

Drupal 7 Module Development

Matt Butcher
Greg Dunlap
Matt Farina
Larry Garfield
Ken Rickard
John Albin Wilkins

Chapter No. 2
"Creating Your First Module"

In this package, you will find:
A Biography of the authors of the book

A preview chapter from the book, Chapter NO.2 "Creating Your First Module"

A synopsis of the book’s content

Information on where to buy this book

About the Authors
Matt Butcher is a web developer and author. He has written five other books for Packt,
including Drupal 6 JavaScript and jQuery and Learning Drupal 6 Module Development.
Matt is a Senior Developer at ConsumerSearch.com (a New York Times/About.Com
company), where he works on one of the largest Drupal sites in the world. Matt is active
in the Drupal community, managing several modules. He also leads a couple of Open
Source projects including QueryPath.

I would like to thank Larry, Ken, Sam, Matt, Greg, and John for working
with me on the book. They are a fantastic group of people to work with.
I'd also like to thank the technical reviewers of this book, all of whom
contributed to making this a better work.

I'd also like to thank Austin Smith, Brian Tully, Chachi Kruel, Marc
McDougall, Theresa Summa, and the rest of the ConsumerSearch. com
team for their support. The folks at Palantir.net were instrumental in
getting this book off the ground, and I am always grateful for their
support. Finally, Angie, Anna, Claire, and Katherine have sacrificed
some weekends and evenings with me for the benefit of this book. To
them, I owe the biggest debt of gratitude.

For More Information:
www.packtpub.com/drupal-7-module-development/book

http://www.packtpub.com/drupal-7-module-development/book

Greg Dunlap is a software engineer based in Stockholm, Sweden. Over the past 15
years, Greg has been involved in a wide variety of projects, including desktop database
applications, kiosks, embedded software for pinball and slot machines, and websites in
over a dozen programming languages. Greg has been heavily involved with Drupal for
three years, and is the maintainer of the Deploy and Services modules as well as a
frequent speaker at Drupal conferences. Greg is currently a Principal Software Developer
at NodeOne.

Several people played crucial roles in my development as a Drupal
contributor, providing support and encouragement just when I needed it
most. My deepest gratitude to Gary Love, Jeff Eaton, Boris Mann, Angie
Byron, and Ken Rickard for helping me kick it up a notch. Extra special
thanks to the lovely Roya Naini for putting up with lost nights and
weekends in the service of finishing my chapters.

Matt Farina has been a Drupal developer since 2005. He is a senior front-end developer,
engineer, and technical lead for Palantir.net, where he works on a wide variety of projects
ranging from museums to large interactive sites. He is a contributor to Drupal core as
well as a maintainer of multiple contributed Drupal modules.

Matt wrote his first computer program when he was in the 5th grade. Since then he has
programmed in over a dozen languages. He holds a BS in Electrical Engineering from
Michigan State University.

For More Information:
www.packtpub.com/drupal-7-module-development/book

http://www.packtpub.com/drupal-7-module-development/book

Larry Garfield is a Senior Architect and Engineer at Palantir.net, a leading Drupal
development firm based in Chicago. He has been building websites since he was 16,
which is longer than he'd like to admit, and has been working in PHP since 1999. He
found Drupal in 2005, when Drupal 4.6 was still new and cool, and never really left. He
is the principle architect and maintainer of the Drupal database subsystem among various
other core initiatives and contributed modules.

Previously, Larry was a Palm OS developer and a journalist covering the mobile
electronics sector and was the technical editor for Building Powerful and Robust Websites
with Drupal 6, also from Packt. He holds a Bachelors and Masters Degree in Computer
Science from DePaul University.

If I were to thank all of the people who made this book possible it
would take several pages, as the Drupal 7 contributor list was well over
700 people, the last time I checked. Instead I will simply say thank you
to the entire community for being so vibrant, supportive, and all-around
amazing that it still brings a tear to my eye at times even after
half a decade.

Extra special thanks go to Dries Buytaert, not just for being our project
lead, but for sitting down on the floor next to me at DrupalCon
Sunnyvale and encouraging me to run with this crazy idea I had, about
using this "PDO" thing for Drupal's database layer. I doubt he realized
how much trouble I'd cause him over the next several years.

Of course to my parents, who instilled in me not only a love of learning
but a level of pedantry and stubbornness without which I would never
have been able to get this far in Drupal, to say nothing of this book.

For More Information:
www.packtpub.com/drupal-7-module-development/book

http://www.packtpub.com/drupal-7-module-development/book

Ken Rickard is a senior programmer at Palantir.net, a Chicago-based firm specializing in
developing Drupal websites. He is a frequent contributor to the Drupal project, and is the
maintainer of the Domain Access, MySite, and Menu Node API modules. At Palantir, he
architects and builds large-scale websites for a diverse range of customers, including
Foreign Affairs magazine, NASCAR, and the University of Chicago.

From 1998 through 2008, Ken worked in the newspaper industry, beginning his career
managing websites and later becoming a researcher and consultant for Morris
DigitalWorks. At Morris, Ken helped launch BlufftonToday.com, the
first newspaper website launched on the Drupal platform. He later led the Drupal
development team for SavannahNOW.com. He co-founded the Newspapers on Drupal
group (http://groups.drupal.org/newspapers-on-drupal) and is a frequent
advisor to the newspaper and publishing industries.

In 2008, Ken helped start the Knight Drupal Initiative, an open grant process for Drupal
development, funded by the John L. and James S. Knight Foundation. He is also a
member of the advisory board of PBS Engage, a Knight Foundation project to bring
social media to the Public Broadcasting Service.

Prior to this book, Ken was a technical reviewer for Packt Publishing's Drupal 6 Site
Blueprints by Timi Ogunjobi.

I must thank the entire staff at Palantir, the Drupal community, and,
most of all, my lovely and patient wife Amy, without whom none of this
would be possible.

For More Information:
www.packtpub.com/drupal-7-module-development/book

http://www.packtpub.com/drupal-7-module-development/book

John Albin Wilkins has been a web developer for a long time. In April 1993, he was one
of the lucky few to use the very first graphical web browser, Mosaic 1.0, and he's been
doing web development professionally since 1994. In 2005, John finally learned how
idiotic it was to build your own web application framework, and discovered the power of
Drupal; he never looked back.

In the Drupal community, he is best known as JohnAlbin, one of the top 20 contributors
to Drupal 7 and the maintainer of the Zen theme, which is a highly-documented, feature-
rich "starter" theme with a powerfully flexible CSS framework. He has also written
several front-end-oriented utility modules, such as the Menu Block module. John
currently works with a bunch of really cool Drupal developers, designers, and themers at
Palantir.net.

His occasional musings, videos, and podcasts can be found at
http://john.albin.net.

I'd to thank the entire Drupal community for its wonderful support,
friendship, aggravation, snark, and inspiration; just like a family. I'd
also like to thank my real family, my wife and two kids, Jenny, Owen
and Ella, for making me want to be a better person. I love you all.

For More Information:
www.packtpub.com/drupal-7-module-development/book

http://www.packtpub.com/drupal-7-module-development/book

Drupal 7 Module Development
Drupal is an award-winning open-source Content Management System. It's a modular
system, with an elegant hook-based architecture, and great code. Modules are plugins for
Drupal that extend, build or enhance Drupal core functionality. In Drupal 7 Module
development book, six professional Drupal developers use a practical, example-based
approach to introduce PHP developers to the powerful new Drupal 7 tools, APIs, and
strategies for writing custom Drupal code. These tools not only make management and
maintenance of websites much easier, but they are also great fun to play around with and
amazingly easy to use.

What This Book Covers
Chapter 1, Introduction to Drupal Module Development gives a introduction to the scope
of Drupal as a web-based Content Management System. It dwells on basic aspects such
as the technologies that drive Drupal and the architectural layout of Drupal. A brief idea
of the components (subsystems) of Drupal and the tools that may be used to develop it,
completes the basic picture of Drupal.

