
MySQL Proxy Guide

MySQL Proxy Guide

Abstract

This is the MySQL Proxy extract from the MySQL Reference Manual. This document covers MySQL Proxy 0.8.2.

For release notes detailing the changes in each release of MySQL Proxy, see MySQL Proxy Release Notes.

Document generated on: 2013-01-18 (revision: 33983)

http://dev.mysql.com/doc/relnotes/mysql-proxy/en/

iii

Table of Contents
Preface and Legal Notices .. v
1. MySQL Proxy ... 1
2. MySQL Proxy Supported Platforms ... 3
3. Installing MySQL Proxy .. 5

3.1. Installing MySQL Proxy from a Binary Distribution ... 5
3.2. Installing MySQL Proxy from a Source Distribution .. 5
3.3. Installing MySQL Proxy from the Bazaar Repository .. 6
3.4. Setting Up MySQL Proxy as a Windows Service ... 7

4. MySQL Proxy Command Options .. 9
5. MySQL Proxy Scripting ... 19

5.1. Proxy Scripting Sequence During Query Injection .. 21
5.2. Internal Structures .. 23
5.3. Capturing a Connection with connect_server() .. 30
5.4. Examining the Handshake with read_handshake() .. 30
5.5. Examining the Authentication Credentials with read_auth() .. 31
5.6. Accessing Authentication Information with read_auth_result() 31
5.7. Manipulating Queries with read_query() ... 31
5.8. Manipulating Results with read_query_result() .. 32

6. Using MySQL Proxy ... 35
6.1. Using the Administration Interface .. 35

7. MySQL Proxy FAQ ... 41
A. Third Party Licenses .. 47

A.1. GLib License (for MySQL Proxy) .. 47
A.2. GNU Lesser General Public License Version 2.1, February 1999 ... 48
A.3. libevent License .. 56
A.4. Libiconv License .. 58
A.5. libintl License .. 58
A.6. LPeg Library License ... 59
A.7. Lua (liblua) License ... 59
A.8. LuaFileSystem Library License ... 59
A.9. PCRE License ... 60

iv

v

Preface and Legal Notices
This is the MySQL Proxy extract from the MySQL Reference Manual. This document covers MySQL Proxy
0.8.2.

Legal Notices

Copyright © 1997, 2013, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted
in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free.
If you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and
technical data delivered to U.S. Government customers are "commercial computer software" or
"commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be
subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19,
Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway,
Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which
may create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe
use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by
use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. MySQL is a trademark of Oracle
Corporation and/or its affiliates, and shall not be used without Oracle's express written authorization. Other
names may be trademarks of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

This document in any form, software or printed matter, contains proprietary information that is the exclusive
property of Oracle. Your access to and use of this material is subject to the terms and conditions of your
Oracle Software License and Service Agreement, which has been executed and with which you agree
to comply. This document and information contained herein may not be disclosed, copied, reproduced,
or distributed to anyone outside Oracle without prior written consent of Oracle or as specifically provided
below. This document is not part of your license agreement nor can it be incorporated into any contractual
agreement with Oracle or its subsidiaries or affiliates.

Legal Notices

vi

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion to other
formats is allowed as long as the actual content is not altered or edited in any way. You shall not publish
or distribute this documentation in any form or on any media, except if you distribute the documentation in
a manner similar to how Oracle disseminates it (that is, electronically for download on a Web site with the
software) or on a CD-ROM or similar medium, provided however that the documentation is disseminated
together with the software on the same medium. Any other use, such as any dissemination of printed
copies or use of this documentation, in whole or in part, in another publication, requires the prior written
consent from an authorized representative of Oracle. Oracle and/or its affiliates reserve any and all rights
to this documentation not expressly granted above.

For more information on the terms of this license, or for details on how the MySQL documentation is built
and produced, please visit MySQL Contact & Questions.

For additional licensing information, including licenses for third-party libraries used by MySQL products,
see Preface and Legal Notices.

For help with using MySQL, please visit either the MySQL Forums or MySQL Mailing Lists where you can
discuss your issues with other MySQL users.

For additional documentation on MySQL products, including translations of the documentation into other
languages, and downloadable versions in variety of formats, including HTML and PDF formats, see the
MySQL Documentation Library.

http://dev.mysql.com/contact/
http://forums.mysql.com
http://lists.mysql.com
http://dev.mysql.com/doc

1

Chapter 1. MySQL Proxy
The MySQL Proxy is an application that communicates over the network using the MySQL network
protocol and provides communication between one or more MySQL servers and one or more MySQL
clients. Because MySQL Proxy uses the MySQL network protocol, it can be used without modification with
any MySQL-compatible client that uses the protocol. This includes the mysql command-line client, any
clients that uses the MySQL client libraries, and any connector that supports the MySQL network protocol.

In the most basic configuration, MySQL Proxy simply interposes itself between the server and clients,
passing queries from the clients to the MySQL Server and returning the responses from the MySQL Server
to the appropriate client. In more advanced configurations, the MySQL Proxy can also monitor and alter
the communication between the client and the server. Query interception enables you to add profiling, and
interception of the exchanges is scriptable using the Lua scripting language.

By intercepting the queries from the client, the proxy can insert additional queries into the list of queries
sent to the server, and remove the additional results when they are returned by the server. Using this
functionality you can return the results from the original query to the client while adding informational
statements to each query, for example, to monitor their execution time or progress, and separately log the
results.

The proxy enables you to perform additional monitoring, filtering, or manipulation of queries without
requiring you to make any modifications to the client and without the client even being aware that it is
communicating with anything but a genuine MySQL server.

This documentation covers MySQL Proxy 0.8.2. And MySQL Proxy contains third-party code. For license
information on third-party code, see Licenses for Third-Party Components.

Warning

MySQL Proxy is currently an Alpha release and should not be used within
production environments.

Important

MySQL Proxy is compatible with MySQL 5.0 or later. Testing has not been
performed with Version 4.1. Please provide feedback on your experiences using the
MySQL Proxy Forum.

For release notes detailing the changes in each release of MySQL Proxy, see MySQL Proxy Release
Notes.

http://dev.mysql.com/doc/refman/5.5/en/licenses-third-party.html
http://forums.mysql.com/list.php?146
http://dev.mysql.com/doc/relnotes/mysql-proxy/en/
http://dev.mysql.com/doc/relnotes/mysql-proxy/en/

2

3

Chapter 2. MySQL Proxy Supported Platforms
MySQL Proxy is currently available as a precompiled binary for the following platforms:

• Linux (including Red Hat, Fedora, Debian, SuSE) and derivatives

• Mac OS X

• FreeBSD

• IBM AIX

• Sun Solaris

• Microsoft Windows (including Microsoft Windows XP, Microsoft Windows Vista, Microsoft Windows
Server 2003, Microsoft Windows Server 2008)

Note

You must have the .NET Framework 1.1 or higher installed.

Other Unix/Linux platforms not listed should be compatible by using the source package and building
MySQL Proxy locally.

System requirements for the MySQL Proxy application are the same as the main MySQL server. Currently
MySQL Proxy is compatible only with MySQL 5.0.1 and later. MySQL Proxy is provided as a standalone,
statically linked binary. You need not have MySQL or Lua installed.

4

5

Chapter 3. Installing MySQL Proxy

Table of Contents
3.1. Installing MySQL Proxy from a Binary Distribution ... 5
3.2. Installing MySQL Proxy from a Source Distribution .. 5
3.3. Installing MySQL Proxy from the Bazaar Repository .. 6
3.4. Setting Up MySQL Proxy as a Windows Service ... 7

You have three choices for installing MySQL Proxy:

• Precompiled binaries are available for a number of different platforms. See Section 3.1, “Installing
MySQL Proxy from a Binary Distribution”.

• You can install from the source code to build on an environment not supported by the binary
distributions. See Section 3.2, “Installing MySQL Proxy from a Source Distribution”.

• The latest version of the MySQL Proxy source code is available through a development repository is the
best way to stay up to date with the latest fixes and revisions. See Section 3.3, “Installing MySQL Proxy
from the Bazaar Repository”.

3.1. Installing MySQL Proxy from a Binary Distribution
If you download a binary package, you must extract and copy the package contents to your desired
installation directory. The package contains files required by MySQL Proxy, including additional Lua scripts
and other components required for execution.

To install, unpack the archive into the desired directory, then modify your PATH environment variable so
that you can use the mysql-proxy command directly:

shell> cd /usr/local
shell> tar zxf mysql-proxy-0.8.2-platform.tar.gz
shell> PATH=$PATH:/usr/local/mysql-proxy-0.8.2-platform/sbin

To update the path globally on a system, you might need administrator privileges to modify the appropriate
/etc/profile, /etc/bashrc, or other system configuration file.

On Windows, you can update the PATH environment variable using this procedure:

1. On the Windows desktop, right-click the My Computer icon, and select Properties.

2. Next select the Advanced tab from the System Properties menu that appears, and click the
Environment Variables button.

3. Under System Variables, select Path, then click the Edit button. The Edit System Variable dialogue
should appear.

The Microsoft Visual C++ runtime libraries are a requirement for running MySQL Proxy as of version 0.8.2.
Users that do not have these libraries must download and install the Microsoft Visual C++ 2008 Service
Pack 1 Redistributable Package MFC Security Update. Use the following link to obtain the package:

http://www.microsoft.com/download/en/details.aspx?id=26368

3.2. Installing MySQL Proxy from a Source Distribution
You can download a source package and compile the MySQL Proxy yourself. To build from source, you
must have the following prerequisite components installed:

http://www.microsoft.com/download/en/details.aspx?id=26368

Installing MySQL Proxy from the Bazaar Repository

6

• libevent 1.x or higher (1.3b or later is preferred).

• lua 5.1.x or higher.

• glib2 2.6.0 or higher.

• pkg-config.

• libtool 1.5 or higher.

• MySQL 5.0.x or higher developer files.

Note

On some operating systems, you might need to manually build the required
components to get the latest version. If you have trouble compiling MySQL Proxy,
consider using a binary distributions instead.

After verifying that the prerequisite components are installed, configure and build MySQL Proxy:

shell> tar zxf mysql-proxy-0.8.2.tar.gz
shell> cd mysql-proxy-0.8.2
shell> ./configure
shell> make

To test the build, use the check target to make:

shell> make check

The tests try to connect to localhost using the root user. To provide a password, set the
MYSQL_PASSWORD environment variable:

shell> MYSQL_PASSWORD=root_pwd make check

You can install using the install target:

shell> make install

By default, mysql-proxy is installed into /usr/local/sbin/mysql-proxy. The Lua example scripts
are installed into /usr/local/share.

3.3. Installing MySQL Proxy from the Bazaar Repository

The MySQL Proxy source is available through a public Bazaar repository and is the quickest way to get the
latest releases and fixes.

A build from the Bazaar repository requires that the following prerequisite components be installed:

• Bazaar 1.10.0 or later.

• libtool 1.5 or higher.

• autoconf 2.56 or higher.

• automake 1.10 or higher.

• libevent 1.x or higher (1.3b or later is preferred).

• lua 5.1.x or higher.

Setting Up MySQL Proxy as a Windows Service

7

• glib2 2.4.0 or higher.

• pkg-config.

• MySQL 5.0.x or higher developer files.

The mysql-proxy source is hosted on Launchpad. To check out a local copy of the Bazaar repository,
use bzr:

shell> bzr branch lp:mysql-proxy

The preceding command downloads a complete version of the Bazaar repository for mysql-proxy. The
main source files are located within the trunk subdirectory. The configuration scripts must be generated
before you can configure and build mysql-proxy. The autogen.sh script generates the required
configuration scripts for you:

shell> sh ./autogen.sh

The autogen.sh script creates the standard configure script, which you then use to configure and build
with make:

shell> ./configure
shell> make
shell> make install

To create a standalone source distribution, identical to the source distribution available for download, use
this command:

shell> make distcheck

The preceding command creates the file mysql-proxy-0.8.2.tar.gz (with the corresponding current
version) within the current directory.

3.4. Setting Up MySQL Proxy as a Windows Service

The MySQL distribution on Windows includes the mysql-proxy-svc.exe command that enables
a MySQL Proxy instance to be managed by the Windows service control manager. You can control
the service, including automatically starting and stopping it during boot, reboot and shutdown, without
separately running the MySQL Proxy application.

