

Alfresco Developer Guide

Jeff Potts

Chapter No. 3
"Working with Content Models"

For More Information: www.packtpub.com/alfresco-developer-guide/book

 In this package, you will find:
A Biography of the author of the book

A preview chapter from the book, Chapter NO.3 "Working with Content Models"

A synopsis of the book’s content

Information on where to buy this book

About the Author
Jeff Potts leads the industry's largest group of certified Alfresco consultants as the
Director of the Enterprise Content Management Practice at Optaros, a global consulting
firm focused on assembling Next Generation Internet solutions featuring open source
components. Jeff has over 10 years of ECM practice leadership and over 16 years of
IT and technology implementation experience in IT departments and professional
services organizations.

Jeff began working with and blogging about Alfresco in November of 2005. In 2006 and
2007, Jeff published a series of Alfresco tutorials and published them on his blog,
ecmarchitect.com. That work, together with other Community activity in Alfresco's forum,
Wiki site, and Jira earned him Alfresco's 2007 Community Contributor of the Year
Award. The same year, Optaros earned Alfresco's Global Partner of the Year and
Implementation of the Year awards.

Jeff's areas of business expertise include document management, content management,
workflow, collaboration, portals, and search. Throughout his consulting career he has
worked on a number of projects for Fortune 500 clients across the Media and
Entertainment, Airline, Consumer Packaged Goods, and Retail sectors using technology
such as Alfresco, Documentum, Java, XSLT, IBM WebSphere, and Lotus Domino.

Prior to Optaros, Jeff was a Vice President at Hitachi Consulting (formerly Navigator
Systems, Inc.) where he founded and grew the ECM practice around legacy knowledge
management, document management, Web Content Management (WCM), and
collaboration solutions, in addition to custom development.

Jeff is a frequent speaker at Alfresco and Content Management industry events and has
written articles for technical journals. This is his first book.

http://www.packtpub.com/alfresco-developer-guide/book

For More Information: www.packtpub.com/alfresco-developer-guide/book

Alfresco Developer Guide
Alfresco is the leading open source platform for Enterprise Content Management.
The progress the Alfresco Engineering team has made since that first production
release in June of 2005 has simply been amazing. The platform is well on its way to
fulfilling its vision of becoming a viable alternative to those from legacy vendors who
simply cannot keep up with the pace of innovation inherent in a solution assembled from
open source components.

This book takes you through the process of customizing and extending the Alfresco
platform. It uses a fictitious professional services company called "SomeCo" as an
example. SomeCo has decided to roll out Alfresco across the enterprise. Your job is to
take advantage of Alfresco's extension mechanism, workflow engine, and various APIs to
meet the requirements from SomeCo's various departments.

Although many customizations can be made by editing XML and properties files, this
book is focused on developers. That might mean writing Java code against the foundation
API to implement an action or a behavior, maybe creating some server-side JavaScript to
use as the controller of a RESTful web script, or perhaps implementing custom business
logic in an advanced workflow. The point is that all but the most basic implementations
of any ECM platform require code to be written. The goal of this book is to help you
identify patterns, techniques, and specific steps that you can use to become productive on
the platform more quickly.

By the end of this book, you will have stepped through every aspect of the Alfresco
platform. You will have performed the same types of customizations and extensions
found in typical Alfresco implementations. Most importantly, when someone comes to
you and asks, "How would you do this in Alfresco?", you'll have at least one answer and
maybe even some source code to go with it.

http://www.packtpub.com/alfresco-developer-guide/book

For More Information: www.packtpub.com/alfresco-developer-guide/book

What This Book Covers
Chapter 1 is for people new to the Alfresco platform. It walks you through the
capabilities of Alfresco and gives some examples of the types of solutions that can be
built on the platform. You'll also learn what tools and skills are required to implement
Alfresco-based solutions.

Chapter 2 is about getting your development environment set up. Like preparing for
a home improvement project, this is the trip to the hardware store to get the tools and
supplies you'll need to get the job done. Throughout the book, you will be building
and deploying changes. So just as in any software development project, it pays to get
that process working up front. You'll also learn about the debugging tools that are
available to you. The chapter includes a short and simple customization example to test
out your setup.

Chapter 3 starts where all Alfresco projects should begin: defining the content model.
You'll learn how to define the content model as well as how to expose the model to the
Alfresco web client. Once you've got it in place, you'll write some Java code that utilizes
the Web Services API to test out the model. This will also be your first taste of the
JavaScript API. The exercises set up the initial content model for SomeCo.

Chapter 4 begins to show you the power of the repository by exposing you to some of the
mechanisms or hooks that can be used to perform "hands off" operations on content.
You'll learn about actions, behaviors, transformers, and metadata extractors. The
exercises include implementing a rule action for SomeCo's Human Resources department
to help manage HR policies, writing a custom behavior to calculate user ratings, and
writing a custom metadata extractor to make Microsoft Project files indexable by the
Lucene search engine.

Chapter 5 takes you through web client customizations. First, it establishes whether or
not you should be customizing the web client at all. Once that's out of the way, you learn
how to add new menu items, how to create your own custom component renderers, and
how to define new dialogs and wizards. Examples in this chapter include writing a new
"Execute Script" UI Action to make it easier to run server-side JavaScript, creating a
"Stoplight" component to graphically show project status, and creating a multi-step
wizard SomeCo's HR department can use to set up job interviews.

http://www.packtpub.com/alfresco-developer-guide/book

For More Information: www.packtpub.com/alfresco-developer-guide/book

Chapter 6 focuses on the web script framework. Web scripts are an important part of the
platform because they allow you to expose the repository through a RESTful API. They
are also core to the Surf framework that is in the 3.0 release. The exercises in this chapter
are about creating a set of URLs that can be called from the frontend web site to retrieve
and persist user ratings of objects in the repository.

Chapter 7 is about advanced workflows. You'll learn how the embedded JBoss jBPM
workflow engine works and how to define your own workflows, including how to
implement your own business logic. The chapter includes a comparison between the
capabilities of Alfresco's simple workflow and advanced workflow so that you can decide
which one is appropriate for your needs. By the end of the chapter, you will have built a
workflow that SomeCo will use to review and approve Whitepapers for external
publication. The process includes an asynchronous step, which leverages the web script
knowledge you gained in the previous chapter.

Chapter 8 takes you through the key developer-related aspects of Alfresco's Web Content
Management functionality. The chapter is not an exhaustive WCM how-to. Rather, the
chapter starts with a simple web form and then quickly moves to using the API to work
with WCM assets. You'll also leverage advanced workflow and web script techniques
you learned in previous chapters to work with WCM sites and assets. You'll create a "no
approval" workflow that SomeCo will use for Job Postings and web scripts developers
can use to deploy web sites to test servers and to commit changes to staging.

Chapter 9 covers a variety of security-related topics. You'll learn how to define your own
custom roles, and how to create users and groups with the API. Although not strictly
developer-centric, you'll also learn how to configure Alfresco to authenticate and
synchronize with an LDAP directory and how to implement Single Sign-On (SSO)
between Alfresco and other web resources.

A set of Appendices is included at the end of the book. There you'll find reference
information such as the JavaScript API, a set of diagrams showing the out of the box
content model, and a list of the out of the box public spring beans. Also included is a
section on packaging and deploying AMPs and an overview of the new Surf framework.

http://www.packtpub.com/alfresco-developer-guide/book

For More Information: www.packtpub.com/alfresco-developer-guide/book

Working with Content Models
From setting up the initial content model to programmatically creating, searching
for, and deleting content, how you work with the content in a content management
system is a foundational concept upon which the rest of the solution is built. In this
chapter, you'll learn:

What a repository is and how it is structured
How to make the underlying content model relevant to your business
problem by extending Alfresco's out of the box model with your own
content types
What practices are the best for creating your own content models
How to confi gure the web client to expose your custom content model via the
user interface
How to interact with the repository via the Web Services and
JavaScript APIs

Defining SomeCo's Content Model
 Recall from Chapter 1 that SomeCo is rolling out Alfresco across the organization.
Each department has its own type of content to work with and different
requirements for how it works with that content. SomeCo could just start uploading
content into Alfresco. That would be better than nothing, but it relegates Alfresco to
lowly fi le server status, doesn't take advantage of the full power of the platform, and
makes for a really boring (and short) book. SomeCo would be better off formalizing
the different types of content it works with by extending the Alfresco content model
to make it SomeCo-specifi c.

•

•

•

•

•

http://www.packtpub.com/alfresco-developer-guide/book

For More Information: www.packtpub.com/alfresco-developer-guide/book

Working with Content Models

[60]

Step-by-Step: Starting the Custom Content
Model with Custom Types
Let's start small and build the model up over successive examples. First, let's create a
custom content type for Whitepapers, which are a type of marketing document. This
is going to involve creating a content model fi le, which is expressed as XML, and
then telling Alfresco where to fi nd it using a Spring bean confi guration fi le.

 To start the content model, follow these steps:

1. Create an extension directory. In the Eclipse client-extensions project, under
|config|alfresco, create a new folder called extension if you do not
already have one. As discussed in Chapter 2, the extension directory keeps
your customizations separate from Alfresco's code.

2. Create a custom model context fi le. A custom model context fi le is a Spring
bean confi guration fi le. Spring bean confi guration fi les were also discussed
in Chapter 2. Create the fi le in the extension directory and call it
someco-model-context.xml. Add the following:

 <?xml version='1.0' encoding='UTF-8'?>
 <!DOCTYPE beans PUBLIC '-//SPRING//DTD BEAN//EN' '
 http://www.springframework.org/dtd/spring-beans.dtd'>
 <beans>
 <!-- Registration of new models -->
 <bean id="someco.dictionaryBootstrap"
 parent="dictionaryModelBootstrap" depends-on="dictionaryBoots
 trap">
 <property name="models">
 <list>
 <value>alfresco/extension/model/scModel.xml
 </value>
 </list>
 </property>
 </bean>
 </beans>

3. Create a model fi le that implements the custom content model. The
extension directory is going to fi ll up over time, so create a new directory
under extension called model. Create a new XML fi le in the model
directory called scModel.xml (this name matches the value specifi ed in the
someco-model-context.xml fi le).

