Hashtable.java in  » 6.0-JDK-Core » Collections-Jar-Zip-Logging-regex » java » util » Java Source Code / Java Documentation Java Source Code and Java Documentation

Home
Java Source Code / Java Documentation
1.6.0 JDK Core
2.6.0 JDK Modules
3.6.0 JDK Modules com.sun
4.6.0 JDK Modules com.sun.java
5.6.0 JDK Modules sun
6.6.0 JDK Platform
7.Ajax
8.Apache Harmony Java SE
9.Aspect oriented
10.Authentication Authorization
11.Blogger System
12.Build
13.Byte Code
14.Cache
15.Chart
16.Chat
17.Code Analyzer
18.Collaboration
19.Content Management System
20.Database Client
21.Database DBMS
22.Database JDBC Connection Pool
23.Database ORM
24.Development
25.EJB Server
26.ERP CRM Financial
27.ESB
28.Forum
29.Game
30.GIS
31.Graphic 3D
32.Graphic Library
33.Groupware
34.HTML Parser
35.IDE
36.IDE Eclipse
37.IDE Netbeans
38.Installer
39.Internationalization Localization
40.Inversion of Control
41.Issue Tracking
42.J2EE
43.J2ME
44.JBoss
45.JMS
46.JMX
47.Library
48.Mail Clients
49.Music
50.Natural Language Processing
51.Net
52.Parser
53.PDF
54.Portal
55.Profiler
56.Project Management
57.Report
58.RSS RDF
59.Rule Engine
60.Science
61.Scripting
62.Search Engine
63.Security
64.Sevlet Container
65.Source Control
66.Swing Library
67.Template Engine
68.Test Coverage
69.Testing
70.UML
71.Web Crawler
72.Web Framework
73.Web Mail
74.Web Server
75.Web Services
76.Web Services apache cxf 2.2.6
77.Web Services AXIS2
78.Wiki Engine
79.Workflow Engines
80.XML
81.XML UI
Java Source Code / Java Documentation  » 6.0 JDK Core » Collections Jar Zip Logging regex » java.util 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


        /*
         * Copyright 1994-2006 Sun Microsystems, Inc.  All Rights Reserved.
         * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
         *
         * This code is free software; you can redistribute it and/or modify it
         * under the terms of the GNU General Public License version 2 only, as
         * published by the Free Software Foundation.  Sun designates this
         * particular file as subject to the "Classpath" exception as provided
         * by Sun in the LICENSE file that accompanied this code.
         *
         * This code is distributed in the hope that it will be useful, but WITHOUT
         * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
         * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
         * version 2 for more details (a copy is included in the LICENSE file that
         * accompanied this code).
         *
         * You should have received a copy of the GNU General Public License version
         * 2 along with this work; if not, write to the Free Software Foundation,
         * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
         *
         * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
         * CA 95054 USA or visit www.sun.com if you need additional information or
         * have any questions.
         */

        package java.util;

        import java.io.*;