Chapter 2, A First Module, gets things into action, by describing how to start building our
first module in Drupal. That done, it will tell us how Block API can be used to create our
custom code for Drupal. Finally, there is a word or two on how to test our code by
writing Automated tests.

Chapter 3, Drupal Themes, is all about the Theme Layer in Drupal. It starts with ways to
theme, and then proceeds to aspects associated with Theming. It talks about 'Render
Elements' and concludes by getting us familiar with 'Theme Registry'.

Chapter 4, Theming a Module uses the concepts we saw in the previous chapter to
theme modules in Drupal. It acquaints us with the concept of re-using a default theme
implementation, and teaches us to build a theme implementation for real-life situations.

Chapter 5, Building an Admin Interface will show us how to go about building a module,
complete with an administrative interface. While doing this, basic concepts of modules
discussed in Chapter 2 will be useful. A 'User Warn' module is developed as an
illustration, in the chapter.

Chapter 6, Working with Content lays emphasis on managing content. Creation of entity,
controller class, integrating our entity with the Field API, and displaying confirmation
forms are some of the things that we come across in this chapter.

Chapter 7, Creating New Fields, will take a look into creating new Fields. Further, it
teaches us how to use corresponding Widgets to allow users to edit the Fields. Finally, to
ensure that data is displayed as desired, the role of Formatters is discussed in the chapter.

For More Information:
www.packtpub.com/drupal-7-module-development/book

http://www.packtpub.com/drupal-7-module-development/book

Chapter 8, Module Permissions and Security is all about access control and security. It
talks about Permissions, which help users to gain access (or be denied access) to specific
features. Also, the chapter talks about how to manage roles programmatically. One of the
most crucial areas of website security, Form handling, is detailed here.

Chapter 9, Node Access deals with node access, which is one of the most powerful tools
in the Drupal API. It sheds light on how access to a node is determined and on major
operations controlled by the Node Access API, among other things.

Chapter 10, JavaScript in Drupal provides the fundamental knowledge required to work
with JavaScript within Drupal. This helps to create powerful features such as the overlay,
auto complete, drag and drop, and so on.

Chapter 11, Working with Files and Images talks about how management and
maintenance can be made much easier by using File and Image APIs in Drupal 7. Also,
the chapter tells us about various image processing techniques involved in working with
images, making things more colorful and fun.

Chapter 12, Installation Profiles outlines the process of working with 'Distributions' and
'Installation Profiles' in Drupal. They help to make the developer's job easier.

Appendix A, Database Access, offers helpful insights regarding the developer's ability to
take advantage of the Database Layer of Drupal 7, in order to make powerful cross-
database queries.

Appendix B, Security, emphasizes the need to develop a practice to bear the security
aspect in mind while writing the code. It deals with two ways of dealing with potentially
insecure data, namely, 'filtering' and 'escaping'.

For More Information:
www.packtpub.com/drupal-7-module-development/book

http://www.packtpub.com/drupal-7-module-development/book

Creating Your First Module
The focus of this chapter is module creation. In the last chapter we surveyed Drupal's
architecture advanced. We learned about the basic features and subsystems. We also
saw some tools available for development. Now we are going to begin coding.

Here are some of the important topics that we will cover in this chapter:

Starting a new module
Creating .info fi les to provide Drupal with module information
Creating .module fi les to store Drupal code
Adding new blocks using the Block Subsystem
Using common Drupal functions
Formatting code according to the Drupal coding standards
Writing an automated test for Drupal

By the end of this chapter, you should have the foundational knowledge necessary
for building your own module from scratch.

Our goal: a module with a block
 In this chapter we are going to build a simple module. The module will use the Block
Subsystem to add a new custom block. The block that we add will simply display a
list of all of the currently enabled modules on our Drupal installation.

 The block subsystem was introduced in the previous chapter
alongside other important Drupal subsystems.

•

•

•

•

•

•

•

For More Information:
www.packtpub.com/drupal-7-module-development/book

http://www.packtpub.com/drupal-7-module-development/book

Creating Your First Module

[26]

 We are going to divide this task of building a new module into the three parts:

Create a new module folder and module fi les
Work with the Block Subsystem
 Write automated tests using the SimpleTest framework included in Drupal

We are going to proceed in that order for the sake of simplicity. One might object
that, following agile development processes, we ought to begin by writing our
tests. This approach is called Test-driven Development (TDD), and is a justly
popular methodology.

 Agile software development is a particular methodology designed to
help teams of developers effectively and effi ciently build software. While
Drupal itself has not been developed using an agile process, it does
facilitate many of the agile practices. To learn more about agile, visit
http://agilemanifesto.org/.

However, our goal here is not to exemplify a particular methodology, but to discover
how to write modules. It is easier to learn module development by fi rst writing the
module, and then learn how to write unit tests. It is easier for two reasons:

SimpleTest (in spite of its name) is the least simple part of this chapter. It will
have double the code-weight of our actual module.
We will need to become acquainted with the APIs we are going to use in
development before we attempt to write tests that assume knowledge of
those APIs.

In regular module development, though, you may certainly choose to follow the
TDD approach of writing tests fi rst, and then writing the module.

Let's now move on to the fi rst step of creating a new module.

Creating a new module
 Creating Drupal modules is easy. How easy? Easy enough that over 5,000 modules
have been developed, and many Drupal developers are even PHP novices! In fact,
the code in this chapter is an illustration of how easy module coding can be. We are
going to create our fi rst module with only one directory and two small fi les.

•

•

•

•

•

For More Information:
www.packtpub.com/drupal-7-module-development/book

http://www.packtpub.com/drupal-7-module-development/book

Chapter 2

[27]

Module names
It goes without saying that building a new module requires naming the module.
However, there is one minor ambiguity that ought to be cleared up at the outset,
a Drupal module has two names:

A human-readable name: This name is designed to be read by humans, and
should be one or a couple of words long. The words should be capitalized
and separated by spaces. For example, one of the most popular Drupal
modules has the human-readable name Views. A less-popular (but perhaps
more creatively named) Drupal 6 module has the human-readable name
Eldorado Superfl y.
A machine-readable name: This name is used internally by Drupal. It can be
composed of lower-case and upper-case letters, digits, and the underscore
character (using upper-case letters in machine names is frowned upon,
though). No other characters are allowed. The machine names of the above
two modules are views and eldorado_superfly, respectively.

By convention, the two names ought to be as similar as possible. Spaces should
be replaced by underscores. Upper-case letters should generally be changed to
lower-case.

Because of the convention of similar naming, the two names can usually be used
interchangeably, and most of the time it is not necessary to specifi cally declare which
of the two names we are referring to. In cases where the difference needs to be made
(as in the next section), the authors will be careful to make it.

Where does our module go?
One of the less intuitive aspects of Drupal development is the fi lesystem layout.
Where do we put a new module? The obvious answer would be to put it in the
/modules directory alongside all of the core modules.

•

•

For More Information:
www.packtpub.com/drupal-7-module-development/book

http://www.packtpub.com/drupal-7-module-development/book

Creating Your First Module

[28]

A s obvious as this may seem, the /modules folder is not the right place for your
modules. In fact, you should never change anything in that directory. It is reserved
for core Drupal modules only, and will be overwritten during upgrades.

T he second, far less obvious place to put modules is in /sites/all/modules. This is
the location where all unmodifi ed add-on modules ought to go, and tools like Drush
(a Drupal command line tool) will download modules to this directory.

In some sense, it is okay to put modules here. They will not be automatically
overwritten during core upgrades.

However, as of this writing, /sites/all/modules is not the recommended place
to put custom modules unless you are running a multi-site confi guration and the
custom module needs to be accessible on all sites.

The current recommendation is to put custom modules in the /sites/default/
modules directory, which does not exist by default. This has a few advantages. One
is that standard add-on modules are stored elsewhere, and this separation makes it
easier for us to fi nd our own code without sorting through clutter. There are other
benefi ts (such as the loading order of module directories), but none will have a direct
impact on us.