4. Add the following XML that is used to describe the model, import other
models that this model extends, and declare the model's namespace:

http://www.packtpub.com/alfresco-developer-guide/book

For More Information: www.packtpub.com/alfresco-developer-guide/book

Chapter 3

[61]

 <?xml version="1.0" encoding="UTF-8"?>
 <!-- Definition of new Model -->
 <model name="sc:somecomodel" xmlns="http://www.alfresco.org/model/
 dictionary/1.0">

 <!-- Optional meta-data about the model -->
 <description>Someco Model</description>
 <author>Optaros</author>
 <version>1.0</version>

 <!-- Imports are required to allow references to definitions in
 other models -->
 <imports>
 <!-- Import Alfresco Dictionary Definitions -->
 <import uri="http://www.alfresco.org/model/dictionary/1.0"
 prefix="d" />
 <!-- Import Alfresco Content Domain Model Definitions -->
 <import uri="http://www.alfresco.org/model/content/1.0"
 prefix="cm" />
 </imports>

 <!-- Introduction of new namespaces defined by this model -->
 <namespaces>
 <namespace uri="http://www.someco.com/model/content/1.0"
 prefix="sc" />
 </namespaces>

5. Next, add the types. A Whitepaper is a type of marketing document that,
in turn, is only one of several types of content SomeCo deals with. It's a
hierarchy. That hierarchy will be refl ected in the model. Add this XML to the
model fi le below the "namespaces" element:

 <types>
 <!-- Enterprise-wide generic document type -->
 <type name="sc:doc">
 <title>Someco Document</title>
 <parent>cm:content</parent>

 </type>

 <type name="sc:marketingDoc">
 <title>Someco Marketing Document</title>
 <parent>sc:doc</parent>
 </type>

 <type name="sc:whitepaper">
 <title>Someco Whitepaper</title>
 <parent>sc:marketingDoc</parent>
 </type>

 </types>

http://www.packtpub.com/alfresco-developer-guide/book

For More Information: www.packtpub.com/alfresco-developer-guide/book

Working with Content Models

[62]

6. Be sure to close the model tag so the XML is valid.
 </model>

7. The fi nal step is to deploy the changes and then restart Tomcat so that
Alfresco will load the custom model. Copy the build.xml fi le from the
source code that accompanies this chapter into the root of your Eclipse
project, replacing the build.xml fi le you used in the exercises for the
previous chapter.

8. Run ant deploy.
9. Restart Tomcat.

Watch the log during the restart. You should see no errors related to loading the
custom model. If there is a problem, the message usually looks something like
"Could not import bootstrap model".

With this change in place, the repository is now capable of telling the difference
between a generic piece of content and SomeCo-specifi c pieces of content such as
marketing documents and Whitepapers.

Types
 Types are like types or classes in the object-oriented world. They can be used to
model business objects, they have properties, and they can inherit from a parent
type. "Content", "Person", and "Folder" are three important types defi ned out of the
box. Custom types are limited only by your imagination and business requirements.
Examples include things such as "Expense Report", "Medical Record", "Movie",
"Song", and "Comment".

Did you notice the names of the types you created in the example? Names are
made unique across the repository by using a namespace specifi c to the model. The
namespace has an abbreviation. The model you created for SomeCo defi nes a custom
model, which declares a namespace with the URI of http://www.someco.com/
model/content/1.0 and a prefi x of "sc". Any type defi ned as a part of the model
will have a name prefi xed with "sc:". Using namespaces in this way helps to prevent
name collisions when content models are shared across repositories.

Step-by-Step: Adding Properties to Types
 The Marketing department thinks in terms of marketing campaigns. In fact, they
want to be able to search by a specifi c campaign and fi nd all of the content tied to a
particular campaign. Not to hurt the Marketing team's feelings, but the HR, Sales,
and Operations teams couldn't care less about campaigns.

http://www.packtpub.com/alfresco-developer-guide/book

For More Information: www.packtpub.com/alfresco-developer-guide/book

Chapter 3

[63]

You are going to address this by adding a property to the sc:marketingDoc type to
capture the marketing campaigns the document is related to. You could make this
property a text fi eld. But letting users enter a campaign as free-form text is a recipe
for disaster if you care about getting valid search results later because of the potential
for misspelling the campaign name. Plus, SomeCo wants to let each document be
associated with multiple campaigns, which compounds the free-form text entry
problem. So, for this particular property it makes sense to constrain its values to a list
of valid campaigns.

To allow the Marketing team to "tag" a piece of content with one or more campaigns
selected from a list of valid campaign names, update the model by following
these steps:

1. Edit the scModel.xml fi le in confi g|alfresco|extension. Replace the
sc:marketingDoc type defi nition with the following:

 <type name="sc:marketingDoc">
 <title>Someco Marketing Document</title>
 <parent>sc:doc</parent>
 <properties>
 <property name="sc:campaign">
 <type>d:text</type>
 <multiple>true</multiple>
 <constraints>
 <constraint ref="sc:campaignList" />
 </constraints>
 </property>
 </properties>
 </type>

2. Now, defi ne the campaign list constraint. Between the "namespaces" and
"types" elements, add a new "constraints" element as follows:

 <constraints>
 <constraint name="sc:campaignList" type="LIST">
 <parameter name="allowedValues">
 <list>
 <value>Application Syndication</value>
 <value>Private Event Retailing</value>
 <value>Social Shopping</value>
 </list>
 </parameter>
 </constraint>
 </constraints>

http://www.packtpub.com/alfresco-developer-guide/book

For More Information: www.packtpub.com/alfresco-developer-guide/book

Working with Content Models

[64]

3. Save the model fi le.
4. Run ant deploy.
5. Restart Tomcat.

Again, Tomcat should start cleanly with no complaints about the content model.

Properties and Property Types
 Properties are pieces of metadata associated with a particular type. In the previous
example, the property was the marketing campaign. The properties of a SomeCo
Expense Report might include things such as "Employee Name", "Date submitted",
"Project", "Client", "Expense Report Number", "Total amount", and "Currency". The
Expense Report might also include a "content" property to hold the actual expense
report fi le (maybe it is a PDF or an Excel spreadsheet, for example).

You may be wondering about the sc:whitepaper type. Does anything
special need to happen to make sure whitepapers can be tied to
campaigns as well? Nope! In Alfresco, content types inherit the properties
of their parent. The sc:whitepaper type will automatically have an sc:
campaign property. In fact, it will have all sorts of properties inherited
from its ancestor types. The fi le name, content property, and creation date
are three important examples.

 Property types (or data types) describe the fundamental types of data the repository
will use to store properties. The data type of the sc:campaign property is d:text.
Other examples include things such as dates, fl oats, Booleans, and content that is
the property type of the property used to store content in a node. Because these data
types literally are fundamental, they are pretty much the same for everyone. So they
are defi ned for you out of the box. Even though these data types are defi ned out of
the box, if you wanted to change the Alfresco data type "text" so that it maps to your
own custom class rather than java.lang.String, you could.

Constraints
 Constraints can optionally be used to restrict the values that Alfresco will store
in a property. In the following example, the sc:campaign property used a LIST
constraint. There are three other types of constraints available: REGEX, MINMAX,
and LENGTH. REGEX is used to make sure that a property value matches a regular
expression pattern. MINMAX provides a numeric range for a property value.
LENGTH sets a restriction on the length of a string.

http://www.packtpub.com/alfresco-developer-guide/book

For More Information: www.packtpub.com/alfresco-developer-guide/book

Chapter 3

[65]

 Constraints can be defi ned once and reused across a model. For example, out of the
box, Alfresco makes available a constraint named cm:filename that defi nes a regular
expression constraint for fi le names. If a property in a custom type needs to restrict
values to those matching the fi lename pattern, the custom model doesn't have to
defi ne the constraint again. It simply refers to the cm:filename constraint.

Step-by-Step: Relating Types with
Associations
SomeCo has a generic need to be able to identify documents that relate to each other
for any reason. A Whitepaper might be tied to a solution offering data sheet, for
example. Or maybe a project proposal the Legal department has should be related
to the project plan the Operations team is managing. These relationships are
called associations.

 Let's update the model fi le to include a related-documents association in the sc:doc
type so that any SomeCo document can be related to any other.

To add assocations to the model, follow these steps:

1. Edit the scModel.xml fi le.
2. Add the following associations element to the sc:doc type. Notice that

the target of the association must be an sc:doc or one of its child types.
The association is not mandatory, and there may be more than one
related document:

 <type name="sc:doc">
 <title>Someco Document</title>
 <parent>cm:content</parent>
 <associations>
 <association name="sc:relatedDocuments">
 <title>Related Documents</title>
 <source>
 <mandatory>false</mandatory>
 <many>true</many>
 </source>
 <target>
 <class>sc:doc</class>
 <mandatory>false</mandatory>
 <many>true</many>
 </target>
 </association>
 </associations>
 </type>

http://www.packtpub.com/alfresco-developer-guide/book

For More Information: www.packtpub.com/alfresco-developer-guide/book

Working with Content Models

[66]

3. Save the model fi le.
4. Deploy your changes using ant deploy and restart Tomcat.

When you restart, watch the log for errors related to the content model. If everything
is clean, keep going.

Associations
 Associations defi ne relationships between types. Without associations, models
would be full of types with properties that store "pointers" to other pieces of content.
Going back to the expense report example, suppose each expense is stored as an
individual object. In addition to an Expense Report type, there would also be an
Expense type. In this example, associations can be used to tell Alfresco about the
relationship between an Expense Report and one or more Expenses.

Here's an important note about the content model schema that may save
you some time: Order matters. For example, if a type has both properties
and associations, properties go fi rst. If you get the order wrong,
Alfresco won't be able to parse your model. There is an XML Schema
fi le that declares the syntax for a content model XML fi le. It is called
modelSchema.xsd, and it resides in the Alfresco web application under
WEB-INF|classes|alfresco|model.

