this in a while).
Do not edit the generated classes directly as your additions will get lost the next time
you generate them!

The only other item here that you should see other than the classes that represent
your tables is FisharooDataContext. This class handles all the LINQ facilities
for your tables and classes. It tracks what changes you have made to your objects,
what objects can be worked with, how you can query those objects, and so on.
Any time we work with our LINQ classes or data, we will be going through the
FisharooDataContext class.

For More Information:
www.PacktPub.com/asp-net-4-social-networking/book

https://www.packtpub.com/asp-net-4-social-networking/book

Chapter 3

[65]

A Data Context wrapper
 Now that we know FisharooDataContext is used by LINQ extensively, let's look
at how we can work with this DataContext wrapper in a way that fi ts our overall
design by limiting the knowledge required to use the FisharooDataContext.
In Chapter 2 we already discussed a Connection wrapper that will return the
FisharooDataContext to the caller without requiring the caller to know what goes
into its actual creation.

Building repositories
 Once we have a way to get to our DataContext, we can begin to look at how we
work with the objects and data stored behind that DataContext. While we could
just access our objects and the power of LINQ directly in our code, it would be very
helpful down the road if we continued our layered approach by adding a Repository
layer. A Repository provides us with a single place to go for our data (that doesn't
necessarily have to be a database).

The repository layer is responsible for performing data access and data persistence.
Each repository will be responsible for data related to a particular entity.

So let's start creating our fi rst repository by looking at the AccountRepository.
Navigate to DataAccess project and create a new class called AccountRepository.
cs. Here is what the code looks like:

//Fisharoo/DataAccess/AccountRepository.cs
namespace Fisharoo.DataAccess
{
 [Export(typeof(IAccountRepository))]
 public class AccountRepository : IAccountRepository
 {
 private Connection conn;

 public AccountRepository()
 {
 conn = new Connection();
 }

 public Account GetAccountByID(int AccountID)
 {
 Account account = null;
 using (FisharooDataContext dc = conn.GetContext())
 {
 account = (from a in dc.Accounts
 where a.AccountID == AccountID

For More Information:
www.PacktPub.com/asp-net-4-social-networking/book

https://www.packtpub.com/asp-net-4-social-networking/book

User Accounts

[66]

 select a).FirstOrDefault();
 }
 return account;
 }

 public Account GetAccountByEmail(string Email)
 {
 Account account = null;
 using (FisharooDataContext dc = conn.GetContext())
 {
 account = (from a in dc.Accounts
 where a.Email == Email
 select a).FirstOrDefault();
 }
 return account;
 }

 public Account GetAccountByUsername(string Username)
 {
 Account account = null;
 using (FisharooDataContext dc = conn.GetContext())
 {
 account = (from a in dc.Accounts
 where a.Username == Username
 select a).FirstOrDefault();
 }
 return account;
 }

 public void AddPermission(Account account,
 Permission permission)
 {
 using(FisharooDataContext dc = conn.GetContext())
 {
 AccountPermission ap = new AccountPermission();
 ap.AccountID = account.AccountID;
 ap.PermissionID = permission.PermissionID;
 dc.AccountPermissions.AddObject(ap);
 dc.SaveChanges();
 }
 }

 public void SaveAccount(Account account)

For More Information:
www.PacktPub.com/asp-net-4-social-networking/book

https://www.packtpub.com/asp-net-4-social-networking/book

Chapter 3

[67]

 {
 using(FisharooDataContext dc = conn.GetContext())
 {
 if(account.AccountID > 0)
 {
 dc.Accounts.Attach(new Account { AccountID =
 account.AccountID });
 dc.Accounts.ApplyCurrentValues(account);
 }
 else
 {
 dc.Accounts.AddObject(account);
 }
 dc.SaveChanges();
 }
 }

 public void DeleteAccount(Account account)
 {
 using (FisharooDataContext dc = conn.GetContext())
 {
 dc.Accounts.DeleteObject(account);
 dc.SaveChanges();

 }
 }

 public List<Account> GetAllAccounts(Int32 PageNumber)
 {
 IEnumerable<Account> accounts = null;

 using (FisharooDataContext dc = conn.GetContext())
 {
 accounts = (from a in dc.Accounts
 orderby a.Username
 select a).Skip((PageNumber - 1) * 10).

Take(10);
 }
 return accounts.ToList();
 }
 }
}

For More Information:
www.PacktPub.com/asp-net-4-social-networking/book

https://www.packtpub.com/asp-net-4-social-networking/book

User Accounts

[68]

The fi rst thing you will notice here is the Export() attribute of MEF as well as the
IAccountRepository interface. As we may want to swap this repository out during
testing, these are important. Also, don't forget that the use of MEF allows us to easily
ensure that coupling is reduced once we start using the Repository. This means that
we could technically swap out the entire repository without requiring a change to
our code.

Then in the constructor we initialize the Connection object for use throughout the
rest of the AccountRepository class.

Selecting accounts
 Once our Connection object is ready for use, we can look at any of the methods from
a generic point of view. Let's start with the GetAccountByID()method.

This method is set up to retrieve an account with an ID. We fi rst start out by defi ning
our return variable (account in this case) outside the using statement. We then
retrieve a FisharooDataContext inside a using statement, that ensures that the
DataContext is disposed of once we have fi nished with it. We then move to the LINQ
query itself inside the using statement. This looks very much like a standard SQL
SELECT statement with a twist. We have to defi ne the from statement fi rst so that
intellisense can interrogate the collection we are working with. This allows us to
work with our query as though we were working with any other collection of objects
using dot syntax. We then defi ne a where clause to restrict what is returned. Finally,
we select the object that we want to use.

You will then notice that the entire query is wrapped in parenthesis. This allows
us to chain methods on top of the result set. In this case, we are calling the
FirstOrDefault() function. This restricts our dataset to the fi rst record returned by
the query or default value if no element is found. As we know that there can only be
one account associated with an ID, this should be acceptable here!

We could use var as the query result if we didn't know what
type to expect back from our query.
var account = [your LINQ query here];

 var is called an anonymous type. It is used heavily by LINQ. The
caveat to using an anonymous type is that it can only be used
locally. So if your intent is to use the queried objects outside of the
scope from which they were retrieved, you will have to do some
form of casting, looping, or otherwise, to move them away from
their anonymous status.

 The GetAccountByEmail() and GetAccountByUsername() methods are almost
identical in the way they function. So we are not going to explain them in detail.

For More Information:
www.PacktPub.com/asp-net-4-social-networking/book

https://www.packtpub.com/asp-net-4-social-networking/book

Chapter 3

[69]

Saving an account
 Now that we have a way to select Account objects out of the database in various
ways, we now need to consider how we are going to get the data into the database.
This brings us to our SaveAccount() method. We could have created two methods
out of this one method—an Insert() and an Update() method . However, the only
difference is in the one line of code between those two methods. So we chose to roll
these two methods up and replace them with the SaveAccount() method.

As you will see, with all our Repository methods, we have wrapped the acquisition
of the FisharooDataContext in a using statement. This makes our clean up
automatic! (Technically speaking, that is!). Once we have our DataContext to
work with, we interrogate the object that was passed in to see if it already has an
AccountID. If the object does have an AccountID, it can't be new. If it doesn't have an
AccountID, it must be new.

A new object is easy to work with. We simply call the dc.Accounts.AddObject()
method and then we call dc.SaveChanges(). This tells the DataContext that it
needs to persist all the changed data into the database—in our case it needs to save
that new Account record.

Our code makes updating data look almost as easy as inserting new data. However,
while updating, we fi rst create stand-in Account object by assigning the AccountId
of the received Account and then Apply Values. This is achieved by telling the
DataContext that the object that is being passed in is the modifi ed version of the
current original. In the end we still need to call dc.SaveChanges().

Deleting an account
Now that we have a way to add accounts into the system it only makes sense that
we would also want to know a way to delete an account, which is achieved with the
 DeleteAccount() method.