Throughout this book, we will always be putting our custom
modules in /sites/default/modules. This follows Drupal
best practices, and also makes it easy to fi nd our modules as
opposed to all of the other add-on modules.

The one disadvantage of storing all custom modules in /sites/default/modules
appears only under a specifi c set of circumstances. If you have Drupal confi gured
to serve multiple sites off of one single instance, then the /sites/default folder is
only used for the default site. What this means, in practice, is that modules stored
there will not be loaded at all for other sites.

In such cases, it is generally advised to move your custom modules into
/sites/all/modules/custom.

Other module directories
Drupal does look in a few other places for modules. However,
those places are reserved for special purposes.

For More Information:
www.packtpub.com/drupal-7-module-development/book

http://www.packtpub.com/drupal-7-module-development/book

Chapter 2

[29]

Creating the module directory
N ow that we know that our modules should go in /sites/default/modules, we
can create a new module there.

Modules can be organized in a variety of ways, but the best practice is to create a
module directory in /sites/default/modules, and then place at least two fi les
inside the directory: a .info (pronounced "dot-info") fi le and a .module ("dot-
module") fi le.

T he directory should be named with the machine-readable name of the module.
Similarly, both the .info and .module fi les should use the machine-readable name.

We are going to name our fi rst module with the machine-readable name first,
since it is our fi rst module. Thus, we will create a new directory, /sites/default/
modules/first, and then create a first.info fi le and a first.module fi le:

Those are the only fi les we will need for our module.

For permissions, make sure that your webserver can read both the .info and
.module fi les. It should not be able to write to either fi le, though.

In some sense, the only fi le absolutely necessary for a module is the
.info fi le located at a proper place in the system. However, since
the .info fi le simply provides information about the module, no
interesting module can be built with just this fi le.

Next, we will write the contents of the .info fi le.

Writing the .info file
Th e purpose of the .info fi le is to provide Drupal with information about a
module—information such as the human-readable name, what other modules
this module requires, and what code fi les this module provides.

A .info fi le is a plain text fi le in a format similar to the standard INI confi guration
fi le. A directive in the .info fi le is composed of a name, and equal sign, and a value:

name = value

For More Information:
www.packtpub.com/drupal-7-module-development/book

http://www.packtpub.com/drupal-7-module-development/book

Creating Your First Module

[30]

By Drupal's coding conventions, there should always be one space on each side of
the equals sign.

Some directives use an array-like syntax to declare that one name has multiple
values. The array-like format looks like this:

name[] = value1
name[] = value2

Note that there is no blank space between the opening square bracket and the closing
square bracket.

If a value spans more than one line, it should be enclosed in quotation marks.

Any line that begins with a ; (semi-colon) is treated as a comment, and is ignored by
the Drupal INI parser.

Drupal does not support INI-style section headers such as
those found in the php.ini fi le.

To begin, let's take a look at a complete first.info fi le for our fi rst module:

;Id

name = First
description = A first module.
package = Drupal 7 Development
core = 7.x
files[] = first.module

;dependencies[] = autoload
;php = 5.2

This ten-line fi le is about as complex as a module's .info fi le ever gets.

Th e fi rst line is a standard. Every .info fi le should begin with ;Id. What is this?
It is the placeholder for the version control system to store information about the fi le.
When the fi le is checked into Drupal's CVS repository, the line will be automatically
expanded to something like this:

;$Id: first.info,v 1.1 2009/03/18 20:27:12 mbutcher Exp $

This information indicates when the fi le was last checked into CVS, and who checked
it in.

For More Information:
www.packtpub.com/drupal-7-module-development/book

http://www.packtpub.com/drupal-7-module-development/book

Chapter 2

[31]

CV S is going away, and so is Id. While Drupal has been
developed in CVS from the early days through Drupal 7, it is
now being migrated to a Git repository. Git does not use Id,
so it is likely that between the release of Drupal 7 and the
release of Drupal 8, Id tags will be removed.

Throughout this book you will see all PHP and .info fi les beginning with the Id
marker. Once Drupal uses Git, those tags may go away.

The next couple of lines of interest in first.info are these:

name = First
description = A first module.
package = Drupal 7 Development

The fi rst two are required in every .info fi le. The name directive is used to declare
what the module's human-readable name is. The description provides a one or
two-sentence description of what this module provides or is used for. Among other
places, this information is displayed on the module confi guration section of the
administration interface in Modules.

In the screenshot, the values of the name and description fi elds are displayed in
their respective columns.

The third item, package, identifi es which family (package) of modules this
module is related to. Core modules, for example, all have the package Core. In the
screenshot above, you can see the grouping package Core in the upper-left corner.
Our module will be grouped under the package Drupal 7 Development to represent
its relationship to this book. As you may notice, package names are written as
human-readable values.

When choosing a human-readable module name, remember to adhere to
the specifi cations mentioned earlier in this section.

For More Information:
www.packtpub.com/drupal-7-module-development/book

http://www.packtpub.com/drupal-7-module-development/book

Creating Your First Module

[32]

The next directive is the core directive: core = 7.x. This simply declares which
main-line version of Drupal is required by the module. All Drupal 7 modules will
have the line core = 7.x.

Along with the core version, a .info fi le can also specify what version of PHP it
requires. By default, Drupal 7 requires Drupal 5.1 or newer. However, if one were
to use, say, clo sures (a feature introduced in PHP 5.3), then the following line would
need to be added:

php = 5.3

Next, every .info fi le must declare which fi les in the module contain PHP
functions, classes, or interfaces. This is done using the files[] directive. Our
small initial module will only have one fi le, first.module. So we need only one
files[] directive.

files[] = first.module

More complex fi les will often have several files[] directives, each declaring a
separate PHP source code fi le.

JavaScript, CSS, image fi les, and PHP fi les (like templates) that
do not contain functions that the module needs to know about
needn't be included in files[] dir ectives. The point of the
directive is simply to indicate to Drupal that these fi les should
be examined by Drupal.

One directive that we will not use for this module, but which plays a very important
role is the dependencies[] directive. This is used to list the other modules that must
be installed and active for this module to function correctly. Drupal will not allow
a module to be enabled unless its dependencies have been satisfi ed.

Drupal does not contain a directive to indicate that another
module is recommended or is optional. It is the task of the
developer to appropriately document this fact and make it
known. There is currently no recommended best practice to
provide such information.

For More Information:
www.packtpub.com/drupal-7-module-development/book

http://www.packtpub.com/drupal-7-module-development/book

Chapter 2

[33]

Now we have created our first.info fi le. As soon as Drupal reads this fi le, the
module will appear on our Modules page.

In the screenshot, notice that the module appears in the DRUPAL 7 DEVELOPMENT
package, and has the NAME and DESCRIPTION as assigned in the .info fi le.

With our .info fi le completed, we can now move on and code our .module fi le.

Modules checked into Drupal's version control system will
automatically have a version directive added to the .info fi le.
This should typically not be altered.

Creating a module file
The .module fi le is a PHP fi le that conventionally contains all of the major hook
implementations for a module. We discussed hooks at a high level in the fi rst
chapter. Now we will gain some practical knowledge of them.

A hook implementation is a function that follows a certain naming pattern in order
to indicate to Drupal that it should be used as a callback for a particular event in the
Drupal system. For Object-oriented programmers, it may be helpful to think of a
hook as similar to the Observer design pattern.

For More Information:
www.packtpub.com/drupal-7-module-development/book

http://www.packtpub.com/drupal-7-module-development/book

Creating Your First Module

[34]

When Drupal encounters an event for which there is a hook (and there are
hundreds of such events), Drupal will look through all of the modules for matching
hook implementations. It will then execute each hook implementation, one after
another. Once all hook implementations have been executed, Drupal will continue
its processing.

In the past, all Drupal hook implementations had to reside in the .module fi le.
Drupal 7's requirements are more lenient, but in most moderately sized modules,
it is still preferable to store most hook implementations in the .module fi le.