        /**
         * This class implements a hashtable, which maps keys to values. Any
         * non-<code>null</code> object can be used as a key or as a value. <p>
         *
         * To successfully store and retrieve objects from a hashtable, the
         * objects used as keys must implement the <code>hashCode</code>
         * method and the <code>equals</code> method. <p>
         *
         * An instance of <code>Hashtable</code> has two parameters that affect its
         * performance: <i>initial capacity</i> and <i>load factor</i>.  The
         * <i>capacity</i> is the number of <i>buckets</i> in the hash table, and the
         * <i>initial capacity</i> is simply the capacity at the time the hash table
         * is created.  Note that the hash table is <i>open</i>: in the case of a "hash
         * collision", a single bucket stores multiple entries, which must be searched
         * sequentially.  The <i>load factor</i> is a measure of how full the hash
         * table is allowed to get before its capacity is automatically increased.
         * The initial capacity and load factor parameters are merely hints to
         * the implementation.  The exact details as to when and whether the rehash
         * method is invoked are implementation-dependent.<p>
         *
         * Generally, the default load factor (.75) offers a good tradeoff between
         * time and space costs.  Higher values decrease the space overhead but
         * increase the time cost to look up an entry (which is reflected in most
         * <tt>Hashtable</tt> operations, including <tt>get</tt> and <tt>put</tt>).<p>
         *
         * The initial capacity controls a tradeoff between wasted space and the
         * need for <code>rehash</code> operations, which are time-consuming.
         * No <code>rehash</code> operations will <i>ever</i> occur if the initial
         * capacity is greater than the maximum number of entries the
         * <tt>Hashtable</tt> will contain divided by its load factor.  However,
         * setting the initial capacity too high can waste space.<p>
         *
         * If many entries are to be made into a <code>Hashtable</code>,
         * creating it with a sufficiently large capacity may allow the
         * entries to be inserted more efficiently than letting it perform
         * automatic rehashing as needed to grow the table. <p>
         *
         * This example creates a hashtable of numbers. It uses the names of
         * the numbers as keys:
         * <pre>   {@code
         *   Hashtable<String, Integer> numbers
         *     = new Hashtable<String, Integer>();
         *   numbers.put("one", 1);
         *   numbers.put("two", 2);
         *   numbers.put("three", 3);}</pre>
         *
         * <p>To retrieve a number, use the following code:
         * <pre>   {@code
         *   Integer n = numbers.get("two");
         *   if (n != null) {
         *     System.out.println("two = " + n);
         *   }}</pre>
         *
         * <p>The iterators returned by the <tt>iterator</tt> method of the collections
         * returned by all of this class's "collection view methods" are
         * <em>fail-fast</em>: if the Hashtable is structurally modified at any time
         * after the iterator is created, in any way except through the iterator's own
         * <tt>remove</tt> method, the iterator will throw a {@link
         * ConcurrentModificationException}.  Thus, in the face of concurrent
         * modification, the iterator fails quickly and cleanly, rather than risking
         * arbitrary, non-deterministic behavior at an undetermined time in the future.
         * The Enumerations returned by Hashtable's keys and elements methods are
         * <em>not</em> fail-fast.
         *
         * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
         * as it is, generally speaking, impossible to make any hard guarantees in the
         * presence of unsynchronized concurrent modification.  Fail-fast iterators
         * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
         * Therefore, it would be wrong to write a program that depended on this
         * exception for its correctness: <i>the fail-fast behavior of iterators
         * should be used only to detect bugs.</i>
         *
         * <p>As of the Java 2 platform v1.2, this class was retrofitted to
         * implement the {@link Map} interface, making it a member of the
         * <a href="{@docRoot}/../technotes/guides/collections/index.html"> Java
         * Collections Framework</a>.  Unlike the new collection
         * implementations, {@code Hashtable} is synchronized.
         *
         * @author  Arthur van Hoff
         * @author  Josh Bloch
         * @author  Neal Gafter
         * @version 1.123, 07/08/07
         * @see     Object#equals(java.lang.Object)
         * @see     Object#hashCode()
         * @see     Hashtable#rehash()
         * @see     Collection
         * @see	    Map
         * @see	    HashMap
         * @see	    TreeMap
         * @since JDK1.0
         */
        public class Hashtable<K, V> extends Dictionary<K, V> implements 
                Map<K, V>, Cloneable, java.io.Serializable {

            /**
             * The hash table data.
             */
            private transient Entry[] table;

            /**
             * The total number of entries in the hash table.
             */
            private transient int count;

            /**
             * The table is rehashed when its size exceeds this threshold.  (The
             * value of this field is (int)(capacity * loadFactor).)
             *
             * @serial
             */
            private int threshold;

            /**
             * The load factor for the hashtable.
             *
             * @serial
             */
            private float loadFactor;

            /**
             * The number of times this Hashtable has been structurally modified
             * Structural modifications are those that change the number of entries in
             * the Hashtable or otherwise modify its internal structure (e.g.,
             * rehash).  This field is used to make iterators on Collection-views of
             * the Hashtable fail-fast.  (See ConcurrentModificationException).
             */
            private transient int modCount = 0;

            /** use serialVersionUID from JDK 1.0.2 for interoperability */
            private static final long serialVersionUID = 1421746759512286392L;

            /**
             * Constructs a new, empty hashtable with the specified initial
             * capacity and the specified load factor.
             *
             * @param      initialCapacity   the initial capacity of the hashtable.
             * @param      loadFactor        the load factor of the hashtable.
             * @exception  IllegalArgumentException  if the initial capacity is less
             *             than zero, or if the load factor is nonpositive.
             */
            public Hashtable(int initialCapacity, float loadFactor) {
                if (initialCapacity < 0)
                    throw new IllegalArgumentException("Illegal Capacity: "
                            + initialCapacity);
                if (loadFactor <= 0 || Float.isNaN(loadFactor))
                    throw new IllegalArgumentException("Illegal Load: "
                            + loadFactor);

                if (initialCapacity == 0)
                    initialCapacity = 1;
                this .loadFactor = loadFactor;
                table = new Entry[initialCapacity];
                threshold = (int) (initialCapacity * loadFactor);
            }