To set up a MySQL Proxy service, use the sc command to create a new service using the MySQL Proxy
service command. Specify the MySQL Proxy options on the sc command line, and identify the service with
a unique name. For example, to configure a new MySQL Proxy instance that will automatically start when
your system boots, redirecting queries to the local MySQL server:

C:\> sc create "Proxy" DisplayName= "MySQL Proxy" start= "auto" »
 binPath= "C:\Program Files\MySQL\mysql-proxy-0.8.2\bin\mysql-proxy-svc.exe »
 --proxy-backend-addresses=127.0.0.1:3306"

Note

The space following the equal sign after each property is required; failure to include
it results in an error.

The preceding command creates a new service called Proxy. You can start and stop the service using
the net start|stop command with the service name. The service is not automatically started after it is
created. To start the service:

C:\> net start proxy

Setting Up MySQL Proxy as a Windows Service

8

The MySQL Proxy service is starting.
The MySQL Proxy service was started successfully.

You can specify additional command-line options to the sc command. You can also set up multiple MySQL
Proxy services on the same machine (providing they are configured to listen on different ports and/or IP
addresses.

You can delete a service that you have created:

C:\> sc delete proxy

For more information on creating services using sc, see How to create a Windows service by using
Sc.exe.

http://support.microsoft.com/kb/251192
http://support.microsoft.com/kb/251192

9

Chapter 4. MySQL Proxy Command Options
To start MySQL Proxy, you can run it directly from the command line:

shell> mysql-proxy

For most situations, you specify at least the host name or address and the port number of the backend
MySQL server to which the MySQL Proxy should pass queries.

You can specify options to mysql-proxy either on the command line, or by using a configuration file and
the --defaults-file [13] command-line option to specify the file location.

If you use a configuration file, format it as follows:

• Specify the options within a [mysql-proxy] configuration group. For example:

[mysql-proxy]
admin-address = host:port

• Specify all configuration options in the form of a configuration name and the value to set.

• For options that are a simple toggle on the command line (for example, --proxy-skip-
profiling [17]), use true or false. For example, the following is invalid:

[mysql-proxy]
proxy-skip-profiling

But this is valid:

[mysql-proxy]
proxy-skip-profiling = true

• Give the configuration file Unix permissions of 0660 (readable and writable by user and group, no
access for others).

Failure to adhere to any of these requirements causes mysql-proxy to generate an error during startup.

The following tables list the supported configuration file and command-line options.

Table 4.1. mysql-proxy Help Options

Format Option File Description

--help [11] Show help options

--help-admin [11] Show admin module options

--help-all [11] Show all help options

--help-proxy [11] Show proxy module options

Table 4.2. mysql-proxy Admin Options

Format Option File Description

--admin-
address=host:port [11]

admin-
address=host:port [11]

The admin module listening host and port

--admin-lua-
script=file_name [12]

admin-lua-
script=file_name [12]

Script to execute by the admin module

--admin-
password=password [12]

admin-
password=password [12]

Authentication password for admin module

10

Format Option File Description

--admin-
username=user_name [12]

admin-
username=user_name [12]

Authentication user name for admin module

--proxy-
address=host:port [15]

proxy-
address=host:port [15]

The listening proxy server host and port

Table 4.3. mysql-proxy Proxy Options

Format Option File Description Removed

--no-proxy [15] no-proxy [15] Do not start the proxy module

--proxy-backend-
addresses=host:port [16]

proxy-backend-
addresses=host:port [16]

The MySQL server host and port

--proxy-fix-
bug-25371 [17]

proxy-fix-
bug-25371 [17]

Enable the fix for Bug #25371 for older libmysql
versions

0.8.1

--proxy-lua-
script=file_name [17]

proxy-lua-
script=file_name [17]

Filename for Lua script for proxy operations

--proxy-pool-
no-change-
user [17]

proxy-pool-
no-change-
user [17]

Do not use the protocol CHANGE_USER command
to reset the connection when coming from the
connection pool

--proxy-read-
only-backend-
addresses=host:port [16]

proxy-read-
only-backend-
addresses=host:port [16]

The MySQL server host and port (read only)

--proxy-skip-
profiling [17]

proxy-skip-
profiling [17]

Disable query profiling

Table 4.4. mysql-proxy Applications Options

Format Option File Description

--
basedir=dir_name [12]

basedir=dir_name [12] The base directory prefix for paths in the configuration

--daemon [13] daemon [13] Start in daemon mode

--defaults-
file=file_name [13]

 The configuration file to use

--event-
threads=count [13]

event-
threads=count [13]

The number of event-handling threads

--keepalive [13] keepalive [13] Try to restart the proxy if a crash occurs

--log-backtrace-on-
crash [13]

log-backtrace-on-
crash [13]

Try to invoke the debugger and generate a backtrace on
crash

--log-
file=file_name [13]

log-
file=file_name [13]

The file where error messages are logged

--log-
level=level [14]

log-level=level [14] The logging level

--log-use-
syslog [14]

log-use-
syslog [14]

Log errors to syslog

--lua-
cpath=dir_name [14]

lua-
cpath=dir_name [14]

Set the LUA_CPATH

11

Format Option File Description

--lua-
path=dir_name [14]

lua-
path=dir_name [14]

Set the LUA_PATH

--max-open-
files=count [14]

max-open-
files=count [14]

The maximum number of open files to support

--pid-
file=file_name [17]

pid-
file=file_name [17]

File in which to store the process ID

--plugin-
dir=dir_name [15]

plugin-
dir=dir_name [15]

Directory containing plugin files

--
plugins=plugin,... [15]

plugins=plugin,... [15] List of plugins to load

--
user=user_name [18]

user=user_name [18] The user to use when running mysql-proxy

--version [18] Show version information

Except as noted in the following details, all of the options can be used within the configuration file by
supplying the option and the corresponding value. For example:

[mysql-proxy]
log-file = /var/log/mysql-proxy.log
log-level = message

• --help [11], -h

Command-Line Format --help

-h

Show available help options.

• --help-admin [11]

Command-Line Format --help-admin

Show options for the admin module.

• --help-all [11]

Command-Line Format --help-all

Show all help options.

• --help-proxy [11]

Command-Line Format --help-proxy

Show options for the proxy module.

• --admin-address=host:port [11]

Command-Line Format --admin-address=host:port

Option-File Format admin-address=host:port

 Permitted Values

12

Type string

Default :4041

The host name (or IP address) and port for the administration port. The default is localhost:4041.

• --admin-lua-script=file_name [12]

Command-Line Format --admin-lua-script=file_name

Option-File Format admin-lua-script=file_name

Permitted Values

Type file name

Default

The script to use for the proxy administration module.

• --admin-password=password [12]

Command-Line Format --admin-password=password

Option-File Format admin-password=password

Permitted Values

Type string

Default

The password to use to authenticate users wanting to connect to the MySQL Proxy administration
module. This module uses the MySQL protocol to request a user name and password for connections.

• --admin-username=user_name [12]

Command-Line Format --admin-username=user_name

Option-File Format admin-username=user_name

Permitted Values

Type string

Default root

The user name to use to authenticate users wanting to connect to the MySQL Proxy administration
module. This module uses the MySQL protocol to request a user name and password for connections.
The default user name is root.

• --basedir=dir_name [12]

Command-Line Format --basedir=dir_name

Option-File Format basedir=dir_name

Permitted Values

Type directory name

The base directory to use as a prefix for all other file name configuration options. The base name should
be an absolute (not relative) directory. If you specify a relative directory, mysql-proxy generates an
error during startup.

13

• --daemon [13]

Command-Line Format --daemon

Option-File Format daemon

Starts the proxy in daemon mode.

• --defaults-file=file_name [13]

Command-Line Format --defaults-file=file_name

The file to read for configuration options. If not specified, MySQL Proxy takes options only from the
command line.

• --event-threads=count [13]

Command-Line Format --event-threads=count

Option-File Format event-threads=count

Permitted Values

Type numeric

Default 1

The number of event threads to reserve to handle incoming requests.

• --keepalive [13]

Command-Line Format --keepalive

Option-File Format keepalive

Create a process surrounding the main mysql-proxy process that attempts to restart the main mysql-
proxy process in the event of a crash or other failure.

Note

The --keepalive [13] option is not available on Microsoft Windows. When
running as a service, mysql-proxy automatically restarts.

• --log-backtrace-on-crash [13]

Command-Line Format --log-backtrace-on-crash

Option-File Format log-backtrace-on-crash

Log a backtrace to the error log and try to initialize the debugger in the event of a failure.

• --log-file=file_name [13]

Command-Line Format --log-file=file_name

Option-File Format log-file=file_name

Permitted Values

Type file name

14

The file to use to record log information. If this option is not given, mysql-proxy logs to the standard
error output.

• --log-level=level [14]

Command-Line Format --log-level=level

Option-File Format log-level=level

Permitted Values

Type enumeration

Valid
Values

error

warning

info

message

debug

The log level to use when outputting error messages. Messages with that level (or lower) are output. For
example, message level also outputs message with info, warning, and error levels.

• --log-use-syslog [14]

Command-Line Format --log-use-syslog

Option-File Format log-use-syslog

Log errors to the syslog (Unix/Linux only).

• --lua-cpath=dir_name [14]

Command-Line Format --lua-cpath=dir_name

Option-File Format lua-cpath=dir_name

Permitted Values

Type directory name

The LUA_CPATH to use when loading compiled modules or libraries for Lua scripts.

• --lua-path=dir_name [14]

Command-Line Format --lua-path=dir_name

Option-File Format lua-path=dir_name

Permitted Values

Type directory name

The LUA_CPATH to use when loading modules for Lua.

• --max-open-files=count [14]

Command-Line Format --max-open-files=count

15

Option-File Format max-open-files=count

Permitted Values

Type numeric

The maximum number of open files and sockets supported by the mysql-proxy process. Certain
scripts might require a higher value.

• --no-proxy [15]

Command-Line Format --no-proxy

Option-File Format no-proxy

Disable the proxy module.

• --plugin-dir=dir_name [15]

Command-Line Format --plugin-dir=dir_name

Option-File Format plugin-dir=dir_name

Permitted Values

Type directory name

The directory to use when loading plugins for mysql-proxy.

• --plugins=plugin [15]

Command-Line Format --plugins=plugin,...

Option-File Format plugins=plugin,...

Permitted Values

Type string

Loads a plugin.

When using this option on the command line, you can specify the option multiple times to specify
multiple plugins. For example:

shell> mysql-proxy --plugins=proxy --plugins=admin

When using the option within the configuration file, you should separate multiple plugins by commas.
The equivalent of the preceding example would be:

...
plugins=proxy,admin

• --proxy-address=host:port [15], -P host:port

Command-Line Format --proxy-address=host:port

-P host:port

Option-File Format proxy-address=host:port

Permitted Values

Type string

16

Default :4040

The listening host name (or IP address) and port of the proxy server. The default is :4040 (all IPs on
port 4040).

• --proxy-read-only-backend-addresses=host:port [16], -r host:port

Command-Line Format --proxy-read-only-backend-addresses=host:port

-r host:port

Option-File Format proxy-read-only-backend-addresses=host:port

Permitted Values

Type string

The listening host name (or IP address) and port of the proxy server for read-only connections. The
default is for this information not to be set.

Note

Setting this value only configures the servers within the corresponding internal
structure (see proxy.global.backends [24]). You can determine the
backend type by checking the type field for each connection.

You should therefore only use this option in combination with a script designed to
make use of the different backend types.

When using this option on the command line, you can specify the option and the server multiple times to
specify multiple backends. For example:

shell> mysql-proxy --proxy-read-only-backend-addresses=192.168.0.1:3306 --proxy-read-only-backend-addresses=192.168.0.2:3306

When using the option within the configuration file, you should separate multiple servers by commas.
The equivalent of the preceding example would be:

...
proxy-read-only-backend-addresses = 192.168.0.1:3306,192.168.0.2:3306

• --proxy-backend-addresses=host:port [16], -b host:port

Command-Line Format --proxy-backend-addresses=host:port

-b host:port

Option-File Format proxy-backend-addresses=host:port

Permitted Values

Type string

Default 127.0.0.1:3306

The host name (or IP address) and port of the MySQL server to connect to. You can specify multiple
backend servers by supplying multiple options. Clients are connected to each backend server in round-
robin fashion. For example, if you specify two servers A and B, the first client connection will go to server
A; the second client connection to server B and the third client connection to server A.