In the sc:relatedDocuments association you just defi ned, note that both the
source and target class of the association is sc:doc. That's because SomeCo wants
to associate documents with each other regardless of content type. Defi ning the
association at the sc:doc level allows any instance of sc:doc or its children to be
associated with zero or more instances of sc:doc or its children. It also assumes that
SomeCo is using sc:doc or children of that type for all of its content. Content stored
as the more generic cm:content type would not be able to be the target of an
sc:relatedDocuments association.

 Associations come in two fl avors: Peer Associations and Child Associations.
(Note that Alfresco refers to Peer Associations simply as "Associations", but that's
confusing. So the book will use the "Peer" distinction.) Peer Associations are just
that—they defi ne a relationship between two objects, but neither is subordinate to
the other. Child Associations, on the other hand, are used when the target of the
association (or child) should not exist when the source (or parent) goes away. This
works like a cascaded delete in a relational database: Delete the parent and the child
goes away.

http://www.packtpub.com/alfresco-developer-guide/book

For More Information: www.packtpub.com/alfresco-developer-guide/book

Chapter 3

[67]

An out of the box association that's easy to relate to is cm:contains. The
cm:contains association defi nes a Child Association between folders (cm:folder)
and all other objects (instances of sys:base or its child types). So, for example,
a folder named Human Resources (an instance of cm:folder) would have a cm:
contains association between itself and all of its immediate children. The children
could be instances of custom types like Resume, Policy, or Performance Review. If
you delete a folder, the folder's children are also deleted.

 Another example might be a "Whitepaper" and its "Related Documents". Suppose
that SomeCo publishes Whitepapers on its web site. The Whitepaper might be
related to other documents such as product marketing materials or other research.
If the relationship between the Whitepaper and its related documents is formalized,
it can be shown in the user interface. To implement this, as part of the Whitepaper
content type, you'd defi ne a Peer Association. You could use sys:base as the
target type to allow any piece of content in the repository to be associated with
a Whitepaper, or you could restrict the association to a specifi c type. In this case,
because it uses a Peer association, related documents don't get deleted when the
Whitepaper gets deleted. You can imagine the headaches that would cause if that
weren't the case!

Step-by-Step: Adding Aspects to the
Content Model
 SomeCo wants to track the client name and, optionally, the project name for pieces
of client-related content. But any piece of content in the repository might be
client-related. Proposals and Status Reports are both project-related, but the two will
be in different parts of the model (one is a type of legal document while the other is
a type of operations document). Whether a piece of content is client-related or not,
it transcends department—almost anything can be client-related. The grouping of
properties that need to be tracked for content that is client-related is called an aspect.

 Here's another example. SomeCo would like to selectively pull content from the
repository to show on its web site. Again, any piece of content could be published
on the site. So an indication of whether or not a piece of content is "webable" should
be captured in an aspect. Specifi cally, content that needs to be shown on the web site
needs to have a fl ag that indicates the content is "active" and a date when the content
was set to active. These will be the aspect's properties.

http://www.packtpub.com/alfresco-developer-guide/book

For More Information: www.packtpub.com/alfresco-developer-guide/book

Working with Content Models

[68]

Let's modify the content model to include these two aspects. To add the client-related
and webable aspects to the content model, follow these steps:

1. Edit the scModel.xml fi le.
2. Add a new aspects element below the types element to contain the new

aspects. Add one aspect element to defi ne the client-related aspect and
another to defi ne the web-related aspect. You'll notice that the syntax for the
aspect element is identical to the type element:

 <aspects>
 <aspect name="sc:webable">
 <title>Someco Webable</title>
 <properties>
 <property name="sc:published">
 <type>d:date</type>
 </property>
 <property name="sc:isActive">
 <type>d:boolean</type>
 <default>false</default>
 </property>
 </properties>
 </aspect>
 <aspect name="sc:clientRelated">
 <title>Someco Client Metadata</title>
 <properties>
 <property name="sc:clientName">
 <type>d:text</type>
 <mandatory>true</mandatory>
 </property>
 <property name="sc:projectName">
 <type>d:text</type>
 <mandatory>false</mandatory>
 </property>
 </properties>
 </aspect>
 </aspects>

3. Save the model fi le.
4. Run ant deploy and restart Tomcat.

Alfresco should start cleanly without making any model-related complaints.

http://www.packtpub.com/alfresco-developer-guide/book

For More Information: www.packtpub.com/alfresco-developer-guide/book

Chapter 3

[69]

Aspects
 To appreciate aspects, fi rst consider how inheritance works and its implications
on the content model. Suppose that SomeCo only wants to display a subset of the
repository's content on the web site. (In fact, this is the case. The SomeCo write-up
in Chapter 1 said that, except for job postings, HR content shouldn't go near the
public web.) In the recent example, webable content needs to have a fl ag
that indicates whether or not it is "active", and a date that indicates when it
became active.

 Without aspects, there would only be two options to model these properties. The
fi rst option would be to put the properties on sc:doc, the root object. All child
content types would inherit from this root type, thus making the properties available
everywhere. The second option would be to individually defi ne the two properties
only in the content types that will be published to the portal.

 Neither of these is a great option. In the fi rst option, there would be properties in
each and every piece of content in the repository that may or may not ultimately be
used. This can lead to performance and maintenance problems. The second option
too isn't much better for several reasons. First, it assumes that the content types to be
published to the portal are known when you design the model. Second, it opens up
the possibility that the same type of metadata might get defi ned differently across
content types. Third, it doesn't provide an easy way to encapsulate behavior or
business logic that might be tied to the published date. Finally, property names must
be unique across the model. So you'd have to modify the names of the properties in
every type in which they were used, otherwise it would be a serious pain later when
you try to run queries across types.

 As you already know, the best option is to use aspects. Aspects allow "cross-cutting"
of the content model with properties and associations by attaching them to content
types (or even specifi c instances of content at runtime rather than design time) when
and where they are needed.

In this case, SomeCo's webable aspect will be added to any piece of content that
needs to be displayed on the web site, regardless of type.

 Another nice thing about aspects is that they give you a way to have multiple
inheritances. As you saw in the model, types can only inherit from a single parent.
But you can add as many aspects to a type or object instance as you need.

http://www.packtpub.com/alfresco-developer-guide/book

For More Information: www.packtpub.com/alfresco-developer-guide/book

Working with Content Models

[70]

Step-by-Step: Finishing up the Model
 Let's fi nish up the model by doing two things: First, the remaining departments need
content types added to them. Second, there is an out of the box aspect that needs to
be applied to all the content. It's called generalclassifiable. It allows content to
be categorized. SomeCo wants all of its content to be classifi able as soon as it hits
the repository. To make that happen, you need to defi ne the aspect as mandatory.
Because SomeCo wants it across the board, you can do it on the root type sc:doc,
and have it trickle down to all of SomeCo's types.

To add the remaining departmental content types as well as make the
generalclassifiable aspect mandatory, follow these steps:

1. Edit the scModel.xml fi le.
2. Add the the following types:
 <type name="sc:hrDoc">
 <title>Someco HR Document</title>
 <parent>sc:doc</parent>
 </type>

 <type name="sc:salesDoc">
 <title>Someco Sales Document</title>
 <parent>sc:doc</parent>
 </type>

 <type name="sc:opsDoc">
 <title>Someco Operations Document</title>
 <parent>sc:doc</parent>
 </type>

 <type name="sc:legalDoc">
 <title>Someco Legal Document</title>
 <parent>sc:doc</parent>
 </type>

3. Modify the sc:doc type to include cm:generalclassifiable as a
mandatory aspect. Note that you can add as many mandatory aspects as
you need:

 <type name="sc:doc">
 <title>Someco Document</title>
 <parent>cm:content</parent>
 <associations>

 </associations>
 <mandatory-aspects>
 <aspect>cm:generalclassifiable</aspect>
 </mandatory-aspects>
 </type>

http://www.packtpub.com/alfresco-developer-guide/book

For More Information: www.packtpub.com/alfresco-developer-guide/book

Chapter 3

[71]

4. Save the model fi le.
5. Run ant deploy and restart Tomcat.

Watch the log for content model-related errors. If everything starts up cleanly, you
are ready to move on. In the next set of examples, you'll confi gure the web client so
that you can work with your new model.

Modeling Summary
 A content model describes the data being stored in the repository. The content model
is critical. Without it, Alfresco would be little more than a fi le system. Here is a list of
key information that the content model provides Alfresco:

Fundamental data types and how those data types should persist to the
database. For example, without a content model, Alfresco wouldn't know the
difference between a string and a date.
Higher order data types such as "content" and "folder" as well as custom
content types such as "SomeCo Standard Operating Procedure" or "SomeCo
Sales Contract".
Out of the box aspects such as "auditable" and "classifi able" as well
as SomeCo-specifi c aspects such as "rateable", "commentable", or
"client-related".
Properties (or metadata) specifi c to each content type.
Constraints placed on properties (such as property values that must match
a certain pattern or property values that must come from a specifi c list of
possible values).
Relationships or "associations" between content types.

 Alfresco content models are built using a small set of building blocks: Types,
Properties, Property Types, Constraints, Associations, and Aspects. When planning
your Alfresco implementation, it may make sense to diagram the proposed content
model just as you would a data model in a traditional web application.

•

•

•

•

•

•

http://www.packtpub.com/alfresco-developer-guide/book

For More Information: www.packtpub.com/alfresco-developer-guide/book

Working with Content Models

[72]

The content model implemented in the examples could be diagrammed as follows:

<<aspect>>
sc: webable

+sc : published : d : datetime
+sc : isActive : d : boolean

sc : relatedDocuments

0..*

<<type>>
sc: whitepaper

URl: http://www.someco.com/model/content/1.0
Prefix: sc
File: scModel.xml

<<type>>
sc: doc

<<aspect>>
sc: clientRelated

+sc : clientName : d : text

+sc : projectName : d : text
required

<<type>>
cm: content

Import

+cm : content : d : content

<<type>>
sc: legalDoc

<<type>>
sc: hrDoc

<<type>>
sc: salesDoc

<<type>>
sc: opsDoc

<<type>>
sc: marketingDoc

+sc : camaign : d : text
multivalue

constrained by

constrained by

sc:campaignList

The Appendix contains similar diagrams for the out of the box content models for
your reference.