            /**
             * Constructs a new, empty hashtable with the specified initial capacity
             * and default load factor (0.75).
             *
             * @param     initialCapacity   the initial capacity of the hashtable.
             * @exception IllegalArgumentException if the initial capacity is less
             *              than zero.
             */
            public Hashtable(int initialCapacity) {
                this (initialCapacity, 0.75f);
            }

            /**
             * Constructs a new, empty hashtable with a default initial capacity (11)
             * and load factor (0.75).
             */
            public Hashtable() {
                this (11, 0.75f);
            }

            /**
             * Constructs a new hashtable with the same mappings as the given
             * Map.  The hashtable is created with an initial capacity sufficient to
             * hold the mappings in the given Map and a default load factor (0.75).
             *
             * @param t the map whose mappings are to be placed in this map.
             * @throws NullPointerException if the specified map is null.
             * @since   1.2
             */
            public Hashtable(Map<? extends K, ? extends V> t) {
                this (Math.max(2 * t.size(), 11), 0.75f);
                putAll(t);
            }

            /**
             * Returns the number of keys in this hashtable.
             *
             * @return  the number of keys in this hashtable.
             */
            public synchronized int size() {
                return count;
            }

            /**
             * Tests if this hashtable maps no keys to values.
             *
             * @return  <code>true</code> if this hashtable maps no keys to values;
             *          <code>false</code> otherwise.
             */
            public synchronized boolean isEmpty() {
                return count == 0;
            }

            /**
             * Returns an enumeration of the keys in this hashtable.
             *
             * @return  an enumeration of the keys in this hashtable.
             * @see     Enumeration
             * @see     #elements()
             * @see	#keySet()
             * @see	Map
             */
            public synchronized Enumeration<K> keys() {
                return this .<K> getEnumeration(KEYS);
            }

            /**
             * Returns an enumeration of the values in this hashtable.
             * Use the Enumeration methods on the returned object to fetch the elements
             * sequentially.
             *
             * @return  an enumeration of the values in this hashtable.
             * @see     java.util.Enumeration
             * @see     #keys()
             * @see	#values()
             * @see	Map
             */
            public synchronized Enumeration<V> elements() {
                return this .<V> getEnumeration(VALUES);
            }

            /**
             * Tests if some key maps into the specified value in this hashtable.
             * This operation is more expensive than the {@link #containsKey
             * containsKey} method.
             *
             * <p>Note that this method is identical in functionality to
             * {@link #containsValue containsValue}, (which is part of the
             * {@link Map} interface in the collections framework).
             *
             * @param      value   a value to search for
             * @return     <code>true</code> if and only if some key maps to the
             *             <code>value</code> argument in this hashtable as
             *             determined by the <tt>equals</tt> method;
             *             <code>false</code> otherwise.
             * @exception  NullPointerException  if the value is <code>null</code>
             */
            public synchronized boolean contains(Object value) {
                if (value == null) {
                    throw new NullPointerException();
                }

                Entry tab[] = table;
                for (int i = tab.length; i-- > 0;) {
                    for (Entry<K, V> e = tab[i]; e != null; e = e.next) {
                        if (e.value.equals(value)) {
                            return true;
                        }
                    }
                }
                return false;
            }

            /**
             * Returns true if this hashtable maps one or more keys to this value.
             *
             * <p>Note that this method is identical in functionality to {@link
             * #contains contains} (which predates the {@link Map} interface).
             *
             * @param value value whose presence in this hashtable is to be tested
             * @return <tt>true</tt> if this map maps one or more keys to the
             *         specified value
             * @throws NullPointerException  if the value is <code>null</code>
             * @since 1.2
             */
            public boolean containsValue(Object value) {
                return contains(value);
            }

            /**
             * Tests if the specified object is a key in this hashtable.
             *
             * @param   key   possible key
             * @return  <code>true</code> if and only if the specified object
             *          is a key in this hashtable, as determined by the
             *          <tt>equals</tt> method; <code>false</code> otherwise.
             * @throws  NullPointerException  if the key is <code>null</code>
             * @see     #contains(Object)
             */
            public synchronized boolean containsKey(Object key) {
                Entry tab[] = table;
                int hash = key.hashCode();
                int index = (hash & 0x7FFFFFFF) % tab.length;
                for (Entry<K, V> e = tab[index]; e != null; e = e.next) {
                    if ((e.hash == hash) && e.key.equals(key)) {
                        return true;
                    }
                }
                return false;
            }