We think deleting an object from the DataContext is one of the easiest things to do!
Simply locate the collection that you want the object to delete from, pass the object
to be deleted to the DeleteObject () method , and then call dc.SaveChanges(). It
doesn't get any easier than that!

Adding permissions to an account
 Shouldn't adding permission go in a Permission repository or something? No, not
really. In reality, we are not really adding permission. We are creating a record in the
non-entity table, AccountPermissions, to link a Permission to an Account. Recall
that we had stated that we will not create non-entity repositories so that we can at
least try and stick to DDD. So this leaves us to add permissions to accounts in the
Permissions repository or in the Accounts repository. Adding permissions to the
Accounts repository makes more sense to us!

For More Information:
www.PacktPub.com/asp-net-4-social-networking/book

https://www.packtpub.com/asp-net-4-social-networking/book

User Accounts

[70]

The code is also pretty simple as you can see in the AddPermission() method (you
will fi nd that this is a recurring statement!).

public void AddPermission(Account account, Permission permission)
 {
 using(FisharooDataContext dc = conn.GetContext())
 {
 AccountPermission ap = new AccountPermission();
 ap.AccountID = account.AccountID;
 ap.PermissionID = permission.PermissionID;
 dc.AccountPermissions.AddObject(ap);
 dc.SaveChanges();
 }
 }

 This method is going to simply link an Account object to a Permission object. To
do this, it expects an Account and Permission object to be passed in. It then creates
a new AccountPermission object and assigns the AccountID and PermissionID
properties based on the objects that were passed in. This new AccountPermission
object is then inserted into the AccountPermissions collection in the DataContext.
Finally, the SaveChanges () method is called.

If you think back to our DDD discussions (covered in the Appendices), Entity
objects are important enough to recreate and track with a unique ID. Value objects
are less important and can't (or shouldn't) exist without a parent Entity object. In this
case, the value object, AccountPermission, can exist with Permission or an Account
as its parent. While this is a true statement, the overall design can be simplifi ed by
stating that Accounts can have AccountPermissions and that Permissions can't.
This makes keeping track of the objects easier when they only have one entry point
into the world.

Now, having said that, we can think of a scenario where we might need to be able
to say: "For this permission, show me all the related accounts". This might be useful
in an Administration console. We will see that when we get there. We could just as
easily run a query that says: "Show me all the accounts with this permission".

The other repositories
Now that we have had a fairly detailed look at the AccountRepository, we are
going to quickly cover the remaining repositories. We will discuss some interesting
points here and there, but for the most part, once you have seen one repository, you
have seen them all!

For More Information:
www.PacktPub.com/asp-net-4-social-networking/book

https://www.packtpub.com/asp-net-4-social-networking/book

Chapter 3

[71]

Permissions repository
 In the GetPermissionsByAccountID() method of this repository, you will see an
interesting LINQ query.

//Fisharoo/DataAccess/PermissionRepository.cs
public List<Permission> GetPermissionsByAccountID(Int32 AccountID)
{
 using (FisharooDataContext dc = conn.GetContext())
 {
 var permissions = from p in dc.Permissions
 join ap in dc.AccountPermissions on
 p.PermissionID equals ap.PermissionID
 join a in dc.Accounts on
 ap.AccountID equals a.AccountID
 where a.AccountID == AccountID
 select p;
 return permissions.ToList();
 }
}

This query introduces the concept of joining one set of objects with another set of
objects exactly as one would do in SQL. In this case, we need to create a variable to
reference each collection of objects.

For all you SQL people out there, think of this as a table alias.

Examples of this would be p in dc.Permissions, ap in dc.AccountPermissions,
and a in dc.Accounts. Once you have your collections to work with, you can then
defi ne the join parameters with on p.PermissionID equals ap.PermissionID.
This query basically says, "Give me all the Permissions related to these Account-
Permissions, related to these Accounts, where the AccountID equals the passed in
AccountID."

 Another interesting method to look at is GetPermissionByName(), interesting be-
cause it uses Lambda expressions. We are sure from the statement itself you would
have inferred the benefi t of the Lambda expression.

 //Fisharoo/DataAccess/PermissionRepository.cs public
 List<Permission> GetPermissionByName(string Name)
 {
 using (FisharooDataContext dc = conn.GetContext())
 {

For More Information:
www.PacktPub.com/asp-net-4-social-networking/book

https://www.packtpub.com/asp-net-4-social-networking/book

User Accounts

[72]

 var permissions = from p in dc.Permissions.Where(
 p=>p.Name.Equals(Name))
 select p;
 return permissions.ToList();
 }
 }

Key advantages with Lambda Expressions over standard query are type inference,
simplicity, and increased readability of code.

Lambda Expression consists of a lambda operator '=>' (goes to),
left side of which signifi es the input parameter (for more than one
input parameter, make it comma separated) and right side signifi es
the expression or statement block to be evaluated. The compiler
performs automatic type inference based on the usage of arguments.

Terms repository
In the GetCurrentTerm() method of the TermRepository(), there is a new LINQ
query statement item added.

 //Fisharoo/DataAccess/TermRepository.cs
 public Term GetCurrentTerm()
 {
 using (FisharooDataContext dc = conn.GetContext())
 {
 Term term = (from t in dc.Terms
 orderby t.CreateDate descending
 select t).FirstOrDefault();
 return term;

 }
 }

Here, you will see that we have an orderby clause introduced as well as a descend-
ing keyword. This allows us to take all the terms ever created and put the most re-
cent ones at the top of the stack.

For More Information:
www.PacktPub.com/asp-net-4-social-networking/book

https://www.packtpub.com/asp-net-4-social-networking/book

Chapter 3

[73]

Implementing the application layer
 This layer can be called as application or business logic or components or services
layer. In our code, we have called this as Components. They are all one and the
same. This layer should be relatively thin and lightweight. It is not supposed to hold
any business logic or data access logic. It is more of a working layer that is respon-
sible for keeping the business layer easier and cleaner to use. Often, it will combine
several items from the business layer and several methods from the data layer to
present an easy-to-use interface for a complex task.

An example of this would be our AccountService. The AccountService provides a
few simple methods that utilize several of our more infrastructure-oriented classes.
Here is the code:

//Fisharoo/Components/AccountService.cs
namespace Fisharoo.Components
{
 [Export(typeof(IAccountService))]
 public class AccountService : IAccountService
 {
 [Import]
 private IAccountRepository _accountRepository;
 [Import]
 private IPermissionRepository _permissionRepository;
 [Import]
 private IUserSession _userSession;
 [Import]
 private IRedirector _redirector;
 [Import]
 private IEmail _email;
 public AccountService()
 {
 MEFManager.Compose(this);
 }
 public bool UsernameInUse(string Username)
 {
 Account account =
 _accountRepository.GetAccountByUsername(Username);
 if(account != null)
 return true;
 return false;
 }

For More Information:
www.PacktPub.com/asp-net-4-social-networking/book

https://www.packtpub.com/asp-net-4-social-networking/book

User Accounts

[74]

 public bool EmailInUse(string Email)
 {
 Account account =
 _accountRepository.GetAccountByEmail(Email);
 if (account != null)
 return true;
 return false;
 }
 public void Logout()
 {
 _userSession.LoggedIn = false;
 _userSession.CurrentUser = null;
 _userSession.Username = "";
 _redirector.GoToAccountLoginPage();
 }
 public string Login(string Username, string Password)
 {
 Password = Password.Encrypt(Username);
 Account account =
 _accountRepository.GetAccountByUsername(Username);

 //if there is only one account returned - good
 if(account != null)
 {
 //password matches
 if(account.Password == Password)
 {
 if (account.EmailVerified)
 {
 _userSession.LoggedIn = true;
 _userSession.Username = Username;
 _userSession.CurrentUser =
 GetAccountByID(account.AccountID);
 _redirector.GoToHomePage();
 }
 else
 {
 _email.SendEmailAddressVerificationEmail(
 account.Username, account.Email);
 return @"The login information you provided
 was correct
 but your email address has not yet
 been verified.
 We just sent another email
 verification email to you.