 Custom Behavior
Y ou may fi nd that your custom aspect or custom type needs to have behavior
or business logic associated with it. For example, every time an Expense Report
is checked in, you might want to recalculate the total by iterating through the
associated Expenses. One option would be to incorporate this logic into rules
or actions in the Alfresco web client or your custom web application. But some
behaviors are so fundamental to the aspect or type that they should really be
"bound" to the aspect or type, and invoked any time Alfresco works with those
objects. Behavior really gets out of the realm of modeling and into "handling
content automatically", which is the subject of Chapter 4. For now, just realize that
associating business logic with your custom aspects and types (or overriding out of
the box behavior) is possible.

http://www.packtpub.com/alfresco-developer-guide/book

For More Information: www.packtpub.com/alfresco-developer-guide/book

Chapter 3

[73]

Modeling Best Practices
Now that you know the building blocks of a content model, it makes sense to
consider some best practices. Here are the top ten:

 1. Don't change Alfresco's out of the box content model. If you can possibly
avoid it, do not change Alfresco's out of the box content model. Instead,
extend it with your own custom content model. If requirements call for
several different types of content to be stored in the repository, create
a content type for each one that extends from cm:content or from an
enterprise-wide root content type.

2. Consider implementing an enterprise-wide root type. Although the need
for a common ancestor type is lessened through the use of aspects, it still
might be a good idea to defi ne an enterprise-wide root content type such as
sc:doc from which all other content types in the repository inherit, if for no
other reason, than it gives content managers a "catch-all" type to use when no
other type will do.

3. Be conservative early on by adding only what you know you need. A
corollary to that is to be prepared to blow away the repository multiple
times, until the content model stabilizes. Once you get content in the
repository (that implements the types in your model), making model
additions is easy, but subtractions aren't. Alfresco will complain about
"integrity errors" and may make content inaccessible when the content's type
or properties don't match the content model defi nition. When this happens to
you (and it will happen), you can choose one of these options:

Leave the old model in place
Attempt to export the content, modify the exported data
(see "ACP Files" in the Appendix), and re-import
Drop the Alfresco tables, clear the data directory, and start fresh

As long as everyone in the team is aware of this, option three is not a big deal
in development. But make sure expectations are set appropriately and have
a plan for handling model changes once you get to production. This might
be an area where Alfresco will improve in future releases, but for now it is
something you have to watch out for.

4. Avoid unnecessary content model depth. There don't seem to be any
Alfresco Content Modeling Commandments that say, "Thou shall not
exceed X levels of depth in thine content model, lest thou suffer the wrath
of poor performance". But it seems logical that degradation would occur at
some point. If your model has several levels of depth beyond cm:content,
you should at least do a proof-of-concept with a realistic amount of data,
software, and hardware to make sure you aren't creating a problem for
yourself that might be very diffi cult to reverse down the road.

°
°

°

http://www.packtpub.com/alfresco-developer-guide/book

For More Information: www.packtpub.com/alfresco-developer-guide/book

Working with Content Models

[74]

5. Take advantage of aspects. In addition to the potential performance and
overhead savings through the use of aspects, aspects promote reuse across
the model, the business logic, and the presentation layer. When working on
your model, you may fi nd that two or more content types have properties
in common such as sc:webable and sc:clientRelated. Ask yourself if
those properties are being used to describe some higher-level characteristic
common across the types that might be modeled better as an aspect.

6. I t may make sense to defi ne types that have no properties or associations.
You may fi nd yourself defi ning a type that gets everything it needs through
either inheritance from a parent type or from an aspect (or both). In the
SomeCo model sc:marketingDoc is the only type with a property. You
might ask yourself if the empty type is really necessary. It should at least be
considered. It might be worth it, just to distinguish the content from other
types of content for search purposes, for example. Or, while you might not
have any specialized properties or associations for the content type, you
could have specialized behavior that's only applicable to instances of the
content type.

7. Remember that folders are types too. Like everything else in the repository,
folders are instances of types, which means they can be extended. Content
that "contains" other content is common. In the earlier expense report
example, one way to keep track of the expenses associated with an expense
report would be to model the expense report as a sub-type of cm:folder.

8. Don't be afraid to have more than one content model XML fi le. When
it is time to implement your model, keep this in mind: It might make sense
to segment your models into multiple namespaces and multiple XML
fi les. Names should be descriptive. Don't deploy a model fi le called
customModel.xml or myModel.xml.

9. Implement a Java interface that corresponds to each custom content
model you defi ne. Within each content model Java class, defi ne constants
that correspond to model namespaces, type names, property names, aspect
names, and so on. You'll fi nd yourself referring to the qualifi ed name (Qname,
for short) of types, properties, and aspects quite often; so it helps to have
constants defi ned in an intuitive way. The constants should be QName objects
except in cases where the Web Services API needs to leverage them. The Web
Services API doesn't have the QName class, so there will need to be a string
representation of the names as well in that case.

10. Use the source! The out of the box content model is a great example of what's
possible. The forumModel and recordsModel have some particularly useful
examples. In the next section you'll learn where the model fi les live and
what's in each. So you'll know where to look later when you say to yourself,
"Surely, the folks at Alfresco have done this before".

http://www.packtpub.com/alfresco-developer-guide/book

For More Information: www.packtpub.com/alfresco-developer-guide/book

Chapter 3

[75]

This last point is important enough to spend a little more time on. The next section
discusses the out of the box models in additional detail.

 Out of the Box Models
The Alfresco source code is an indispensable reference tool that you should always
have ready along with the documentation, wiki, forums, and Jira. With that said, if
you are following along with this chapter but have not yet downloaded the source,
you are in luck. The out of the box content model fi les are written in XML and get
deployed with the web client. They can be found in the alfresco.war fi le in
|WEB-INF|classes|alfresco|model. The following table describes several of the
model fi les that can be found in the directory:

File Namespaces* Prefi x Imports Description
 dictionaryModel.
xml

model|
dictionary|1.0

d None Fundamental data types
used in all other models
like text, int, Boolean,
datetime, and content.

systemModel.xml model|system|1.0 sys d System-level objects
like base, store root, and
reference.system|registry|

1.0
reg

system|modules|
1.0

module

contentModel.xml model|
content|1.0

cm d
sys

Types and aspects
extended most often by
your models like Content,
Folder, Versionable, and
Auditable.

bpmModel.xml model|bpm|1.0 bpm d
sys
cm

Advanced workfl ow
types like task and
startTask. Extend these
when writing your
own custom advanced
workfl ows.

forumModel.xml model|forum|1.0 fm d
cm

Types and aspects related
to adding discussion
threads to objects like
forum, topic, and post.

http://www.packtpub.com/alfresco-developer-guide/book

For More Information: www.packtpub.com/alfresco-developer-guide/book

Working with Content Models

[76]

The table lists the most often referenced models. Alfresco also includes two
WCM-related model fi les, the JCR model and the web client application model,
which may also be worth looking at, depending on what you are trying to do with
your model.

In addition to the model fi les, the modelSchema.xsd fi le can be a good reference. As
the name suggests, it defi nes the XML vocabulary Alfresco content model XML fi les
must adhere to.

Configuring the UI
Now that the model is defi ned, you could begin using it right away by writing code
against one of Alfresco's APIs that creates instances of your custom types, adds
aspects, and so on. In practice, it is usually a good idea to do just that to make sure
the model behaves as you expect. But you'd probably like to log in to the web client
to see the fruits of your labor from the last section, so let's discuss what it takes to
make that happen. By the end of this discussion, you will be able to use the web
client to work with the SomeCo-specifi c content model to do things such as these:

Display and update custom properties and associations
Create instances of SomeCo-specifi c content types
Confi gure actions that involve SomeCo types and aspects
Use Advanced Search to query with SomeCo-specifi c parameters

Confi guring the UI to expose the custom content model involves overriding and
extending Alfresco's out of the box web client confi guration. To do this, you'll
create your own SomeCo-specifi c version of the web client confi guration XML
that overrides Alfresco's. For more details on how the out of the box web client
confi guration is structured and what is available to be extended, refer to
the Appendix.

Step-by-Step: Adding Properties to the
Property Sheet
 When a user looks at a property sheet for a piece of content stored as one of the
custom types or with one of the custom aspects attached, the property sheet should
show the custom properties. If there are associations, those should be shown as well:

•

•

•

•

http://www.packtpub.com/alfresco-developer-guide/book

For More Information: www.packtpub.com/alfresco-developer-guide/book

Chapter 3

[77]

In order to confi gure the properties sheet to show custom properties and
associations, follow these steps:

1. In the client-extensions Eclipse project, create a new XML fi le called
web-client-config-custom.xml in the extension directory if it isn't there
already. If you are creating it from scratch, populate it with an empty
alfresco-config element. You'll add child elements to it in the
subsequent steps.

2. To add properties to property sheets, use the aspect-name evaluator for
aspects and the node-type evaluator for content types. SomeCo has two
aspects that need to be added to the properties sheet: sc:webable and
sc:clientRelated. For sc:webable, add the following config element
to web-client-config-custom.xml as a child of alfresco-config:

 <!-- add webable aspect properties to property sheet -->
 <config evaluator="aspect-name" condition="sc:webable">
 <property-sheet>
 <show-property name="sc:published" display-label-id=
 "published" />
 <show-property name="sc:isActive" display-label-id="isActive"
 read-only="true" />
 </property-sheet>
 </config>

3. Add the config element to show the properties for the clientRelated
aspect on your own.

http://www.packtpub.com/alfresco-developer-guide/book

For More Information: www.packtpub.com/alfresco-developer-guide/book

Working with Content Models

[78]

4. Add the following to display the relatedDocuments association for SomeCo
documents and Whitepapers:

 <config evaluator="node-type" condition="sc:doc">
 <property-sheet>
 <show-association name="sc:relatedDocuments" />
 </property-sheet>
 </config>

 <config evaluator="node-type" condition="sc:whitepaper">
 <property-sheet>
 <show-association name="sc:relatedDocuments" />
 </property-sheet>
 </config>

5. Add the following to display the campaign property for SomeCo Marketing
Documents:

 <!-- show campaign on maraketingDoc property sheet -->
 <config evaluator="node-type" condition="sc:marketingDoc">
 <property-sheet>
 <show-property name="sc:campaign" display-label-id="campaign" />
 </property-sheet>
 </config

6. Save the fi le.
7. Deploy the customizations (ant deploy), restart Tomcat, and test.

In Chapter 2, you deployed a small set of customizations to validate your
development environment. With the web client confi guration modifi cations you just
made, you should be able to log in to Alfresco and create instances of Marketing
and Whitepaper documents. When you look at the properties for an instance of a
Whitepaper, you should see a component that lets you pick Related Documents:

http://www.packtpub.com/alfresco-developer-guide/book

For More Information: www.packtpub.com/alfresco-developer-guide/book

Chapter 3

[79]

Wh en you look at the properties for an instance of a marketing document, you
should see a component that lets you choose the associated campaign:

Note that you may see some placeholder text for the Campaign label (and
corresponding warnings in the log) because you haven't externalized that label yet.
We'll fi x that shortly.

