
P U B L I S H I N G

community experience dist i l led

Python 2.6 Text Processing

Jeff McNeil

Chapter No. 1

"Getting Started"

In this package, you will find:
A Biography of the author of the book

A preview chapter from the book, Chapter NO.1 "Getting Started"

A synopsis of the book’s content

Information on where to buy this book

About the Author
Jeff McNeil has been working in the Internet Services industry for over 10 years. He cut

his teeth during the late 90's Internet boom and has been developing software for Unix

and Unix-flavored systems ever since. Jeff has been a full-time Python developer for the

better half of that time and has professional experience with a collection of other

languages, including C, Java, and Perl. He takes an interest in systems administration and

server automation problems. Jeff recently joined Google and has had the pleasure of

working with some very talented individuals.

I'd like to above all thank Julie, Savannah, Phoebe, Maya, and Trixie

for allowing me to lock myself in the office every night for months.

The Web.com gang and those in the Python community willing to

share their authoring experiences. Finally, Steven Wilding, Reshma

Sundaresan, Shubhanjan Chatterjee, and the rest of the Packt

Publishing team for all of the hard work and guidance.

For More Information:
www.packtpub.com/python-2-6-text-processing-beginners-guide/book

https://www.packtpub.com/python-2-6-text-processing-beginners-guide/book

Python 2.6 Text Processing
The Python Text Processing Beginner's Guide is intended to provide a gentle, hands-on

introduction to processing, understanding, and generating textual data using the Python

programming language. Care is taken to ensure the content is example-driven, while

still providing enough background information to allow for a solid understanding of the

topics covered.

Throughout the book, we use real world examples such as logfile processing and

PDF creation to help you further understand different aspects of text handling. By

the time you've finished, you'll have a solid working knowledge of both structured

and unstructured text data management. We'll also look at practical indexing and

character encodings.

A good deal of supporting information is included. We'll touch on packaging, Python IO,

third-party utilities, and some details on working with the Python 3 series releases. We'll

even spend a bit of time porting a small example application to the latest version.

Finally, we do our best to provide a number of high quality external references.

While this book will cover a broad range of topics, we also want to help you dig

deeper when necessary.

What This Book Covers
Chapter 1, Getting Started: This chapter provides an introduction into character and

string data types and how strings are represented using underlying integers. We'll

implement a simple encoding script to illustrate how text can be manipulated at the

character level. We also set up our systems to allow safe third-party library installation.

Chapter 2, Working with the IO System: Here, you'll learn how to access your data. We

cover Python's IO capabilities in this chapter. We'll learn how to access files locally and

remotely. Finally, we cover how Python's IO layers change in Python 3.

Chapter 3, Python String Services: Covers Python's core string functionality. We

look at the methods of string objects, the core template classes, and Python's various

string formatting methods. We introduce the differences between Unicode and string

objects here.

For More Information:
www.packtpub.com/python-2-6-text-processing-beginners-guide/book

https://www.packtpub.com/python-2-6-text-processing-beginners-guide/book

Chapter 4, Test Processing Using the Standard Library: The standard Python distribution

includes a powerful set of built-in libraries designed to manage textual content. We look

at configuration file reading and manipulation, CSV files, and JSON data. We take a bit

of a detour at the end of this chapter to learn how to create your own redistributable

Python egg files.

Chapter 5, Regular Expressions: Looks at Python's regular expression implementation

and teaches you how to implement them. We look at standardized concepts as well as

Python's extensions. We'll break down a few graphically so that the component parts are

easy to piece together. You'll also learn how to safely use regular expressions with

international alphabets.

Chapter 6, Structured Markup: Introduces you to XML and HTML processing. We create

an adventure game using both SAX and DOM approaches. We also look briefly at lxml

and ElementTree. HTML parsing is also covered.

Chapter 7, Creating Templates: Using the Mako template language, we'll generate e-mail

and HTML text templates much like the ones that you'll encounter within common web

frameworks. We visit template creation, inheritance, filters, and custom tag creation.

Chapter 8, Understanding Encodings and i18n: We provide a look into character

encoding schemes and how they work. For reference, we'll examine ASCII as well as

KOI8-R. We also look into Unicode and its various encoding mechanisms. Finally, we

finish up with a quick look at application internationalization.

Chapter 9, Advanced Output Formats: Provides information on how to generate PDF,

Excel, and OpenDocument data. We'll build these document types from scratch using

direct Python API calls relying on third-party libraries.

Chapter 10, Advanced Parsing and Grammars: A look at more advanced text

manipulation techniques such as those used by programming language designers. We'll

use the PyParsing library to handle some configuration file management and look into the

Python Natural Language Toolkit.

Chapter 11, Searching and Indexing: A practical look at full text searching and the

benefit an index can provide. We'll use the Nucular system to index a collection of small

text files and make them quickly searchable.

Appendix A, Looking for Additional Resources: It introduces you to places of interest on

the Internet and some community resources. In this appendix, you will learn to create

your own documentation and to use Java Lucene based engines. You will also learn about

differences between Python 2 & Python 3 and to port code to Python 3.