For More Information:
www.PacktPub.com/asp-net-4-social-networking/book

https://www.packtpub.com/asp-net-4-social-networking/book

Chapter 3

[75]

 Please follow the instructions in
 that email.";
 }
 }
 else
 {
 return " Your Password seems to be incorrect. Try
 again!";
 }
 }
 return "Check your Username and try again!";
 }
 public Account GetAccountByID(Int32 AccountID)
 {
 Account account =
 _accountRepository.GetAccountByID(AccountID);
 List<Permission> permissions =
 _permissionRepository.GetPermissionsByAccountID(AccountID);
 foreach (Permission permission in permissions)
 {
 account.AddPermission(permission);
 }
 return account;
 }
 }
}

Let's look at the Login() method. It expects a username and a password. From there
it fetches the users' accounts by their usernames. It makes sure that the password
that was provided matches what we have on the fi le for that account. It then makes
sure that the user has verifi ed their email address, and fi nally logs in the user.

This method can be extended further to use additional repositories or other services
for future needs. The signature of the method could still be just as simple without
muddying up the design.

Extension methods
 As you probably noticed in the Login() method just seen, we had our fi rst
introduction to the Cryptography class. However, this method is called directly from
a string. How does that work?

For More Information:
www.PacktPub.com/asp-net-4-social-networking/book

https://www.packtpub.com/asp-net-4-social-networking/book

User Accounts

[76]

The subject of Cryptography is an extensive one, and is beyond
the scope of this book. However, the Cryptography class that
is included in this project is heavily commented if you want to
understand System.Security.Cryptography.Rijndael a bit
better! You can fi nd that class in the Common project.

 To start let's look at how we were able to call Encrypt() from a string variable. To
achieve this is actually very simple. Although the string class is sealed, meaning
that we can't technically extend it in any way that we are used too, we can use the
feature of .NET called "extension methods".

//Fisharoo/Common/Extensions.cs
namespace Fisharoo.Common
{
 public static class Extensions
 {
 public static string Encrypt(this string s, string key)
 {
 return Cryptography.Encrypt(s, key);
 }
 public static string Decrypt(this string s, string key)
 {
 return Cryptography.Decrypt(s, key);
 }
 }
}

An extension method allows us to extend a class without affecting the way that
it would normally work. The way to do this is by defi ning a static method in a
static class. The thing to notice is that the fi rst parameter of the method starts
with the target type, a string in this case. Therefore we have effectively defi ned
an Encrypt() and Decrypt() method for the string class. Note that the only
difference between this method and one you would normally write is the this
reference preceding the fi rst parameter. It's that simple!

Implementing the domain layer
 As we are using Entity Framework, it has facilities that are now part of the .NET
framework; our business layer has been greatly simplifi ed for us. We can recall that
in our previous applications different sorts of data access layers were used, that
required us to spend a great deal of time writing SQL in the database, connection
logic, providers, and hydration and persistence logic for objects. In addition to all
that, we would still need to defi ne business objects. Of those objects, 95 percent of the
logic was simply to shuttle data around in a more manageable manner.

For More Information:
www.PacktPub.com/asp-net-4-social-networking/book

https://www.packtpub.com/asp-net-4-social-networking/book

Chapter 3

[77]

With Entity Framework so much of this has gone away! We now have fully
generated classes that take care of shuttling our data around. But what happens if
we need custom logic? While we could simply add logic to the generated classes,
this would not be the best route. The next time we make a change we will have to
regenerate our classes. This would resort in the loss of all that custom functionality.

 Fortunately for us the classes that are generated are partial classes. This means that
we can make a new partial class fi le of the same name within the same namespace
and extend our generated classes. Here is our custom Account object, which extends
the generated Account object.

//Fisharoo/DataAccess/Account.cs
namespace Fisharoo.DataAccess
{
 public partial class Account
 {
 private List<Permission> _permissions = new
 List<Permission>();
 public List<Permission> Permissions
 {
 get{ return _permissions; }
 }

 public void AddPermission(Permission permission)
 {
 _permissions.Add(permission);
 }

 public bool HasPermission(string Name)
 {
 foreach (Permission p in _permissions)
 {
 if (p.Name == Name)
 return true;
 }
 return false;
 }
 }
}

With this new partial class , we can now extend our existing generated Account
class. We have added a few important features to the Account class . We now have
methods for adding and checking permissions. We also have a property that returns
a list of permissions.

This can easily be done for any partial class in our project!

For More Information:
www.PacktPub.com/asp-net-4-social-networking/book

https://www.packtpub.com/asp-net-4-social-networking/book

User Accounts

[78]

Implementing the presentation layer
 Most of the presentation layer is made up of very standard ASP.NET tools and
principles. As this book isn't so much about how a button or label works, we will be
focusing more on the non-standard features of our site. We will look at building a
scalable UI using the MVP pattern.

Model view presenter
 To start with, let's discuss the overall architecture of our presentation layer. We
mentioned earlier in Chapter 2 that we will be using the MVP pattern. Information
about this pattern can also be found under the separated names of Supervising
Controller and Passive View.

The basic reason for this pattern is so that at the end of the day you can wrap a
large percentage of your front end code with testing. It also allows you to easily
swap out your UI without having to rewrite every aspect of the front end of your
application. This can be useful in case we need a new UI or want to target additional
devices like mobile. You will also fi nd that this pattern signifi cantly breaks up
and compartmentalizes your logic, that makes working on the front end of your
application more straightforward.

The MVP pattern in the ASP.NET world basically requires you to have four fi les
(fi ve if you are working in a web application project):

 The design or .aspx fi le
 Your code behind or .cs fi le
 An interface that defi nes the code behind (another .cs fi le)
 And a class (.cs) fi le called the presenter, that actually controls everything

Of course, the model portion of this pattern is generally referring to your domain
objects that will constitute many other fi les!

The design fi le of course holds all your display logic such as a repeater, buttons,
labels, and so on. It shouldn't have any server-side logic.

The code behind (or the view) is responsible for handling events from the page such
as button clicks. It is also allowed to take care of simple display issues. The view
also provides methods to the presenter to toggle the state of the various display
items. When the page fi rst starts up (generally on page load), the view initializes the
presenter and passes a reference to itself, to the presenter. For every event that is
triggered on the page, the view is simply responsible for informing the presenter so
that it can decide what to do with the event.

For More Information:
www.PacktPub.com/asp-net-4-social-networking/book

https://www.packtpub.com/asp-net-4-social-networking/book

Chapter 3

[79]

The View passes a reference of itself to the presenter by way of the interface that
defi nes the view. Using the interface provides us with a decoupled structure. This
is what allows us to easily swap out our UI if we so choose. As long as the UI
implements the interface appropriately it can use the presenter.

The presenter is the acting controller in this scenario. Once it is spun up and has a
reference to the code behind, it can actively decide how to handle events in the front
end. The presenter is also the only part of our front end that is capable of interacting
with our domain logic (or model).

In the following sections, we will discuss the login process. This is more to
illustrate how the MVP pattern works and less about ASP.NET, as the code
itself is very simple.

An Account folder was created when we created the ASP.NET 4
application (in Chapter 2). It added basic fi les related to login, user
registration, changing the password, etc. along with the code that uses
ASP.NET membership services. However, since we wanted to write
custom logic for authentication and authorization, we deleted all fi les in
this folder and wrote custom logic as discussed in the following sections.

View
We will start with the front end ASP.NET code. It basically defi nes a username and
password text box and a button to click for login. It also has two link buttons for
simple navigational tasks—one to go to the recover password page and another to
take you to the registration page.