When using this option on the command line, you can specify the option and the server multiple times to
specify multiple backends. For example:

17

shell> mysql-proxy --proxy-backend-addresses 192.168.0.1:3306 --proxy-backend-addresses 192.168.0.2:3306

When using the option within the configuration file, you should separate multiple servers by commas.
The equivalent of the preceding example would be:

...
proxy-backend-addresses = 192.168.0.1:3306,192.168.0.2:3306

• --proxy-pool-no-change-user [17]

Command-Line Format --proxy-pool-no-change-user

Option-File Format proxy-pool-no-change-user

Disable use of the MySQL protocol CHANGE_USER command when reusing a connection from the pool of
connections specified by the proxy-backend-addresses list.

• --proxy-skip-profiling [17]

Command-Line Format --proxy-skip-profiling

Option-File Format proxy-skip-profiling

Disable query profiling (statistics time tracking). The default is for tracking to be enabled.

• --proxy-fix-bug-25371 [17]

Version Removed 0.8.1

Command-Line Format --proxy-fix-bug-25371

Option-File Format proxy-fix-bug-25371

Enable a workaround for an issue when connecting to a MySQL server later than 5.1.12 when using a
MySQL client library of any earlier version.

This option was removed in mysql-proxy 0.8.1. Now, mysql-proxy returns an error message at the
protocol level if it sees a COM_CHANGE_USER being sent to a server that has a version from 5.1.14 to
5.1.17.

• --proxy-lua-script=file_name [17], -s file_name

Command-Line Format --proxy-lua-script=file_name

-s file_name

Option-File Format proxy-lua-script=file_name

Permitted Values

Type file name

The Lua script file to be loaded. Note that the script file is not physically loaded and parsed until a
connection is made. Also note that the specified Lua script is reloaded for each connection; if the content
of the Lua script changes while mysql-proxy is running, the updated content is automatically used
when a new connection is made.

• --pid-file=file_name [17]

Command-Line Format --pid-file=file_name

18

Option-File Format pid-file=file_name

Permitted Values

Type file name

The name of the file in which to store the process ID.

• --user=user_name [18]

Command-Line Format --user=user_name

Option-File Format user=user_name

Permitted Values

Type string

Run mysql-proxy as the specified user.

• --version [18], -V

Command-Line Format --version

-V

Show the version number.

The most common usage is as a simple proxy service (that is, without additional scripting). For basic proxy
operation, you must specify at least one proxy-backend-addresses option to specify the MySQL
server to connect to by default:

shell> mysql-proxy --proxy-backend-addresses=MySQL.example.com:3306

The default proxy port is 4040, so you can connect to your MySQL server through the proxy by specifying
the host name and port details:

shell> mysql --host=localhost --port=4040

If your server requires authentication information, this will be passed through natively without alteration by
mysql-proxy, so you must also specify the required authentication information:

shell> mysql --host=localhost --port=4040 \
 --user=user_name --password=password

You can also connect to a read-only port (which filters out UPDATE and INSERT queries) by connecting to
the read-only port. By default the host name is the default, and the port is 4042, but you can alter the host/
port information by using the --proxy-read-only-backend-addresses [16] command-line option.

For more detailed information on how to use these command-line options, and mysql-proxy in general in
combination with Lua scripts, see Chapter 6, Using MySQL Proxy.

http://dev.mysql.com/doc/refman/5.5/en/update.html
http://dev.mysql.com/doc/refman/5.5/en/insert.html

19

Chapter 5. MySQL Proxy Scripting

Table of Contents
5.1. Proxy Scripting Sequence During Query Injection .. 21
5.2. Internal Structures ... 23
5.3. Capturing a Connection with connect_server() .. 30
5.4. Examining the Handshake with read_handshake() .. 30
5.5. Examining the Authentication Credentials with read_auth() .. 31
5.6. Accessing Authentication Information with read_auth_result() .. 31
5.7. Manipulating Queries with read_query() ... 31
5.8. Manipulating Results with read_query_result() .. 32

You can control how MySQL Proxy manipulates and works with the queries and results that are passed
on to the MySQL server through the use of the embedded Lua scripting language. You can find out more
about the Lua programming language from the Lua Web site.

The following diagram shows an overview of the classes exposed by MySQL Proxy.

http://www.lua.org

20

Proxy Scripting Sequence During Query Injection

21

The primary interaction between MySQL Proxy and the server is provided by defining one or more
functions through an Lua script. A number of functions are supported, according to different events and
operations in the communication sequence between a client and one or more backend MySQL servers:

• connect_server(): This function is called each time a connection is made to MySQL Proxy from a
client. You can use this function during load-balancing to intercept the original connection and decide
which server the client should ultimately be attached to. If you do not define a special solution, a simple
round-robin style distribution is used by default.

• read_handshake(): This function is called when the initial handshake information is returned by the
server. You can capture the handshake information returned and provide additional checks before the
authorization exchange takes place.

• read_auth(): This function is called when the authorization packet (user name, password, default
database) are submitted by the client to the server for authentication.

• read_auth_result(): This function is called when the server returns an authorization packet to the
client indicating whether the authorization succeeded.

• read_query(): This function is called each time a query is sent by the client to the server. You can use
this to edit and manipulate the original query, including adding new queries before and after the original
statement. You can also use this function to return information directly to the client, bypassing the server,
which can be useful to filter unwanted queries or queries that exceed known limits.

• read_query_result(): This function is called each time a result is returned from the server, providing
you have manually injected queries into the query queue. If you have not explicitly injected queries within
the read_query() function, this function is not triggered. You can use this to edit the result set, or to
remove or filter the result sets generated from additional queries you injected into the queue when using
read_query().

The following table describes the direction of information flow at the point when the function is triggered.

Function Supplied Information Direction

connect_server() None Client to Server

read_handshake() None Server to Client

read_auth() None Client to Server

read_auth_result() None Server to Client

read_query() Query Client to Server

read_query_result() Query result Server to Client

By default, all functions return a result that indicates whether the data should be passed on to the client
or server (depending on the direction of the information being transferred). This return value can be
overridden by explicitly returning a constant indicating that a particular response should be sent. For
example, it is possible to construct result set information by hand within read_query() and to return the
result set directly to the client without ever sending the original query to the server.

In addition to these functions, a number of built-in structures provide control over how MySQL Proxy
forwards queries and returns the results by providing a simplified interface to elements such as the list of
queries and the groups of result sets that are returned.

5.1. Proxy Scripting Sequence During Query Injection
The following figure gives an example of how the proxy might be used when injecting queries into the
query queue. Because the proxy sits between the client and MySQL server, what the proxy sends to the

Proxy Scripting Sequence During Query Injection

22

server, and the information that the proxy ultimately returns to the client, need not match or correlate.
Once the client has connected to the proxy, the sequence shown in the following diagram occurs for each
individual query sent by the client.

1. When the client submits one query to the proxy, the read_query() function within the proxy is
triggered. The function adds the query to the query queue.

2. Once manipulation by read_query() has completed, the queries are submitted, sequentially, to the
MySQL server.

3. The MySQL server returns the results from each query, one result set for each query submitted. The
read_query_result() function is triggered for each result set, and each invocation can decide
which result set to return to the client

For example, you can queue additional queries into the global query queue to be processed by the server.
This can be used to add statistical information by adding queries before and after the original query,
changing the original query:

SELECT * FROM City;

Into a sequence of queries:

Internal Structures

23

SELECT NOW();
SELECT * FROM City;
SELECT NOW();

You can also modify the original statement; for example, to add EXPLAIN to each statement executed
to get information on how the statement was processed, again altering our original SQL statement into a
number of statements:

SELECT * FROM City;
EXPLAIN SELECT * FROM City;

In both of these examples, the client would have received more result sets than expected. Regardless of
how you manipulate the incoming query and the returned result, the number of queries returned by the
proxy must match the number of original queries sent by the client.

You could adjust the client to handle the multiple result sets sent by the proxy, but in most cases you will
want the existence of the proxy to remain transparent. To ensure that the number of queries and result
sets match, you can use the MySQL Proxy read_query_result() to extract the additional result set
information and return only the result set the client originally requested back to the client. You can achieve
this by giving each query that you add to the query queue a unique ID, then filter out queries that do not
match the original query ID when processing them with read_query_result().

5.2. Internal Structures

There are a number of internal structures within the scripting element of MySQL Proxy. The primary
structure is proxy and this provides an interface to the many common structures used throughout the
script, such as connection lists and configured backend servers. Other structures, such as the incoming
packet from the client and result sets are only available within the context of one of the scriptable functions.

Attribute Description

connection A structure containing the active client connections. For a list of attributes,
see proxy.connection [23].

servers A structure containing the list of configured backend servers. For a list of
attributes, see proxy.global.backends [24].

queries A structure containing the queue of queries that will be sent to
the server during a single client query. For a list of attributes, see
proxy.queries [24].

PROXY_VERSION The version number of MySQL Proxy, encoded in hex. You can use this
to check that the version number supports a particular option from within
the Lua script. Note that the value is encoded as a hex value, so to check
the version is at least 0.5.1 you compare against 0x00501.

proxy.connection

The proxy.connection object is read only, and provides information about the current connection,
and is split into a client and server tables. This enables you to examine information about both the
incoming client connections to the proxy (client), and to the backend servers (server).

Attribute Description

client.default_db Default database requested by the client

client.username User name used to authenticate

client.scrambled_passwordThe scrambled version of the password used to authenticate

http://dev.mysql.com/doc/refman/5.5/en/explain.html

Internal Structures

24

Attribute Description

client.dst.name The combined address:port of the Proxy port used by this client
(should match the --proxy-address [15] configuration parameter)

client.dst.address The IP address of the of the Proxy port used by this client

client.dst.port The port number of the of the Proxy port used by this client

client.src.name The combined address:port of the client (originating) TCP/IP endpoint

client.src.address The IP address of the client (originating) TCP/IP port

client.src.port The port of the client (originating) TCP/IP endpoint

server.scramble_buffer The scramble buffer used to scramble the password

server.mysqld_version The MySQL version number of the server

server.thread_id The ID of the thread handling the connection to the current server

server.dst.name The combined address:port for the backend server for the current
connection (i.e. the connection to the MySQL server)

server.dst.address The address for the backend server

server.dst.port The port for the backend server

server.src.name The combined address:port for the TCP/IP endpoint used by the
Proxy to connect to the backend server

server.src.address The address of the endpoint for the proxy-side connection to the MySQL
server

server.src.port The port of the endpoint for the proxy-side connection to the MySQL
server

proxy.global.backends

The proxy.global.backends table is partially writable and contains an array of all the configured
backend servers and the server metadata (IP address, status, etc.). You can determine the array index of
the current connection using proxy.connection["backend_ndx"] which is the index into this table of
the backend server being used by the active connection.

The attributes for each entry within the proxy.global.backends table are shown in this table.

Attribute Description

dst.name The combined address:port of the backend server.

dst.address The IP address of the backend server.

dst.port The port of the backend server.

connected_clients The number of clients currently connected.

state The status of the backend server. See Backend State/Type
Constants [27].

type The type of the backend server. You can use this to identify whether the
backed was configured as a standard read/write backend, or a read-only
backend. You can compare this value to the proxy.BACKEND_TYPE_RW
and proxy.BACKEND_TYPE_RO.

proxy.queries

The proxy.queries object is a queue representing the list of queries to be sent to the server. The
queue is not populated automatically, but if you do not explicitly populate the queue, queries are

Internal Structures

25

passed on to the backend server verbatim. Also, if you do not populate the query queue by hand, the
read_query_result() function is not triggered.

The following methods are supported for populating the proxy.queries object.

Function Description

append(id,packet,
[options])

Appends a query to the end of the query queue. The id is an integer
identifier that you can use to recognize the query results when they are
returned by the server. The packet should be a properly formatted query
packet. The optional options should be a table containing the options
specific to this packet.

prepend(id,packet) Prepends a query to the query queue. The id is an identifier that you can
use to recognize the query results when they are returned by the server.
The packet should be a properly formatted query packet.

reset() Empties the query queue.

len() Returns the number of query packets in the queue.

For example, you could append a query packet to the proxy.queries queue by using the append():

proxy.queries:append(1,packet)

The optional third argument to append() should contain the options for the packet. To have access to the
result set through the read_query_result() function, set the resultset_is_needed flag to true:

proxy.queries:append(1, packet, { resultset_is_needed = true })

If that flag is false (the default), proxy will:

• Send the result set to the client as soon as it is received

• Reduce memory usage (because the result set is not stored internally for processing)

• Reduce latency of returning results to the client

• Pass data from server to client unaltered

The default mode is therefore quicker and useful if you only want to monitor the queries sent, and the basic
statistics.

To perform any kind of manipulation on the returned data, you must set the flag to true, which will:

• Store the result set so that it can be processed.