For More Information:
www.packtpub.com/python-2-6-text-processing-beginners-guide/book

https://www.packtpub.com/python-2-6-text-processing-beginners-guide/book

1
Getting Started

As computer professionals, we deal with text data every day. Developers and
programmers interact with XML and source code. System administrators
have to process and understand logfi les. Managers need to understand and
format fi nancial data and reports. Web designers put in ti me, hand tuning and
polishing up HTML content. Managing this broad range of formats can seem
like a daunti ng task, but it's really not that diffi cult.

This book aims to introduce you, the programmer, to a variety of methods used
to process these data formats. We'll look at approaches ranging from standard
language functi ons through more complex third-party modules. Somewhere in
there, we'll cover a uti lity that's just the right tool for your specifi c job. In the
process, we hope to also cover some Python development best practi ces.

Where appropriate, we'll look into implementati on details enough to help you
understand the techniques used. Most of the ti me, though, we'll work as hard
as we can to get you up on your feet and crunching those text fi les.

You'll fi nd that Python makes tasks like this quite painless through its clean and
easy-to-understand syntax, vast community, and the available collecti on of
additi onal uti liti es and modules.

In this chapter, we shall:

  Briefl y introduce the data formats handled in this book

  Implement a simple ROT13 translator

  Introduce you to basic processing via fi lter programs

  Learn state machine basics

For More Information:
www.packtpub.com/python-2-6-text-processing-beginners-guide/book

https://www.packtpub.com/python-2-6-text-processing-beginners-guide/book

Getti ng Started

[8]

  Learn how to install supporti ng libraries and components safely and without
administrati ve access

  Look at where to fi nd more informati on on introductory topics

Categorizing types of text data
 Textual data comes in a variety of formats. For our purposes, we'll categorize text into three
very broad groups. Isolati ng down into segments helps us to understand the problem a bit
bett er, and subsequently choose a parsing approach. Each one of these sweeping groups can
be further broken down into more detailed chunks.

One thing to remember when working your way through the book is that text content isn't
limited to the Lati n alphabet. This is especially true when dealing with data acquired via the
Internet. We'll cover some of the techniques and tricks to handling internati onalized data in
Chapter 8, Understanding Encoding and i18n.

Providing information through markup
 Structured text includes formats such as XML and HTML. These formats generally consist of
text content surrounded by special symbols or markers that give extra meaning to a fi le's
contents. These additi onal tags are usually meant to convey informati on to the processing
applicati on and to arrange informati on in a tree-like structure. Markup allows a developer to
defi ne his or her own data structure, yet rely on standardized parsers to extract elements.

 For example, consider the following contrived HTML document.

<html>
 <head>
 <title>Hello, World!</title>
 </head>
 <body>
 <p>
 Hi there, all of you earthlings.
 </p>
 <p>
 Take us to your leader.
 </p>
 </body>
</html>

In this example, our document's ti tle is clearly identi fi ed because it is surrounded by opening
and closing <title> and </title> elements.

For More Information:
www.packtpub.com/python-2-6-text-processing-beginners-guide/book

https://www.packtpub.com/python-2-6-text-processing-beginners-guide/book

Chapter 1

[9]

Note that although the document's tags give each element
a meaning, it's sti ll up to the applicati on developer to
understand what to do with a title object or a p element.

 Noti ce that while it sti ll has meaning to us humans, it is also laid out in such a way as to make
it computer friendly. We'll take a deeper look into these formats in Chapter 6, Structured
Markup. Python provides some rich libraries for dealing with these popular formats.

One interesti ng aspect to these formats is that it's possible to embed references to validati on
rules as well as the actual document structure. This is a nice benefi t in that we're able to rely
on the parser to perform markup validati on for us. This makes our job much easier as it's
possible to trust that the input structure is valid.

Meaning through structured formats
 Text data that falls into this category includes things such as confi gurati on fi les, marker
delimited data, e-mail message text, and JavaScript Object Notati on web data. Content
within this second category does not contain explicit markup much like XML and HTML does,
but the structure and formatti ng is required as it conveys meaning and informati on about
the text to the parsing applicati on. For example, consider the format of a Windows INI fi le
or a Linux system's /etc/hosts fi le. There are no tags, but the column on the left clearly
means something other than the column on the right.

Python provides a collecti on of modules and libraries intended to help us handle popular
formats from this category. We'll look at Python's built-in text services in detail when we get
to Chapter 4, The Standard Library to the Rescue.

Understanding freeform content
 This category contains data that does not fall into the previous two groupings. This describes
e-mail message content, lett ers, book copy, and other unstructured character-based content.
However, this is where we'll largely have to look at building our own processing components.
There are external packages available to us if we wish to perform common functi ons. Some
examples include full text searching and more advanced natural language processing.

Ensuring you have Python installed
Our fi rst order of business is to ensure that you have Python installed. You'll need it in order
to complete most of the examples in this book. We'll be working with Python 2.6 and we
assume that you're using that same version. If there are any drasti c diff erences in earlier
releases, we'll make a note of them as we go along. All of the examples should sti ll functi on
properly with Python 2.4 and later versions.

For More Information:
www.packtpub.com/python-2-6-text-processing-beginners-guide/book

https://www.packtpub.com/python-2-6-text-processing-beginners-guide/book

Getti ng Started

[10]

If you don't have Python installed, you can download the latest 2.X version from http://
www.python.org. Most Linux distributi ons, as well as Mac OS, usually have a version of
Python preinstalled.