Ex ternalizing Display Labels
Not e the display-label-id attribute of the show-property element in the previous
code. An alternative is to specify the label explicitly in this fi le using the label
attribute. But a better practice is to externalize the string so that the interface can be
localized if needed, so this example uses display-label-id. The actual label value
is defi ned elsewhere in a resource bundle.

Making Properties Read-Only
In the previous code, the read-only attribute on the show-property element for sc:
isActive prevents web client users from editing the property. It does not, however,
prevent the property from being set through scripts or API calls. In this case,
SomeCo wants it to be "read-only", so that it can be set through other means such as
by actions or during an approval step in a workfl ow.

http://www.packtpub.com/alfresco-developer-guide/book

For More Information: www.packtpub.com/alfresco-developer-guide/book

Working with Content Models

[80]

Step-by-Step: Adding Types and Aspects to
WebClient Dropdowns
When a user clicks Create or Add Content, the custom types should be a choice
in the list of content types. And when a user confi gures a rule on a space and uses
content types or aspects as a criterion or action parameter, the custom types and
aspects should be included in the dropdowns.

When you tested your last change you probably noticed that the types you created
in Chapter 2 were shown, but not the types you added in this chapter for Legal, HR,
Sales, and so on. Similarly, if you tried to add the client-related or webable aspects to
an object, you weren't able to select either aspect from the list.

Just as you did for custom properties and associations in the previous example, you
have to override Alfresco's web client confi guration to get custom types and aspects
to show up in the web client.

To add custom types and aspects to the appropriate dropdowns, follow these steps:

1. Edit web-client-config-custom.xml.
2. To add content types to the list of available types in the create content and

add content dialogs, use the string-compare evaluator and the Content
Wizards condition. Add the following to web-client-config-custom.xml
beneath the previous config element:

 <!-- add someco types to add content list -->
 config evaluator="string-compare" condition="Content Wizards">
 <content-types>
 <type name="sc:doc" />
 <type name="sc:whitepaper" />
 <type name="sc:legalDoc" />
 <type name="sc:marketingDoc" />++
 <type name="sc:hrDoc" />
 <type name="sc:salesDoc" />
 <type name="sc:opsDoc" />
 </content-types>

 </config>

3. The list of types and aspects used when rule actions are confi gured are all
part of the same config element. The Action Wizards confi g has several
child elements that can be used. The aspects element defi nes the list of
aspects shown when the add aspect action is confi gured. The subtypes
element lists types that show up in the dropdown when confi guring the

http://www.packtpub.com/alfresco-developer-guide/book

For More Information: www.packtpub.com/alfresco-developer-guide/book

Chapter 3

[81]

content type criteria for a rule. The specialise-types element (note the
UK spelling) lists the types available to the specialize type action. Add the
following to web-client-config-custom.xml below the previously added
config element:

 < config evaluator="string-compare" condition="Action Wizards">
 <!-- The list of aspects to show in the add/remove features
 action -->
 <!-- and the has-aspect condition -->
 <aspects>
 <aspect name="sc:webable"/>
 <aspect name="sc:clientRelated"/>
 </aspects>

 <!-- The list of types shown in the is-subtype condition -->
 <subtypes>
 <type name="sc:doc" />
 <type name="sc:whitepaper" />
 <type name="sc:legalDoc" />
 <type name="sc:marketingDoc" />
 <type name="sc:hrDoc" />
 <type name="sc:salesDoc" />
 <type name="sc:opsDoc" />
 </subtypes>

 <!-- The list of content and/or folder types shown in the
 specialise-type action -->
 <specialise-types>
 <type name="sc:doc" />
 <type name="sc:whitepaper" />
 <type name="sc:legalDoc" />
 <type name="sc:marketingDoc" />
 <type name="sc:hrDoc" />
 <type name="sc:salesDoc" />
 <type name="sc:opsDoc" />
 </specialise-types>
 </config>

4. Save the web-client-config-custom.xml fi le.
5. Deploy your changes using ant deploy, restart Tomcat, and test.

http://www.packtpub.com/alfresco-developer-guide/book

For More Information: www.packtpub.com/alfresco-developer-guide/book

Working with Content Models

[82]

To test these changes out, log in to the web client. Now when you create new
content, all of the SomeCo types should be in the content type dropdown:

To t est the aspect-related changes, confi gure a new rule on a space. The fi rst step
when defi ning a rule action is to identify the criteria for running the action. If you
select either Items that have a specifi c aspect applied or Items of a specifi ed type or
its sub-types, you should see the SomeCo custom types when you click Set Values
and Add:

http://www.packtpub.com/alfresco-developer-guide/book

For More Information: www.packtpub.com/alfresco-developer-guide/book

Chapter 3

[83]

The SomeCo custom types should also be listed as content type choices for the
specialize type action, and custom aspects should be listed as choices for the add
aspect action. To test this, view the details for a folder or a piece of content and
then click Run Action to launch the rule action wizard. When choosing either the
specialize type or add aspect actions, the list that gets displayed when you click Set
Values and Add should include items from the custom model.

Step- by-Step: Adding Properties and Types to
Advanced Search
When a user runs an advanced search, he or she should be able to restrict search
results to instances of custom types and/or content with specifi c values for
the properties of custom types. As before, this involves modifying
web-client-config-custom.xml.

To add custom properties and types to the advanced search dialog, follow these steps:

1. T he Advanced Search config specifi es which content types and properties
can be used to refi ne an advanced search result set. Add the following to
web-client-config-custom.xml below the previously-added
config element.

 <config evaluator="string-compare" condition="Advanced Search">
 <advanced-search>
 <content-types>
 <type name="sc:doc" />
 <type name="sc:whitepaper" />
 <type name="sc:legalDoc" />
 <type name="sc:marketingDoc" />
 <type name="sc:hrDoc" />
 <type name="sc:salesDoc" />
 <type name="sc:opsDoc" />
 </content-types>

http://www.packtpub.com/alfresco-developer-guide/book

For More Information: www.packtpub.com/alfresco-developer-guide/book

Working with Content Models

[84]

 <custom-properties>
 <meta-data aspect="sc:webable" property="sc:published" display-
 label-id="published" />
 <meta-data aspect="sc:webable" property="sc:isActive" display-
 label-id="isActive" />
 <meta-data aspect="sc:clientRelated" property="sc:clientName"
 display-label-id="client" />
 <meta-data aspect="sc:clientRelated" property="sc:projectName"
 display-label-id="project" />
 </custom-properties>
 </advanced-search>
 </config>

2. Deploy the changes by running ant deploy, restart Tomcat, and test.
3. To test out this change, log in to the web client and go to Advanced Search.

The SomeCo types should be listed in the Content Type dropdown. The
custom properties should be listed under Additional Options:

http://www.packtpub.com/alfresco-developer-guide/book

For More Information: www.packtpub.com/alfresco-developer-guide/book

Chapter 3

[85]

Step-by-Step: Setting Externalized Label
Values
You probably noticed when you were testing the web client changes that all of the
labels were showing unresolved label IDs. You need to create a new properties fi le
to fi x that. The fi le will hold name-value pairs that match the display-label-id
attributes in web-client-config-custom.xml.

To confi gure the label IDs, follow these steps:

1. Cr eate a fi le called webclient.properties in the same directory as
web-client-config-custom.xml.

2. In this example, there are fi ve properties that need labels. Populate
webclient.properties as follows.

 #sc:webable
 published=Published
 isActive=Active?

 #sc:clientRelated
 client=Client
 project=Project

 #sc:marketingDoc
 campaign=Campaign

3. Deploy your changes by running ant deploy, restart Tomcat, and test.
4. Log in to the web client and open the properties for a document. Now the

label IDs should be resolving to the externalized string values.

At the time of this writing, there was a bug related to web client
confi guration property fi les and AMPs (AWC-1149). If you want to deploy
the project as an AMP, your webclient.properties fi le will need to go
into alfresco|extension instead of your module-specifi c directory. Until
this issue is resolved, this means there is the possibility of an overwrite if
the directory already contains a webclient.properties fi le. For more
information on deploying AMPs, see the Appendix.

http://www.packtpub.com/alfresco-developer-guide/book

For More Information: www.packtpub.com/alfresco-developer-guide/book

Working with Content Models

[86]

Setting up Additional Locales
The whol e point in externalizing the labels is that the client can be localized
to multiple languages. If you want to create a set of labels for a specifi c locale,
you would create a fi le in the extension directory called webclient_[locale].
properties with the same keys and their localized values.

Working with Content Programmatically
Now the repository has a custom model and that model has been exposed to the
Alfresco web client. For simple document management solutions, this may be
enough. But often, code will also be required as a part of your implementation. It
might be code in a web application that needs to work with the repository, code
that implements custom behavior for custom content types, code that implements
Alfresco web client customizations, or code that implements a controller for a
web script.

As ment ioned in Chapter 1, there are several APIs available depending on what you
want to do. Let's learn how to use code to create content, create associations between
content, search for content, and delete content. You'll see a JavaScript example,
several examples using the Web Services API with Java, and one example showing
the API with PHP. Additional API examples can be found in the Appendix.