• Enable modification of the result set before it is returned to the client.

• Enable you to discard the result set instead of returning it to the client.

proxy.response

The proxy.response structure is used when you want to return your own MySQL response, instead
of forwarding a packet that you have received a backend server. The structure holds the response type
information, an optional error message, and the result set (rows/columns) to return.

Attribute Description

type The type of the response. The type must be either MYSQLD_PACKET_OK
or MYSQLD_PACKET_ERR. If the MYSQLD_PACKET_ERR, you should

Internal Structures

26

Attribute Description
set the value of the mysql.response.errmsg with a suitable error
message.

errmsg A string containing the error message that will be returned to the client.

resultset A structure containing the result set information (columns and rows),
identical to what would be returned when returning a results from a
SELECT query.

When using proxy.response you either set proxy.response.type to proxy.MYSQLD_PACKET_OK
and then build resultset to contain the results to return, or set proxy.response.type to
proxy.MYSQLD_PACKET_ERR and set the proxy.response.errmsg to a string with the error message.
To send the completed result set or error message, you should return the proxy.PROXY_SEND_RESULT
to trigger the return of the packet information.

An example of this can be seen in the tutorial-resultset.lua script within the MySQL Proxy
package:

if string.lower(command) == "show" and string.lower(option) == "querycounter" then

 -- proxy.PROXY_SEND_RESULT requires
 --
 -- proxy.response.type to be either
 -- * proxy.MYSQLD_PACKET_OK or
 -- * proxy.MYSQLD_PACKET_ERR
 --
 -- for proxy.MYSQLD_PACKET_OK you need a resultset
 -- * fields
 -- * rows
 --
 -- for proxy.MYSQLD_PACKET_ERR
 -- * errmsg
 proxy.response.type = proxy.MYSQLD_PACKET_OK
 proxy.response.resultset = {
 fields = {
 { type = proxy.MYSQL_TYPE_LONG, name = "global_query_counter", },
 { type = proxy.MYSQL_TYPE_LONG, name = "query_counter", },
 },
 rows = {
 { proxy.global.query_counter, query_counter }
 }
 }
 -- we have our result, send it back
 return proxy.PROXY_SEND_RESULT
elseif string.lower(command) == "show" and string.lower(option) == "myerror" then
 proxy.response.type = proxy.MYSQLD_PACKET_ERR
 proxy.response.errmsg = "my first error"
 return proxy.PROXY_SEND_RESULT

proxy.response.resultset

The proxy.response.resultset structure should be populated with the rows and columns of data to
return. The structure contains the information about the entire result set, with the individual elements of the
data shown in the following table.

Attribute Description

fields The definition of the columns being returned. This should be a dictionary
structure with the type specifying the MySQL data type, and the name
specifying the column name. Columns should be listed in the order of the
column data that will be returned.

http://dev.mysql.com/doc/refman/5.5/en/select.html

Internal Structures

27

Attribute Description

flags A number of flags related to the result set. Valid flags include
auto_commit (whether an automatic commit was triggered),
no_good_index_used (the query executed without using an
appropriate index), and no_index_used (the query executed without
using any index).

rows The actual row data. The information should be returned as an array of
arrays. Each inner array should contain the column data, with the outer
array making up the entire result set.

warning_count The number of warnings for this result set.

affected_rows The number of rows affected by the original statement.

insert_id The last insert ID for an auto-incremented column in a table.

query_status The status of the query operation. You can use the MYSQLD_PACKET_OK
or MYSQLD_PACKET_ERR constants to populate this parameter.

For an example showing how to use this structure, see proxy.response [25].

Proxy Return State Constants

The following constants are used internally by the proxy to specify the response to send to the client or
server. All constants are exposed as values within the main proxy table.

Constant Description

PROXY_SEND_QUERY Causes the proxy to send the current contents of the queries queue to the
server.

PROXY_SEND_RESULT Causes the proxy to send a result set back to the client.

PROXY_IGNORE_RESULT Causes the proxy to drop the result set (nothing is returned to the client).

As constants, these entities are available without qualification in the Lua scripts. For example, at the end of
the read_query_result() you might return PROXY_IGNORE_RESULT:

return proxy.PROXY_IGNORE_RESULT

Packet State Constants

The following states describe the status of a network packet. These items are entries within the main
proxy table.

Constant Description

MYSQLD_PACKET_OK The packet is OK

MYSQLD_PACKET_ERR The packet contains error information

MYSQLD_PACKET_RAW The packet contains raw data

Backend State/Type Constants

The following constants are used either to define the status or type of the backend MySQL server to which
the proxy is connected. These items are entries within the main proxy table.

Constant Description

BACKEND_STATE_UNKNOWN The current status is unknown

Internal Structures

28

Constant Description

BACKEND_STATE_UP The backend is known to be up (available)

BACKEND_STATE_DOWN The backend is known to be down (unavailable)

BACKEND_TYPE_UNKNOWN Backend type is unknown

BACKEND_TYPE_RW Backend is available for read/write

BACKEND_TYPE_RO Backend is available only for read-only use

Server Command Constants

The following values are used in the packets exchanged between the client and server to identify
the information in the rest of the packet. These items are entries within the main proxy table. The
packet type is defined as the first character in the sent packet. For example, when intercepting packets
from the client to edit or monitor a query, you would check that the first byte of the packet was of type
proxy.COM_QUERY.

Constant Description

COM_SLEEP Sleep

COM_QUIT Quit

COM_INIT_DB Initialize database

COM_QUERY Query

COM_FIELD_LIST Field List

COM_CREATE_DB Create database

COM_DROP_DB Drop database

COM_REFRESH Refresh

COM_SHUTDOWN Shutdown

COM_STATISTICS Statistics

COM_PROCESS_INFO Process List

COM_CONNECT Connect

COM_PROCESS_KILL Kill

COM_DEBUG Debug

COM_PING Ping

COM_TIME Time

COM_DELAYED_INSERT Delayed insert

COM_CHANGE_USER Change user

COM_BINLOG_DUMP Binlog dump

COM_TABLE_DUMP Table dump

COM_CONNECT_OUT Connect out

COM_REGISTER_SLAVE Register slave

COM_STMT_PREPARE Prepare server-side statement

COM_STMT_EXECUTE Execute server-side statement

COM_STMT_SEND_LONG_DATA Long data

COM_STMT_CLOSE Close server-side statement

Internal Structures

29

Constant Description

COM_STMT_RESET Reset statement

COM_SET_OPTION Set option

COM_STMT_FETCH Fetch statement

COM_DAEMON Daemon (MySQL 5.1 only)

COM_ERROR Error

MySQL Type Constants

These constants are used to identify the field types in the query result data returned to clients from the
result of a query. These items are entries within the main proxy table.

Constant Field Type

MYSQL_TYPE_DECIMAL Decimal

MYSQL_TYPE_NEWDECIMAL Decimal (MySQL 5.0 or later)

MYSQL_TYPE_TINY Tiny

MYSQL_TYPE_SHORT Short

MYSQL_TYPE_LONG Long

MYSQL_TYPE_FLOAT Float

MYSQL_TYPE_DOUBLE Double

MYSQL_TYPE_NULL Null

MYSQL_TYPE_TIMESTAMP Timestamp

MYSQL_TYPE_LONGLONG Long long

MYSQL_TYPE_INT24 Integer

MYSQL_TYPE_DATE Date

MYSQL_TYPE_TIME Time

MYSQL_TYPE_DATETIME Datetime

MYSQL_TYPE_YEAR Year

MYSQL_TYPE_NEWDATE Date (MySQL 5.0 or later)

MYSQL_TYPE_ENUM Enumeration

MYSQL_TYPE_SET Set

MYSQL_TYPE_TINY_BLOB Tiny Blob

MYSQL_TYPE_MEDIUM_BLOB Medium Blob

MYSQL_TYPE_LONG_BLOB Long Blob

MYSQL_TYPE_BLOB Blob

MYSQL_TYPE_VAR_STRING Varstring

MYSQL_TYPE_STRING String

MYSQL_TYPE_TINY Tiny (compatible with MYSQL_TYPE_CHAR)

MYSQL_TYPE_ENUM Enumeration (compatible with MYSQL_TYPE_INTERVAL)

MYSQL_TYPE_GEOMETRY Geometry

MYSQL_TYPE_BIT Bit

Capturing a Connection with connect_server()

30

5.3. Capturing a Connection with connect_server()

When the proxy accepts a connection from a MySQL client, the connect_server() function is called.

There are no arguments to the function, but you can use and if necessary manipulate the information in the
proxy.connection table, which is unique to each client session.

For example, if you have multiple backend servers, you can specify which server that connection should
use by setting the value of proxy.connection.backend_ndx to a valid server number. The following
code chooses between two servers based on whether the current time in minutes is odd or even:

function connect_server()
 print("--> a client really wants to talk to a server")
 if (tonumber(os.date("%M")) % 2 == 0) then
 proxy.connection.backend_ndx = 2
 print("Choosing backend 2")
 else
 proxy.connection.backend_ndx = 1
 print("Choosing backend 1")
 end
 print("Using " .. proxy.global.backends[proxy.connection.backend_ndx].dst.name)
end

This example also displays the IP address/port combination by accessing the information from the internal
proxy.global.backends table.

5.4. Examining the Handshake with read_handshake()

Handshake information is sent by the server to the client after the initial connection (through
connect_server()) has been made. The handshake information contains details about the MySQL
version, the ID of the thread that will handle the connection information, and the IP address of the client
and server. This information is exposed through the proxy.connection structure.

• proxy.connection.server.mysqld_version: The version of the MySQL server.

• proxy.connection.server.thread_id: The thread ID.

• proxy.connection.server.scramble_buffer: The password scramble buffer.

• proxy.connection.server.dst.name: The IP address of the server.

• proxy.connection.client.src.name: The IP address of the client.

For example, you can print out the handshake data and refuse clients by IP address with the following
function:

function read_handshake()
 print("<-- let's send him some information about us")
 print(" mysqld-version: " .. proxy.connection.server.mysqld_version)
 print(" thread-id : " .. proxy.connection.server.thread_id)
 print(" scramble-buf : " .. string.format("%q",proxy.connection.server.scramble_buffer))
 print(" server-addr : " .. proxy.connection.server.dst.name)
 print(" client-addr : " .. proxy.connection.client.dst.name)
 if not proxy.connection.client.src.name:match("^127.0.0.1:") then
 proxy.response.type = proxy.MYSQLD_PACKET_ERR
 proxy.response.errmsg = "only local connects are allowed"
 print("we don't like this client");
 return proxy.PROXY_SEND_RESULT
 end
end

Examining the Authentication Credentials with read_auth()

31

Note that you must return an error packet to the client by using proxy.PROXY_SEND_RESULT.

5.5. Examining the Authentication Credentials with read_auth()

The read_auth() function is triggered when an authentication handshake is initiated by the client. In
the execution sequence, read_auth() occurs immediately after read_handshake(), so the server
selection has already been made, but the connection and authorization information has not yet been
provided to the backend server.

You can obtain the authentication information by examining the proxy.connection.client structure.
For more information, see proxy.connection [23].

For example, you can print the user name and password supplied during authorization using:

function read_auth()
 print(" username : " .. proxy.connection.client.username)
 print(" password : " .. string.format("%q", proxy.connection.client.scrambled_password))
end

You can interrupt the authentication process within this function and return an error packet back to the
client by constructing a new packet and returning proxy.PROXY_SEND_RESULT:

proxy.response.type = proxy.MYSQLD_PACKET_ERR
proxy.response.errmsg = "Logins are not allowed"
return proxy.PROXY_SEND_RESULT

5.6. Accessing Authentication Information with
read_auth_result()

The return packet from the server during authentication is captured by read_auth_result(). The
only argument to this function is the authentication packet returned by the server. As the packet is a raw
MySQL network protocol packet, you must access the first byte to identify the packet type and contents.
The MYSQLD_PACKET_ERR and MYSQLD_PACKET_OK constants can be used to identify whether the
authentication was successful:

function read_auth_result(auth)
 local state = auth.packet:byte()
 if state == proxy.MYSQLD_PACKET_OK then
 print("<-- auth ok");
 elseif state == proxy.MYSQLD_PACKET_ERR then
 print("<-- auth failed");
 else
 print("<-- auth ... don't know: " .. string.format("%q", auth.packet));
 end
end

If a long-password capable client tries to authenticate to a server that supports long passwords, but the
user password provided is actually short, read_auth_result() will be called twice. The first time,
auth.packet:byte() will equal 254, indicating that the client should try again using the old password
protocol. The second time time read_auth_result()/ is called, auth.packet:byte() will indicate
whether the authentication actually succeeded.