            /**
             * Returns the value to which the specified key is mapped,
             * or {@code null} if this map contains no mapping for the key.
             *
             * <p>More formally, if this map contains a mapping from a key
             * {@code k} to a value {@code v} such that {@code (key.equals(k))},
             * then this method returns {@code v}; otherwise it returns
             * {@code null}.  (There can be at most one such mapping.)
             *
             * @param key the key whose associated value is to be returned
             * @return the value to which the specified key is mapped, or
             *         {@code null} if this map contains no mapping for the key
             * @throws NullPointerException if the specified key is null
             * @see     #put(Object, Object)
             */
            public synchronized V get(Object key) {
                Entry tab[] = table;
                int hash = key.hashCode();
                int index = (hash & 0x7FFFFFFF) % tab.length;
                for (Entry<K, V> e = tab[index]; e != null; e = e.next) {
                    if ((e.hash == hash) && e.key.equals(key)) {
                        return e.value;
                    }
                }
                return null;
            }

            /**
             * Increases the capacity of and internally reorganizes this
             * hashtable, in order to accommodate and access its entries more
             * efficiently.  This method is called automatically when the
             * number of keys in the hashtable exceeds this hashtable's capacity
             * and load factor.
             */
            protected void rehash() {
                int oldCapacity = table.length;
                Entry[] oldMap = table;

                int newCapacity = oldCapacity * 2 + 1;
                Entry[] newMap = new Entry[newCapacity];

                modCount++;
                threshold = (int) (newCapacity * loadFactor);
                table = newMap;

                for (int i = oldCapacity; i-- > 0;) {
                    for (Entry<K, V> old = oldMap[i]; old != null;) {
                        Entry<K, V> e = old;
                        old = old.next;

                        int index = (e.hash & 0x7FFFFFFF) % newCapacity;
                        e.next = newMap[index];
                        newMap[index] = e;
                    }
                }
            }

            /**
             * Maps the specified <code>key</code> to the specified
             * <code>value</code> in this hashtable. Neither the key nor the
             * value can be <code>null</code>. <p>
             *
             * The value can be retrieved by calling the <code>get</code> method
             * with a key that is equal to the original key.
             *
             * @param      key     the hashtable key
             * @param      value   the value
             * @return     the previous value of the specified key in this hashtable,
             *             or <code>null</code> if it did not have one
             * @exception  NullPointerException  if the key or value is
             *               <code>null</code>
             * @see     Object#equals(Object)
             * @see     #get(Object)
             */
            public synchronized V put(K key, V value) {
                // Make sure the value is not null
                if (value == null) {
                    throw new NullPointerException();
                }

                // Makes sure the key is not already in the hashtable.
                Entry tab[] = table;
                int hash = key.hashCode();
                int index = (hash & 0x7FFFFFFF) % tab.length;
                for (Entry<K, V> e = tab[index]; e != null; e = e.next) {
                    if ((e.hash == hash) && e.key.equals(key)) {
                        V old = e.value;
                        e.value = value;
                        return old;
                    }
                }

                modCount++;
                if (count >= threshold) {
                    // Rehash the table if the threshold is exceeded
                    rehash();

                    tab = table;
                    index = (hash & 0x7FFFFFFF) % tab.length;
                }

                // Creates the new entry.
                Entry<K, V> e = tab[index];
                tab[index] = new Entry<K, V>(hash, key, value, e);
                count++;
                return null;
            }

            /**
             * Removes the key (and its corresponding value) from this
             * hashtable. This method does nothing if the key is not in the hashtable.
             *
             * @param   key   the key that needs to be removed
             * @return  the value to which the key had been mapped in this hashtable,
             *          or <code>null</code> if the key did not have a mapping
             * @throws  NullPointerException  if the key is <code>null</code>
             */
            public synchronized V remove(Object key) {
                Entry tab[] = table;
                int hash = key.hashCode();
                int index = (hash & 0x7FFFFFFF) % tab.length;
                for (Entry<K, V> e = tab[index], prev = null; e != null; prev = e, e = e.next) {
                    if ((e.hash == hash) && e.key.equals(key)) {
                        modCount++;
                        if (prev != null) {
                            prev.next = e.next;
                        } else {
                            tab[index] = e.next;
                        }
                        count--;
                        V oldValue = e.value;
                        e.value = null;
                        return oldValue;
                    }
                }
                return null;
            }