Later in this book you will encounter cases where hook
implementations belong in other fi les. In such cases, the reasons
for organizing the module in such a way will be explained.

To b egin, we will create a simple .module fi le that contains a single hook
implementation – one that provides help information.

<?php
// Id

/**
 * @file
 * A module exemplifying Drupal coding practices and APIs.
 *
 * This module provides a block that lists all of the
 * installed modules. It illustrates coding standards,
 * practices, and API use for Drupal 7.
 */

/**
 * Implements hook_help().
 */
function first_help($path, $arg) {
 if ($path == 'admin/help#first') {
 return t('A demonstration module.');
 }
}

Befo re we get to the code itself, we will talk about a few stylistic items.

To begin, notice that this fi le, like the .info fi le, contains an Id marker that CVS
will replace when the fi le is checked in. All PHP fi les should have this marker
following a double-slash-style comment: // Id.

Next, the preceding code illustrates a few of the important coding standards
for Drupal.

For More Information:
www.packtpub.com/drupal-7-module-development/book

http://www.packtpub.com/drupal-7-module-development/book

Chapter 2

[35]

Source code standards
Drup al has a thorough and strictly enforced set of coding standards. All core code
adheres to these standards. Most add-on modules do, too. (Those that don't generally
receive bug reports for not conforming.) Before you begin coding, it is a good idea to
familiarize yourself with the standards as documented here: http://drupal.org/
coding-standards The Coder module mentioned in the last chapter can evaluate
your code and alert you to any infringement upon the coding standards.

Throughout this book we will adhere to the Drupal coding
standards. In many cases, we will explain the standards as
we go along. Still, the defi nitive source for standards is the
URL listed above, not our code here.

We will not re-iterate the coding standards in this book. The details can be found
online. However, several prominent standards deserve immediate mention. I will just
mention them here, and we will see examples in action as we work through the code.

Indenting: All PHP and JavaScript fi les use two spaces to indent. Tabs are
never used for code formatting.
The <?php ?> processor instruction: File s that are completely PHP should
begin with <?php, but should omit the closing ?>. This is done for several
reasons, most notably to prevent the inclusion of whitespace from breaking
HTTP headers.
Comments: Drup al uses Doxygen-style (/** */) doc-blocks to comment
functions, classes, interfaces, constants, fi les, and globals. All other comments
should use the double-slash (//) comment. The pound sign (#) should not be
used for commenting.
Spaces around operators: Most operators should have a whitespace
character on each side.
Spacing in control structures: Cont rol structures should have spaces after
the name and before the curly brace. The bodies of all control structures
should be surrounded by curly braces, and even that of if statements with
one-line bodies.
Functions: Func tions should be named in lowercase letters using underscores
to separate words. Later we will see how class method names differ
from this.
Variables: Vari able names should be in all lowercase letters using underscores
to separate words. Member variables in objects are named differently.

As we work through examples, we will see these and other standards in action.

•

•

•

•

•

•

•

For More Information:
www.packtpub.com/drupal-7-module-development/book

http://www.packtpub.com/drupal-7-module-development/book

Creating Your First Module

[36]

Doxygen-style doc blocks
Drup al uses Doxygen to extract API documentation from source code. Experienced
PHP coders may recognize this concept, as it is similar to PhpDocumentor comments
(or Java's JavaDoc). However, Drupal does have its idiosyncrasies, and does not
follow the same conventions as these systems.

We will only look at the documentation blocks as they apply to our preceding
specifi c example. As we proceed through the book, we will see more advanced
examples of correct documentation practices.

Let's take a closer look at the fi rst dozen lines of our module:

<?php
// Id

/**
 * @file
 * A module exemplifying Drupal coding practices and APIs.
 *
 * This module provides a block that lists all of the
 * installed modules. It illustrates coding standards,
 * practices, and API use for Drupal 7.
 */

After the PHP processor instruction and the Id line, the part of the code is a large
comment. The comment begins with a slash and two asterisks (/**) and ends with a
single asterisk and a slash (*/). Every line between begins with an asterisk. This style
of comment is called a doc block or documentation block.

A doc block is a comment that contains API information. It can be extracted
automatically by external tools, which can then format the information for use
by developers.

Doc blocks in action: api.drupal.org
Drupal's doc blocks are used to generate the defi nitive source of Drupal
API documentation at http://api.drupal.org. This site is a
fantastic searchable interface to each and every one of Drupal's functions,
classes, interfaces, and constants. It also contains some useful how-to
documentation.

 All of Drupal is documented using doc blocks, and you should always use them
to document your code.

For More Information:
www.packtpub.com/drupal-7-module-development/book

http://www.packtpub.com/drupal-7-module-development/book

Chapter 2

[37]

The initial doc block in the code fragment above begins with the @file decorator.
This indicates that the doc block describes the fi le as a whole, not a part of it. Every
fi le should begin with a fi le-level doc block.

From there, the format of this doc block is simple: It begins with a single-sentence
description of the fi le (which should always be on one line), followed by a blank line,
followed by one or more paragraph descriptions of what this fi le does.

The Drupal coding standards stipulate that doc blocks should always be written
using full, grammatically correct, punctuated sentences.

If we look a little further down in our module fi le, we can see our fi rst
function declaration:

/**
 * Implements hook_help().
 */
function first_help($path, $arg) {
 if ($path == 'admin/help#first') {
 return t('A demonstration module.');
 }
}

Before moving onto the function, let's take a look at the doc block here. It is a single
sentence: Implements hook_help(). This single-sentence description follows a
Drupal doc block coding standard, too. When a function is a hook implementation,
it should state so in exactly the format used above: Implements NAME OF HOOK. Why
the formula? So that developers can very quickly identify the general purpose of the
function, and also so that automated tools can fi nd hook implementations.

Note that we don't add any more of a description, nor do we document the
parameters. This is okay when two things are true:

The function implements a hook
The function is simple

 In such cases, the single-line description will do, since coders can simply refer to the
API documentation for the hook to learn more.

Later we will see how non-hook functions and more complex hook implementations
have an extended form of doc block comment. For now, though, we have addressed
the basics of doc blocks. We will move on and look at the help function.

•

•

For More Information:
www.packtpub.com/drupal-7-module-development/book

http://www.packtpub.com/drupal-7-module-development/book

Creating Your First Module

[38]

The help hook
 Drupal defi nes a hook called hook_help(). The help hook is invoked (called) when
a user browses the help system. Each module can have one implementation of
hook_help(). Our module provides brief help text by implementing the help hook.

function first_help($path, $arg) {
 if ($path == 'admin/help#first') {
 return t('A demonstration module.');
 }
}

How does this function become a hook implementation? Strictly by virtue of its
name: first_help(). The name follows the hook pattern. If the hook is named
hook_help(), then to implement it, we replace the word hook with the name of
the module. Thus, to implement hook_help(), we simply declare a function in
our first module named first_help().

Each hook has its own parameters, and all core Drupal hooks are documented at
http://api.drupal.org.

A hook_help() implementation takes two arguments:

$path: The help system URI path
$arg: The arguments used when accessing this URL

In our case, we are only concerned with the fi rst of these two. Basically, the help
system works by matching URI paths to help text. Our module needs to declare
what help text should be returned for specifi c URIs.

Specifi cally, the module-wide help text should be made available at the URI admin/
help#MODULE_NAME, where MODULE_NAME is the machine-readable name of the module.

Our function works by checking the $path. If the $path is set to admin/help#first,
the default help screen for a module, then it will return some simple help text.

If we were to enable our new module and then look at Drupal's help text page with
our new module enabled, we would see this:

•

•

For More Information:
www.packtpub.com/drupal-7-module-development/book

http://www.packtpub.com/drupal-7-module-development/book

Chapter 2

[39]

N otice that Help now shows up under OPERATIONS. If we were to click on the
Help link, we would see our help text:

The key to make this system work is in the use of the $path checking, which displays
the help information only when the context-sensitive help for this module is enabled
via hook_help().

 if ($path == 'admin/help#first') {
 return t('A demonstration module.');
 }

Since this is our fi rst module, we will dwell on the details a little more carefully than
we will do in subsequent chapters.