5.7. Manipulating Queries with read_query()

The read_query() function is called once for each query submitted by the client and accepts a single
argument, the query packet that was provided. To access the content of the packet, you must parse the
packet contents manually.

Manipulating Results with read_query_result()

32

For example, you can intercept a query packet and print out the contents using the following function
definition:

function read_query(packet)
 if packet:byte() == proxy.COM_QUERY then
 print("we got a normal query: " .. packet:sub(2))
 end
end

This example checks the first byte of the packet to determine the type. If the type is COM_QUERY (see
Server Command Constants [28]), we extract the query from the packet and print it. The structure of
the packet type supplied is important. In the case of a COM_QUERY packet, the remaining contents of the
packet are the text of the query string. In this example, no changes have been made to the query or the list
of queries that will ultimately be sent to the MySQL server.

To modify a query, or add new queries, you must populate the query queue (proxy.queries), then
execute the queries that you have placed into the queue. If you do not modify the original query or the
queue, the query received from the client is sent to the MySQL server verbatim.

When adding queries to the queue, you should follow these guidelines:

• The packets inserted into the queue must be valid query packets. For each packet, you must set the
initial byte to the packet type. If you are appending a query, you can append the query statement to the
rest of the packet.

• Once you add a query to the queue, the queue is used as the source for queries sent to the server. If
you add a query to the queue to add more information, you must also add the original query to the queue
or it will not be executed.

• Once the queue has been populated, you must set the return value from read_query() to indicate
whether the query queue should be sent to the server.

• When you add queries to the queue, you should add an ID. The ID you specify is returned with the result
set so that you identify each query and corresponding result set. The ID has no other purpose than as an
identifier for correlating the query and result set. When operating in a passive mode, during profiling for
example, you identify the original query and the corresponding result set so that the results expected by
the client can be returned correctly.

• Unless your client is designed to cope with more result sets than queries, you should ensure that the
number of queries from the client match the number of results sets returned to the client. Using the
unique ID and removing result sets you inserted will help.

Normally, the read_query() and read_query_result() function are used in conjunction with each
other to inject additional queries and remove the additional result sets. However, read_query_result()
is only called if you populate the query queue within read_query().

5.8. Manipulating Results with read_query_result()

The read_query_result() is called for each result set returned by the server only if you have manually
injected queries into the query queue. If you have not manipulated the query queue, this function is not
called. The function supports a single argument, the result packet, which provides a number of properties:

• id: The ID of the result set, which corresponds to the ID that was set when the query packet was
submitted to the server when using append(id) on the query queue. You must have set the
resultset_is_needed flag to append to intercept the result set before it is returned to the client. See
proxy.queries [24].

Manipulating Results with read_query_result()

33

• query: The text of the original query.

• query_time: The number of microseconds required to receive the first row of a result set since the
query was sent to the server.

• response_time: The number of microseconds required to receive the last row of the result set since
the query was sent to the server.

• resultset: The content of the result set data.

By accessing the result information from the MySQL server, you can extract the results that match the
queries that you injected, return different result sets (for example, from a modified query), and even create
your own result sets.

The following Lua script, for example, will output the query, followed by the query time and response time
(that is, the time to execute the query and the time to return the data for the query) for each query sent to
the server:

function read_query(packet)
 if packet:byte() == proxy.COM_QUERY then
 print("we got a normal query: " .. packet:sub(2))
 proxy.queries:append(1, packet)
 return proxy.PROXY_SEND_QUERY
 end
end
function read_query_result(inj)
 print("query-time: " .. (inj.query_time / 1000) .. "ms")
 print("response-time: " .. (inj.response_time / 1000) .. "ms")
end

You can access the rows of returned results from the result set by accessing the rows property of the
resultset property of the result that is exposed through read_query_result(). For example, you can
iterate over the results showing the first column from each row using this Lua fragment:

for row in inj.resultset.rows do
 print("injected query returned: " .. row[1])
end

Just like read_query(), read_query_result() can return different values for each result according
to the result returned. If you have injected additional queries into the query queue, for example, remove
the results returned from those additional queries and return only the results from the query originally
submitted by the client.

The following example injects additional SELECT NOW() statements into the query queue, giving them
a different ID to the ID of the original query. Within read_query_result(), if the ID for the injected
queries is identified, we display the result row, and return the proxy.PROXY_IGNORE_RESULT from the
function so that the result is not returned to the client. If the result is from any other query, we print out the
query time information for the query and return the default, which passes on the result set unchanged. We
could also have explicitly returned proxy.PROXY_IGNORE_RESULT to the MySQL client.

function read_query(packet)
 if packet:byte() == proxy.COM_QUERY then
 proxy.queries:append(2, string.char(proxy.COM_QUERY) .. "SELECT NOW()", {resultset_is_needed = true})
 proxy.queries:append(1, packet, {resultset_is_needed = true})
 proxy.queries:append(2, string.char(proxy.COM_QUERY) .. "SELECT NOW()", {resultset_is_needed = true})
 return proxy.PROXY_SEND_QUERY
 end
end
function read_query_result(inj)
 if inj.id == 2 then
 for row in inj.resultset.rows do

Manipulating Results with read_query_result()

34

 print("injected query returned: " .. row[1])
 end
 return proxy.PROXY_IGNORE_RESULT
 else
 print("query-time: " .. (inj.query_time / 1000) .. "ms")
 print("response-time: " .. (inj.response_time / 1000) .. "ms")
 end
end

For further examples, see Chapter 6, Using MySQL Proxy.

35

Chapter 6. Using MySQL Proxy

Table of Contents
6.1. Using the Administration Interface .. 35

There are a number of different ways to use MySQL Proxy. At the most basic level, you can allow MySQL
Proxy to pass queries from clients to a single server. To use MySQL Proxy in this mode, you just have to
specify on the command line the backend server to which the proxy should connect:

shell> mysql-proxy --proxy-backend-addresses=sakila:3306

If you specify multiple backend MySQL servers, the proxy connects each client to each server in a round-
robin fashion. Suppose that you have two MySQL servers, A and B. The first client to connect is connected
to server A, the second to server B, the third to server A. For example:

shell> mysql-proxy \
 --proxy-backend-addresses=narcissus:3306 \
 --proxy-backend-addresses=nostromo:3306

When you specify multiple servers in this way, the proxy automatically identifies when a MySQL server has
become unavailable and marks it accordingly. New connections are automatically attached to a server that
is available, and a warning is reported to the standard output from mysql-proxy:

network-mysqld.c.367: connect(nostromo:3306) failed: Connection refused
network-mysqld-proxy.c.2405: connecting to backend (nostromo:3306) failed, marking it as down for ...

Lua scripts enable a finer level of control, both over the connections and their distribution and how queries
and result sets are processed. When using an Lua script, you must specify the name of the script on the
command line using the --proxy-lua-script [17] option:

shell> mysql-proxy --proxy-lua-script=mc.lua --proxy-backend-addresses=sakila:3306

When you specify a script, the script is not executed until a connection is made. This means that faults with
the script are not raised until the script is executed. Script faults will not affect the distribution of queries to
backend MySQL servers.

Note

Because a script is not read until the connection is made, you can modify the
contents of the Lua script file while the proxy is still running and the modified script
is automatically used for the next connection. This ensures that MySQL Proxy
remains available because it need not be restarted for the changes to take effect.

6.1. Using the Administration Interface

The mysql-proxy administration interface can be accessed using any MySQL client using the standard
protocols. You can use the administration interface to gain information about the proxy server as a whole -
standard connections to the proxy are isolated to operate as if you were connected directly to the backend
MySQL server.

In mysql-proxy 0.8.0 and earlier, a rudimentary interface was built into the proxy. In later versions this
was replaced so that you must specify an administration script to be used when users connect to the
administration interface.

Using the Administration Interface

36

To use the administration interface, specify the user name and password required to connect to the
admin service, using the --admin-username [12] and --admin-password [12] options. You must also
specify the Lua script to be used as the interface to the administration service by using the admin-lua-
script [12] script option to point to a Lua script.

For example, you can create a basic interface to the internal components of the mysql-proxy system
using the following script, written by Diego Medina:

--[[
 Copyright 2008, 2010, Oracle and/or its affiliates. All rights reserved.

 This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation; version 2 of the License.
 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.
 You should have received a copy of the GNU General Public License
 along with this program; if not, write to the Free Software
 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
--]]
-- admin.lua
--[[
 See http://www.chriscalender.com/?p=41
 (Thanks to Chris Calender)
 See http://datacharmer.blogspot.com/2009/01/mysql-proxy-is-back.html
 (Thanks Giuseppe Maxia)
--]]
function set_error(errmsg)
 proxy.response = {
 type = proxy.MYSQLD_PACKET_ERR,
 errmsg = errmsg or "error"
 }
end
function read_query(packet)
 if packet:byte() ~= proxy.COM_QUERY then
 set_error("[admin] we only handle text-based queries (COM_QUERY)")
 return proxy.PROXY_SEND_RESULT
 end
 local query = packet:sub(2)
 local rows = { }
 local fields = { }
 -- try to match the string up to the first non-alphanum
 local f_s, f_e, command = string.find(packet, "^%s*(%w+)", 2)
 local option
 if f_e then
 -- if that match, take the next sub-string as option
 f_s, f_e, option = string.find(packet, "^%s+(%w+)", f_e + 1)
 end
 -- we got our commands, execute it
 if command == "show" and option == "querycounter" then

 -- proxy.PROXY_SEND_RESULT requires
 --
 -- proxy.response.type to be either
 -- * proxy.MYSQLD_PACKET_OK or
 -- * proxy.MYSQLD_PACKET_ERR
 --
 -- for proxy.MYSQLD_PACKET_OK you need a resultset
 -- * fields
 -- * rows
 --
 -- for proxy.MYSQLD_PACKET_ERR
 -- * errmsg
 proxy.response.type = proxy.MYSQLD_PACKET_OK

Using the Administration Interface

37

 proxy.response.resultset = {
 fields = {
 { type = proxy.MYSQL_TYPE_LONG, name = "query_counter", },
 },
 rows = {
 { proxy.global.query_counter }
 }
 }
 -- we have our result, send it back
 return proxy.PROXY_SEND_RESULT
 elseif command == "show" and option == "myerror" then
 proxy.response.type = proxy.MYSQLD_PACKET_ERR
 proxy.response.errmsg = "my first error"
 return proxy.PROXY_SEND_RESULT

 elseif string.sub(packet, 2):lower() == 'select help' then
 return show_process_help()

 elseif string.sub(packet, 2):lower() == 'show proxy processlist' then
 return show_process_table()
 elseif query == "SELECT * FROM backends" then
 fields = {
 { name = "backend_ndx",
 type = proxy.MYSQL_TYPE_LONG },
 { name = "address",
 type = proxy.MYSQL_TYPE_STRING },
 { name = "state",
 type = proxy.MYSQL_TYPE_STRING },
 { name = "type",
 type = proxy.MYSQL_TYPE_STRING },
 }
 for i = 1, #proxy.global.backends do
 local b = proxy.global.backends[i]
 rows[#rows + 1] = {
 i, b.dst.name, b.state, b.type
 }
 end
 else
 set_error()
 return proxy.PROXY_SEND_RESULT
 end
 proxy.response = {
 type = proxy.MYSQLD_PACKET_OK,
 resultset = {
 fields = fields,
 rows = rows
 }
 }
 return proxy.PROXY_SEND_RESULT
end
function make_dataset (header, dataset)
 proxy.response.type = proxy.MYSQLD_PACKET_OK
 proxy.response.resultset = {
 fields = {},
 rows = {}
 }
 for i,v in pairs (header) do
 table.insert(proxy.response.resultset.fields, {type = proxy.MYSQL_TYPE_STRING, name = v})
 end
 for i,v in pairs (dataset) do
 table.insert(proxy.response.resultset.rows, v)
 end
 return proxy.PROXY_SEND_RESULT
end
function show_process_table()
 local dataset = {}
 local header = { 'Id', 'IP Address', 'Time' }

Using the Administration Interface

38

 local rows = {}
 for t_i, t_v in pairs (proxy.global.process) do
 for s_i, s_v in pairs (t_v) do
 table.insert(rows, { t_i, s_v.ip, os.date('%c',s_v.ts) })
 end
 end
 return make_dataset(header,rows)
end
function show_process_help()
 local dataset = {}
 local header = { 'command', 'description' }
 local rows = {
 {'SELECT HELP', 'This command.'},
 {'SHOW PROXY PROCESSLIST', 'Show all connections and their true IP Address.'},
 }
 return make_dataset(header,rows)
end
function dump_process_table()
 proxy.global.initialize_process_table()
 print('current contents of process table')
 for t_i, t_v in pairs (proxy.global.process) do
 print ('session id: ', t_i)
 for s_i, s_v in pairs (t_v) do
 print ('\t', s_i, s_v.ip, s_v.ts)
 end
 end
 print ('---END PROCESS TABLE---')
end
--[[Help
we use a simple string-match to split commands are word-boundaries
mysql> show querycounter
is split into
command = "show"
option = "querycounter"
spaces are ignored, the case has to be as is.
mysql> show myerror
returns a error-packet
--]]

The script works in combination with a main proxy script, reporter.lua:

--[[
 Copyright 2008, 2010, Oracle and/or its affiliates. All rights reserved.