            /**
             * Copies all of the mappings from the specified map to this hashtable.
             * These mappings will replace any mappings that this hashtable had for any
             * of the keys currently in the specified map.
             *
             * @param t mappings to be stored in this map
             * @throws NullPointerException if the specified map is null
             * @since 1.2
             */
            public synchronized void putAll(Map<? extends K, ? extends V> t) {
                for (Map.Entry<? extends K, ? extends V> e : t.entrySet())
                    put(e.getKey(), e.getValue());
            }

            /**
             * Clears this hashtable so that it contains no keys.
             */
            public synchronized void clear() {
                Entry tab[] = table;
                modCount++;
                for (int index = tab.length; --index >= 0;)
                    tab[index] = null;
                count = 0;
            }

            /**
             * Creates a shallow copy of this hashtable. All the structure of the
             * hashtable itself is copied, but the keys and values are not cloned.
             * This is a relatively expensive operation.
             *
             * @return  a clone of the hashtable
             */
            public synchronized Object clone() {
                try {
                    Hashtable<K, V> t = (Hashtable<K, V>) super .clone();
                    t.table = new Entry[table.length];
                    for (int i = table.length; i-- > 0;) {
                        t.table[i] = (table[i] != null) ? (Entry<K, V>) table[i]
                                .clone()
                                : null;
                    }
                    t.keySet = null;
                    t.entrySet = null;
                    t.values = null;
                    t.modCount = 0;
                    return t;
                } catch (CloneNotSupportedException e) {
                    // this shouldn't happen, since we are Cloneable
                    throw new InternalError();
                }
            }

            /**
             * Returns a string representation of this <tt>Hashtable</tt> object
             * in the form of a set of entries, enclosed in braces and separated
             * by the ASCII characters "<tt>,&nbsp;</tt>" (comma and space). Each
             * entry is rendered as the key, an equals sign <tt>=</tt>, and the
             * associated element, where the <tt>toString</tt> method is used to
             * convert the key and element to strings.
             *
             * @return  a string representation of this hashtable
             */
            public synchronized String toString() {
                int max = size() - 1;
                if (max == -1)
                    return "{}";

                StringBuilder sb = new StringBuilder();
                Iterator<Map.Entry<K, V>> it = entrySet().iterator();

                sb.append('{');
                for (int i = 0;; i++) {
                    Map.Entry<K, V> e = it.next();
                    K key = e.getKey();
                    V value = e.getValue();
                    sb.append(key == this  ? "(this Map)" : key.toString());
                    sb.append('=');
                    sb.append(value == this  ? "(this Map)" : value.toString());

                    if (i == max)
                        return sb.append('}').toString();
                    sb.append(", ");
                }
            }

            private <T> Enumeration<T> getEnumeration(int type) {
                if (count == 0) {
                    return Collections.emptyEnumeration();
                } else {
                    return new Enumerator<T>(type, false);
                }
            }

            private <T> Iterator<T> getIterator(int type) {
                if (count == 0) {
                    return Collections.emptyIterator();
                } else {
                    return new Enumerator<T>(type, true);
                }
            }

            // Views

            /**
             * Each of these fields are initialized to contain an instance of the
             * appropriate view the first time this view is requested.  The views are
             * stateless, so there's no reason to create more than one of each.
             */
            private transient volatile Set<K> keySet = null;
            private transient volatile Set<Map.Entry<K, V>> entrySet = null;
            private transient volatile Collection<V> values = null;

            /**
             * Returns a {@link Set} view of the keys contained in this map.
             * The set is backed by the map, so changes to the map are
             * reflected in the set, and vice-versa.  If the map is modified
             * while an iteration over the set is in progress (except through
             * the iterator's own <tt>remove</tt> operation), the results of
             * the iteration are undefined.  The set supports element removal,
             * which removes the corresponding mapping from the map, via the
             * <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
             * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
             * operations.  It does not support the <tt>add</tt> or <tt>addAll</tt>
             * operations.
             *
             * @since 1.2
             */
            public Set<K> keySet() {
                if (keySet == null)
                    keySet = Collections.synchronizedSet(new KeySet(), this );
                return keySet;
            }

            private class KeySet extends AbstractSet<K> {
                public Iterator<K> iterator() {
                    return getIterator(KEYS);
                }

                public int size() {
                    return count;
                }

                public boolean contains(Object o) {
                    return containsKey(o);
                }

                public boolean remove(Object o) {
                    return Hashtable.this .remove(o) != null;
                }

                public void clear() {
                    Hashtable.this .clear();
                }
            }