//Fisharoo/Web/Account/Login.aspx
<%@ Page Language="C#" MasterPageFile="~/Site.Master"
AutoEventWireup="true" CodeBehind="Login.aspx.cs"
 Inherits="Fisharoo.Web.Account.Login" %>

<asp:Content ContentPlaceHolderID="Content" runat="server">
 <div class="divContainer">
 <div class="divContainerBox">
 <fieldset class="login">
 <legend>Enter your Username and Password</legend>
 <asp:Table CssClass="tableLogin" runat="server">
 <asp:TableRow>
 <asp:TableCell HorizontalAlign="Left">
 <asp:Panel ID="Panel1"
DefaultButton="btnLogin" runat="server">
 <p>
 <asp:Label ID="UserNameLabel"

For More Information:
www.PacktPub.com/asp-net-4-social-networking/book

https://www.packtpub.com/asp-net-4-social-networking/book

User Accounts

[80]

runat="server" AssociatedControlID="txtUsername">Username:</asp:Label>

 <asp:TextBox ID="txtUsername"
runat="server" CssClass="textEntry"></asp:TextBox>
 </p>
 <p>
 <asp:Label ID="PasswordLabel"
runat="server" AssociatedControlID="txtPassword">Password:</asp:Label>

 <asp:TextBox ID="txtPassword"
runat="server" CssClass="passwordEntry" TextMode="Password"></
asp:TextBox>
 </p>
 <p class="submitButton">
 <asp:Button ID="btnLogin"
CssClass="loginButton" OnClick="btnLogin_Click" runat="server"
 Text="Log In" />
 </p>
 <asp:Label runat="server"
ID="lblMessage" BackColor="Wheat" ForeColor="Red"></asp:Label>
 </asp:Panel>
 </asp:TableCell>
 <asp:TableCell HorizontalAlign="Right"
VerticalAlign="Top">
 <p>
 <asp:LinkButton ID="lbRecoverPassword"
runat="server" Text="Forgot Password?" OnClick="lbRecoverPassword_
Click" />
 </p>
 <p>
 <asp:LinkButton ID="lbRegister"
runat="server" Text="Register" OnClick="lbRegister_Click" />
 </p>
 </asp:TableCell></asp:TableRow>
 </asp:Table>

 </fieldset>
 </div>
 </div>
</asp:Content>

The login screen will look as shown in the following screenshot:

For More Information:
www.PacktPub.com/asp-net-4-social-networking/book

https://www.packtpub.com/asp-net-4-social-networking/book

Chapter 3

[81]

Normally we would not show you the interfaces in our application as they are
very simple. But as the interface is very important to this pattern, we will make an
exception this fi rst time! This interface is what the code behind has to conform to in
order to be able to interact with the presenter:

//Fisharoo/Web/Account/Interfaces/ILogin.cs
namespace Fisharoo.Web.Account.Interfaces
{
 public interface ILogin
 {
 void DisplayMessage(string Message);
 }
}

Here is the code behind for our application. Notice that it only handles display
logic. It does not actually make any decisions. It defers all decision making to
the presenter.

//Fisharoo/Web/Account/Login.aspx.cs
namespace Fisharoo.Web.Account
{
 public partial class Login : System.Web.UI.Page, ILogin
 {
 private LoginPresenter _presenter;
 protected void Page_Load(object sender, EventArgs e)
 {
 _presenter = new LoginPresenter();
 _presenter.Init(this);
 }
 protected void btnLogin_Click(object sender, EventArgs e)
 {
 _presenter.Login(txtUsername.Text, txtPassword.Text);
 }
 protected void lbRecoverPassword_Click(object sender,
 EventArgs e)
 {
 _presenter.GoToRecoverPassword();
 }
 protected void lbRegister_Click(object sender, EventArgs e)
 {
 _presenter.GoToRegister();
 }
 public void DisplayMessage(string Message)
 {
 lblMessage.Text = Message;
 }
 }
}

For More Information:
www.PacktPub.com/asp-net-4-social-networking/book

https://www.packtpub.com/asp-net-4-social-networking/book

User Accounts

[82]

You will notice above that in the Page_Load() we initialize our presenter. Once we
have the presenter spun up, we immediately pass a reference of the code behind to
the presenter in the _presenter.Init(this) method call. You should also notice
that there is a button-click event captured by the code behind. But all that this
method does is notify the presenter that it needs to perform the Login() method
and passes up the raw username and password values. Lastly, notice that the code
behind does implement the interface with its DisplayMessage() method. As the
presenter has access to the code behind class, it will be able to utilize any public
method as it needs to.

Another aspect to note is that when you start writing code, Visual Studio will add a
lot of using statements on the top of the fi le. Visual Studio 2010 refactoring support
provides for removing unused using statements. You may want to try this to keep
things organized.

We did it and ended up with only three using statements as against an earlier list of
fourteen statements.

Presenter
Here is the presenter code:

//Fisharoo/Web/Account/Presenters/LoginPresenter.cs
namespace Fisharoo.Web.Account.Presenters
{
 public class LoginPresenter
 {
 private ILogin _view;
 [Import]
 private IAccountService _accountService;
 [Import]
 private IRedirector _redirector;
 public void Init(ILogin view)
 {
 _view = view;

For More Information:
www.PacktPub.com/asp-net-4-social-networking/book

https://www.packtpub.com/asp-net-4-social-networking/book

Chapter 3

[83]

 MEFManager.Compose(this);
 }
 public void Login(string username, string password)
 {
 string message = _accountService.Login(username,
 password);
 _view.DisplayMessage(message);
 }
 public void GoToRegister()
 {
 _redirector.GoToAccountRegisterPage();
 }
 public void GoToRecoverPassword()
 {
 _redirector.GoToAccountRecoverPasswordPage();
 }
 }
}

Note that in the Init() method, the presenter sets up the objects that it needs to get
its job done by using MEF framework. If a page needs to display data on its initial
load, this is where it would happen. Beyond the initialization of the presenter, you
will notice that the presenter has three other methods: Login(), GoToRegister(),
and GoToRecoverPassword().

The Login() method handles the button-click event that the View passes to it.
Note that even here we do not have a lot of logic to manage. The presenter is
quick to pass off the responsibility of logging the user in to the AccountService
object that we discussed earlier. It simply expects a friendly message back from the
AccountService to describe how the login process went. As we know, if it gets a
message back, it means that the login failed; otherwise the AccountService will
redirect the user appropriately. Once the login is complete, the presenter uses the
view's DisplayMessage() method to inform the user of its status.

The GoToRegister() and GoToRecoverPassword() methods simply utilize the
Redirector object to send the user to the appropriate page on the site. While this
may seem a bit extreme, remember that it follows the good design principles. If
you follow this across your entire site, you will reap the following three benefi ts:

1. You can easily swap out the UI and expect the same results with
minimum efforts.

2. As your redirection code is in one place, when several links use the same
method to redirect to a location, you can change this redirection in that place
and impact all the links across your site.

3. This aids the testability of your site!

For More Information:
www.PacktPub.com/asp-net-4-social-networking/book

https://www.packtpub.com/asp-net-4-social-networking/book

User Accounts

[84]

Here are the added Redirector methods:

//Fisharoo/Components/Redirector.cs
...
 public void GoToAccountRegisterPage()
 {
 Redirect("~/Account/Register.aspx");
 }
...
 public void GoToAccountRecoverPasswordPage()
 {
 Redirect("~/Account/RecoverPassword.aspx");
 }
...

We hope you are noticing that as each fi le is responsible for a very specifi c
set of tasks, each fi le is also short and sweet. While this is a complex way
of thinking about things, it is very nice to work with!

Registration page
 We will admit that using the standard .NET controls to create an account is so much
easier! Having said that, it was quite a bit of fun creating the registration page for
this site. We ended up using a wizard control to display the various steps of the
registration process and also used the out-of-box formatting for it. Our steps are
as follows (as the ASPX code takes up lot of space, we have put images of how the
screens look instead. For code refer to the code associated with this chapter):

1. We always start by grabbing the email, username, and password of the
users. There is validation in place for all of these. We want to validate their
email addresses for their authenticity. We also want to make sure that their
username conforms to some length rules. Then we allow them to enter their
password and require them to re-enter their password to verify that what
they have entered is what they meant to enter. And of course, all these fi elds
are required!

