I've been playing around with dynamic programming in Haskell. Practically every tutorial I've seen on the subject gives the same, very elegant algorithm based on memoization and the laziness of the Array type. Inspired by those examples, I wrote the following algorithm as a test:
-- pascal n returns the nth entry on the main diagonal of pascal's triangle
-- (mod a million for efficiency)
pascal :: Int -> Int
pascal n = p ! (n,n) where
p = listArray ((0,0),(n,n)) [f (i,j) | i <- [0 .. n], j <- [0 .. n]]
f :: (Int,Int) -> Int
f (_,0) = 1
f (0,_) = 1
f (i,j) = (p ! (i, j-1) + p ! (i-1, j)) `mod` 1000000
My only problem is efficiency. Even using GHC's -O2, this program takes 1.6 seconds to compute pascal 1000
, which is about 160 times slower than an equivalent unoptimized C++ program. And the gap only widens with larger inputs.
It seems like I've tried every possible permutation of the above code, along with suggested alternatives like the data-memocombinators library, and they all had the same or worse performance. The one thing I haven't tried is the ST Monad, which I'm sure could be made to run the program only slighter slower than the C version. But I'd really like to write it in idiomatic Haskell, and I don't understand why the idiomatic version is so inefficient. I have two questions:
Why is the above code so inefficient? It seems like a straightforward iteration through a matrix, with an arithmetic operation at each entry. Clearly Haskell is doing something behind the scenes I don't understand.
Is there a way to make it much more efficient (at most 10-15 times the runtime of a C program) without sacrificing its stateless, recursive formulation (vis-a-vis an implementation using mutable arrays in the ST Monad)?
Thanks a lot.
Edit: The array module used is the standard Data.Array
rem
instead ofmod
– is7s Jun 5 at 22:54