At the ti me of this writi ng, Python 2.6 was the latest version available, while 2.7 was in an
alpha state.

Providing support for Python 3
The examples in this book are writt en for Python 2. However, wherever possible, we will
provide code that has already been ported to Python 3. You can fi nd the Python 3 code in
the Python3 directories in the code bundle available on the Packt Publishing FTP site.

Unfortunately, we can't promise that all of the third-party libraries that we'll use will support
Python 3. The Python community is working hard to port popular modules to version 3.0.
However, as the versions are incompati ble, there is a lot of work remaining. In situati ons
where we cannot provide example code, we'll note this.

Implementing a simple cipher
Let's get going early here and implement our fi rst script to get a feel for what's in store.

A Caesar Cipher is a simple form of cryptography in which each lett er of the alphabet is shift ed
down by a number of lett ers. They're generally of no cryptographic use when applied alone,
but they do have some valid applicati ons when paired with more advanced techniques.

This preceding diagram depicts a cipher with an off set of three. Any X found in the source
data would simply become an A in the output data. Likewise, any A found in the input data
would become a D.

For More Information:
www.packtpub.com/python-2-6-text-processing-beginners-guide/book

https://www.packtpub.com/python-2-6-text-processing-beginners-guide/book

Chapter 1

[11]

Time for action – implementing a ROT13 encoder
 The most popular implementati on of this system is ROT13. As its name suggests, ROT13
shift s – or rotates – each lett er by 13 spaces to produce an encrypted result. As the English
alphabet has 26 lett ers, we simply run it a second ti me on the encrypted text in order to get
back to our original result.

Let's implement a simple version of that algorithm.

1. Start your favorite text editor and create a new Python source fi le. Save it
as rot13.py.

2. Enter the following code exactly as you see it below and save the fi le.

import sys
import string

CHAR_MAP = dict(zip(
 string.ascii_lowercase,
 string.ascii_lowercase[13:26] + string.ascii_lowercase[0:13]
)
)

def rotate13_letter(letter):
 """
 Return the 13-char rotation of a letter.
 """
 do_upper = False
 if letter.isupper():
 do_upper = True

 letter = letter.lower()
 if letter not in CHAR_MAP:
 return letter

 else:
 letter = CHAR_MAP[letter]

 if do_upper:
 letter = letter.upper()

 return letter

if __name__ == '__main__':
 for char in sys.argv[1]:
 sys.stdout.write(rotate13_letter(char))
 sys.stdout.write('\n')

For More Information:
www.packtpub.com/python-2-6-text-processing-beginners-guide/book

https://www.packtpub.com/python-2-6-text-processing-beginners-guide/book

Getti ng Started

[12]

3. Now, from a command line, execute the script as follows. If you've entered all of the
code correctly, you should see the same output.

$ python rot13.py 'We are the knights who say, nee!'

4. Run the script a second ti me, using the output of the fi rst run as the new input
string. If everything was entered correctly, the original text should be printed to
the console.

$ python rot13.py 'Dv ziv gsv pmrtsgh dsl hzb, mvv!'

What just happened?
We implemented a simple text-oriented cipher using a collecti on of Python's string handling
features. We were able to see it put to use for both encoding and decoding source text.
We saw a lot of stuff in this litt le example, so you should have a good feel for what can be
accomplished using the standard Python string object.

Following our initi al module imports, we defi ned a dicti onary named CHAR_MAP, which
gives us a nice and simple way to shift our lett ers by the required 13 places. The value of a
dicti onary key is the target lett er! We also took advantage of string slicing here. We'll look at
slicing a bit more in later chapters, but it's a convenient way for us to extract a substring from
an existi ng string object.

For More Information:
www.packtpub.com/python-2-6-text-processing-beginners-guide/book

https://www.packtpub.com/python-2-6-text-processing-beginners-guide/book

Chapter 1

[13]

In our translati on functi on rotate13_letter, we checked whether our input character
was uppercase or lowercase and then saved that as a Boolean att ribute. We then forced our
input to lowercase for the translati on work. As ROT13 operates on lett ers alone, we only
performed a rotati on if our input character was a lett er of the Lati n alphabet. We allowed
other values to simply pass through. We could have just as easily forced our string to a pure
uppercased value.

The last thing we do in our functi on is restore the lett er to its proper case, if necessary. This
should familiarize you with upper- and lowercasing of Python ASCII strings.

We're able to change the case of an enti re string using this same method; it's not limited to
single characters.

>>> name = 'Ryan Miller'
>>> name.upper()
'RYAN MILLER'
>>> "PLEASE DO NOT SHOUT".lower()
'please do not shout'
>>>

It's worth pointi ng out here that a single character string is sti ll a string.
There is not a char type, which you may be familiar with if you're coming
from a diff erent language such as C or C++. However, it is possible to
translate between character ASCII codes and back using the ord and chr
built-in methods and a string with a length of one.

 Noti ce how we were able to loop through a string directly using the Python for syntax.
A string object is a standard Python iterable, and we can walk through them detailed as
follows. In practi ce, however, this isn't something you'll normally do. In most cases, it makes
sense to rely on existi ng libraries.

$ python

Python 2.6.1 (r261:67515, Jul 7 2009, 23:51:51)

[GCC 4.2.1 (Apple Inc. build 5646)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> for char in "Foo":

... print char

...