Step-by -Step: Creating Content with
JavaScript
The fi rs t example shows how to create some content and add aspects to that content
using JavaScript.

To create content, add aspects, and set properties using JavaScript, follow these steps:

1. Create a new fi le in src|scripts called createContent.js.
2. Set up some variables you'll use later in the script.
 var contentType = "whitepaper";
 var contentName = "sample-a";
 var timestamp = new Date().getTime();

3. Write code that will create the new node as a child of the current space. The
"space" variable is a root object that is available when the script is executed
against a folder. Notice the contentName and timestamp variables are being
concatenated to make sure the name is unique on successive runs.

 var whitepaperNode = space.createNode(contentName + timestamp,
 "sc:" + contentType);

http://www.packtpub.com/alfresco-developer-guide/book

For More Information: www.packtpub.com/alfresco-developer-guide/book

Chapter 3

[87]

4. Add a statement that uses the ScriptNode API to add the sc:webable aspect.
 whitepaperNode.addAspect(sc:webable);

5. Add code to set some properties. These properties include out of the box
properties such as cm:name as well as SomeCo-specifi c properties.

 whitepaperNode.properties["cm:name"] = contentName + " (" +
 timestamp + ")";
 whitepaperNode.properties["sc:isActive"] = true;
 whitepaperNode.properties["sc:published"] = new Date("04/01/2007");

6. The ScriptNode API can work with the content property directly. Add a
statement to store some content on the node, and then call save to persist
the changes.

 whitepaperNode.content = "This is a sample " + contentType + "
 document called " + contentName;
 whitepaperNode.save();

7. Test the script by uploading it to the repository and then running it against a
folder. Using the Web Client, add the fi le to the Data Dictionary/Scripts
folder.

8. Navigate to the Whitepapers folder. Then do View Details, Run Action,
Execute Script to initiate the Run Action Wizard.

9. Use Set Values and Add to select createContent.js from the
available scripts.

10. Click OK, and then Finish to execute the script.

A new Whitepaper should now be sitting in the folder. Later in the book, you'll add a
new UI action that makes executing scripts even easier.

Leveraging Root Objects
In this example, you used space to refer to the space the script was executed against.
There is also a document root object that can be used when running the script against
a document. Refer to the Appendix for the full list of root objects.

Knowing When to Save Documents
Method c alls that affect a node's properties require save to persist the changes. If in
this example we were only adding an aspect, we wouldn't have to save the document
because the change is persisted immediately.

http://www.packtpub.com/alfresco-developer-guide/book

For More Information: www.packtpub.com/alfresco-developer-guide/book

Working with Content Models

[88]

Using JavaScript for Batch Manipulation
During p rojects you will often fi nd that you need to perform batch operations on
nodes in the repository. You might want to execute an action against all documents
in all subfolders starting at a given path, for example. JavaScript is a quick way
to perform such mass operations and doesn't require code to be compiled
and packaged.

Writing Content to the Content Property
Properties store data about a node. The terms "metadata" and "attributes" are
synonymous with "properties".

Content refers to the main unit of data being managed by the system: a fi le. A
PDF fi le, for example, is a piece of content. Plain-text data such as XML, HTML, or
JavaScript are also examples of content.

Content is stored as a property on the node. In Alfresco, the content is really stored
on the fi le system, but as developers using the API, we don't care about where the
content is physically stored. In this example, we created plain-text content simply by
writing a string to the content property. This means it is really easy to create content
in the repository, especially if it is plain text.

Creating Content with Java Web Services
JavaScri pt is fast to develop and very succinct, but it must run on the Alfresco server.
Alfresco's Web Services API is one option to consider when you want to run code on
a different machine than the Alfresco server.

Let's look at the same task that was in the previous example (creating a SomeCo
Whitepaper, adding the sc:webable aspect, and setting some properties), but this
time using the Java Web Services API. The code used for creating content is almost
exactly the same code that comes with the Alfresco SDK Samples, but it is helpful to
break it down to see what's going on.

An overview of the steps involved is:

Authenticate to start a session.

1. Get a reference to the folder where the content will be created.
2. Create an array of NamedValue objects. Each NamedValue object corresponds

to a property that will be set on the new object.
3. Create a series of Content Manipulation Language (CML) objects that

encapsulate the operations to be executed.

http://www.packtpub.com/alfresco-developer-guide/book

For More Information: www.packtpub.com/alfresco-developer-guide/book

Chapter 3

[89]

4. Execute the CML and dump the results.
5. Update the new node with content.

Rather than creating this class yourself, follow along by looking at the class called
com.someco.examples.SomeCoDataCreator in src|java in the source code included
with the chapter. Then, you can follow the steps for running this class on your
local machine.

SomeCoDataCreator is a runnable Java class that accepts arguments for the
username, password, and folder in which to create the content, type of content to
create, and a name for the new content.

The fi rst thing the code does is to start a session by authenticating with the server:

AuthenticationUtils.startSession(getUser(), getPassword());

Next, a timeStamp is saved. The timestamp will be used to make the content
name unique. Then, the code gets a reference to the folder where the content will
be created:

String timeStamp = new Long(System.currentTimeMillis()).toString();

Store storeRef = new Store(Constants.WORKSPACE_STORE, "SpacesStore");

ParentReference docParent = new ParentReference(
 storeRef,
 null,
 getFolderPath(),
 Constants.ASSOC_CONTAINS,
 Constants.createQNameString(
 SomeCoModel.NAMESPACE_SOMECO_CONTENT_MODEL,
 getContentName() + timeStamp));

 Refer to the highlighted code. What is a Store? An Alfresco repository is a collection
of stores. In JCR parlance, the stores are called workspaces. But in this book, unless
the example is dealing with the JCR specifi cally, they will be referred to as stores.
A given Alfresco instance has one repository with multiple stores. When you
are working with the API, you sometimes have to specify which store you are
working with.

Notice that in addition to the folder path, the ParentReference constructor used to
create the folder reference expects the type of association being created (contains) as
well as the name of the child object.

http://www.packtpub.com/alfresco-developer-guide/book

For More Information: www.packtpub.com/alfresco-developer-guide/book

Working with Content Models

[90]

Next, the code creates a NamedValue for each property that's going to be set on the
new object and then creates an array of all NamedValue objects:

NamedValue nameValue = Utils.createNamedValue(Constants.PROP_NAME,
getContentName() + " (" + timeStamp + ")");

NamedValue activeValue = Utils.createNamedValue
(Constants.createQNameString(SomeCoModel.NAMESPACE_SOMECO_CONTENT_
MODEL, SomeCoModel.PROP_IS_ACTIVE_STRING), "true");

NamedValue publishDateValue = Utils.createNamedValue(
 Constants.createQNameString(SomeCoModel.NAMESPACE_SOMECO_CONTENT_
MODEL, SomeCoModel.PROP_PUBLISHED_STRING),
 "2007-04-01T00:00:00.000-05:00");

NamedValue[] contentProps = new NamedValue[] {nameValue, activeValue,
publishDateValue};

Take a look at the date string (for the curious, it's the ISO 8601 format). That -05:00
is the GMT timezone offset.

 Now CML comes into play. The web services API uses CML objects to encapsulate
various content operations. In this case, the example code needs to create a node and
add aspects to the node so it uses CMLCreate and CMLAddAspect.

Note the ref1 string. That's an arbitrary reference that Alfresco uses to relate the
CML statements. Without it, Alfresco wouldn't know which content object to add
the aspects to. So if you were creating multiple objects in one shot, for example,
you would use unique reference strings for each object. The value isn't persisted
anywhere. It is discarded after the CML is executed.

First, the CMLCreate object gets created. The CMLCreate constructor needs to know
the parent reference (docParent), the type of content being created, and an array of
property values to set:

CMLCreate createDoc = new CMLCreate(
 "ref1",
 docParent,
 null,
 null,
 null,
 Constants.createQNameString(SomeCoModel.NAMESPACE_SOMECO_CONTENT_
MODEL, SomeCoModel.TYPE_SC_DOC_STRING),
 contentProps);

Then, one CMLAddAspect object gets created for each aspect to be added:

CMLAddAspect addWebableAspectToDoc = new CMLAddAspect
(Constants.createQNameString(SomeCoModel.NAMESPACE_SOMECO_CONTENT_
MODEL, SomeCoModel.ASPECT_SC_WEBABLE_STRING),

http://www.packtpub.com/alfresco-developer-guide/book

For More Information: www.packtpub.com/alfresco-developer-guide/book

Chapter 3

[91]

 null,
 null,
 "ref1");

CMLAddAspect addClientRelatedAspectToDoc = new CMLAddAspect(
 Constants.createQNameString(SomeCoModel.NAMESPACE_SOMECO_CONTENT_
MODEL, SomeCoModel.ASPECT_SC_CLIENT_RELATED_STRING),
 null,
 null,
 "ref1");

 To execute the CML, the code instantiates a new CML object. Setters on the CML
object specify the operations to perform, in this case one document creation and two
aspect additions. The code then uses the RepositoryService to run the update,
which passes back an array of UpdateResults. The dumpUpdateResults method just
iterates through the UpdateResult array and writes some information to sysout:

// Construct CML Block
CML cml = new CML();
cml.setCreate(new CMLCreate[] {createDoc});
cml.setAddAspect(new CMLAddAspect[] {addWebableAspectToDoc,
addClientRelatedAspectToDoc});

// Execute CML Block
UpdateResult[] results = WebServiceFactory.getRepositoryService().
update(cml);
Reference docRef = results[0].getDestination();
dumpUpdateResults(results);

Now the node exists, but it doesn't have any content. The last chunk of code writes
some text content to the newly created node. This example uses a string for the
content, but it could just as easily write the bytes from a fi le on the local fi le system:

// Nodes are created, now write some content
ContentServiceSoapBindingStub contentService = WebServiceFactory.
getContentService();
ContentFormat contentFormat = new ContentFormat("text/plain", "UTF-
8");
String docText = "This is a sample " + getContentType() + " document
called " + getContentName();
Content docContentRef = contentService.write(docRef, Constants.PROP_
CONTENT, docText.getBytes(), contentFormat);
System.out.println("Content Length: " + docContentRef.getLength());

As you can see, this code accomplishes exactly the same end result as the JavaScript
example; but it is a bit more verbose.

http://www.packtpub.com/alfresco-developer-guide/book

For More Information: www.packtpub.com/alfresco-developer-guide/book

Working with Content Models

[92]

Step-by-Step: Run SomeCoDataCreator Class to
Create Content
 To run the SomeCoDataCreator class to create some content, follow these steps:

1. Copy the com.someco.examples.SomeCoDataCreator.java fi le into
src|java within your client-extensions project in Eclipse.