 This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation; version 2 of the License.
 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.
 You should have received a copy of the GNU General Public License
 along with this program; if not, write to the Free Software
 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
--]]
-- reporter.lua
--[[
 See http://www.chriscalender.com/?p=41
 (Thanks to Chris Calender)
 See http://datacharmer.blogspot.com/2009/01/mysql-proxy-is-back.html
 (Thanks Giuseppe Maxia)
--]]
proxy.global.query_counter = proxy.global.query_counter or 0
function proxy.global.initialize_process_table()
 if proxy.global.process == nil then
 proxy.global.process = {}
 end

Using the Administration Interface

39

 if proxy.global.process[proxy.connection.server.thread_id] == nil then
 proxy.global.process[proxy.connection.server.thread_id] = {}
 end
end
function read_auth_result(auth)
 local state = auth.packet:byte()
 if state == proxy.MYSQLD_PACKET_OK then
 proxy.global.initialize_process_table()
 table.insert(proxy.global.process[proxy.connection.server.thread_id],
 { ip = proxy.connection.client.src.name, ts = os.time() })
 end
end
function disconnect_client()
 local connection_id = proxy.connection.server.thread_id
 if connection_id then
 -- client has disconnected, set this to nil
 proxy.global.process[connection_id] = nil
 end
end

-- read_query() can return a resultset
--
-- You can use read_query() to return a result-set.
--
-- @param packet the mysql-packet sent by the client
--
-- @return
-- * nothing to pass on the packet as is,
-- * proxy.PROXY_SEND_QUERY to send the queries from the proxy.queries queue
-- * proxy.PROXY_SEND_RESULT to send your own result-set
--
function read_query(packet)
 -- a new query came in in this connection
 -- using proxy.global.* to make it available to the admin plugin
 proxy.global.query_counter = proxy.global.query_counter + 1
end

To use the script, save the first script to a file (admin.lua in the following example) and the other to
reporter.lua, then run mysql-proxy specifying the admin script and a backend MySQL server:

shell> mysql-proxy --admin-lua-script=admin.lua --admin-password=password \ »
 --admin-username=root --proxy-backend-addresses=127.0.0.1:3306 -proxy-lua-script=reporter.lua

In a different window, connect to the MySQL server through the proxy:

shell> mysql --user=root --password=password --port=4040
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 1798669
Server version: 5.0.70-log Gentoo Linux mysql-5.0.70-r1
Type 'help;' or '\h' for help. Type '\c' to clear the buffer.
mysql>

In another different window, connect to the mysql-proxy admin service using the specified user name
and password:

shell> mysql --user=root --password=password --port=4041 --host=localhost
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 1
Server version: 5.0.99-agent-admin
Type 'help;' or '\h' for help. Type '\c' to clear the buffer.
mysql>

To monitor the status of the proxy, ask for a list of the current active processes:

mysql> show proxy processlist;
+---------+---------------------+--------------------------+

Using the Administration Interface

40

| Id | IP Address | Time |
+---------+---------------------+--------------------------+
| 1798669 | 192.168.0.112:52592 | Wed Jan 20 16:58:00 2010 |
+---------+---------------------+--------------------------+
1 row in set (0.00 sec)
mysql>

For more information on the example, see MySQL Proxy Admin Example.

http://fmpwizard.blogspot.com/2009/04/how-do-i-use-mysql-proxy-admin-plugin.html

41

Chapter 7. MySQL Proxy FAQ
Questions

• 7.1: [42] In load balancing, how can I separate reads from writes?

• 7.2: [42] How do I use a socket with MySQL Proxy? Proxy change logs mention that support for
UNIX sockets has been added.

• 7.3: [42] Can I use MySQL Proxy with all versions of MySQL?

• 7.4: [42] Can I run MySQL Proxy as a daemon?

• 7.5: [43] Do proxy applications run on a separate server? If not, what is the overhead incurred by
Proxy on the DB server side?

• 7.6: [43] With load balancing, what happens to transactions? Are all queries sent to the same server?

• 7.7: [43] Is it possible to use MySQL Proxy with updating a Lucene index (or Solr) by making TCP
calls to that server to update?

• 7.8: [43] Is the system context switch expensive, how much overhead does the Lua script add?

• 7.9: [43] How much latency does a proxy add to a connection?

• 7.10: [43] Do you have to make one large script and call it at proxy startup, can I change scripts
without stopping and restarting (interrupting) the proxy?

• 7.11: [43] If MySQL Proxy has to live on same machine as MySQL, are there any tuning
considerations to ensure both perform optimally?

• 7.12: [43] I currently use SQL Relay for efficient connection pooling with a number of Apache
processes connecting to a MySQL server. Can MySQL Proxy currently accomplish this? My goal is to
minimize connection latency while keeping temporary tables available.

• 7.13: [43] Are these reserved function names (for example, error_result()) that get
automatically called?

• 7.14: [43] As the script is re-read by MySQL Proxy, does it cache this or is it looking at the file system
with each request?

• 7.15: [43] Given that there is a connect_server() function, can a Lua script link up with multiple
servers?

• 7.16: [44] Is the MySQL Proxy an API?

• 7.17: [44] The global namespace variable example with quotas does not persist after a reboot, is that
correct?

• 7.18: [44] Can MySQL Proxy handle SSL connections?

• 7.19: [44] Could MySQL Proxy be used to capture passwords?

• 7.20: [44] Are there tools for isolating problems? How can someone figure out whether a problem is
in the client, the database, or the proxy?

• 7.21: [44] Is MySQL Proxy similar to what is provided by Java connection pools?

42

• 7.22: [44] So authentication with connection pooling has to be done at every connection? What is the
authentication latency?

• 7.23: [44] If you have multiple databases on the same box, can you use proxy to connect to
databases on default port 3306?

• 7.24: [44] What about caching the authorization information so clients connecting are given back-end
connections that were established with identical authorization information, thus saving a few more round
trips?

• 7.25: [44] Is there any big web site using MySQL Proxy? For what purpose and what transaction rate
have they achieved?

• 7.26: [44] How does MySQL Proxy compare to DBSlayer?

• 7.27: [45] I tried using MySQL Proxy without any Lua script to try a round-robin type load balancing.
In this case, if the first database in the list is down, MySQL Proxy would not connect the client to the
second database in the list.

• 7.28: [45] Is it “safe” to use LuaSocket with proxy scripts?

• 7.29: [45] How different is MySQL Proxy from DBCP (Database connection pooling) for Apache in
terms of connection pooling?

• 7.30: [45] MySQL Proxy can handle about 5000 connections, what is the limit on a MySQL server?

• 7.31: [45] Would the Java-only connection pooling solution work for multiple web servers? With this, I
would assume that you can pool across many web servers at once?

Questions and Answers

7.1: In load balancing, how can I separate reads from writes?

There is no automatic separation of queries that perform reads or writes to the different backend servers.
However, you can specify to mysql-proxy that one or more of the “backend” MySQL servers are read
only.

shell> mysql-proxy \
--proxy-backend-addresses=10.0.1.2:3306 \
--proxy-read-only-backend-addresses=10.0.1.3:3306 &

7.2: How do I use a socket with MySQL Proxy? Proxy change logs mention that support for UNIX
sockets has been added.

Specify the path to the socket:

--proxy-backend-addresses=/path/to/socket

7.3: Can I use MySQL Proxy with all versions of MySQL?

MySQL Proxy is designed to work with MySQL 5.0 or higher, and supports the MySQL network protocol for
5.0 and higher.

7.4: Can I run MySQL Proxy as a daemon?

Use the --daemon [13] option. To keep track of the process ID, the daemon can be started with the --
pid-file=file [17] option to save the PID to a known file name. On version 0.5.x, the Proxy cannot be
started natively as a daemon.

43

7.5: Do proxy applications run on a separate server? If not, what is the overhead incurred by Proxy
on the DB server side?

You can run the proxy on the application server, on its own box, or on the DB-server depending on the use
case.

7.6: With load balancing, what happens to transactions? Are all queries sent to the same server?

Without any special customization the whole connection is sent to the same server. That keeps the whole
connection state intact.

7.7: Is it possible to use MySQL Proxy with updating a Lucene index (or Solr) by making TCP calls
to that server to update?

Yes, but it is not advised for now.

7.8: Is the system context switch expensive, how much overhead does the Lua script add?

Lua is fast and the overhead should be small enough for most applications. The raw packet overhead is
around 400 microseconds.

7.9: How much latency does a proxy add to a connection?

In the range of 400 microseconds per request.

7.10: Do you have to make one large script and call it at proxy startup, can I change scripts without
stopping and restarting (interrupting) the proxy?

You can just change the script and the proxy will reload it when a client connects.

7.11: If MySQL Proxy has to live on same machine as MySQL, are there any tuning considerations
to ensure both perform optimally?

MySQL Proxy can live on any box: application, database, or its own box. MySQL Proxy uses comparatively
little CPU or RAM, with negligible additional requirements or overhead.

7.12: I currently use SQL Relay for efficient connection pooling with a number of Apache
processes connecting to a MySQL server. Can MySQL Proxy currently accomplish this? My goal is
to minimize connection latency while keeping temporary tables available.

Yes.

7.13: Are these reserved function names (for example, error_result()) that get automatically
called?

Only functions and values starting with proxy.* are provided by the proxy. All others are user provided.

7.14: As the script is re-read by MySQL Proxy, does it cache this or is it looking at the file system
with each request?

It looks for the script at client-connect and reads it if it has changed, otherwise it uses the cached version.

7.15: Given that there is a connect_server() function, can a Lua script link up with multiple
servers?

MySQL Proxy provides some tutorials in the source package; one is examples/tutorial-
keepalive.lua.

44

7.16: Is the MySQL Proxy an API?

No, MySQL Proxy is an application that forwards packets from a client to a server using the MySQL
network protocol. The MySQL Proxy provides a API allowing you to change its behavior.

7.17: The global namespace variable example with quotas does not persist after a reboot, is that
correct?

Yes. If you restart the proxy, you lose the results, unless you save them in a file.

7.18: Can MySQL Proxy handle SSL connections?

No, being the man-in-the-middle, Proxy cannot handle encrypted sessions because it cannot share the
SSL information.

7.19: Could MySQL Proxy be used to capture passwords?

The MySQL network protocol does not allow passwords to be sent in cleartext, all you could capture is the
encrypted version.

7.20: Are there tools for isolating problems? How can someone figure out whether a problem is in
the client, the database, or the proxy?

You can set a debug script in the proxy, which is an exceptionally good tool for this purpose. You can see
very clearly which component is causing the problem, if you set the right breakpoints.

7.21: Is MySQL Proxy similar to what is provided by Java connection pools?

Yes and no. Java connection pools are specific to Java applications, MySQL Proxy works with any client
API that talks the MySQL network protocol. Also, connection pools do not provide any functionality for
intelligently examining the network packets and modifying the contents.

7.22: So authentication with connection pooling has to be done at every connection? What is the
authentication latency?

You can skip the round-trip and use the connection as it was added to the pool. As long as the application
cleans up the temporary tables it used. The overhead is (as always) around 400 microseconds.

7.23: If you have multiple databases on the same box, can you use proxy to connect to databases
on default port 3306?

Yes, MySQL Proxy can listen on any port, provided that none of the MySQL servers are listening on the
same port.

7.24: What about caching the authorization information so clients connecting are given back-end
connections that were established with identical authorization information, thus saving a few more
round trips?

There is an --proxy-pool-no-change-user [17] option that provides this functionality.

7.25: Is there any big web site using MySQL Proxy? For what purpose and what transaction rate
have they achieved?