F

o

o

>>>

For More Information:
www.packtpub.com/python-2-6-text-processing-beginners-guide/book

https://www.packtpub.com/python-2-6-text-processing-beginners-guide/book

Getti ng Started

[14]

Finally, you should note that we ended our script with an if statement such as the following:

>>> if__name__ == '__main__'

Python modules all contain an internal __name__ variable that corresponds to the name of
the module. If a module is executed directly from the command line, as is this script, whose
name value is set to __main__, this code only runs if we've executed this script directly. It
will not run if we import this code from a diff erent script. You can import the code directly
from the command line and see for yourself.

$ python

Python 2.6.1 (r261:67515, Jul 7 2009, 23:51:51)

[GCC 4.2.1 (Apple Inc. build 5646)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> import rot13

>>> dir(rot13)

['CHAR_MAP', '__builtins__', '__doc__', '__file__', '__name__', '__
package__', 'rotate13_letter', 'string', 'sys']

>>>

Noti ce how we were able to import our module and see all of the methods and att ributes
inside of it, but the driver code did not execute. This is a conventi on we'll use throughout the
book in order to help achieve maximum reusability.

Have a go hero – more translation work

Each Python string instance contains a collecti on of methods that operate on one or more
characters. You can easily display all of the available methods and att ributes by using the dir
method. For example, enter the following command into a Python window. Python responds
by printi ng a list of all methods on a string object.

>>> dir("content")

['__add__', '__class__', '__contains__', '__delattr__', '__doc__',
'__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__',
'__getnewargs__', '__getslice__', '__gt__', '__hash__', '__init__', '__
le__', '__len__', '__lt__', '__mod__', '__mul__', '__ne__', '__new__',
'__reduce__', '__reduce_ex__', '__repr__', '__rmod__', '__rmul__', '__
setattr__', '__sizeof__', '__str__', '__subclasshook__', '_formatter_
field_name_split', '_formatter_parser', 'capitalize', 'center', 'count',
'decode', 'encode', 'endswith', 'expandtabs', 'find', 'format', 'index',
'isalnum', 'isalpha', 'isdigit', 'islower', 'isspace', 'istitle',
'isupper', 'join', 'ljust', 'lower', 'lstrip', 'partition', 'replace',
'rfind', 'rindex', 'rjust', 'rpartition', 'rsplit', 'rstrip', 'split',
'splitlines', 'startswith', 'strip', 'swapcase', 'title', 'translate',
'upper', 'zfill']

>>>

For More Information:
www.packtpub.com/python-2-6-text-processing-beginners-guide/book

https://www.packtpub.com/python-2-6-text-processing-beginners-guide/book

Chapter 1

[15]

Much like the isupper and islower methods discussed previously, we also have an
isspace method. Using this method, in combinati on with your newfound knowledge of
Python strings, update the method we defi ned previously to translate spaces to underscores
and underscores to spaces.

Processing structured markup with a fi lter
Our ROT13 applicati on works great for simple one-line strings that we can fi t on the
command line. However, it wouldn't work very well if we wanted to encode an enti re
fi le, such as the HTML document we took a look at earlier. In order to support larger text
documents, we'll need to change the way we accept input. We'll redesign our applicati on to
work as a fi lter.

A fi lter is an applicati on that reads data from its standard input fi le descriptor and writes to
its standard output fi le descriptor. This allows users to create command pipelines that allow
multi ple uti liti es to be strung together. If you've ever typed a command such as cat /etc/
hosts | grep mydomain.com, you've set up a pipeline

In many circumstances, data is fed into the pipeline via the keyboard and completes its
journey when a processed result is displayed on the screen.

Time for action – processing as a fi lter
Let's make the changes required to allow our simple ROT13 processor to work as a
command-line fi lter. This will allow us to process larger fi les.

1. Create a new source fi le and enter the following code. When complete, save the fi le
as rot13-b.py.

import sys
import string

CHAR_MAP = dict(zip(
 string.ascii_lowercase,
 string.ascii_lowercase[13:26] + string.ascii_lowercase[0:13]
)
)

def rotate13_letter(letter):
 """

For More Information:
www.packtpub.com/python-2-6-text-processing-beginners-guide/book

https://www.packtpub.com/python-2-6-text-processing-beginners-guide/book

Getti ng Started

[16]

 Return the 13-char rotation of a letter.
 """
 do_upper = False
 if letter.isupper():
 do_upper = True

 letter = letter.lower()
 if letter not in CHAR_MAP:
 return letter

 else:
 letter = CHAR_MAP[letter]

 if do_upper:
 letter = letter.upper()

 return letter

if __name__ == '__main__':
 for line in sys.stdin:
 for char in line:
 sys.stdout.write(rotate13_letter(char))

2. Enter the following HTML data into a new text fi le and save it as sample_page.
html. We'll use this as example input to our updated rot13.py.

<html>
 <head>
 <title>Hello, World!</title>
 </head>
 <body>
 <p>
 Hi there, all of you earthlings.
 </p>
 <p>
 Take us to your leader.
 </p>
 </body>
</html>

3. Now, run our rot13.py example and provide our HTML document as standard
input data. The exact method used will vary with your operati ng system. If you've
entered the code successfully, you should simply see a new prompt.

