Python Text Processing with NLTK 2.0 Cookbook
Formats:

save 15%!
save 44%!

Also available on: |
![]() ![]() ![]() ![]() |
- Quickly get to grips with Natural Language Processing – with Text Analysis, Text Mining, and beyond
- Learn how machines and crawlers interpret and process natural languages
- Easily work with huge amounts of data and learn how to handle distributed processing
- Part of Packt's Cookbook series: Each recipe is a carefully organized sequence of instructions to complete the task as efficiently as possible
Book Details
Language : EnglishPaperback : 272 pages [ 235mm x 191mm ]
Release Date : November 2010
ISBN : 1849513600
ISBN 13 : 9781849513609
Author(s) : Jacob Perkins
Topics and Technologies : All Books, Cookbooks, Open Source
Table of Contents
Preface
Chapter 1: Tokenizing Text and WordNet Basics
Chapter 2: Replacing and Correcting Words
Chapter 3: Creating Custom Corpora
Chapter 4: Part-of-Speech Tagging
Chapter 5: Extracting Chunks
Chapter 6: Transforming Chunks and Trees
Chapter 7: Text Classification
Chapter 8: Distributed Processing and Handling Large Datasets
Chapter 9: Parsing Specific Data
Appendix: Penn Treebank Part-of-Speech Tags
Index
Jacob Perkins
Sample chapters
You can view our sample chapters and prefaces of this title on PacktLib or download sample chapters in PDF format.
Code Downloads
Download the code and support files for this book.
Errata
- 4 submitted: last submission 26 Jul 2012Errata type: Others | Page number: 29
The WordNetLemmatizer is a thin wrapper around the WordNet corpus, and uses the morphy() function of the WordNetCorpusReader to fnd a lemma. If no lemma is found, or the word itself is a lemma, the word is returned as it is. Unlike with stemming, knowing the part of speech of the word is important. As demonstrated previously, "cooking" does not return a different lemma unless you specify that the part of speech (pos) is a verb. This is because the default part of speech is a noun, and as a noun, "cooking" is its own lemma. "Cookbooks", on the other hand, is a noun, and its lemma is the singular form, "cookbook".
Errata type: Others | Page number: 35
The replacement string is then used to keep all the matched groups, while discarding the backreference to the second group. So the word "looooove" gets split into
(looo)(o)o(ve)
and then recombined as "loooove", discarding the last "o". This continues until only one "o" remains, when repeat_regexp no longer matches the string, and no more characters are removed.
Page: 40 | Errata Type: Code
First line of Code, "wordReplacer" should be "WordReplacer"
Page: 36 | Errata type: Code
Replace the last line of the code snippet:
self.max_dist = 2
with
self.max_dist = max_dist
Submit Errata
Please let us know if you have found any errors not listed on this list by completing our errata submission form. Our editors will check them and add them to this list. Thank you.
- Learn Text categorization and Topic identification
- Learn Stemming and Lemmatization and how to go beyond the usual spell checker
- Replace negations with antonyms in your text
- Learn to tokenize words into lists of sentences and words, and gain an insight into WordNet
- Transform and manipulate chunks and trees
- Learn advanced features of corpus readers and create your own custom corpora
- Tag different parts of speech by creating, training, and using a part-of-speech tagger
- Improve accuracy by combining multiple part-of-speech taggers
- Learn how to do partial parsing to extract small chunks of text from a part-of-speech tagged sentence
- Produce an alternative canonical form without changing the meaning by normalizing parsed chunks
- Learn how search engines use Natural Language Processing to process text
- Make your site more discoverable by learning how to automatically replace words with more searched equivalents
- Parse dates, times, and HTML
- Train and manipulate different types of classifiers

Annual subscription:
$220.00 per annum
Monthly subscription:
$21.99 per month
Natural Language Processing is used everywhere – in search engines, spell checkers, mobile phones, computer games – even your washing machine. Python's Natural Language Toolkit (NLTK) suite of libraries has rapidly emerged as one of the most efficient tools for Natural Language Processing. You want to employ nothing less than the best techniques in Natural Language Processing – and this book is your answer.
Python Text Processing with NLTK 2.0 Cookbook is your handy and illustrative guide, which will walk you through all the Natural Language Processing techniques in a step–by-step manner. It will demystify the advanced features of text analysis and text mining using the comprehensive NLTK suite.
This book cuts short the preamble and you dive right into the science of text processing with a practical hands-on approach.
Get started off with learning tokenization of text. Get an overview of WordNet and how to use it. Learn the basics as well as advanced features of Stemming and Lemmatization. Discover various ways to replace words with simpler and more common (read: more searched) variants. Create your own corpora and learn to create custom corpus readers for JSON files as well as for data stored in MongoDB. Use and manipulate POS taggers. Transform and normalize parsed chunks to produce a canonical form without changing their meaning. Dig into feature extraction and text classification. Learn how to easily handle huge amounts of data without any loss in efficiency or speed.
This book will teach you all that and beyond, in a hands-on learn-by-doing manner. Make yourself an expert in using the NLTK for Natural Language Processing with this handy companion.
The learn-by-doing approach of this book will enable you to dive right into the heart of text processing from the very first page. Each recipe is carefully designed to fulfill your appetite for Natural Language Processing. Packed with numerous illustrative examples and code samples, it will make the task of using the NLTK for Natural Language Processing easy and straightforward.
This book is for Python programmers who want to quickly get to grips with using the NLTK for Natural Language Processing. Familiarity with basic text processing concepts is required. Programmers experienced in the NLTK will also find it useful. Students of linguistics will find it invaluable.