2. The Web Services API needs to know the hostname of the Alfresco server
that the remote classes are communicating with. Create a fi le called
webserviceclient.properties in the client-extensions project's
confi g|alfresco|extension directory. Assuming both your Alfresco server
and your code reside on the same machine, the fi le should look like this:
Set the following property to reference the Alfresco server
that you would like the web service client to communicate with

repository.location=http://localhost:8080/alfresco/api

3. If you haven't already, log in to Alfresco and create the following folder
structure in your repository: Someco|Marketing|Whitepapers.

4. Execute the class by running ant data-creator. The Ant target will compile
and execute the class.

If everything is successful, the result should be something like:

Command = create; Source = none; Destination = b901941e-12d3-11dc-
9bf3-e998e07a8da1
Command = addAspect; Source = b901941e-12d3-11dc-9bf3-e998e07a8da1;
Destination = b901941e-12d3-11dc-9bf3-e998e07a8da1
Command = addAspect; Source = b901941e-12d3-11dc-9bf3-e998e07a8da1;
Destination = b901941e-12d3-11dc-9bf3-e998e07a8da1
Content Length: 26

If you decide to use Eclipse or command-line Java to run the class rather than the
Ant target, make sure you have the webserviceclient.properties fi le on your
classpath or the Web Services API will not be able to locate the Alfresco server.

Creating Content with PHP Web Services
 Java is not a requirement for SOAP-based web services. Alfresco also delivers PHP
classes that use the Web Services API. Here's how the "create content and add
aspects" example would look like in PHP:

<?php
 require_once "Alfresco/Service/Session.php";
 require_once "Alfresco/Service/SpacesStore.php";

http://www.packtpub.com/alfresco-developer-guide/book

For More Information: www.packtpub.com/alfresco-developer-guide/book

Chapter 3

[93]

 require_once "Alfresco/Service/Node.php";

...snip...

 function createContent($username, $password, $folderPath,
$contentType, $contentName) {

 // Start and create the session
 $repository = new Repository("http://localhost:8080/alfresco/api");
 $ticket = $repository->authenticate($username, $password);
$session = $repository->createSession($ticket);

 $store = new Store($session, "SpacesStore");

 // Grab a reference to the SomeCo folder
 $results = $session->query($store, 'PATH:"' . $folderPath . '"');
 $rootFolderNode = $results[0];

 if ($rootFolderNode == null) {
 echo "Root folder node (" . $folderPath . ") is null
";
 exit;
 }

 $timestamp = time();

 $newNode = $rootFolderNode>createChild
("{http://www.someco.com/model/content/1.0}" . $contentType, "cm_
contains", "{http://www.someco.com/model/content/1.0}" . $contentType
. "_" . $timestamp);

 if ($newNode == null) {
 echo "New node is null
";
 exit;
 }

 // Add the two aspects
 $newNode->addAspect("{http://www.someco.com/model/content/
1.0}webable");
 $newNode->addAspect("{http://www.someco.com/model/content/
1.0}clientRelated");

 echo "Aspects added
";

 // Set the properties
 $properties = $newNode->getProperties();

 $properties["{http://www.alfresco.org/model/content/1.0}name"] =
$contentName . " (" . $timestamp . ")";
 $properties["{http://www.someco.com/model/content/1.0}isActive"] =
"true";
 $properties["{http://www.someco.com/model/content/1.0}published"] =
"2007-04-01T00:00:00.000-05:00";

 $newNode->setProperties($properties);

http://www.packtpub.com/alfresco-developer-guide/book

For More Information: www.packtpub.com/alfresco-developer-guide/book

Working with Content Models

[94]

 echo "Props set
";

 $newNode->setContent("cm_content", "text/plain", "UTF-8", "This is a
sample " . $contentType . " document named " . $contentName);

 echo "Content set
";

 $session->save();

 echo "Saved changes to " . $newNode->getId() . "
";
 }
?>

Running the PHP script in a web browser produces:
Aspects added
Props set
Content set
Saved changes to 5a8dac5e-1314-11dc-ab93-3b56af79ba48

The PHP fi le lives in the src/php folder in the client-extensions Eclipse project
included with the source. See the Appendix for instructions on how to set up your
environment to run this PHP example.

The rest of the chapter includes Java Web Services API examples. Refer to the
source code that will be provided in Chapter 6 and the Appendix for additional
JavaScript examples.

Creating Associations
 Now let's switch back to the Java Web Services API and look at a class that creates a
related-documents association between two documents.

The high-level steps are essentially the same as in the earlier Java example:

1. Create the references and objects the CML needs.
2. Set up the CML objects.
3. Execute the CML and dump the results.

This class is called com.someco.examples.SomeCoDataRelater. The class is
runnable and accepts a source UUID and a target UUID as arguments. You can get
them from the output of the SomeCoDataCreator class.

After logging in, the code creates references to the source and target using the UUIDs
passed in as arguments:

 Reference docRefSource = new Reference(storeRef, getSourceUuid(),
null);
 Reference docRefTarget = new Reference(storeRef, getTargetUuid(),
null);

http://www.packtpub.com/alfresco-developer-guide/book

For More Information: www.packtpub.com/alfresco-developer-guide/book

Chapter 3

[95]

Then, the code creates a CMLCreateAssociation object. The constructor accepts
predicate objects, which are easily created using the reference objects, and the type of
association being created:

 CMLCreateAssociation relatedDocAssoc = new CMLCreateAssociation(new
Predicate(new Reference[]{docRefSource}, null, null),
 null,
 new Predicate(new Reference[] {docRefTarget}, null, null),
 null, Constants.createQNameString(SomeCoModel.NAMESPACE_SOMECO_
CONTENT_MODEL,
 SomeCoModel.ASSN_RELATED_DOCUMENTS_STRING));

The rest should look very familiar. A new CML object is instantiated and its
setCreateAssociation method is called with an array of CMLCreateAssociation
objects. In this case, there is only one association being created:

 // Setup CML block
 CML cml = new CML();
 cml.setCreateAssociation(new CMLCreateAssociation[]
{relatedDocAssoc});

Then, the Repository Service executes the CML and returns the array of
UpdateResults, which get passed to the dumpUpdateResults method:

// Execute CML Block
 UpdateResult[] results = WebServiceFactory.getRepositoryService().
update(cml);
 dumpUpdateResults(results);

Just to confi rm everything worked out as expected, the code calls a method to dump
the associations of the source object:

 System.out.println("Associations of sourceUuid:" + getSourceUuid());

 dumpAssociations(docRefSource, Constants.createQNameString
(SomeCoModel.NAMESPACE_SOMECO_CONTENT_MODEL, SomeCoModel.ASSN_RELATED_
DOCUMENTS_STRING));

Step-by-Step: Run SomeCoDataRelater Class to Create
Association
 To run the SomeCoDataRelater class to create an association between two objects,
follow these steps:

1. Copy the com.someco.examples.SomeCoDataRelater.java fi le from the
chapter source code to your client-extension project.

2. If you haven't already done so, make sure you have created at least two
instances of sc:doc in your repository. A fast way to do that is to run ant
data-creator a couple of times. Make sure you note the source UUID from
the console output.

http://www.packtpub.com/alfresco-developer-guide/book

For More Information: www.packtpub.com/alfresco-developer-guide/book

Working with Content Models

[96]

3. Run the class using the Ant task called data-relater. The Ant task accepts
two arguments, ${sourceId} and ${targetId} for the source and target
UUIDs. For example,

ant data-relater -DsourceId=1355e60e-160b-11dc-a66f-bb03ffd77ac6
-DtargetId=bd0bd57d-160c-11dc-a66f-bb03ffd77ac6

Running the SomeCoDataRelater Java class produces:
Command = createAssociation; Source = 1355e60e-160b-11dc-a66f-
bb03ffd77ac6; Destination = bd0bd57d-160c-11dc-a66f-bb03ffd77ac6
Associations of sourceUuid:1355e60e-160b-11dc-a66f-bb03ffd77ac6
bd0bd57d-160c-11dc-a66f-bb03ffd77ac6
{http://www.alfresco.org/model/content/1.0}name:Test Document 2
(1181340487582)

Now you can use the Alfresco Web Client to view the associations. Remember the
web-client-config-custom.xml fi le? It specifi ed that the property sheet for sc:
doc or sc:whitepaper objects should show the sc:relatedDocuments associations.
Alternatively, the Node Browser that is available in the Administration Console is a
handy way to view associations.

Searching for Content
 Now that you have some content in the repository, you can test out Alfresco's full-
text search engine, Lucene. Content in the repository is synchronously indexed by
Lucene when it is created. Query strings use the Lucene query syntax to fi nd content
based on full-text content, property values, path, and content type.

Let's review some code that will show several different examples of Alfresco queries
using Lucene. The code will:

1. Authenticate to start a session.
2. Get a reference to the node where the search should start.
3. Establish a query object using the Lucene query string.
4. Execute the query and dump the results.

 The class is called com.someco.examples.SomeCoDataQueries. Just like the content
creation code, the class will be a runnable Java application that accepts the username,
password, and folder name as arguments.

