Skip navigation.
Home
Semantic Software Lab
Concordia University
Montréal, Canada

Bioinformatics

First Release of the Open Mutation Miner (OMM) System

We are happy to announce the first major public release of our protein mutation impact analysis system, Open Mutation Miner (OMM), together with a new open access publication: Naderi, N., and R. Witte, "Automated extraction and semantic analysis of mutation impacts from the biomedical literature", BMC Genomics, vol. 13, no. Suppl 4, pp. S10, 06/2012.

OMM is the first comprehensive, fully open source system for extracting and analysing mutation-related information from full-text research papers. Novel features not available in other systems include: the detection of various forms of mutation mentions, in particular mutation series, full mutation impact analysis, including linking impacts with the causative mutation and the affected protein properties, such as molecular functions, kinetic constants, kinetic values, units of measurements, and physical quantities. OMM provides output options in various formats, including populating an OWL ontology, Web service access, structured queries, and interactive use embedded in desktop clients. OMM is robust and scalable: we processed the entire PubMed Open Access Subset (nearly half a million full-text papers) on a standard desktop PC, and larger document sets can be easily processed and indexed on appropriate hardware.

Text Mining Assistants in Wikis for Biocuration

Sateli, B., C. Murphy, R. Witte, M. - J. Meurs, and A. Tsang, "Text Mining Assistants in Wikis for Biocuration", 5th International Biocuration Conference, Washington DC, USA : International Society for Biocuration, pp. 126, 04/2012.

OMM Query

OMM Query is our online search interface for an index for full-text research papers from the PMC Open Access Corpus (nearly half a million documents) that have been mined for mutation information with Open Mutation Miner (OMM) and OrganismTagger.

Open Mutation Miner (OMM)

Mutations as sources of evolution have long been the focus of attention in the biomedical literature. Accessing the mutational information and their impacts on protein properties facilitates research in various domains, such as enzymology and pharmacology. However, manually reading through the rich and fast growing repository of biomedical literature is expensive and time-consuming. Text mining methods can help by automatically analysing the literature and extracting mutation-related knowledge into a structured represenation.

Our Open Mutation Miner (OMM) system provides a number of advanced text mining components for mutation mining from full-text research papers, including the detection of various forms of mutation mentions, protein properties, organisms, impact mentions, and the relations between them. OMM provides output options in various formats, including populating an OWL ontology, Web service access, structured queries, and interactive use embedded in desktop clients. It is described and evaluated in detail in our paper, Naderi, N., and R. Witte, "Automated extraction and semantic analysis of mutation impacts from the biomedical literature", BMC Genomics, vol. 13, no. Suppl 4, pp. S10, 06/2012.

Syndicate content