$ cat sample_page.html | python rot13-b.py > rot13.html

$

For More Information:
www.packtpub.com/python-2-6-text-processing-beginners-guide/book

https://www.packtpub.com/python-2-6-text-processing-beginners-guide/book

Chapter 1

[17]

4. The contents of rot13.html should be as follows. If that's not the case, double
back and make sure everything is correct.

<ugzy>
 <urnq>
 <gvgyr>Uryyb, Jbeyq!</gvgyr>
 </urnq>
 <obql>
 <c>
 Uv gurer, nyy bs lbh rneguyvatf.
 </c>
 <c>
 Gnxr hf gb lbhe yrnqre.
 </c>
 </obql>
</ugzy>

5. Open the translated HTML fi le using your web browser.

What just happened?
We updated our rot13.py script to read standard input data rather than rely on a
command-line opti on. Doing this provides opti mal confi gurability going forward and lets us
feed input of varying length from a collecti on of diff erent sources. We did this by looping on
each line available on the sys.stdin fi le stream and calling our translati on functi on. We
wrote each character returned by that functi on to the sys.stdout stream.

Next, we ran our updated script via the command line, using sample_page.html as input.
As expected, the encoded version was printed on our terminal.

As you can see, there is a major problem with our output. We should have a proper page
ti tle and our content should be broken down into diff erent paragraphs.

For More Information:
www.packtpub.com/python-2-6-text-processing-beginners-guide/book

https://www.packtpub.com/python-2-6-text-processing-beginners-guide/book

Getti ng Started

[18]

Remember, structured markup text is sprinkled with
tag elements that defi ne its structure and organizati on.

In this example, we not only translated the text content, we also translated the markup
tags, rendering them meaningless. A web browser would not be able to display this data
properly. We'll need to update our processor code to ignore the tags. We'll do just that
in the next secti on.

Time for action – skipping over markup tags
 In order to preserve the proper, structured HTML that tags provide, we need to ensure we
don't include them in our rotati on. To do this, we'll keep track of whether or not our input
stream is currently within a tag. If it is, we won't translate our lett ers.

1. Once again, create a new Python source fi le and enter the following code. When
you're fi nished, save the fi le as rot13-c.py.

import sys
from optparse import OptionParser
import string

CHAR_MAP = dict(zip(
 string.ascii_lowercase,
 string.ascii_lowercase[13:26] + string.ascii_lowercase[0:13]
)
)

class RotateStream(object):
 """
 General purpose ROT13 Translator

 A ROT13 translator smart enough to skip
 Markup tags if that's what we want.
 """
 MARKUP_START = '<'
 MARKUP_END = '>'

 def __init__(self, skip_tags):
 self.skip_tags = skip_tags

 def rotate13_letter(self, letter):
 """
 Return the 13-char rotation of a letter.
 """
 do_upper = False
 if letter.isupper():

For More Information:
www.packtpub.com/python-2-6-text-processing-beginners-guide/book

https://www.packtpub.com/python-2-6-text-processing-beginners-guide/book

Chapter 1

[19]

 do_upper = True

 letter = letter.lower()
 if letter not in CHAR_MAP:
 return letter

 else:
 letter = CHAR_MAP[letter]

 if do_upper:
 letter = letter.upper()

 return letter

 def rotate_from_file(self, handle):
 """
 Rotate from a file handle.

 Takes a file-like object and translates
 text from it into ROT13 text.
 """
 state_markup = False
 for line in handle:
 for char in line:

 if self.skip_tags:
 if state_markup:
 # here we're looking for a closing
 # '>'
 if char == self.MARKUP_END:
 state_markup = False

 else:
 # Not in a markup state, rotate
 # unless we're starting a new
 # tag
 if char == self.MARKUP_START:
 state_markup = True
 else:
 char = self.rotate13_letter(char)
 else:
 char = self.rotate13_letter(char)

 # Make this a generator
 yield char

if __name__ == '__main__':
 parser = OptionParser()

 parser.add_option('-t', '--tags', dest="tags",
 help="Ignore Markup Tags", default=False,

For More Information:
www.packtpub.com/python-2-6-text-processing-beginners-guide/book

https://www.packtpub.com/python-2-6-text-processing-beginners-guide/book

Getti ng Started

[20]

 action="store_true")

 options, args = parser.parse_args()
 rotator = RotateStream(options.tags)

 for letter in rotator.rotate_from_file(sys.stdin):
 sys.stdout.write(letter)

2. Run the same example.html fi le that we created for the last example through the
new processor. This ti me, be sure to pass a -t command-line opti on.

$ cat sample_page.html | python rot13-c.py -t > rot13.html

$

3. If everything was entered correctly, the contents of rot13.html should be exactly
as follows.

<html>
 <head>
 <title>Uryyb, Jbeyq!</title>
 </head>
 <body>
 <p>
 Uv gurer, nyy bs lbh rneguyvatf.
 </p>
 <p>
 Gnxr hf gb lbhe yrnqre.
 </p>
 </body>
</html>

4. Open the translated fi le in your web browser.

For More Information:
www.packtpub.com/python-2-6-text-processing-beginners-guide/book

https://www.packtpub.com/python-2-6-text-processing-beginners-guide/book

Chapter 1

[21]

What just happened?
 That was a prett y complex example, so let's step through it. We did quite a bit. First, we
moved away from a simple rotate13_letter functi on and wrapped almost all of our
functi onality in a Python class named RotateStream. Doing this helps us ensure that our
code will be reusable down the road.