For More Information:
www.PacktPub.com/asp-net-4-social-networking/book

https://www.packtpub.com/asp-net-4-social-networking/book

Chapter 3

[85]

2. The next step is to get some descriptive information about the users such
as their fi rst names and last names. When building a community site of any
type, it is usually important that you also harvest their birthday and zip code
or postal code. This lets you know what is appropriate for them and where in
the world they are. There is validation in place to make sure that the date of
birth they enter is a valid date (MM/DD/YYYY format) and that the zip code
is a valid format for US. Though we have validated for only US zip codes,
in a community site you will need to validate based on different formats for
different countries. All these fi elds are also required fi elds.

3. The third step presents the terms and conditions. This is the one step that
requires you to fetch some data for display. This data is retrieved from the
TermRepository.GetCurrentTerm() (which we covered earlier). All the
user needs to do here is read the terms (most of your users won't do this of
course!) and check the box indicating that they agree with your terms (we
have kept it checked by default).

For More Information:
www.PacktPub.com/asp-net-4-social-networking/book

https://www.packtpub.com/asp-net-4-social-networking/book

User Accounts

[86]

4. Finally, we present the reCAPTCHA step so that we can make sure that the
person signing up is a person and not a spam bot! Using reCAPTCHA is
fairly straightforward. You need to use the ASP.NET specifi c control that is
provided and get the necessary keys from the reCAPTCHA site (http://
www.google.com/recaptcha/whyrecaptcha).

While we have made this entire information mandatory during registration, you
can decide based on your specifi c needs. There is always a balance required of not
overdoing the required information during registration as that may put off some
users from registering. Users can always go to the profi le page to provide more
information once they have registered and logged into the site.

Knowing that the code behind is really just a middle man responsible for passing
data to and from the presenter, we are going to show you only the relevant code.

//Fisharoo/Web/Account/Register.aspx.cs
namespace Fisharoo.Web.Account
{
 public partial class Register : System.Web.UI.Page, IRegister
 {

 protected void wizRegister_FinishButtonClicked(object sender,
 EventArgs e)
 {
 _presenter.Register(
 txtUsername.Text,ViewState["password"].ToString(),
 txtFirstName.Text,txtLastName.Text,txtEmail.Text,
 txtZipcode.Text,Convert.ToDateTime(txtBirthday.Text),
 Page.IsValid, chkAgreeWithTerms.Checked,
 Convert.ToInt32(lblTermID.Text));
 }

 public void LoadreCaptchaSetting(bool value)

For More Information:
www.PacktPub.com/asp-net-4-social-networking/book

https://www.packtpub.com/asp-net-4-social-networking/book

Chapter 3

[87]

 {
 recaptcha.SkipRecaptcha = value;
 }

 }
}

The reCAPTCHA validation is integrated with the page validation and hence
if Page.IsValid returns true, we know that the reCAPTCHA validation has
succeeded. Also note that for using reCAPTCHA we need to add a new register
directive in our ASPX page:

<%@ Register TagPrefix="recaptcha" Namespace="Recaptcha"
Assembly="Recaptcha" %>

During development we will not want to keep getting the reCAPTCHA validation
screen. To prevent this we set the SkipRecaptcha property on the control to false
for the debug confi guration. This makes the reCAPTCHA control always return true
for validation. We will want the control to work properly during fi nal deployment
and hence we have used the web.release.config fi le for this purpose. The
appropriate tag in that fi le of interest is:

//Fisharoo/Web/Web.Release.Config
 <appSettings>
 <add key="reCaptcha" value="false" xdt:Transform="Replace"
xdt:Locator="Match(key)" />
 </appSettings>

As we publish our site with release confi guration, the Replace transform mentioned
above will replace the value from the main web.config fi le.

We had briefl y touched upon multiple confi guration fi les in a previous
chapter. This is a new feature for ASP.NET 4 applications with Visual
Studio 2010. Appropriate build tasks take care of replacing the values
from respective confi guration fi les to the main one. To know more about
this read here: http://msdn.microsoft.com/en-us/library/
dd465326.aspx.

For More Information:
www.PacktPub.com/asp-net-4-social-networking/book

https://www.packtpub.com/asp-net-4-social-networking/book

User Accounts

[88]

Now we get to the meat and potatoes of this page. Once we have gathered all the
data, we need to process it. Enter the presenter (that was fun to say!). We will also
focus only on the Register() method in the code as that is where most of the
action happens.

//Fisharoo/Web/Account/Presenters/RegisterPresenter.cs
namespace Fisharoo.Web.Account.Presenters
{
 public class RegisterPresenter
 {
 . . .

 public void Register(string Username, string Password,
 string FirstName, string LastName, string Email,
 string Zip, DateTime BirthDate, bool isCaptchaValid,
 bool AgreesWithTerms, Int32 TermID)
 {
 if (AgreesWithTerms)
 {
 if (isCaptchaValid)
 {
 Fisharoo.DataAccess.Account acc = new Fisharoo.
 DataAccess.Account();
 acc.FirstName = FirstName;
 acc.LastName = LastName;
 acc.Email = Email;
 acc.BirthDate = BirthDate;
 acc.Zip = Zip;
 acc.Username = Username;
 acc.Password = Password.Encrypt(Password);
 acc.TermID = TermID;
 //TODO: For development marked as verified already
 acc.EmailVerified = true;

 if (_accountService.EmailInUse(Email))
 {
 _view.ShowErrorMessage("This email is already
 in use!");
 _view.ToggleWizardIndex(0);
 }
 else if (_accountService.UsernameInUse(Username))
 {
 _view.ShowErrorMessage("This username is
 already in use!");
 _view.ToggleWizardIndex(0);

For More Information:
www.PacktPub.com/asp-net-4-social-networking/book

https://www.packtpub.com/asp-net-4-social-networking/book

Chapter 3

[89]

 }
 else
 {
 _accountRepository.SaveAccount(acc);

 List<Permission> permissions
= _permissionRepository.
GetPermissionByName("PUBLIC");

 Fisharoo.DataAccess.Account newAccount = _
accountRepository.GetAccountByEmail(Email);

 if (permissions.Count > 0 && newAccount !=
null)

 {
 _accountRepository.

AddPermission(newAccount, permissions[0]);
 }

 _email.SendEmailAddressVerificationEmail(acc.
Username, acc.Email);

 _view.ShowAccountCreatedPanel();
 }
 }
 else
 {
 _view.ShowErrorMessage("Your entry doesn't match
 the reCAPTCHA image. Please try again.");
 }
 }
 else
 {
 _view.ToggleWizardIndex(2);
 _view.ShowErrorMessage("You can't create an account on
 this site if you don't agree with our terms!");
 }
 }
 }
}

You will notice that most of this code is just more validation or navigation logic such
as "did they agree with the terms?", or "did they enter the correct reCAPTCHA?".
Nothing fancy here!

For More Information:
www.PacktPub.com/asp-net-4-social-networking/book

https://www.packtpub.com/asp-net-4-social-networking/book

User Accounts

[90]

 The new thing here, that is somewhat interesting, is the mention of the Email object.
You may recall when we built the Email object a while back. It provides us with the
facilities to send an email in various ways. What we have done here is extended the
Email object so that it also encapsulates the messages that are sent by the system.
Here is the new code for the Email object that allows us to send an email verifi cation
of the validity and ownership of an email address.

//Fisharoo/Components/Email.cs
public void SendEmailAddressVerificationEmail(string Username, string
To)
{
 MEFManager.Compose(this);
 string rootURL = _configuration.GetConfigurationSetting(
 typeof(string), "RootURL").ToString();
 string encryptedName = Cryptography.Encrypt(Username, "verify");

 string msg = "Please click on the link below or paste it into a
 browser to verify your email account.

" +
 "<a href=\"" + rootURL + "Account/VerifyEmail.
 aspx?a=" +
 encryptedName + "\">" +
 rootURL + "Account/VerifyEmail.aspx?a=" +
 encryptedName + "";

 SendEmail(To, "", "", "Account created! Email verification
 required.", msg);
}

Also notice the link that is embedded here encrypts the registrant's username with
a salt of "verify". This way we know who we are dealing with after they receive the
email and follow the link back to our site (more about this in the next section).