            /**
             * Returns a {@link Set} view of the mappings contained in this map.
             * The set is backed by the map, so changes to the map are
             * reflected in the set, and vice-versa.  If the map is modified
             * while an iteration over the set is in progress (except through
             * the iterator's own <tt>remove</tt> operation, or through the
             * <tt>setValue</tt> operation on a map entry returned by the
             * iterator) the results of the iteration are undefined.  The set
             * supports element removal, which removes the corresponding
             * mapping from the map, via the <tt>Iterator.remove</tt>,
             * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and
             * <tt>clear</tt> operations.  It does not support the
             * <tt>add</tt> or <tt>addAll</tt> operations.
             *
             * @since 1.2
             */
            public Set<Map.Entry<K, V>> entrySet() {
                if (entrySet == null)
                    entrySet = Collections
                            .synchronizedSet(new EntrySet(), this );
                return entrySet;
            }

            private class EntrySet extends AbstractSet<Map.Entry<K, V>> {
                public Iterator<Map.Entry<K, V>> iterator() {
                    return getIterator(ENTRIES);
                }

                public boolean add(Map.Entry<K, V> o) {
                    return super .add(o);
                }

                public boolean contains(Object o) {
                    if (!(o instanceof  Map.Entry))
                        return false;
                    Map.Entry entry = (Map.Entry) o;
                    Object key = entry.getKey();
                    Entry[] tab = table;
                    int hash = key.hashCode();
                    int index = (hash & 0x7FFFFFFF) % tab.length;

                    for (Entry e = tab[index]; e != null; e = e.next)
                        if (e.hash == hash && e.equals(entry))
                            return true;
                    return false;
                }

                public boolean remove(Object o) {
                    if (!(o instanceof  Map.Entry))
                        return false;
                    Map.Entry<K, V> entry = (Map.Entry<K, V>) o;
                    K key = entry.getKey();
                    Entry[] tab = table;
                    int hash = key.hashCode();
                    int index = (hash & 0x7FFFFFFF) % tab.length;

                    for (Entry<K, V> e = tab[index], prev = null; e != null; prev = e, e = e.next) {
                        if (e.hash == hash && e.equals(entry)) {
                            modCount++;
                            if (prev != null)
                                prev.next = e.next;
                            else
                                tab[index] = e.next;

                            count--;
                            e.value = null;
                            return true;
                        }
                    }
                    return false;
                }

                public int size() {
                    return count;
                }

                public void clear() {
                    Hashtable.this .clear();
                }
            }

            /**
             * Returns a {@link Collection} view of the values contained in this map.
             * The collection is backed by the map, so changes to the map are
             * reflected in the collection, and vice-versa.  If the map is
             * modified while an iteration over the collection is in progress
             * (except through the iterator's own <tt>remove</tt> operation),
             * the results of the iteration are undefined.  The collection
             * supports element removal, which removes the corresponding
             * mapping from the map, via the <tt>Iterator.remove</tt>,
             * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
             * <tt>retainAll</tt> and <tt>clear</tt> operations.  It does not
             * support the <tt>add</tt> or <tt>addAll</tt> operations.
             *
             * @since 1.2
             */
            public Collection<V> values() {
                if (values == null)
                    values = Collections.synchronizedCollection(
                            new ValueCollection(), this );
                return values;
            }

            private class ValueCollection extends AbstractCollection<V> {
                public Iterator<V> iterator() {
                    return getIterator(VALUES);
                }

                public int size() {
                    return count;
                }

                public boolean contains(Object o) {
                    return containsValue(o);
                }

                public void clear() {
                    Hashtable.this .clear();
                }
            }

            // Comparison and hashing

            /**
             * Compares the specified Object with this Map for equality,
             * as per the definition in the Map interface.
             *
             * @param  o object to be compared for equality with this hashtable
             * @return true if the specified Object is equal to this Map
             * @see Map#equals(Object)
             * @since 1.2
             */
            public synchronized boolean equals(Object o) {
                if (o == this )
                    return true;

                if (!(o instanceof  Map))
                    return false;
                Map<K, V> t = (Map<K, V>) o;
                if (t.size() != size())
                    return false;

                try {
                    Iterator<Map.Entry<K, V>> i = entrySet().iterator();
                    while (i.hasNext()) {
                        Map.Entry<K, V> e = i.next();
                        K key = e.getKey();
                        V value = e.getValue();
                        if (value == null) {
                            if (!(t.get(key) == null && t.containsKey(key)))
                                return false;
                        } else {
                            if (!value.equals(t.get(key)))
                                return false;
                        }
                    }
                } catch (ClassCastException unused) {
                    return false;
                } catch (NullPointerException unused) {
                    return false;
                }