First, the previous code conforms to Drupal's coding standards, which we briefl y
covered earlier. Whitespace separates the if and the opening parenthesis (, and
there is also a space between the closing parenthesis) and the opening curly brace
({). There are also spaces on both sides of the equality operator ==. Code is indented
with two spaces per level, and we never use tabs. In general, Drupal coders tend to
use single quotes (') to surround strings because of the (admittedly slight) speed
improvement gained by skipping interpolation.

Al so important from the perspective of coding standards is the fact that we enclose
the body of the if statement in curly braces even though the body is only one line
long. And we split it over three lines, though we might have been able to fi t it on one.
Drupal standards require that we always do this.

Finally, in the example above we see one new Drupal function: t().

The t() function and translations
Ev ery natural language string that may be displayed to a user should be wrapped in
the t() function. Why? Because the t() function is responsible for translating strings
from one language into other.

For More Information:
www.packtpub.com/drupal-7-module-development/book

http://www.packtpub.com/drupal-7-module-development/book

Creating Your First Module

[40]

Drupal supports dozens of languages. This is one of the strongest features of
Drupal's internationalization and localization effort. The method by which
Drupal supports translation is largely through the t() function.

Th ere are three features of this function that every developer should understand:

What happens when t() is called
How Drupal builds the translation table
Additional features you get by using the t() function

First, let's look at what the t() function does when it is called. If no language
support is enabled and no second argument is passed to t(), it simply returns the
string unaltered. If more languages are enabled and the user's language is something
other than English, Drupal will attempt to replace the English language string with a
string in the appropriate language.

The second thing to look at is how Drupal builds the translation information. There
are two aspects to this: The human aspect and the technical one. The translations
themselves are done by dozens and dozens of volunteers who translate not only
Drupal's core, but also many of the add-on modules. Their translations are then
made into downloadable language bundles (.po fi les) that you can install on
your site.

On the more technical side, this dedicated group of translators does not simply
search the source code looking for calls to the t() function. Instead, an automated
tool culls the code and identifi es all of the translatable strings. This automated tool,
though, can only extract string literals. In other words, it looks for calls like this:

t('This is my string');

It cannot do anything with lines like this, though:

$variable = 'This is a string';
t($variable);

Why won't the translation system work in the case above? Because when the
automated translation system runs through the code, it does not execute the code.
It simply reads it. For that reason, it would become cumbersome (and many times
impossible) to determine what the correct value of a variable is.

The locale module can, under certain circumstances, identify
other strings that were not correctly passed into the t() function
and make them available to translators. This, however, should not
be relied upon.

•

•

•

For More Information:
www.packtpub.com/drupal-7-module-development/book

http://www.packtpub.com/drupal-7-module-development/book

Chapter 2

[41]

So the t() function should always be given a literal string for its fi rst argument.

The third thing to note about the t() function is that it does more than translate
strings. It offers a method of variable interpolation that is more secure than the
usual method.

In many PHP applications, you will see code like this:

print "Welcome, $username.";

The code above will replace $username with the value of the $username variable.
This code leaves open the possibility that the value of $username contains data
that will break the HTML in the output – or worse, that it will open an avenue
for a malicious user to inject JavaScript or other code into the output.

The t() function provides an alternate, and more secure, method for replacing
placeholders in text with a value. The function takes an optional second argument,
which is an associative array of items that can be substituted. Here's an example
that replaces the the previous code:

$values = array('@user' => $username);
print t('Welcome, @user', $values);

In the previous case, we declare a placeholder named @user, the value of which
is the value of the $username variable. When the t() function is executed, the
mappings in $values are used to substitute placeholders with the correct data.
But there is an additional benefi t: these substitutions are done in a secure way.

If the placeholder begins with @, then before it inserts the value, Drupal sanitizes
the value using its internal c heck_plain() function (which we will encounter
many times in subsequent chapters).

If you are sure that the string doesn't contain any dangerous information, you can
use a different symbol to begin your placeholder: the exclamation mark (!). When
that is used, Drupal will simply insert the value as is. This can be very useful when
you need to insert data that should not be translated:

$values = array('!url' => 'http://example.com');
print t('The website can be found at !url', $values);

In this case, the URL will be entered with no escaping. We can do this safely only
because we already know the value of URL. It does not come from a distrusted user.

For More Information:
www.packtpub.com/drupal-7-module-development/book

http://www.packtpub.com/drupal-7-module-development/book

Creating Your First Module

[42]

Finally, there is a third placeholder decorator: the percent sign (%) tells Drupal
to escape the code and to mark it as emphasized.

$values = array('%color' => 'blue');
print t('My favorite color is %color.', $values);

Not only will this remove any dangerous characters from the value, but it will also
insert markup to treat that text as emphasized text. By default, the preceding code
would result in the printing of the string My favorite color is blue. The
emphasis tags were added by a theme function (theme_placeholder()) called by
the t() function.

There are more things that can be done with t(), format_plural(), translation
contexts, and other translation system features. To learn more, you may want to
start with the API documentation for t() at http://api.drupal.org/api/
function/t/7.

We have taken a sizable detour to talk about the translation system, but with good
reason. It is a tremendously powerful feature of Drupal, and should be used in all of
your code. Not only does it make modules translatable, but it adds a layer of security.
It can even be put to some interesting (if unorthodox) uses, as is exemplifi ed by the
String Overrides module at http://drupal.org/project/stringoverrides.

At this point, we have created a working module, though the only thing that it does
is display help text. It's time to make this module a little more interesting. In the next
section we will use the Block API to write code that generates a block listing all of the
currently enabled modules.

Working with the Block API
In the fi rst chapter we talked about blocks, and in your passing usage of Drupal, you
have already no doubt encountered block confi guration and management. In this
section, we are going to learn how to create blocks in code. The Block API provides
the tools for hooking custom code into the block subsystem.

Th e Block API has changed substantially since Drupal 6. In Drupal 6,
there was only one function used for all block operations. Now there
is a family of related functions.

We are going to create a block that displays a bulleted list of all of the modules
currently enabled on our site.

For More Information:
www.packtpub.com/drupal-7-module-development/book

http://www.packtpub.com/drupal-7-module-development/book

Chapter 2

[43]

Th ere are half a dozen hooks in the Block API, providing opportunities to do
everything from declaring new blocks to altering the content and behavior of
existing blocks. For our simple module, we are going to use two different hooks:

hook_block_info(): Th is is used to tell Drupal about the new block or
blocks that we will declare
hook_block_view(): Th is tells Drupal what to do when a block is requested
for viewing

One thing to keep in mind, in the context of the Block API as well as other APIs is
that each module can only implement a given hook once. There can be only one
fi rst_block_info() function.

Since modules should be able to create multiple blocks, that means that the
Block API must make it possible for one block implementation to manage multiple
blocks. Thus, first_block_info() can declare any number of blocks, and
first_block_view() can return any number of blocks.

The entire Block API is documented in the offi cial Drupal 7
API documentation, and even includes an example module:
http://api.drupal.org/api/drupal/developer--
examples--block_example.module/7.

To keep our example simple, we will be creating only one block. However, it is good
to keep in mind that the API was designed in a way that would allow us to create as
many blocks as we want.

Let's start with an implementation of hook_block_info().

The block info hook
All of the functions in our module will go inside of the first.module fi le—the
default location for hook implementations in Drupal. Before, we created
first_help(), an implementation of hook_help(). Now, we are going to
implement the hook_block_info() hook.

 The purpose of this hook is to tell Drupal about all of the blocks that the module
provides. Note that, as with any hook, you only need to implement it in cases where
your module needs to provide this functionality. In other words, if the hook is not
implemented, Drupal will simply assume that this module has no associated blocks.