In the Wizard's stepped environment, it is very easy to present small chunks of data
like this without having too much coding overhead. While it is not as easy as the
.NET membership widgets, we think it is quite a bit more fl exible. Also, we can
easily test this whole process now.

Email verifi cation
 We lightly touched upon this subject in the previous section. Basically, the
registration process triggers an email to be sent to the newly registered user asking
them to verify their email address. This process usually sends an email to the email
address that the user provided us when they signed up. If the user can receive the
email on their end, then we know that the email address is valid. If they can click on
the link that is embedded in the email, then we know that they have access to the
email as well. This doesn't necessarily mean that they own the account, but we can't
really verify that, and hence we can't really worry about it.

For More Information:
www.PacktPub.com/asp-net-4-social-networking/book

https://www.packtpub.com/asp-net-4-social-networking/book

Chapter 3

[91]

The item we didn't cover above is the page that receives the click from the link in the
email. This series of code is relatively simple. So to start, we are going to list all of the
fi les in order of use (design, code behind, and presenter). Then we can discuss it.

//Fisharoo/Web/Account/VerifyEmail.aspx
<%@ Page Language="C#" MasterPageFile="~/Site.Master"
AutoEventWireup="true" CodeBehind="VerifyEmail.aspx.cs"
Inherits="Fisharoo.Web.Account.VerifyEmail" %>
<asp:Content ContentPlaceHolderID="Content" runat="server">
 <asp:Label ID="lblMsg" runat="server" ForeColor="Red"></asp:Label>
</asp:Content>

//Fisharoo/Web/Account/VerifyEmail.aspx.cs
namespace Fisharoo.Web.Account
{
 public partial class VerifyEmail : System.Web.UI.Page,
 IVerifyEmail
 {
 private VerifyEmailPresenter _presenter;
 protected void Page_Load(object sender, EventArgs e)
 {
 _presenter = new VerifyEmailPresenter();
 _presenter.Init(this);
 }
 public void ShowMessage(string Message)
 {
 lblMsg.Text = Message;
 }
 }
}

//Fisharoo/Web/Account/Presenters/VerifyEmailPresenter.cs

using System.ComponentModel.Composition;
using Fisharoo.Common;
using Fisharoo.DataAccess.Interfaces;
using Fisharoo.Web.Account.Interfaces;

namespace Fisharoo.Web.Account.Presenters
{
 public class VerifyEmailPresenter
 {
 [Import]
 private IWebContext _webContext;
 [Import]

For More Information:
www.PacktPub.com/asp-net-4-social-networking/book

https://www.packtpub.com/asp-net-4-social-networking/book

User Accounts

[92]

 private IAccountRepository _accountRepository;

 public void Init(IVerifyEmail _view)
 {
 MEFManager.Compose(this);
 string username = Cryptography.Decrypt (_webContext.
 UsernameToVerify, "verify");

 Fisharoo.DataAccess.Account account = _accountRepository.
 GetAccountByUsername(username);

 if(account != null)
 {
 account.EmailVerified = true;
 _accountRepository.SaveAccount(account);
 _view.ShowMessage("Your email address has been
 successfully verified!");
 }
 else
 {
 _view.ShowMessage("There appears to be something wrong

with your verification link! Please try again. If
you are having issues by clicking on the link, please
try copying the URL from your email and pasting it
into your browser window.");

 }
 }
 }
}

The reason that we listed out the code this way was to show you that all the logic is
pretty much lodged in the presenter (as it should be!). Notice that we attempt to get
the username from the WebContext (query string in this case) and decrypt it with
our "verify" salt. Once we have this username, we attempt to retrieve the Account
using AccountRepository.GetAccountByUsername(). If we get an account back,
we toggle the Account.EmailVerified property to true and save it back into
the repository.

Password recovery
 This is another simple page that we can quickly show you the code for.

//Fisharoo/Web/Account/RecoverPassword.aspx
<%@ Page Language="C#" MasterPageFile="~/Site.Master"
AutoEventWireup="true" CodeBehind="RecoverPassword.aspx.cs"
 Inherits="Fisharoo.Web.Account.RecoverPassword" %>

For More Information:
www.PacktPub.com/asp-net-4-social-networking/book

https://www.packtpub.com/asp-net-4-social-networking/book

Chapter 3

[93]

<asp:Content ContentPlaceHolderID="Content" runat="server">
 <div class="divContainerSmall">
 <asp:Panel ID="pnlRecoverPassword" runat="server">
 <fieldset class="recoverPassword">
 <div class="divContainerTitle">
 Please enter your email address below
 </div>
 <p>
 <asp:Label ID="EmailLabel" runat="server"

AssociatedControlID="txtEmail">Email:</asp:Label>
 <asp:TextBox CssClass="textRegister" ID="txtEmail"

runat="server"></asp:TextBox>
 </p>
 <asp:Button CssClass="recoverPwdButton"

ID="btnRecoverPassword" Text="Recover Password"
 runat="server" OnClick="btnRecoverPassword_Click"
/>
 </fieldset>
 </asp:Panel>
 <asp:Panel Visible="false" ID="pnlMessage" runat="server">
 <asp:Label ID="lblMessage" runat="server"

ForeColor="Red"></asp:Label>
 </asp:Panel>
 </div>
</asp:Content>

We will skip the code for RecoverPassword.aspx.cs and IRecoverPassword.cs as
there is nothing to highlight there and jump to the RecoverPasswordPresenter.cs.

//Fisharoo/Web/Account/Presenters/RecoverPasswordPresenter.cs
namespace Fisharoo.Web.Account.Presenters
{
 public class RecoverPasswordPresenter
 {
 private IRecoverPassword _view;
 [Import]
 private IEmail _email;
 [Import]
 private IAccountRepository _accountRepository;
 public RecoverPasswordPresenter()
 {
 MEFManager.Compose(this);
 }
 public void Init(IRecoverPassword View)
 {

For More Information:
www.PacktPub.com/asp-net-4-social-networking/book

https://www.packtpub.com/asp-net-4-social-networking/book

User Accounts

[94]

 _view = View;
 }
 public void RecoverPassword(string Email)
 {
 Fisharoo.DataAccess.Account account =
 _accountRepository.GetAccountByEmail(Email);
 if(account != null)
 {
 _email.SendPasswordReminderEmail(account.Email,
 account.Password, account.Username);
 _view.ShowRecoverPasswordPanel(false);
 _view.ShowMessage("An email was sent to your
 account!");
 }
 else
 {
 _view.ShowRecoverPasswordPanel(true);
 _view.ShowMessage("We couldn't find the account you
 requested.");
 }

 }
 }
}

This page asks the user to provide their email address. It then looks up the
account with that email address. If it fi nds the account it then uses the Email.
SendPasswordReminderEmail() method to send the user's decrypted password to
their email account.

The SendPasswordReminderEmail() method looks like this.

//Fisharoo/Components/Email.cs
 public void SendPasswordReminderEmail(string To,
 string EncryptedPassword, string Username)
 {
 string Message = "Here is the password you requested: " +
 Cryptography.Decrypt(EncryptedPassword, Username);
 SendEmail(To, "", "", "Password Reminder", Message);
 }

For More Information:
www.PacktPub.com/asp-net-4-social-networking/book

https://www.packtpub.com/asp-net-4-social-networking/book

Chapter 3

[95]

Edit account
 To save a bit of space we are going to forgo showing you the design, the code behind,
and interface portion of this code. It is just a basic form with text boxes and the like,
and has the same validation requirements as the registration form did. It allows
you to change the information and on successfully saving displays an appropriate
message and prevents further editing (user can go to another page and come back
here to edit again). There are a couple of aspects however in the UpdateAccount()
method that we describe below.