                return true;
            }

            /**
             * Returns the hash code value for this Map as per the definition in the
             * Map interface.
             *
             * @see Map#hashCode()
             * @since 1.2
             */
            public synchronized int hashCode() {
                /*
                 * This code detects the recursion caused by computing the hash code
                 * of a self-referential hash table and prevents the stack overflow
                 * that would otherwise result.  This allows certain 1.1-era
                 * applets with self-referential hash tables to work.  This code
                 * abuses the loadFactor field to do double-duty as a hashCode
                 * in progress flag, so as not to worsen the space performance.
                 * A negative load factor indicates that hash code computation is
                 * in progress.
                 */
                int h = 0;
                if (count == 0 || loadFactor < 0)
                    return h; // Returns zero

                loadFactor = -loadFactor; // Mark hashCode computation in progress
                Entry[] tab = table;
                for (int i = 0; i < tab.length; i++)
                    for (Entry e = tab[i]; e != null; e = e.next)
                        h += e.key.hashCode() ^ e.value.hashCode();
                loadFactor = -loadFactor; // Mark hashCode computation complete

                return h;
            }

            /**
             * Save the state of the Hashtable to a stream (i.e., serialize it).
             *
             * @serialData The <i>capacity</i> of the Hashtable (the length of the
             *		   bucket array) is emitted (int), followed by the
             *		   <i>size</i> of the Hashtable (the number of key-value
             *		   mappings), followed by the key (Object) and value (Object)
             *		   for each key-value mapping represented by the Hashtable
             *		   The key-value mappings are emitted in no particular order.
             */
            private synchronized void writeObject(java.io.ObjectOutputStream s)
                    throws IOException {
                // Write out the length, threshold, loadfactor
                s.defaultWriteObject();

                // Write out length, count of elements and then the key/value objects
                s.writeInt(table.length);
                s.writeInt(count);
                for (int index = table.length - 1; index >= 0; index--) {
                    Entry entry = table[index];

                    while (entry != null) {
                        s.writeObject(entry.key);
                        s.writeObject(entry.value);
                        entry = entry.next;
                    }
                }
            }

            /**
             * Reconstitute the Hashtable from a stream (i.e., deserialize it).
             */
            private void readObject(java.io.ObjectInputStream s)
                    throws IOException, ClassNotFoundException {
                // Read in the length, threshold, and loadfactor
                s.defaultReadObject();

                // Read the original length of the array and number of elements
                int origlength = s.readInt();
                int elements = s.readInt();

                // Compute new size with a bit of room 5% to grow but
                // no larger than the original size.  Make the length
                // odd if it's large enough, this helps distribute the entries.
                // Guard against the length ending up zero, that's not valid.
                int length = (int) (elements * loadFactor) + (elements / 20)
                        + 3;
                if (length > elements && (length & 1) == 0)
                    length--;
                if (origlength > 0 && length > origlength)
                    length = origlength;

                Entry[] table = new Entry[length];
                count = 0;

                // Read the number of elements and then all the key/value objects
                for (; elements > 0; elements--) {
                    K key = (K) s.readObject();
                    V value = (V) s.readObject();
                    // synch could be eliminated for performance
                    reconstitutionPut(table, key, value);
                }
                this .table = table;
            }

            /**
             * The put method used by readObject. This is provided because put
             * is overridable and should not be called in readObject since the
             * subclass will not yet be initialized.
             *
             * <p>This differs from the regular put method in several ways. No
             * checking for rehashing is necessary since the number of elements
             * initially in the table is known. The modCount is not incremented
             * because we are creating a new instance. Also, no return value
             * is needed.
             */
            private void reconstitutionPut(Entry[] tab, K key, V value)
                    throws StreamCorruptedException {
                if (value == null) {
                    throw new java.io.StreamCorruptedException();
                }
                // Makes sure the key is not already in the hashtable.
                // This should not happen in deserialized version.
                int hash = key.hashCode();
                int index = (hash & 0x7FFFFFFF) % tab.length;
                for (Entry<K, V> e = tab[index]; e != null; e = e.next) {
                    if ((e.hash == hash) && e.key.equals(key)) {
                        throw new java.io.StreamCorruptedException();
                    }
                }
                // Creates the new entry.
                Entry<K, V> e = tab[index];
                tab[index] = new Entry<K, V>(hash, key, value, e);
                count++;
            }