There are two methods of interest in this class: getQueryResults() and
doExamples(). The getQueryResults() method is a generic method that executes a
specifi ed query string and returns a list of ContentResult objects. (ContentResult
is an inner class that is used as a helper to manage the query result properties).
The doExamples() method calls getQueryResults() repeatedly to show different
search string examples.

http://www.packtpub.com/alfresco-developer-guide/book

For More Information: www.packtpub.com/alfresco-developer-guide/book

Chapter 3

[97]

Let's take a look at getQueryResults(). First, the code sets up the query object and
executes the query using the query() method of the RepositoryService:

public List<ContentResult> getQueryResults(String queryString) throws
Exception {
 List<ContentResult> results = new ArrayList<ContentResult>();

 Query query = new Query(Constants.QUERY_LANG_LUCENE, queryString);

 // Execute the query
 QueryResult queryResult = getRepositoryService().query(getStoreRef(),
query, false);

 // Display the results
 ResultSet resultSet = queryResult.getResultSet();
 ResultSetRow[] rows = resultSet.getRows();

Next, the code iterates through the results, extracting property values from the
search results and storing them in a helper object called contentResult.

 if (rows != null) {
 // Get the infomation from the result set
 for(ResultSetRow row : rows) {
 String nodeId = row.getNode().getId();

 ContentResult contentResult = new ContentResult(nodeId);

 // iterate through the columns of the result set to extract
 // specific named values
 for (NamedValue namedValue : row.getColumns()) {
 if (namedValue.getName().endsWith(Constants.PROP_CREATED) == true)
{
 contentResult.setCreateDate(namedValue.getValue());
 } else if (namedValue.getName().endsWith(Constants.PROP_NAME) ==
true) {
 contentResult.setName(namedValue.getValue());
 }
 }
 results.add(contentResult);
 } //next row
 } // end if
 return results;
}

The doExamples() method sets up query strings and calls getQueryResults(). One
such call is shown here:

System.out.println("Finding content of type:" +
 SomeCoModel.TYPE_SC_DOC_STRING);
queryString = "+TYPE:\"" +
 Constants.createQNameString(SomeCoModel.NAMESPACE_SOMECO_CONTENT_
MODEL,
 SomeCoModel.TYPE_SC_DOC_STRING) + "\"";
dumpQueryResults(getQueryResults(queryString));

http://www.packtpub.com/alfresco-developer-guide/book

For More Information: www.packtpub.com/alfresco-developer-guide/book

Working with Content Models

[98]

Step-by-Step: Run SomeCoDataQueries Class to
See Lucene Example
 Running the SomeCoDataQueries class is a good way to see some example Lucene
search strings and the resulting output:

1. Copy the com.someco.examples.SomeCoDataQueries.java fi le from the
source code to the client-extensions project.

2. Create one or more instances of sc:doc in the repository by running
SomeCoDataCreator or by adding content to the repository manually
(remember to choose a SomeCo content type).

3. Execute the data-queries Ant task.

Your results will vary based on how much content you've created and the values
you've set in the content properties. The output should look something like:

======================
Finding content of type:doc

Result 1:
id=1355e60e-160b-11dc-a66f-bb03ffd77ac6
name=Test Whitepaper (1181339773331)
created=2007-06-08T16:56:13.932-05:00

Result 2:
id=bd0bd57d-160c-11dc-a66f-bb03ffd77ac6
name=Test Document 2 (1181340487582)
created=2007-06-08T17:08:08.150-05:00

Result 3:
id=1fe9cf04-160b-11dc-a66f-bb03ffd77ac6
name=Test Document (1181339794431)
created=2007-06-08T16:56:35.028-05:00
======================
Find content in the root folder with text like 'sample'

Result 1:
id=bd0bd57d-160c-11dc-a66f-bb03ffd77ac6
name=Test Document 2 (1181340487582)
created=2007-06-08T17:08:08.150-05:00

Result 2:
id=1fe9cf04-160b-11dc-a66f-bb03ffd77ac6
name=Test Document (1181339794431)

http://www.packtpub.com/alfresco-developer-guide/book

For More Information: www.packtpub.com/alfresco-developer-guide/book

Chapter 3

[99]

created=2007-06-08T16:56:35.028-05:00

Result 3:
id=1355e60e-160b-11dc-a66f-bb03ffd77ac6
name=Test Whitepaper (1181339773331)
created=2007-06-08T16:56:13.932-05:00
======================
Find active content

Result 1:
id=bd0bd57d-160c-11dc-a66f-bb03ffd77ac6
name=Test Document 2 (1181340487582)
created=2007-06-08T17:08:08.150-05:00

Result 2:
id=1fe9cf04-160b-11dc-a66f-bb03ffd77ac6
name=Test Document (1181339794431)
created=2007-06-08T16:56:35.028-05:00

Result 3:
id=1355e60e-160b-11dc-a66f-bb03ffd77ac6
name=Test Whitepaper (1181339773331)
created=2007-06-08T16:56:13.932-05:00
======================
Find active content with a client property containing 'Lebowski'
======================
Find content of type sc:whitepaper published between 1/1/2006 and
6/1/2007

Result 1:
id=1355e60e-160b-11dc-a66f-bb03ffd77ac6
name=Test Whitepaper (1181339773331)
created=2007-06-08T16:56:13.932-05:00

There are a couple of other useful tidbits in this class that have been omitted here
such as how to use the ContentService to get the URL for the content and how the
UUID for the root folder is retrieved. Explore the code that accompanies this chapter
to see the class in its entirety.

See the Appendix for more information on the Lucene search syntax.

http://www.packtpub.com/alfresco-developer-guide/book

For More Information: www.packtpub.com/alfresco-developer-guide/book

Working with Content Models

[100]

Deleting Content
 Now it is time to clean up after yourself by deleting content from the repository.
Deleting follows the same pattern as searching except that instead of dumping the
results, the class will create CMLDelete objects for each result and then will execute
the CML to perform the delete.

 Let's review the com.someco.examples.SomeCoDataCleaner class. This runnable
class optionally accepts a content type and a folder path to narrow down the scope of
what's being deleted.

First, the code sets up the query object:

// Create a query object, looking for all items of a particular type
String queryString = "TYPE:\"" + Constants.createQNameString(SomeCoMod
el.NAMESPACE_SOMECO_CONTENT_MODEL, getContentType()) + "\"";
 if (getFolderPath() != null) queryString =
queryString + " AND PATH:\"" + getFolderPath() + "/*\"";
 Query query = new Query(Constants.QUERY_LANG_LUCENE,
queryString);

Then, the RepositoryService executes the query:

// Execute the query
QueryResult queryResult = repositoryService.query(storeRef, query,
false);

// Get the resultset
ResultSet resultSet = queryResult.getResultSet();
ResultSetRow[] rows = resultSet.getRows();

A CMLDelete object is created for each row returned and added to an array:

// if we found some rows, create an array of DeleteCML objects
if (rows != null) {
 System.out.println("Found " + rows.length + " objects to
delete.");

 CMLDelete[] deleteCMLArray = new CMLDelete[rows.length];
 for (int index = 0; index < rows.length; index++) {
 ResultSetRow row = rows[index];
 deleteCMLArray[index] = new CMLDelete(new Predicate(new Reference[]
{new Reference(storeRef, row.getNode().getId(), null)}, null, null));
 }

http://www.packtpub.com/alfresco-developer-guide/book

For More Information: www.packtpub.com/alfresco-developer-guide/book

Chapter 3

[101]

As in prior examples, the fi nal step is to set up the CML object, execute the CML
using the RepositoryService, and dump the results:

 // Construct CML Block
 CML cml = new CML();
 cml.setDelete(deleteCMLArray);

 // Execute CML Block
 UpdateResult[] results =
 WebServiceFactory.getRepositoryService().update(cml);
 dumpUpdateResults(results);

} //end if

Note that this code deletes every matching object in the repository (or the
specifi ed folder path) of type sc:doc (or the specifi ed content type) and
its children. You would defi nitely want to "think twice and cut once" if
you were running this code on a production repository!

Step-by-Step: Running SomeCoDataCleaner Class
to Delete Content
 To execute the SomeCoDataCleaner class to delete content from your repository,
follow these steps:

1. Copy the com.someco.examples.SomeCoDataCleaner.java fi le from the
source code for the chapter to your client-extensions project.

2. Running this class isn't too exciting if there isn't any content in the repository.
Create some if you don't have any. The Ant task assumes you will create one
or more sc:whitepaper objects.

3. Run the data-cleaner Ant task.

Again, your results will vary based on the content you've created. The output should
look similar to the following:

Found 2 objects to delete.
Command = delete; Source = b6c3f8b0-12fb-11dc-ab93-3b56af79ba48;
Destination = none
Command = delete; Source = d932365a-12fb-11dc-ab93-3b56af79ba48;
Destination = none

http://www.packtpub.com/alfresco-developer-guide/book

For More Information: www.packtpub.com/alfresco-developer-guide/book

Working with Content Models

[102]

Summary
This chapter was about customizing Alfresco's content model, confi guring the web
client to allow end users to work with the custom content model via the web client,
and using the Web Services API and JavaScript API to create, search, update, and
delete objects in the repository. Specifi cally, you learned:

The Alfresco repository is a hierarchical collection of stores and nodes.
The Alfresco content model defi nes the data types of nodes and properties,
and the relationships between nodes.
Extending the content model to make it relevant to your business problem
involves creating an XML fi le to describe the model, then telling Alfresco
about it through a Spring bean confi guration fi le.
The fundamental building blocks used to defi ne the content model include:
Types, Aspects, Properties, and Associations.
Best practices for creating your own content models include using aspects as
much as possible, considering the use of a root content type, and leveraging
the out of the box content model as a reference.
Confi guring the web client to expose your custom content model via the user
interface involves overriding confi guration elements in Alfresco's out of the
box web client confi guration.

There are several options for interacting with the repository with code. Examples
in this chapter included the Web Services API (both PHP and Java) and the
JavaScript API.

•

•

•

•

•

•

http://www.packtpub.com/alfresco-developer-guide/book

For More Information: www.packtpub.com/alfresco-developer-guide/book

Where to buy this book
You can buy Alfresco Developer Guide from the Packt Publishing website:
http://www.packtpub.com/alfresco-developer-guide/book

Free shipping to the US, UK, Europe and selected Asian countries. For more information, please
read our shipping policy.

Alternatively, you can buy the book from Amazon, BN.com, Computer Manuals and
most internet book retailers.

www.PacktPub.com

http://www.packtpub.com/alfresco-developer-guide/book
http://www.packtpub.com/Shippingpolicy