//Fisharoo/Web/Account/Presenters/EditAccountPresenter.cs

namespace Fisharoo.Web.Account.Presenters
{
 public class EditAccountPresenter
 {
 . . .

 public void UpdateAccount(string OldPassword, string
NewPassword, string Username,

 string FirstName, string LastName, string Email,
 string ZipCode, DateTime BirthDate)
 {
 //verify that this user is the same as the logged in user
 if(OldPassword.Encrypt(OldPassword) == account.Password)
 {
 if (Email != _userSession.CurrentUser.Email)
 {
 if (!_accountService.EmailInUse(Email))
 {
 account.Email = Email;
 //TODO: for development disable sending

emails, so setting the following to true
 //in production this will be set to false
 account.EmailVerified = true;
 _email.SendEmailAddressVerificationEmail(accou

nt.Username, Email);
 }
 else
 {
 _view.ShowMessage(false, "The email your

entered is already in our system!", account.
UserName);

 return;
 }
 }

For More Information:
www.PacktPub.com/asp-net-4-social-networking/book

https://www.packtpub.com/asp-net-4-social-networking/book

User Accounts

[96]

 if(!string.IsNullOrEmpty(NewPassword))
 account.Password = NewPassword.

Encrypt(NewPassword);

 account.FirstName = FirstName;
 account.LastName = LastName;

 account.Zip = ZipCode;
 account.BirthDate = BirthDate;

 _accountRepository.SaveAccount(account);
 _view.ShowMessage(true, "Your account has been

updated!" , account.UserName);
 }
 else
 {
 _view.ShowMessage(false, "The password you entered

doesn't match your current password! Please try
again." , account.UserName);

 }
 }
 }
}

One thing to notice with the presenter is that when it is fi rst initialized, it loads the
current user's account details and passes that data to the view for initial display.
Then once the user edits their data, there are several validation steps that occur. The
most important is that of the password and the email.

If the password is not changed, we want to make sure that we do not store an empty
value to the system!

For the email, if a user changes it, we want to make sure that we resend the
verifi cation email again and fl ag the account as not having a validated email address.

Beyond that we are simply updating the account object via the AccountRepository.
Save() method.

Implementing security
 Now that we have all of our plumbing in place, we are at a point that we can lock
down our site. Up until now someone could go wherever they wanted to on the site
and we would not be able to stop them at all!

For More Information:
www.PacktPub.com/asp-net-4-social-networking/book

https://www.packtpub.com/asp-net-4-social-networking/book

Chapter 3

[97]

SiteMap
 The primary .NET widget that we will use to lock down our site is the ASP.NET
sitemap. This is a wonderful tool that can be used not only for security but also to
display breadcrumb trails, your primary navigation, and many other useful page/
fi le-oriented tasks.

A sitemap fi le is made up of several siteMapNodes. Each node contains things such
as URL, title, description, and roles by default. You can also add your own custom
attributes. In our site we will use attributes for identifying links that belong in the
topnav, the footer nav, as well as allowing the siteMap to help us with each page's
title. Our current siteMap looks like this:

//Fisharoo/Web/Web.Sitemap
<?xml version="1.0" encoding="utf-8" ?>
<siteMap xmlns="http://schemas.microsoft.com/AspNet/
 SiteMap-File-1.0" >
 <siteMapNode url="default.aspx" title="Home" description="Home
 page" pageTitle="Welcome to Fisharoo.com!"
 roles="PUBLIC">
<!-- TOP NAV NODES -->
 <siteMapNode url="/account/default.aspx" title="My Account"
 description="" pageTitle="" roles="PUBLIC">
 <siteMapNode url="/account/EditAccount.aspx" title="Edit
 Account" description="" pageTitle="" roles="PUBLIC" />
 <siteMapNode url="/account/Login.aspx" title="Login"
 description="" pageTitle="" roles="PUBLIC" />
 <siteMapNode url="/account/RecoverPassword.aspx"
 title="Recover Password" description="Recover Your
 Password" pageTitle="Recover your password"
 roles="PUBLIC" />
 <siteMapNode url="/account/Register.aspx" title="Register"
 description="" pageTitle="" roles="PUBLIC" />
 <siteMapNode url="/account/VerifyEmail.aspx" title="Verify
 Email" description="Verify your email address"
 pageTitle="Email Verification" roles="PUBLIC" />
 <siteMapNode url="/account/AccessDenied.aspx" title="Access
 Denied" description="Access Denied"
 pageTitle="Access Denied" roles="PUBLIC" />
 </siteMapNode>
 <siteMapNode url="/profile/default.aspx" title="Profile"
 description="" topnav="1" pageTitle=""
 roles="PUBLIC"></siteMapNode>
 <siteMapNode url="/friends/default.aspx" title="Friends"
 description="" topnav="1" pageTitle=""
 roles="PUBLIC"></siteMapNode>
 <siteMapNode url="/mail/default.aspx" title="Mail"

For More Information:
www.PacktPub.com/asp-net-4-social-networking/book

https://www.packtpub.com/asp-net-4-social-networking/book

User Accounts

[98]

 description="" topnav="1" pageTitle=""
 roles="PUBLIC"></siteMapNode>
 <siteMapNode url="/galleries/default.aspx" title="Galleries"
 description="" topnav="1" pageTitle=""
 roles="PUBLIC"></siteMapNode>
 <siteMapNode url="/groups/default.aspx" title="Groups"
 description="" topnav="1" pageTitle=""
 roles="PUBLIC"></siteMapNode>
 <siteMapNode url="/virtualtanks/default.aspx" title="Virtual
 Tanks" description="" topnav="1" pageTitle=""
 roles="PUBLIC"></siteMapNode>
 <siteMapNode url="/forum/default.aspx" title="Forum"
 description="" topnav="1" pageTitle=""
 roles="PUBLIC"></siteMapNode>
 <siteMapNode url="/blogs/default.aspx" title="Blogs"
 description="" topnav="1" pageTitle=""
 roles="PUBLIC"></siteMapNode>
<!-- /TOP NAV NODES -->
<!-- FOOTER NODES -->
 <siteMapNode url="AboutUs.aspx" title="About Us"
 description="About Us" footernav="1"
 pageTitle="" roles="PUBLIC"></siteMapNode>
 <siteMapNode url="Advertisers.aspx" title="Advertisers"
 description="Click here to learn more about
 advertising on our site" footernav="1"
 pageTitle="" roles="PUBLIC"></siteMapNode>
 <siteMapNode url="Help.aspx" title="Help" description="Click
 here to enter our help section" footernav="1"
 pageTitle="" roles="PUBLIC"></siteMapNode>
 <siteMapNode url="Privacy.aspx" title="Privacy"
 description="Click here to learn about our
 privacy policy" footernav="1" pageTitle=""
 roles="PUBLIC"></siteMapNode>
 <siteMapNode url="Terms.aspx" title="Terms" description="Click
 here to learn about our terms and conditions"
 footernav="1" pageTitle=""
 roles="PUBLIC"></siteMapNode>
<!-- /FOOTER NODES-->
<!-- NONE NAVIGATION NODES -->
 <siteMapNode url="Search.aspx" title="Search"
 description="Click here to perform a site
 search" pageTitle=""
 roles="PUBLIC"></siteMapNode>
 <siteMapNode url="Error.aspx" title="Error" description="An
 error has occurred" pageTitle=""
 roles="PUBLIC"></siteMapNode>
<!-- /NONE NAVIGATION NODES -->
 </siteMapNode>
</siteMap>

For More Information:
www.PacktPub.com/asp-net-4-social-networking/book

https://www.packtpub.com/asp-net-4-social-networking/book

Chapter 3

[99]

SiteMap wrapper
As with all of the other controls and classes that .NET exposes to us, it is a good idea
to wrap the SiteMap class. We did this by creating a Navigation class. It not only
exposes all the properties that SiteMap does, but it also adds a bit more control to the
way we interact with our nodes.