            /**
             * Hashtable collision list.
             */
            private static class Entry<K, V> implements  Map.Entry<K, V> {
                int hash;
                K key;
                V value;
                Entry<K, V> next;

                protected Entry(int hash, K key, V value, Entry<K, V> next) {
                    this .hash = hash;
                    this .key = key;
                    this .value = value;
                    this .next = next;
                }

                protected Object clone() {
                    return new Entry<K, V>(hash, key, value,
                            (next == null ? null : (Entry<K, V>) next.clone()));
                }

                // Map.Entry Ops

                public K getKey() {
                    return key;
                }

                public V getValue() {
                    return value;
                }

                public V setValue(V value) {
                    if (value == null)
                        throw new NullPointerException();

                    V oldValue = this .value;
                    this .value = value;
                    return oldValue;
                }

                public boolean equals(Object o) {
                    if (!(o instanceof  Map.Entry))
                        return false;
                    Map.Entry e = (Map.Entry) o;

                    return (key == null ? e.getKey() == null : key.equals(e
                            .getKey()))
                            && (value == null ? e.getValue() == null : value
                                    .equals(e.getValue()));
                }

                public int hashCode() {
                    return hash ^ (value == null ? 0 : value.hashCode());
                }

                public String toString() {
                    return key.toString() + "=" + value.toString();
                }
            }

            // Types of Enumerations/Iterations
            private static final int KEYS = 0;
            private static final int VALUES = 1;
            private static final int ENTRIES = 2;

            /**
             * A hashtable enumerator class.  This class implements both the
             * Enumeration and Iterator interfaces, but individual instances
             * can be created with the Iterator methods disabled.  This is necessary
             * to avoid unintentionally increasing the capabilities granted a user
             * by passing an Enumeration.
             */
            private class Enumerator<T> implements  Enumeration<T>, Iterator<T> {
                Entry[] table = Hashtable.this .table;
                int index = table.length;
                Entry<K, V> entry = null;
                Entry<K, V> lastReturned = null;
                int type;

                /**
                 * Indicates whether this Enumerator is serving as an Iterator
                 * or an Enumeration.  (true -> Iterator).
                 */
                boolean iterator;

                /**
                 * The modCount value that the iterator believes that the backing
                 * Hashtable should have.  If this expectation is violated, the iterator
                 * has detected concurrent modification.
                 */
                protected int expectedModCount = modCount;

                Enumerator(int type, boolean iterator) {
                    this .type = type;
                    this .iterator = iterator;
                }

                public boolean hasMoreElements() {
                    Entry<K, V> e = entry;
                    int i = index;
                    Entry[] t = table;
                    /* Use locals for faster loop iteration */
                    while (e == null && i > 0) {
                        e = t[--i];
                    }
                    entry = e;
                    index = i;
                    return e != null;
                }

                public T nextElement() {
                    Entry<K, V> et = entry;
                    int i = index;
                    Entry[] t = table;
                    /* Use locals for faster loop iteration */
                    while (et == null && i > 0) {
                        et = t[--i];
                    }
                    entry = et;
                    index = i;
                    if (et != null) {
                        Entry<K, V> e = lastReturned = entry;
                        entry = e.next;
                        return type == KEYS ? (T) e.key
                                : (type == VALUES ? (T) e.value : (T) e);
                    }
                    throw new NoSuchElementException("Hashtable Enumerator");
                }

                // Iterator methods
                public boolean hasNext() {
                    return hasMoreElements();
                }

                public T next() {
                    if (modCount != expectedModCount)
                        throw new ConcurrentModificationException();
                    return nextElement();
                }

                public void remove() {
                    if (!iterator)
                        throw new UnsupportedOperationException();
                    if (lastReturned == null)
                        throw new IllegalStateException("Hashtable Enumerator");
                    if (modCount != expectedModCount)
                        throw new ConcurrentModificationException();

                    synchronized (Hashtable.this ) {
                        Entry[] tab = Hashtable.this .table;
                        int index = (lastReturned.hash & 0x7FFFFFFF)
                                % tab.length;

                        for (Entry<K, V> e = tab[index], prev = null; e != null; prev = e, e = e.next) {
                            if (e == lastReturned) {
                                modCount++;
                                expectedModCount++;
                                if (prev == null)
                                    tab[index] = e.next;
                                else
                                    prev.next = e.next;
                                count--;
                                lastReturned = null;
                                return;
                            }
                        }
                        throw new ConcurrentModificationException();
                    }
                }
            }
        }
w___ww__.__j_a___v_a__2s_.___c_o___m___ | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.