•

•

For More Information:
www.packtpub.com/drupal-7-module-development/book

http://www.packtpub.com/drupal-7-module-development/book

Creating Your First Module

[44]

Here's our 'block info' hook implementation declaring a single block:

/**
 * Implements hook_block_info().
 */
function first_block_info() {
 $blocks = array();

 $blocks['list_modules'] = array(
 'info' => t('A listing of all of the enabled modules.'),
 'cache' => DRUPAL_NO_CACHE,
);

 return $blocks;
}

On ce again, this function is preceded by a doc block. And since we are writing
a trivial implementation of hook_block_info(), we needn't add anything other
than the standard documentation.

An implementation of hook_block_info() takes no arguments and is expected
to return an associative array.

Associative arrays: Drupal's data structure of choice
Arrays in PHP are very fast. They are well supported, and because they
serve double duty as both indexed arrays and dictionary-style associative
arrays, they are fl exible. For those reasons Drupal makes heavy use of
arrays—often in places where one would expect objects, linked lists,
maps, or trees.

The returned array should contain one entry for every block that this module declares,
and the entry should be of the form $name => array($property => $value).

Thus, the important part of our function above is this piece:

 $blocks['list_modules'] = array(
 'info' => t('A listing of all of the enabled modules.'),
 'cache' => DRUPAL_NO_CACHE,
);

For More Information:
www.packtpub.com/drupal-7-module-development/book

http://www.packtpub.com/drupal-7-module-development/book

Chapter 2

[45]

This defi nes a block named list_modules that has two properties:

info: This provides a one-sentence description of what this block does. The
text is used on the block administration screens.
ca che: This tells Drupal how to cache the data from this block. Here in the
code I have set this to DRUPAL_NO_CACHE, which will simply forgo caching
altogether. There are several other settings providing global caching,
per-user caching, and so on.

There are a handful of other possible properties that Drupal recognizes. You can
read about these in the Drupal API documentation at http://api.drupal.org/
api/function/hook_block_info/7.

We have now created a function that tells Drupal about a block named list_modules.
With this information, Drupal will assume that when it requests that block for viewing,
some function will provide the block's contents. The next function we implement will
handle displaying the block.

The block view hook
In the section above we implemented the hook that tells Drupal about our module's
new block. Now we need to implement a second hook—a hook responsible for
building the contents of the block. This hook will be called whenever Drupal
tries to display the block.

An implementation of hook_block_view() is expected to take one argument—the
name of the block to retrieve—and return an array of data for the given name.

Our implementation will provide content for the block named list_modules.
Here is the code:

/**
 * Implements hook_block_view().
 */
function first_block_view($block_name = '') {
 if ($block_name == 'list_modules') {
 $list = module_list();

 $theme_args = array('items' => $list, 'type' => 'ol');
 $content = theme('item_list', $theme_args);

 $block = array(
 'subject' => t('Enabled Modules'),
 'content' => $content,

•

•

For More Information:
www.packtpub.com/drupal-7-module-development/book

http://www.packtpub.com/drupal-7-module-development/book

Creating Your First Module

[46]

);

 return $block;
 }
}

By now, the doc block should be familiar. The Drupal coding style should also look
familiar. Again, we have implemented hook_block_view() simply by following the
naming convention.

Th e argument that our first_block_view() function takes, is the name of the
block. As you look through Drupal documentation you may see this argument called
$which_block or $delta—terms intended to identify the fact that the value passed
in is the identifi er for which block should be returned.

The term $delta is used for historical reasons. It is not a particularly
apt description for the role of the variable, and more recently it has been
replaced by more descriptive terms.

The only block name that our function should handle is the one we declared
in first_block_info(). If the $block_name is list_modules, we need to
return content.

Let's take a close look at what happens when a request comes in for the
list_modules block. This is the content of the if statement above:

$list = module_list();

$theme_args = array('items' => $list, 'type' => 'ol');
$content = theme('item_list', $theme_args);

$block = array(
 'subject' => t('Enabled Modules'),
 'content' => $content,
);

return $block;

On the fi rst line, we call the Drupal function module_list(). This function simply
returns an array of module names. (In fact, it is actually an associative array of module
names to module names. This duplicate mapping is done to speed up lookups.)

Now we have a raw array of data. The next thing we need to do is format that for
display. In Drupal formatting is almost always done by the theming layer. Here, we
want to pass off the data to the theme layer and have it turn our module list into an
HTML ordered list.

For More Information:
www.packtpub.com/drupal-7-module-development/book

http://www.packtpub.com/drupal-7-module-development/book

Chapter 2

[47]

The next few chapters will take a detailed look at the theming system. For
now, though, we will simply grant the fact that when we use the theme
function in the way we have done above, it returns formatted HTML.

 The main function for working with the theming system is theme(). In Drupal 7,
theme() takes one or two arguments:

The name of the theme operation
An associative array of variables to pass onto the theme operation

Previous versions of Drupal took any number of arguments, depending
on the theme operation being performed. That is no longer the case in
Drupal 7. The details of this are covered in the later chapters.

To format an array of strings into an HTML list, we use the item_list theme, and
we pass in an associative array containing two variables:

the items we want listed
the type of listing we want

From theme() we get a string of HTML.

 Now all we need to do is assemble the data that our block view must return. An
implementation of hook_block_view() is expected to return an array with two
items in it:

subject: The name or title of the block.
content: The content of the block, as formatted text or HTML.

So in the fi rst place we set a hard-coded, translatable string. In the second, we set
content to the value built by theme().

One thing you may notice about the $block array in the code above is its formatting:

$block = array(
 'subject' => t('Enabled Modules'),
 'content' => $content,
);

This is how larger arrays should be formatted according to the Drupal coding
standards. And that trailing comma is not a error. Drupal standards require that
multi-line arrays terminate each line—including the last item—with a comma. This is
perfectly legal in PHP syntax, and it eliminates simple coding syntax problems that
occur when items are added to or removed from the array code.

•

•

•

•

•

•

For More Information:
www.packtpub.com/drupal-7-module-development/book

http://www.packtpub.com/drupal-7-module-development/book

Creating Your First Module

[48]

Not in JavaScript!
Drupal programmers make the mistake of using a similar syntax in
Drupal JavaScript. Object literal defi nitions (the JavaScript equivalent of
associative arrays) do not allow the last item to terminate with a comma.
Doing so causes bugs in IE and other browsers.

Now we have walked through our fi rst module's code. For all practical purposes, we
have written an entire module (though we still have some automated testing code to
write). Let's see what this looks like in the browser.

The first module in action
Our module is written and ready to run. To test this out, we need to fi rst enable the
module, and then go to the block administration page.

The module can be enabled through the Modules menu. Once it is enabled, go to
Structure | Blocks. You should be able to fi nd a block described as A listing of all of
the enabled modules. (This text came from our first_block_info() declaration.)

Once you have placed this module in one of the block regions, you should be able to
see something like this:

For More Information:
www.packtpub.com/drupal-7-module-development/book

http://www.packtpub.com/drupal-7-module-development/book

Chapter 2

[49]

The output from our module is a simple ordered list of modules. Like any other
block, it can be positioned in any of the block regions on the site, and responds
in all the ways that a block is expected to respond.

Now that we have a working module, we are going to write a couple of automated
tests for it.

Writing automated tests
T he fi nal thing we are going to do in this chapter is write automated tests to verify
that our module works as anticipated. Again, some development methodologies
call for writing tests before writing code. Such a methodology is perfectly applicable
with Drupal modules. However, we have delayed writing tests until we had a little
Drupal coding under our belts. Now that we have worked up a complete module,
we are ready to write some tests.

Drupal uses an automated testing tool called S impleTest (or just Testing). It is
largely derived from the Open Source SimpleTest testing framework, though with
many modifi cations. SimpleTest comes with Drupal 7.

In Drupal 6, SimpleTest was an add-on module and required core patches. This is
no longer the case in Drupal 7.

There are various types of test that can be constructed in code. Two popular ones are
unit tests and functional tests.

A unit test is focused on testing discrete pieces of code. In object-oriented code,
the focus of unit testing is often the exercising every method of an object (or class).
In procedural code, unit tests focus on functions and even, occasionally, on global
variables. The objective is simply to make sure that each piece (each unit) is doing its
job as expected.