We defi ne a __init__ method within the class that accepts a single parameter named
skip_tags. The value of this parameter is assigned to the self parameter so we can access
it later from within other methods. If this is a True value, then our parser class will know
that it's not supposed to translate markup tags.

Next, you'll see our familiar rotate13_letter method (it's a method now as it's defi ned
within a class). The only real diff erence here is that in additi on to the letter parameter,
we're also requiring the standard self parameter.

 Finally, we have our rotate_from_file method. This is where the bulk of our new
functi onality was added. Like before, we're iterati ng through all of the characters available
on a fi le stream. This ti me, however, the fi le stream is passed in as a handle parameter.
This means that we could have just as easily passed in an open fi le handle rather than the
standard in fi le handle.

Inside the method, we implement a simple state machine, with two possible states. Our
current state is saved in the state_markup Boolean att ribute. We only rely on it if the value
of self.skip_tags set in the __init__ method is True.

1. If state_markup is True, then we're currently within the context of a markup tag
and we're looking for the > character. When it's found, we'll change state_markup
to False. As we're inside a tag, we'll never ask our class to perform a ROT13
operati on.

2. If state_markup is False, then we're parsing standard text. If we come across
the < character, then we're entering a new markup tag. We set the value of state_
markup to True. Finally, if we're not in tag, we'll call rotate13_letter to perform
our ROT13 operati on.

 You should also noti ce some unfamiliar code at the end of the source listi ng. We've taken
advantage of the OptionParser class, which is part of the standard library. We've added
a single opti on that will allow us to selecti vely enable our markup bypass functi onality. The
value of this opti on is passed into RotateStream's __init__ method.

 The fi nal two lines of the listi ng show how we pass the sys.stdin fi le handle to rotate_
from_file and iterate over the results. The rotate_from_file method has been defi ned
as a generator functi on. A generator functi on returns values as it processes rather than
waiti ng unti l completi on. This method avoids storing all of the result in memory and lowers
overall applicati on memory consumpti on.

For More Information:
www.packtpub.com/python-2-6-text-processing-beginners-guide/book

https://www.packtpub.com/python-2-6-text-processing-beginners-guide/book

Getti ng Started

[22]

State machines
 A state machine is an algorithm that keeps track of an applicati on's internal state. Each
state has a set of available transiti ons and functi onality associated with it. In this example,
we were either inside or outside of a tag. Applicati on behavior changed depending on
our current state. For example, if we were inside then we could transiti on to outside. The
opposite also holds true.

The state machine concept is advanced and won't be covered in detail. However, it is a
major method used when implementi ng text-processing machinery. For example, regular
expression engines are generally built on variati ons of this model. For more informati on
on state machine implementati on, see the Wikipedia arti cle available at http://
en.wikipedia.org/wiki/Finite-state_machine.

Pop Quiz – ROT 13 processing

1. We defi ne MARKUP_START and MARKUP_END class constants within our
RotateStream class. How might our state machine be aff ected if these
values were swapped?

2. Is it possible to use ROT13 on a string containing characters found outside of the
English alphabet?

3. What would happen if we embedded > or < signs within our text content or tag
values?

4. In our example, we read our input a line at a ti me. Can you think of a way to make
this more effi cient?

Have a go hero – support multiple input channels

We've briefl y covered reading data via standard in as well as processing simple
command-line opti ons. Your job is to integrate the two so that your applicati on will
simply translate a command-line value if one is present before defaulti ng to standard input.

If you're able to implement this, try extending the opti on handling code so that your input
string can be passed in to the rotati on applicati on using a command-line opti on.

$python rot13-c.py –s 'myinputstring'
zlvachgfgevat
$

For More Information:
www.packtpub.com/python-2-6-text-processing-beginners-guide/book

https://www.packtpub.com/python-2-6-text-processing-beginners-guide/book

Chapter 1

[23]

Supporting third-party modules
 Now that we've got our fi rst example out of the way, we're going to take a litt le bit of a
detour and learn how to obtain and install third-party modules. This is important, as we'll
install a few throughout the remainder of the book.

The Python community maintains a centralized package repository, termed the Python
Package Index (or PyPI). It is available on the web at http://pypi.python.org. From
there, it is possible to download packages as compressed source distributi ons, or in some
cases, pre-packaged Python components. PyPI is also a rich source of informati on. It's a
great place to learn about available third-party applicati ons. Links are provided to individual
package documentati on if it's not included directly into the package's PyPI page.

Packaging in a nutshell
 There are at least two diff erent popular methods of packaging and deploying Python
packages. The distutils package is part of the standard distributi on and provides a
mechanism for building and installing Python soft ware. Packages that take advantage of the
distutils system are downloaded as a source distributi on and built and installed by a local
user. They are installed by simply creati ng an additi onal directory structure within the system
Python directory that matches the package name.

In an eff ort to make packages more accessible and self-contained, the concept of the
Python Egg was introduced. An egg fi le is simply a ZIP archive of a package. When an egg is
installed, the ZIP fi le itself is placed on the Python path, rather than a subdirectory.