Yes, gaiaonline. They have tested MySQL Proxy and seen it handle 2400 queries per second through the
proxy.

7.26: How does MySQL Proxy compare to DBSlayer?

http://gaiaonline.com/

45

DBSlayer is a REST->MySQL tool, MySQL Proxy is transparent to your application. No change to the
application is needed.

7.27: I tried using MySQL Proxy without any Lua script to try a round-robin type load balancing. In
this case, if the first database in the list is down, MySQL Proxy would not connect the client to the
second database in the list.

This issue is fixed in version 0.7.0.

7.28: Is it “safe” to use LuaSocket with proxy scripts?

You can, but it is not advised because it may block.

7.29: How different is MySQL Proxy from DBCP (Database connection pooling) for Apache in terms
of connection pooling?

Connection Pooling is just one use case of the MySQL Proxy. You can use it for a lot more and it works in
cases where you cannot use DBCP (for example, if you do not have Java).

7.30: MySQL Proxy can handle about 5000 connections, what is the limit on a MySQL server?

The server limit is given by the value of the max_connections system variable. The default value is
version dependent.

7.31: Would the Java-only connection pooling solution work for multiple web servers? With this, I
would assume that you can pool across many web servers at once?

Yes. But you can also start one proxy on each application server to get a similar behavior as you have it
already.

http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_max_connections

46

47

Appendix A. Third Party Licenses

Table of Contents
A.1. GLib License (for MySQL Proxy) .. 47
A.2. GNU Lesser General Public License Version 2.1, February 1999 ... 48
A.3. libevent License .. 56
A.4. Libiconv License .. 58
A.5. libintl License .. 58
A.6. LPeg Library License ... 59
A.7. Lua (liblua) License ... 59
A.8. LuaFileSystem Library License ... 59
A.9. PCRE License ... 60

Use of any of this software is governed by the terms of the licenses that follow.

MySQL Proxy

• Section A.1, “GLib License (for MySQL Proxy)”

• Section A.2, “GNU Lesser General Public License Version 2.1, February 1999”

• Section A.3, “libevent License”

• Section A.4, “Libiconv License”

• Section A.5, “libintl License”

• Section A.6, “LPeg Library License”

• Section A.7, “Lua (liblua) License”

• Section A.8, “LuaFileSystem Library License”

• Section A.9, “PCRE License”

A.1. GLib License (for MySQL Proxy)
The following software may be included in this product:

GLib

You are receiving a copy of the GLib library in both source
and object code in the following [proxy install dir]/lib/ and
[proxy install dir]/licenses/lgpl folders. The terms of the
Oracle license do NOT apply to the GLib library; it is licensed
under the following license, separately from the Oracle programs
you receive. If you do not wish to install this library, you may
create an "exclude" file and run tar with the X option, as in
the following example, but the Oracle program might not operate
properly or at all without the library:
 tar -xvfX <package-tar-file> <exclude-file>
where the exclude-file contains, e.g.:
 <package-name>/lib/libglib-2.0.so.0.1600.6
 <package-name>/lib/libglib-2.0.so.0
 ...

Example:
tar -xvfX mysql-proxy-0.8.1-solaris10-x86-64bit.tar.gz Exclude

GNU Lesser General Public License Version 2.1, February 1999

48

Exclude File:
mysql-proxy-0.8.1-solaris10-x86-64bit/lib/libglib-2.0.so
mysql-proxy-0.8.1-solaris10-x86-64bit/lib/libglib-2.0.so.0
mysql-proxy-0.8.1-solaris10-x86-64bit/lib/libglib-2.0.so.0.1600.6
mysql-proxy-0.8.1-solaris10-x86-64bit/lib/libgmodule-2.0.so
mysql-proxy-0.8.1-solaris10-x86-64bit/lib/libgmodule-2.0.so.0
mysql-proxy-0.8.1-solaris10-x86-64bit/lib/libgmodule-2.0.so.0.1600.6
mysql-proxy-0.8.1-solaris10-x86-64bit/lib/libgthread-2.0.so
mysql-proxy-0.8.1-solaris10-x86-64bit/lib/libgthread-2.0.so.0
mysql-proxy-0.8.1-solaris10-x86-64bit/lib/libgthread-2.0.so.0.1600.6
mysql-proxy-0.8.1-solaris10-x86-64bit/licenses/lgpl/glib-2.16.6.tar.gz

This component is licensed under Section A.2, “GNU Lesser General Public License Version 2.1, February
1999”.

A.2. GNU Lesser General Public License Version 2.1, February 1999
The following applies to all products licensed under the
GNU Lesser General Public License, Version 2.1: You may
not use the identified files except in compliance with
the GNU Lesser General Public License, Version 2.1 (the
"License"). You may obtain a copy of the License at
http://www.gnu.org/licenses/lgpl-2.1.html. A copy of the
license is also reproduced below. Unless required by
applicable law or agreed to in writing, software distributed
under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
or implied. See the License for the specific language governing
permissions and limitations under the License.

 GNU LESSER GENERAL PUBLIC LICENSE
 Version 2.1, February 1999

 Copyright (C) 1991, 1999 Free Software Foundation, Inc.
 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts
 as the successor of the GNU Library Public License, version 2, hence
 the version number 2.1.]

 Preamble

 The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
Licenses are intended to guarantee your freedom to share and change
free software--to make sure the software is free for all its users.

 This license, the Lesser General Public License, applies to some
specially designated software packages--typically libraries--of the
Free Software Foundation and other authors who decide to use it. You
can use it too, but we suggest you first think carefully about whether
this license or the ordinary General Public License is the better
strategy to use in any particular case, based on the explanations below.

 When we speak of free software, we are referring to freedom of use,
not price. Our General Public Licenses are designed to make sure that
you have the freedom to distribute copies of free software (and charge
for this service if you wish); that you receive source code or can get
it if you want it; that you can change the software and use pieces of
it in new free programs; and that you are informed that you can do
these things.

 To protect your rights, we need to make restrictions that forbid

GNU Lesser General Public License Version 2.1, February 1999

49

distributors to deny you these rights or to ask you to surrender these
rights. These restrictions translate to certain responsibilities for
you if you distribute copies of the library or if you modify it.

 For example, if you distribute copies of the library, whether gratis
or for a fee, you must give the recipients all the rights that we gave
you. You must make sure that they, too, receive or can get the source
code. If you link other code with the library, you must provide
complete object files to the recipients, so that they can relink them
with the library after making changes to the library and recompiling
it. And you must show them these terms so they know their rights.

 We protect your rights with a two-step method: (1) we copyright the
library, and (2) we offer you this license, which gives you legal
permission to copy, distribute and/or modify the library.

 To protect each distributor, we want to make it very clear that
there is no warranty for the free library. Also, if the library is
modified by someone else and passed on, the recipients should know
that what they have is not the original version, so that the original
author's reputation will not be affected by problems that might be
introduced by others.

 Finally, software patents pose a constant threat to the existence of
any free program. We wish to make sure that a company cannot
effectively restrict the users of a free program by obtaining a
restrictive license from a patent holder. Therefore, we insist that
any patent license obtained for a version of the library must be
consistent with the full freedom of use specified in this license.

 Most GNU software, including some libraries, is covered by the
ordinary GNU General Public License. This license, the GNU Lesser
General Public License, applies to certain designated libraries, and
is quite different from the ordinary General Public License. We use
this license for certain libraries in order to permit linking those
libraries into non-free programs.

 When a program is linked with a library, whether statically or using
a shared library, the combination of the two is legally speaking a
combined work, a derivative of the original library. The ordinary
General Public License therefore permits such linking only if the
entire combination fits its criteria of freedom. The Lesser General
Public License permits more lax criteria for linking other code with
the library.

 We call this license the "Lesser" General Public License because it
does Less to protect the user's freedom than the ordinary General
Public License. It also provides other free software developers Less
of an advantage over competing non-free programs. These disadvantages
are the reason we use the ordinary General Public License for many
libraries. However, the Lesser license provides advantages in certain
special circumstances.

 For example, on rare occasions, there may be a special need to
encourage the widest possible use of a certain library, so that it
becomes a de-facto standard. To achieve this, non-free programs
must be allowed to use the library. A more frequent case is that
a free library does the same job as widely used non-free libraries.
In this case, there is little to gain by limiting the free library
to free software only, so we use the Lesser General Public License.

 In other cases, permission to use a particular library in non-free
programs enables a greater number of people to use a large body of
free software. For example, permission to use the GNU C Library in
non-free programs enables many more people to use the whole GNU
operating system, as well as its variant, the GNU/Linux operating
system.

GNU Lesser General Public License Version 2.1, February 1999

50

 Although the Lesser General Public License is Less protective of the
users' freedom, it does ensure that the user of a program that is
linked with the Library has the freedom and the wherewithal to run
that program using a modified version of the Library.

 The precise terms and conditions for copying, distribution and
modification follow. Pay close attention to the difference between a
"work based on the library" and a "work that uses the library". The
former contains code derived from the library, whereas the latter must
be combined with the library in order to run.

 GNU LESSER GENERAL PUBLIC LICENSE
 TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

 0. This License Agreement applies to any software library or other
program which contains a notice placed by the copyright holder or
other authorized party saying it may be distributed under the terms of
this Lesser General Public License (also called "this License").
Each licensee is addressed as "you".

 A "library" means a collection of software functions and/or data
prepared so as to be conveniently linked with application programs
(which use some of those functions and data) to form executables.

 The "Library", below, refers to any such software library or work
which has been distributed under these terms. A "work based on the
Library" means either the Library or any derivative work under
copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, translation is
included without limitation in the term "modification".)

 "Source code" for a work means the preferred form of the work for
making modifications to it. For a library, complete source code means
all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control
compilation and installation of the library.

 Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running a program using the Library is not restricted, and output from
such a program is covered only if its contents constitute a work based
on the Library (independent of the use of the Library in a tool for
writing it). Whether that is true depends on what the Library does
and what the program that uses the Library does.

 1. You may copy and distribute verbatim copies of the Library's
complete source code as you receive it, in any medium, provided that
you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any
warranty; and distribute a copy of this License along with the
Library.

 You may charge a fee for the physical act of transferring a copy,
and you may at your option offer warranty protection in exchange for a
fee.

 2. You may modify your copy or copies of the Library or any portion
of it, thus forming a work based on the Library, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

 a) The modified work must itself be a software library.

 b) You must cause the files modified to carry prominent notices

GNU Lesser General Public License Version 2.1, February 1999

51

 stating that you changed the files and the date of any change.

 c) You must cause the whole of the work to be licensed at no
 charge to all third parties under the terms of this License.

 d) If a facility in the modified Library refers to a function or a
 table of data to be supplied by an application program that uses
 the facility, other than as an argument passed when the facility
 is invoked, then you must make a good faith effort to ensure that,
 in the event an application does not supply such function or
 table, the facility still operates, and performs whatever part of
 its purpose remains meaningful.

 (For example, a function in a library to compute square roots has
 a purpose that is entirely well-defined independent of the
 application. Therefore, Subsection 2d requires that any
 application-supplied function or table used by this function must
 be optional: if the application does not supply it, the square
 root function must still compute square roots.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Library,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Library, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote
it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Library.

In addition, mere aggregation of another work not based on the Library
with the Library (or with a work based on the Library) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

 3. You may opt to apply the terms of the ordinary GNU General Public
License instead of this License to a given copy of the Library. To do
this, you must alter all the notices that refer to this License, so
that they refer to the ordinary GNU General Public License, version 2,
instead of to this License. (If a newer version than version 2 of the
ordinary GNU General Public License has appeared, then you can specify
that version instead if you wish.) Do not make any other change in
these notices.

 Once this change is made in a given copy, it is irreversible for
that copy, so the ordinary GNU General Public License applies to all
subsequent copies and derivative works made from that copy.

 This option is useful when you wish to copy part of the code of
the Library into a program that is not a library.

 4. You may copy and distribute the Library (or a portion or
derivative of it, under Section 2) in object code or executable form
under the terms of Sections 1 and 2 above provided that you accompany
it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange.

 If distribution of object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the
source code from the same place satisfies the requirement to

GNU Lesser General Public License Version 2.1, February 1999

52

distribute the source code, even though third parties are not
compelled to copy the source along with the object code.

 5. A program that contains no derivative of any portion of the
Library, but is designed to work with the Library by being compiled or
linked with it, is called a "work that uses the Library". Such a
work, in isolation, is not a derivative work of the Library, and
therefore falls outside the scope of this License.