Most of the tests written for Drupal are not unit tests. Instead, they are functional
tests. That is, the tests are designed to verify that when a given piece of code is
inserted into Drupal, it functions as expected within the context of the application.
This is a broader category of testing than unit tests. Larger chunks of code (like, say,
Drupal as a whole) are expected to function correctly already before the functional
test can accurately measure the correctness of the code being tested. And rather
than calling the functions-to-be-tested directly, often times a functional test will
execute the entire application under conditions which make it easy to check, whether
the code being tested is working. For example, Drupal's functional tests often
start Drupal, add a user, enable some modules, then retrieve URLs over an HTTP
connection and fi nally test the output.

For More Information:
www.packtpub.com/drupal-7-module-development/book

http://www.packtpub.com/drupal-7-module-development/book

Creating Your First Module

[50]

There are many excellent sources of information on testing strategies and their
strengths and weaknesses. We will skip any discussion of this and dive right into
the code. Just keep in mind as we go that our goal is to verify that our block functions
as expected. Since unit tests are easier to construct, and since our module is extremely
simple, we will construct a unit test for our module.

While the Testing module is included with Drupal 7, it is not enabled by default.
Go to the Modules page and enable it. Once it is enabled, you should be able to
go to the Confi guration tab and, under the Development section, fi nd the Testing
confi guration page. This is the point of entry into the testing user interface.

Creating a test
T ests should reside in their own fi le. Just as the module's main module code is in
MODULENAME/MODULENAME.module, a test should be in MODULENAME/MODULENAME.test.
The testing framework will automatically pick it up.

Starting out
As with other fi les in a module, the fi le containing the unit tests needs to be declared
in the module's .info fi le. All we need to do is add it to the fi les array:

;Id

name = First
description = A first module.
core = 7.x
package = Drupal 7 Development
files[] = first.module
files[] = first.test

All we have done is added first.test beneath first.module. This simply tells
Drupal to inspect the contents of this fi le during execution. When the testing
framework is invoked, it will fi nd the tests automatically by inspecting the
contents of first.test.

Once your module is installed, Drupal caches the contents of the .info fi le. After
adding a new item to the fi le, you should re-visit the Modules page to force Drupal
to re-parse the .info fi le.

Now we are ready to add some code to first.test.

For More Information:
www.packtpub.com/drupal-7-module-development/book

http://www.packtpub.com/drupal-7-module-development/book

Chapter 2

[51]

Writing a test case
T here are a few areas of Drupal that make use of PHP's Object-oriented features.
One is the database API that we will see later in the book. Another is the testing
framework. It uses class inheritance to declare tests. This is primarily a vestige
of the SimpleTest API upon which Drupal's testing is based.

Since this is a book on Drupal programming, not PHP, we will not spend
time introducing PHP's Object-Oriented features. If you are not familiar with
Object-oriented P rogramming (OOP) in PHP, you may want to learn the basics
before moving on to this section. Since most tests follow a formulaic pattern, there
is no need to master OOP before writing simple tests. However, some background
knowledge will ease the transition. A good starting point is PHP.net’s OOP manual
available at the URL http://www.php.net/manual/en/language.oop5.php.

The basic pattern
Most test cases follow a simple pattern:

C reate a new class that extends DrupalWebTestCase
Add a getInfo() function
Do any necessary confi guration in the setUp() method
Write one or more test methods, beginning each method with the word test
In each test method, use one or more assertions to test actual values

As we go through our own tests, we will walk through each of these steps

First, we will begin by adding a test class inside our first.test fi le. It should look
something like this:

<?php
/**
 * @file
 * Tests for the first module
 */

class FirstTestCase extends DrupalWebTestCase {
 // Methods will go here.
}

As usual, we begin the test fi le with a doc block. After that, we declare our new
test case.

•

•

•

•

•

For More Information:
www.packtpub.com/drupal-7-module-development/book

http://www.packtpub.com/drupal-7-module-development/book

Creating Your First Module

[52]

The examples you see in this chapter are derived largely from the block.
test fi le that ships with Drupal core (modules/block/block.test). If
you are anxious to dive into some detailed unit tests, that is one place
to start.

We have just created a new test case class—that is, a class that handles testing
a particular related group of features. In our case, we are going to test the block
implementation we wrote in this chapter. You can, if you would like, create
multiple test cases in the same .test fi le. For our simple case, there is no need
to do this, though.

T he test case extends a base class called DrupalWebTestCase. DrupalWebTestCase
provides many utilities for running tests, as well as core testing logic that is not
necessarily exposed to or used by individual test cases. For these two reasons,
every Drupal test should extend either this class or another class that already
extends DrupalWebTestCase.

Once we have the class declared, we can create our fi rst method, getInfo().

Naming conventions and Classes
Drupal functions are named in all lowercase, with words separated
by underscore (_) Classes and methods are different. Classes should
be named in uppercase "CamelCase" notation, with the fi rst letter
capitalized. Methods should be named in "camelCase" with the fi rst letter
in lowercase. Underscores should not be used in class or method names.

The getInfo() method
Already we have seen a few cases where Drupal uses nested associative arrays
to pass information. Our first_block_info() function did just this. The
 DrupalWebTestCase::getInfo() method also returns an array of information.
This time, the information is about the test.

The method looks like this (shown in the context of the entire class)

<?php
/**
 * @file
 * Tests for the first module
 */

class FirstTestCase extends DrupalWebTestCase {

For More Information:
www.packtpub.com/drupal-7-module-development/book

http://www.packtpub.com/drupal-7-module-development/book

Chapter 2

[53]

 public function getInfo() {
 return array(
 'name' => 'First module block functionality',
 'description' => 'Test blocks in the First module.',
 'group' => 'First',
);
 }
}

T he getInfo() method returns an array with three items:

name: The name of the test.
description: A sentence describing what the tests do.
group: The name of the group to which these tests belong.

All three of these are intended to be human-readable. The fi rst two are used for
purely informational purposes. The third, group, is also used to group similar
tests together under the same heading.

When viewed from Confi guration | Testing, the information above is displayed
like this:

Clean the environment
If you have already run tests and your new test is not showing up, you
may need to press the Clean environment button to reset the testing
environment.

Above you can see how the value of group became a grouping fi eld, and name and
description were used to describe the test.

The getInfo() function might seem, at fi rst blush, to be unimportant, but your
test, absolutely must have it. Otherwise, the test case will not be made available
for execution.

•

•

•

For More Information:
www.packtpub.com/drupal-7-module-development/book

http://www.packtpub.com/drupal-7-module-development/book

Creating Your First Module

[54]

Setting up the test case
Of ten, a test case will require some setup and confi guration, where shared values are
initialized and subsystems made available.

Fortunately, Drupal handles most of the basics. The database layer, module system,
and initial confi guration are all done. However, test cases often have to handle some
initialization themselves. In cases where you need to do this, there is an existing
method that will be called before tests are executed. This is the s etUp() method.
While we don't need any set up for our module, I am going to show it anyway
so that we can see a few important things.

<?php
/**
 * @file
 * Tests for the first module
 */

class FirstTestCase extends DrupalWebTestCase {

 public function setUp() {
 parent::setUp('first');
 }

 public function getInfo() {
 return array(
 'name' => 'First module block functionality',
 'description' => 'Test blocks in the First module.',
 'group' => 'First',
);
 }

Ag ain, a setup method is not strictly necessary, but when you use one it must have
at least the lines shown in the example above.

Of particular importance is this bit:

parent::setUp('first');

This tells the setup method to call the setUp() method that exists on the
DrupalWebTestCase class. Why would we do this?

For More Information:
www.packtpub.com/drupal-7-module-development/book

http://www.packtpub.com/drupal-7-module-development/book

Chapter 2

[55]

Dr upalWebTestCase::setUp() performs some necessary setup operations—things
that need to be done before our tests will run successfully. For that reason, we need
to make sure that when we override that method, we explicitly call it. We pass this
function the name of the module we are testing (first), so that it knows to initialize
that module for us. This means we do not need to worry about installing the module
in our testing code.