Time for action – installing SetupTools
 Egg fi les have largely become the de facto standard in Python packaging. In order to install,
develop, and build egg fi les, it is necessary to install a third-party tool kit. The most popular
is SetupTools , and this is what we'll be working with throughout this book. The installati on
process is fairly easy to complete and is rather self-contained. Installing SetupTools gives us
access to the easy_install command, which automates the download and installati on of
packages that have been registered with PyPI.

1. Download the installati on script, which is available at http://peak.
telecommunity.com/dist/ez_setup.py. This same script will be
used for all versions of Python.

For More Information:
www.packtpub.com/python-2-6-text-processing-beginners-guide/book

https://www.packtpub.com/python-2-6-text-processing-beginners-guide/book

Getti ng Started

[24]

2. As an administrati ve user, run the ez_setup.py script from the command line. The
SetupTools installati on process will complete. If you've executed the script with the
proper rights, you should see output similar as follows:

python ez_setup.py

Downloading http://pypi.python.org/packages/2.6/s/setuptools/
setuptools-0.6c11-py2.6.egg

Processing setuptools-0.6c11-py2.6.egg

creating /usr/lib/python2.6/site-packages/setuptools-0.6c11-
py2.6.egg

Extracting setuptools-0.6c11-py2.6.egg to /usr/lib/python2.6/site-
packages

Adding setuptools 0.6c11 to easy-install.pth file

Installing easy_install script to /usr/bin

Installing easy_install-2.6 script to /usr/bin

Installed /usr/lib/python2.6/site-packages/setuptools-0.6c11-
py2.6.egg

Processing dependencies for setuptools==0.6c11

Finished processing dependencies for setuptools==0.6c11

#

What just happened?
 We downloaded the SetupTools installati on script and executed it as an administrati ve
user. By doing so, our system Python environment was confi gured so that we can install egg
fi les in the future via the SetupTools easy_install system.

 SetupTools does not currently work with Python 3.0. There is, however, an
alternati ve available via the Distribute project. Distribute is intended to be a
drop-in replacement for SetupTools and will work with either major Python
version. For more informati on, or to download the installer, visit http://
pypi.python.org/pypi/distribute.

For More Information:
www.packtpub.com/python-2-6-text-processing-beginners-guide/book

https://www.packtpub.com/python-2-6-text-processing-beginners-guide/book

Chapter 1

[25]

Running a virtual environment
 Now that we have SetupTools installed, we can install third-party packages by simply
 running the easy_install command. This is nice because package dependencies will
automati cally be downloaded and installed so we no longer have to do this manually.
However, there's sti ll one piece missing. Even though we can install these packages easily,
we sti ll need to retain administrati ve privileges to do so. Additi onally, all of the packages
that we chose to install will be placed in the system's Python library directory, which has
the potenti al to cause inconsistencies and problems down the road.. As you've probably
guessed, there's a uti lity to address that.

Python 2.6 introduces the concept of a local user package directory. This is
simply an additi onal locati on found within your user home directory that Python
searches for installed packages. It is possible to install eggs into this locati on via
easy_install with a –user command-line switch. For more informati on,
see http://www.python.org/dev/peps/pep-0370/.

Confi guring virtualenv
 The virtualenv package, distributed as a Python egg, allows us to create an isolated
Python environment anywhere we wish. The environment comes complete with a bin
directory containing a Python binary, its own installati on of SetupTools, and an instance-
specifi c library directory. In short, it creates a locati on for us to install and confi gure Python
without interfering with the system installati on.

Time for action – confi guring a virtual environment
 Here, we'll enable the virtualenv package, which will illustrate how to install packages
from the PyPI site. We'll also confi gure our fi rst environment, which we'll use throughout the
book for the rest of our examples and code illustrati ons.

1. As a user with administrati ve privileges, install virtualenv from the system
command line by running easy_install virtualenv. If you have the correct
permissions, your output should be similar to the following.

Searching for virtualenv

Reading http://pypi.python.org/simple/virtualenv/

Reading http://virtualenv.openplans.org

Best match: virtualenv 1.4.5

Downloading http://pypi.python.org/packages/source/v/virtualenv/
virtualenv-1.4.5.tar.gz#md5=d3c621dd9797789fef78442e336df63e

Processing virtualenv-1.4.5.tar.gz

For More Information:
www.packtpub.com/python-2-6-text-processing-beginners-guide/book

https://www.packtpub.com/python-2-6-text-processing-beginners-guide/book

Getti ng Started

[26]

Running virtualenv-1.4.5/setup.py -q bdist_egg --dist-dir /tmp/
easy_install-rJXhVC/virtualenv-1.4.5/egg-dist-tmp-AvWcd1

warning: no previously-included files matching '*.*' found under
directory 'docs/_templates'

Adding virtualenv 1.4.5 to easy-install.pth file

Installing virtualenv script to /usr/bin

Installed /usr/lib/python2.6/site-packages/virtualenv-1.4.5-
py2.6.egg

Processing dependencies for virtualenv

Finished processing dependencies for virtualenv

2. Drop administrati ve privileges as we won't need them any longer. Ensure that you're
within your home directory and create a new virtual instance by running:

 $ virtualenv --no-site-packages text_processing

3. Step into the newly created text_processing directory and acti vate the
virtual environment. Windows users will do this by simply running the Scripts\
activate applicati on, while Linux users must instead source the script using the
shell's dot operator.