//Fisharoo/Components/Navigation.cs
namespace Fisharoo.Components
{
 [Export(typeof(INavigation)]
 public class Navigation : INavigation
 {
 [Import]
 private IUserSession _userSession;
 [Import]
 private IRedirector _redirector;
 private Account _account;
 public Navigation()
 {
 MEFManager.Compose(this);
 }

 public List<SiteMapNode> AllNodes()
 {
 List<SiteMapNode> nodes = new List<SiteMapNode>();
 nodes.Add(SiteMap.RootNode);
 foreach (SiteMapNode node in SiteMap.RootNode.ChildNodes)
 {
 nodes.Add(node);
 }
 return nodes;
 }
 public List<SiteMapNode> PrimaryNodes()
 {
 List<SiteMapNode> primaryNodes = new List<SiteMapNode>();
 foreach (SiteMapNode node in AllNodes())
 {
 if (node["topnav"] != null &&
 CheckAccessForNode(node))
 primaryNodes.Add(node);
 }
 return primaryNodes;
 }
 public List<SiteMapNode> FooterNodes()
 {
 List<SiteMapNode> footerNodes = new List<SiteMapNode>();
 foreach (SiteMapNode node in AllNodes())
 {
 if (node["footernav"] != null &&

For More Information:
www.PacktPub.com/asp-net-4-social-networking/book

https://www.packtpub.com/asp-net-4-social-networking/book

User Accounts

[100]

 CheckAccessForNode(node))
 footerNodes.Add(node);
 }
 return footerNodes;
 }
 private bool CheckAccessForNode(SiteMapNode node)
 {
 if (!node.Roles.Contains("PUBLIC"))
 {
 if (_account != null && _account.Permissions != null
 && _account.Permissions.Count > 0)
 {
 foreach (string role in node.Roles)
 {
 if (!_account.HasPermission(role))
 return false;
 }
 return true;
 }
 else
 return false;
 }
 return true;
 }
 public void CheckAccessForCurrentNode()
 {
 bool result = CheckAccessForNode(CurrentNode);
 if(result)
 return;
 else
 _redirector.GoToAccountAccessDenied();
 }
 public SiteMapNode RootNode
 {
 get { return SiteMap.RootNode; }
 }
 public SiteMapNode CurrentNode
 {
 get
 {
 return SiteMap.CurrentNode;
 }
 }
 }
}

For More Information:
www.PacktPub.com/asp-net-4-social-networking/book

https://www.packtpub.com/asp-net-4-social-networking/book

Chapter 3

[101]

All nodes
By default the SiteMap class doesn't return all nodes so to speak. It provides you
with a call to the RootNode and a call to its children. As you can see in our fi rst
method, we simply created an AllNodes () call that returns "all nodes".

Navigation
Our site will have several navigation sections. Here we have:

 Top navigation
 Primary navigation
 Secondary navigation
 Left navigation
 Footer navigation

If we had to dig through all of the navigation collections, each time we needed them
we may fi nd it quite cumbersome. Instead we will add methods to the classes that
produce the required sub-selection of nodes.

The PrimaryNodes() method is the fi rst example of such a method. It produces a list
of nodes that go in the primary navigation section by iterating through all the nodes
returned by the AllNodes() method looking for each node with a custom topnav
attribute. You will notice a special fi lter though in addition to this. With each topnav
node that is found, a security check is performed to see if the current user should
have access to this node. If not, the node is not displayed.

The FooterNodes() method is exactly the same as the PrimaryNodes() method
with the exception that it looks for a footernav attribute. This method also checks to
make sure that the user has access to a specifi ed collection of nodes.

Checking access
 This brings us to the CheckAccessForNode() method , that we are using in our other
methods. This method looks at the passed in node and checks its Roles collection.
It fi rst checks to see if the PUBLIC role is specifi ed. If so, all remaining checks are
not performed. We then move to see if there is an account present, that is, whether
any user has logged in. If there is a user, we check their permissions property. If
that exists, we check to see if there are any permissions in the permission list. We
then iterate through each role specifi ed in the node and check to make sure that
the account has that permission. If the account doesn't contain any of the specifi ed
permissions we return false. If all the permissions are valid then we return true.

For More Information:
www.PacktPub.com/asp-net-4-social-networking/book

https://www.packtpub.com/asp-net-4-social-networking/book

User Accounts

[102]

Security
Up until now we have discussed navigational aspects of this class. But seeing
how security is rolled into this so deeply, it makes sense that we would also have
something to check the current node for security reasons rather than just displaying
links. This brings us to the CheckAccessForCurrentNode() method.

The CheckAccessForCurrentNode() method wraps the CheckAccessForNode()
method and passes in the current SiteMap node. If there is suffi cient access to the
current node, no action is performed. However, if access to the current node is
denied, then the user is automatically redirected to the access denied page by way of
the Redirector class.

Implementing navigation and security
 With this wrapper in place we now have a way to easily restrict where our users go
and what forms of navigation they see. All we have to do is make calls into this class
to get a list of nodes for the appropriate navigation section. We also need to make a
call into the CheckAccessForCurrentNode() method at some global point.

In our case these calls will be made from our master page as it controls both global
access and navigational display. So the fi rst thing we will do is add a call to the
CheckAccessForCurrentNode() in the Page_Load() method of the Site.Master.
cs page.

 protected void Page_Load(object sender, EventArgs e)
 {
 _navigation.CheckAccessForCurrentNode();
 ...
 }

For navigational purposes (not really covered too much to this point) we have a
simple repeater that will iterate over SiteMapNodes. In the design view we have a
repeater that looks like this:

<asp:Repeater ID="repPrimaryNav" OnItemDataBound="repPrimaryNav_
ItemDataBound" runat="server">
 <ItemTemplate>
 <asp:HyperLink ID="linkPrimaryNav" CssClass="PrimaryNavLink"
 runat="server"></asp:HyperLink>
 </ItemTemplate>
</asp:Repeater>

Then for the Page_Load() method , we have the following binding code in the
Master page's code behind:

repPrimaryNav.DataSource = _navigation.PrimaryNodes();
repPrimaryNav.DataBind();

For More Information:
www.PacktPub.com/asp-net-4-social-networking/book

https://www.packtpub.com/asp-net-4-social-networking/book

Chapter 3

[103]

If we only had this code, we wouldn't have any navigation. This is where the
OnItemDataBound="repPrimaryNav_ItemDataBound" property comes in handy.
It basically states that the repPrimaryNav_ItemDataBound() method will be our
OnItemDataBound event handler.

 This method will be responsible for displaying all the links. It also takes care of
formatting the links to properly show which section you are in.

protected void repPrimaryNav_ItemDataBound(object sender,
RepeaterItemEventArgs e)
{
 HyperLink linkPrimaryNav = e.Item.FindControl("linkPrimaryNav")
 as HyperLink;
 SiteMapNode node = (SiteMapNode) e.Item.DataItem;
 linkPrimaryNav.Text = node.Title;
 linkPrimaryNav.NavigateUrl = node.Url;
 if (node == _navigation.CurrentNode || node ==
 _navigation.CurrentNode.ParentNode)
 {
 linkPrimaryNav.CssClass = "PrimaryNavLinkActive";
 }

 //TODO: For Chapter 3 these links will be kept disabled
 linkPrimaryNav.Enabled = false;
}

Summary
In this chapter we implemented user registration. This allowed us to gather data
about our users so that they could become a member of our community. In addition to
gathering the data, we briefl y covered the ways to store some of the more important
information. We also created a reCAPTCHA tool to reduce the amount of spam our
community would have to deal with. We also provided some tools for the newly
registered users so that they could remind themselves of their passwords and edit
their account data. Once the registration tools were put in place, we then discussed
and implemented an easy way to manage site-wide navigation and security.

With the account creation and management tools in place, we can now move on
to other chapters. It was important to get this chapter under our belts as all the
following chapters will use many of the features we created here.

For More Information:
www.PacktPub.com/asp-net-4-social-networking/book

https://www.packtpub.com/asp-net-4-social-networking/book

Where to buy this book
You can buy ASP.NET 4 Social Networking from the Packt Publishing website:
https://www.packtpub.com/asp-net-4-social-networking/book

Free shipping to the US, UK, Europe and selected Asian countries. For more information, please

read our shipping policy.

Alternatively, you can buy the book from Amazon, BN.com, Computer Manuals and

most internet book retailers.

www.PacktPub.com

For More Information:
www.PacktPub.com/asp-net-4-social-networking/book

https://www.packtpub.com/asp-net-4-social-networking/book
https://www.packtpub.com/Shippingpolicy