 However, linking a "work that uses the Library" with the Library
creates an executable that is a derivative of the Library (because it
contains portions of the Library), rather than a "work that uses the
library". The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.

 When a "work that uses the Library" uses material from a header file
that is part of the Library, the object code for the work may be a
derivative work of the Library even though the source code is not.
Whether this is true is especially significant if the work can be
linked without the Library, or if the work is itself a library. The
threshold for this to be true is not precisely defined by law.

 If such an object file uses only numerical parameters, data
structure layouts and accessors, and small macros and small inline
functions (ten lines or less in length), then the use of the object
file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the
Library will still fall under Section 6.)

 Otherwise, if the work is a derivative of the Library, you may
distribute the object code for the work under the terms of Section 6.
Any executables containing that work also fall under Section 6,
whether or not they are linked directly with the Library itself.

 6. As an exception to the Sections above, you may also combine or
link a "work that uses the Library" with the Library to produce a
work containing portions of the Library, and distribute that work
under terms of your choice, provided that the terms permit
modification of the work for the customer's own use and reverse
engineering for debugging such modifications.

 You must give prominent notice with each copy of the work that the
Library is used in it and that the Library and its use are covered by
this License. You must supply a copy of this License. If the work
during execution displays copyright notices, you must include the
copyright notice for the Library among them, as well as a reference
directing the user to the copy of this License. Also, you must do one
of these things:

 a) Accompany the work with the complete corresponding
 machine-readable source code for the Library including whatever
 changes were used in the work (which must be distributed under
 Sections 1 and 2 above); and, if the work is an executable linked
 with the Library, with the complete machine-readable "work that
 uses the Library", as object code and/or source code, so that the
 user can modify the Library and then relink to produce a modified
 executable containing the modified Library. (It is understood
 that the user who changes the contents of definitions files in the
 Library will not necessarily be able to recompile the application
 to use the modified definitions.)

 b) Use a suitable shared library mechanism for linking with the
 Library. A suitable mechanism is one that (1) uses at run time a
 copy of the library already present on the user's computer system,
 rather than copying library functions into the executable, and (2)
 will operate properly with a modified version of the library, if
 the user installs one, as long as the modified version is

GNU Lesser General Public License Version 2.1, February 1999

53

 interface-compatible with the version that the work was made with.

 c) Accompany the work with a written offer, valid for at
 least three years, to give the same user the materials
 specified in Subsection 6a, above, for a charge no more
 than the cost of performing this distribution.

 d) If distribution of the work is made by offering access to copy
 from a designated place, offer equivalent access to copy the above
 specified materials from the same place.

 e) Verify that the user has already received a copy of these
 materials or that you have already sent this user a copy.

 For an executable, the required form of the "work that uses the
Library" must include any data and utility programs needed for
reproducing the executable from it. However, as a special exception,
the materials to be distributed need not include anything that is
normally distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies
the executable.

 It may happen that this requirement contradicts the license
restrictions of other proprietary libraries that do not normally
accompany the operating system. Such a contradiction means you cannot
use both them and the Library together in an executable that you
distribute.

 7. You may place library facilities that are a work based on the
Library side-by-side in a single library together with other library
facilities not covered by this License, and distribute such a combined
library, provided that the separate distribution of the work based on
the Library and of the other library facilities is otherwise
permitted, and provided that you do these two things:

 a) Accompany the combined library with a copy of the same work
 based on the Library, uncombined with any other library
 facilities. This must be distributed under the terms of the
 Sections above.

 b) Give prominent notice with the combined library of the fact
 that part of it is a work based on the Library, and explaining
 where to find the accompanying uncombined form of the same work.

 8. You may not copy, modify, sublicense, link with, or distribute
the Library except as expressly provided under this License. Any
attempt otherwise to copy, modify, sublicense, link with, or
distribute the Library is void, and will automatically terminate your
rights under this License. However, parties who have received copies,
or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

 9. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Library or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Library (or any work based on the
Library), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Library or works based on it.

 10. Each time you redistribute the Library (or any work based on the
Library), the recipient automatically receives a license from the
original licensor to copy, distribute, link with or modify the Library
subject to these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.

GNU Lesser General Public License Version 2.1, February 1999

54

You are not responsible for enforcing compliance by third parties with
this License.

 11. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Library at all. For example, if a patent
license would not permit royalty-free redistribution of the Library by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended
to apply, and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

 12. If the distribution and/or use of the Library is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Library under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

 13. The Free Software Foundation may publish revised and/or new
versions of the Lesser General Public License from time to time.
Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library
specifies a version number of this License which applies to it and
"any later version", you have the option of following the terms and
conditions either of that version or of any later version published by
the Free Software Foundation. If the Library does not specify a
license version number, you may choose any version ever published by
the Free Software Foundation.

 14. If you wish to incorporate parts of the Library into other free
programs whose distribution conditions are incompatible with these,
write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status
of all derivatives of our free software and of promoting the sharing
and reuse of software generally.

 NO WARRANTY

GNU Lesser General Public License Version 2.1, February 1999

55

 15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

 16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

 END OF TERMS AND CONDITIONS

 How to Apply These Terms to Your New Libraries

 If you develop a new library, and you want it to be of the greatest
possible use to the public, we recommend making it free software that
everyone can redistribute and change. You can do so by permitting
redistribution under these terms (or, alternatively, under the terms
of the ordinary General Public License).

 To apply these terms, attach the following notices to the library.
It is safest to attach them to the start of each source file to most
effectively convey the exclusion of warranty; and each file should
have at least the "copyright" line and a pointer to where the full
notice is found.

 <one line to give the library's name and a brief idea of what it does.>
 Copyright (C) <year> <name of author>

 This library is free software; you can redistribute it and/or
 modify it under the terms of the GNU Lesser General Public
 License as published by the Free Software Foundation; either
 version 2.1 of the License, or (at your option) any later version.

 This library is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 Lesser General Public License for more details.

 You should have received a copy of the GNU Lesser General Public
 License along with this library; if not, write to the Free Software
 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 02110-1301 USA

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the library, if
necessary. Here is a sample; alter the names:

 Yoyodyne, Inc., hereby disclaims all copyright interest in the
 library `Frob' (a library for tweaking knobs) written by James
 Random Hacker.

 <signature of Ty Coon>, 1 April 1990
 Ty Coon, President of Vice

libevent License

56

That's all there is to it!

A.3. libevent License

The following software may be included in this product:

libevent

Copyright (c) 2000-2007 Niels Provos <provos@citi.umich.edu>
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.
3. The name of the author may not be used to endorse or promote products
 derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE

==
Parts developed by Adam Langley
==

==
log.c
Based on err.c, which was adapted from OpenBSD libc *err*warncode.

Copyright (c) 2005 Nick Mathewson
Copyright (c) 2000 Dug Song
Copyright (c) 1993 The Regents of the University of California.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in
 the documentation and/or other materials provided with the
 distribution.
3. Neither the name of the University nor the names of its
 contributors may be used to endorse or promote products derived
 from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

libevent License

57

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.
==

==
min_heap.h

Copyright (c) 2006 Maxim Yegorushkin
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in
 the documentation and/or other materials provided with the
 distribution.
3. The name of the author may not be used to endorse or promote
 products derived from this software without specific prior
 written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR "AS IS" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
==

==
win32.c

Copyright 2000-2002 Niels Provos
Copyright 2003 Michael A. Davis
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in
 the documentation and/or other materials provided with the
 distribution.
3. The name of the author may not be used to endorse or promote
 products derived from this software without specific prior
 written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR "AS IS" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

Libiconv License

58

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
==

A.4. Libiconv License

The following software may be included in this product:

Libiconv

You are receiving a copy of the GNU LIBICONV Library. The terms of the Oracle
license do NOT apply to the GNU LIBICONV Library; it is licensed under the
following license, separately from the Oracle programs you receive. If you do
not wish to install this program, you may delete [agent install
dir]/lib/libiconv.* and [agent install dir]/licenses/lgpl/iconv files.

This component is licensed under Section A.2, “GNU Lesser General Public License Version 2.1, February
1999”.

A.5. libintl License

The following software may be included in this product:

libintl

Copyright (C) 1994 X Consortium

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be
used in advertising or otherwise to promote the sale, use or other dealings in
this Software without prior written authorization from the X Consortium.

FSF changes to this file are in the public domain.
 .
Copyright 1996-2007 Free Software Foundation, Inc. Taken from GNU libtool, 2001

Originally by Gordon Matzigkeit <gord@gnu.ai.mit.edu>, 1996

This file is free software; the Free Software Foundation gives unlimited
permission to copy and/or distribute it, with or without modifications, as long
as this notice is preserved.
.
You are receiving a copy of the libintl library. The terms of the Oracle license
do NOT apply to the libintl library; it is licensed under the following license,
separately from the Oracle programs you receive. If you do not wish to install
this program, you may create an "exclude" file and run tar with the X option.

LPeg Library License

59

This component is licensed under Section A.2, “GNU Lesser General Public License Version 2.1, February 1999”.

A.6. LPeg Library License

The following software may be included in this product:

LPeg

Use of any of this software is governed by the terms of the license below:

Copyright © 2008 Lua.org, PUC-Rio.

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

A.7. Lua (liblua) License

The following software may be included in this product:

Lua (liblua)

Copyright © 1994–2008 Lua.org, PUC-Rio.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject
to the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

A.8. LuaFileSystem Library License

The following software may be included in this product:

LuaFileSystem

PCRE License

60

Copyright © 2003 Kepler Project.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject
to the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

A.9. PCRE License
The following software may be included in this product:

PCRE (Perl Compatible Regular Expressions) Library

PCRE LICENCE

PCRE is a library of functions to support regular expressions
whose syntax and semantics are as close as possible to those
of the Perl 5 language.

Release 7 of PCRE is distributed under the terms of the "BSD"
licence, as specified below. The documentation for PCRE,
supplied in the "doc" directory, is distributed under the same
terms as the software itself.

The basic library functions are written in C and are
freestanding. Also included in the distribution is a set
of C++ wrapper functions.

THE BASIC LIBRARY FUNCTIONS

Written by: Philip Hazel
Email local part: ph10
Email domain: cam.ac.uk

University of Cambridge Computing Service,
Cambridge, England. Phone: +44 1223 334714.

Copyright (c) 1997-2006 University of Cambridge
All rights reserved.

THE C++ WRAPPER FUNCTIONS

Contributed by: Google Inc.

Copyright (c) 2006, Google Inc.
All rights reserved.

THE "BSD" LICENCE

Redistribution and use in source and binary forms,

PCRE License

61

with or without modification, are permitted provided
that the following conditions are met:

* Redistributions of source code must retain the above
 copyright notice, this list of conditions and the
 following disclaimer.
* Redistributions in binary form must reproduce the
 above copyright notice, this list of conditions and
 the following disclaimer in the documentation and/or
 other materials provided with the distribution.
* Neither the name of the University of Cambridge nor
 the name of Google Inc. nor the names of their contributors
 may be used to endorse or promote products derived from
 this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

End

62

	MySQL Proxy Guide
	Table of Contents
	Preface and Legal Notices
	Chapter 1. MySQL Proxy
	Chapter 2. MySQL Proxy Supported Platforms
	Chapter 3. Installing MySQL Proxy
	3.1. Installing MySQL Proxy from a Binary Distribution
	3.2. Installing MySQL Proxy from a Source Distribution
	3.3. Installing MySQL Proxy from the Bazaar Repository
	3.4. Setting Up MySQL Proxy as a Windows Service

	Chapter 4. MySQL Proxy Command Options
	Chapter 5. MySQL Proxy Scripting
	5.1. Proxy Scripting Sequence During Query Injection
	5.2. Internal Structures
	5.3. Capturing a Connection with connect_server()
	5.4. Examining the Handshake with read_handshake()
	5.5. Examining the Authentication Credentials with read_auth()
	5.6. Accessing Authentication Information with read_auth_result()
	5.7. Manipulating Queries with read_query()
	5.8. Manipulating Results with read_query_result()

	Chapter 6. Using MySQL Proxy
	6.1. Using the Administration Interface

	Chapter 7. MySQL Proxy FAQ
	Appendix A. Third Party Licenses
	A.1. GLib License (for MySQL Proxy)
	A.2. GNU Lesser General Public License Version 2.1, February 1999
	A.3. libevent License
	A.4. Libiconv License
	A.5. libintl License
	A.6. LPeg Library License
	A.7. Lua (liblua) License
	A.8. LuaFileSystem Library License
	A.9. PCRE License