$. bin/activate

4. If you've done this correctly, you should now see your command-line prompt change
to include the string (text_processing). This serves as a visual cue to remind you
that you're operati ng within a specifi c virtual environment.

(text_processing)$ pwd

/home/jmcneil/text_processing

(text_processing)$ which python

/home/jmcneil/text_processing/bin/python

(text_processing)$

5. Finally, deacti vate the environment by running the deacti vate command. This will
return your shell environment to default. Note that once you've done this, you're
once again working with the system's Python install.

(text_processing)$ deactivate

$ which python

/usr/bin/python

$

For More Information:
www.packtpub.com/python-2-6-text-processing-beginners-guide/book

https://www.packtpub.com/python-2-6-text-processing-beginners-guide/book

Chapter 1

[27]

If you're running Windows, by default python.exe and easy_install.
exe are not placed on your system %PATH%. You'll need to manually confi gure
your %PATH% variable to include C:\Python2.6\ and C:\Python2.6\
Scripts. Additi onal scripts added by easy_install will also be placed in
this directory, so it's worth setti ng up your %PATH% variable.

What just happened?
We installed the virtualenv package using the easy_install command directly off of
the Python Package index. This is the method we'll use for installing any third-party packages
going forward. You should now be familiar with the easy_install process. Also, note that
for the remainder of the book, we'll operate from within this text_processing virtual
environment. Additi onal packages are installed using this same technique from within the
confi nes of our environment.

Aft er the install process was completed, we confi gured and acti vated our fi rst virtual
environment. You saw how to create a new instance via the virtualenv command and
you also learned how to subsequently acti vate it using the bin/activate script. Finally, we
showed you how to deacti vate your environment and return to your system's default state.

Have a go hero – install your own environment

Now that you know how to set up your own isolated Python environment, you're encouraged
to create a second one and install a collecti on of third-party uti liti es in order to get the hang of
the installati on process.

1. Create a new environment and name it as of your own choice.

2. Point your browser to http://pypi.python.org and select one or more
packages that you fi nd interesti ng. Install them via the easy_install command
within your new virtual environment.

Note that you should not require administrati ve privileges to do this. If you receive an error
about permissions, make certain you've remembered to acti vate your new environment.
Deacti vate when complete. Some of the packages available for install may require a correctly
confi gured C-language compiler.

For More Information:
www.packtpub.com/python-2-6-text-processing-beginners-guide/book

https://www.packtpub.com/python-2-6-text-processing-beginners-guide/book

Getti ng Started

[28]

Where to get help?
 The Python community is a friendly bunch of people. There is a wide range of online
resources you can take advantage of if you fi nd yourself stuck. Let's take a quick look at
what's out there.

  Home site: The Python website, available at http://www.python.org.
Specifi cally, the documentati on secti on. The standard library reference is a
wonderful asset and should be something you keep at your fi ngerti ps. This site also
contains a wonderful tutorial as well as a complete language specifi cati on.

  Member groups: The comp.lang.python newsgroup. Available via Google
groups as well as an e-mail gateway, this provides a general-purpose locati on to
ask Python-related questi ons. A very smart bunch of developers patrol this group;
you're certain to get a quality answer.

  Forums: Stack Overfl ow, available at http://www.stackoverflow.com.
Stack overfl ow is a website dedicated to developers. You're welcome to ask your
questi ons, as well as answer others' inquires, if you're up to it!

  Mailing list: If you have a beginner-level questi on, there is a Python tutor mailing
list available off of the Python.org site. This is a great place to ask your beginner
questi ons no matt er how basic they might be!

  Centralized package repository: The Python Package Index at http://pypi.
python.org. Chances are someone has already had to do exactly what it is
you're doing.

If all else fails, you're more than welcome to contact the author via e-mail to questions@
packtpub.com. Every eff ort will be made to answer your questi on, or point you to a freely
available resource where you can fi nd your resoluti on.

Summary
This chapter introduced you to the diff erent categories of text that we'll cover in greater
detail throughout the book and provided you with a litt le bit of informati on as to how we'll
manage our packaging going forward.

We performed a few low-level text translati ons by implementi ng a ROT13 encoder and
highlighted the diff erences between freeform and structured markup. We'll examine these
categories in much greater detail as we move on. The goal of that exercise was to learn some
byte-level transformati on techniques.

Finally, we touched on a couple of diff erent ways to read data into our applicati ons. In our
next chapter, we'll spend a great deal of ti me getti ng to know the IO system and learning
how you can extract text from a collecti on of sources.

For More Information:
www.packtpub.com/python-2-6-text-processing-beginners-guide/book

https://www.packtpub.com/python-2-6-text-processing-beginners-guide/book

Where to buy this book
You can buy Python 2.6 Text Processing from the Packt Publishing website:
https://www.packtpub.com/python-2-6-text-processing-

beginners-guide/book

Free shipping to the US, UK, Europe and selected Asian countries. For more information, please

read our shipping policy.

Alternatively, you can buy the book from Amazon, BN.com, Computer Manuals and

most internet book retailers.

P U B L I S H I N G

community experience dist i l led

www.PacktPub.com

For More Information:
www.packtpub.com/python-2-6-text-processing-beginners-guide/book

https://www.packtpub.com/python-2-6-text-processing-beginners-guide/book
http://www.packtpub.com/Shippingpolicy