When writing your own cases, you can add more lines of confi guration code beneath
the parent::setUp() call. Later in the book you will see more robust examples of
setup methods.

For now, though, we are going to move on to the next type of method. We are going
to write our fi rst test.

Writing a test method
Mo st of the methods in a test case are test methods; that is, they run operations with
the intent of verifying that they work. But, as you will notice, nowhere in our code
do we explicitly call those test methods.

So how does SimpleTest know to call our methods? As with Drupal hooks, the
answer is in the naming convention. Any method that starts with the word test
is assumed to be a test case, and is automatically run by the testing framework.

Let's write two test methods, again shown in the context of the entire class.

<?php
/**
 * @file
 * Tests for the first module
 */

class FirstTestCase extends DrupalWebTestCase {

 public function setUp() {
 parent::setUp();
 }

 public function getInfo() {
 return array(
 'name' => 'First module block functionality',
 'description' => 'Test blocks in the First module.',
 'group' => 'First',

For More Information:
www.packtpub.com/drupal-7-module-development/book

http://www.packtpub.com/drupal-7-module-development/book

Creating Your First Module

[56]

);
 }

 public function testBlockInfo() {
 $info = module_invoke('first', 'block_info');

 $this->assertEqual(1, count($info),
 t('Module defines a block.'));

 $this->assertTrue(isset($info['list_modules']),
 t('Module list exists.'));
 }

 public function testBlockView() {
 $data = module_invoke('first', 'block_view',
 'list_modules');

 $this->assertTrue(is_array($data),
 t('Block returns renderable array.'));
 $this->assertEqual(t('Enabled Modules'), $data['subject'],
 t('Subject is set'));
 }

}

Th e code above has two test methods:

testBlockInfo()

testBlockView()

As the names imply, each method is responsible for testing one of the two block
functions we wrote earlier.

We will begin by taking a close look at testBlockInfo().

 public function testBlockInfo() {
 $info = module_invoke('first', 'block_info');

 $this->assertEqual(1, count($info),
 t('Module defines a block.'));

 $this->assertTrue(isset($info['list_modules']),
 t('Module list exists.'));
 }

•

•

For More Information:
www.packtpub.com/drupal-7-module-development/book

http://www.packtpub.com/drupal-7-module-development/book

Chapter 2

[57]

This function does three things.

First, it runs a function called module_invoke(), storing its results in $info. The
module_invoke() function calls a particular hook for a particular module.

This function is the infrequently used counterpart of
module_invoke_all(), which executes a hook in all
of the modules in which that hook appears.

Th e module_invoke() method takes two parameters: The name of the module
and the name of the hook to call. The call in this code, module_invoke('first',
'block_info') is semantically equivalent to calling first_block_info(). Our only
advantage gained here is in ensuring that it can be called through the hook system.

Basically, then, we have simulated the circumstances under which our block info
hook would have been executed by Drupal. The next thing to do is ensure that the
information returned by our hook is as expected.

We do this by making a couple of statements—assertions, about what we expect. The
testing framework then validates these exceptions. If the code functions as expected,
the test passes. If not, the test fails.

Here are the two tests:

$this->assertEqual(1, count($info),
 t('Module defines a block.'));

$this->assertTrue(isset($info['list_modules']),
 t('Module list exists.'));

(Note that each of these two lines were split onto one line for formatting.)

Each assertion is typically of the form $this->assertSOMETHING($conditions,
$message), where SOMETHING is a type of assertion, $conditions are the conditions
that must be satisfi ed for the test to pass, and $message is a message describing
the test.

In our fi rst test, the test asserts that 1 and count($info) should be equal. (The
message is simply used by the testing interface to show what it was testing.)

For More Information:
www.packtpub.com/drupal-7-module-development/book

http://www.packtpub.com/drupal-7-module-development/book

Creating Your First Module

[58]

You might notice that the function began $this->assertEqual() which is a
member method, but one that we did not defi ne. ($this, for those new to PHP's
OOP, is a shorthand way of referring to the present object.) The parent class,
DrupalWebTestCase, provides a dozen or so assertion methods that make writing
tests easier. Many of these will come up in subsequent chapters, but in our tests we
use two:

$this->assertEqual(): Assert that the fi rst (known) value equals the
second (tested) value.
$this->assertTrue(): Assert that the given value evaluates to TRUE.

While the fi rst assertion validates that we defi ned one block in our block info
hook implementation, the second assertion verifi es that the name of this block is
list_modules. Thus, by the time this test has run, we can be sure that our info
hook is returning information about our single block.

The next test verifi es that the first_block_view() function is returning the
correct information.

 public function testBlockView() {
 $data = module_invoke('first', 'block_view',
 'list_modules');

 $this->assertTrue(is_array($data),
 t('Block returns renderable array.'));
 $this->assertEqual(t('Enabled Modules'), $data['subject'],
 t('Subject is set'));
 }

Again, module_invoke() is used to execute a hook—this time the block view hook
implementation. And again we perform two assertions. First, we check to make sure
that an array is returned from first_block_view(). Second, we verify that the title
is Enabled Modules, as we expect.

We could go on and add another assertion—something that makes sure that the
$data['content'] fi eld has the expected data in it. But that information is a little
volatile. We are not positive about which other modules will be enabled, and testing
against that would be injecting an external dependency into our test, which is
considered bad form.

A t this point, we have defi ned one test case, FirstTestCase, which defi nes four
methods. Two of those methods are tests, each containing two assertions. So when
we run the test, we should see one test case, two tests, and two assertions for
each test.

•

•

For More Information:
www.packtpub.com/drupal-7-module-development/book

http://www.packtpub.com/drupal-7-module-development/book

Chapter 2

[59]

To run the test, go to Confi guration | Testing. As long as your test case is
implemented correctly (including the getInfo() method), then it should
show up in the list.

If we select our group of tests, and then press the Run tests button, our test case
will be executed. Test cases often take a long time to run. Behind the scenes, Drupal
actually builds a special installation of Drupal that will be used only for this round of
tests. But after a minute or two, the test framework should print a report that looks
something like this:

For More Information:
www.packtpub.com/drupal-7-module-development/book

http://www.packtpub.com/drupal-7-module-development/book

Creating Your First Module

[60]

The report above shows us that all four of our assertions were run (two for each test),
and that all passed.

Should a test not pass, it will be displayed in red, with the status fl ag set to a red X
instead of a green checkmark. A warning message may be displayed, too (depending
on the error or failure).

Summary
We have now completed an end-to-end walk through the creation of a module. We
began by creating the module directory, followed by the .info fi le. Next, we added a
.module fi le and implemented three hooks, taking advantage of several core Drupal
functions in the process. Finally, we wrote our fi rst test for this module, learning
about Drupal's OO testing framework as we went.

Along the way, we learned about basic coding guidelines, translation support, the
mechanics of hooks, and using the block API.

In subsequent chapters, we will build on this knowledge to create more powerful
modules, making use of the database layer, the menu system, nodes, and other tools.
In the next few chapters, we will look at the theme system, a powerful and extensible
mechanism for structuring and formatting output.

For More Information:
www.packtpub.com/drupal-7-module-development/book

http://www.packtpub.com/drupal-7-module-development/book

Where to buy this book
You can buy Drupal 7 Module Development from the Packt Publishing website:
http://www.packtpub.com/drupal-7-module-development/book.
Free shipping to the US, UK, Europe and selected Asian countries. For more information, please
read our shipping policy.

Alternatively, you can buy the book from Amazon, BN.com, Computer Manuals and
most internet book retailers.

www.PacktPub.com

For More Information:
www.packtpub.com/drupal-7-module-development/book

http://www.packtpub.com/Shippingpolicy�
http://www.packtpub.com/�
http://www.packtpub.com/drupal-7-module-development/book

	In this package, you will find:

