

WordPress 3.0 jQuery

Tessa Blakeley Silver

Chapter No. 3

"Digging Deeper: Understanding jQuery
and WordPress Together"

For More Information: www.packtpub.com/wordpress-30-jquery/book

 In this package, you will find:
A Biography of the author of the book

A preview chapter from the book, Chapter NO.3 "Digging Deeper: Understanding jQuery

and WordPress Together"

A synopsis of the book’s content

Information on where to buy this book

About the Author
Tessa Blakeley Silver has prior experience in print design and traditional illustration. She

evolved over the years into web and multi-media development, where she focuses on

usability and interface design.

Prior to starting her consulting and development company hyper3media (pronounced

hyper-cube media) http://hyper3media.com, Tessa was the VP of Interactive

Technologies at eHigherEducation, an online learning and technology company

developing compelling multimedia simulations, interactions, and games which met online

educational requirements like 508, AICC and SCORM. She has also worked as a

consultant and freelancer for J. Walter Thompson and the Diamond Trading Company

(formerly known as DeBeers) and was a Design Specialist and Senior Associate for

PricewaterhouseCoopers' East Region Marketing department.

Tessa has authored a few books for Packt Publishing, including WordPress 2.8 Theme

Design and Joomla 1.5 Template Design.

https://www.packtpub.com/wordpress-30-jquery/book

For More Information: www.packtpub.com/wordpress-30-jquery/book

I send a huge "thank you" to the Packt team who have made this title

possible and whose help in getting it out into the world has been

invaluable. Special thanks to Chaitanya and Thorsten for their editing

work. Additional big-time "thank you" goes out to Vincila for the

backbreaking work and diligence it takes to keep to a schedule.

I'd also like to thank the exemplary WordPress and jQuery community

(Matt and John, you guys Rock) and all who participate and power

the Open Source world and strive to improve the accessibility of the

Web for all.

Additional thanks goes out to my very patient partner and our little

daughter (who's not so patient) who per usual, spent quite a few

evenings without me while I worked on this title. I love you both and

appreciate your flexibility with me while I work on interesting books

and projects (yes, I'm working on getting better at estimating how

much time it really, really takes to write a chapter).

https://www.packtpub.com/wordpress-30-jquery/book

For More Information: www.packtpub.com/wordpress-30-jquery/book

WordPress 3.0 jQuery
This easy-to-use guide will walk you through the ins and outs of creating sophisticated

professional enhancements and features, specially tailored to take advantage of the

WordPress personal publishing platform. It will walk you through clear, step-by-step

instructions to build several custom jQuery solutions for various types of hypothetical

clients and also show you how to create a jQuery and Wordpress plugin.

What This Book Covers
Chapter 1, Getting Started: WordPress and jQuery...This chapter introduces the reader to

the core fundamentals that they need to be familiar with in order to get the most out of the

book. HTML, CSS, PHP, and JavaScript syntax, and how to recognize the various parts

of those syntaxes are covered, as well as a list of "tools of the trade" which covers what

features their code editor, browser, and even image editor should have. The chapter also

illustrates exactly how CSS, JavaScript, and jQuery work in the browser with the HTML

served up from the WordPress site.

Chapter 2, Working with jQuery in WordPress...This chapter goes into the details of how

to start working with jQuery specifically within WordPress. It covers how to properly

include jQuery using the Script API and focuses on jQuery's selectors (very important for

working in WordPress) as well as jQuery's top functions.

Chapter 3, Digging Deeper: Understanding jQuery and WordPress Together...This

chapter takes the reader to a deeper level and introduces them to all the ways that jQuery

can be applied to a WordPress site: Through a custom script in the WordPress theme, as a

jQuery plugin called in through the theme, and lastly, as a custom jQuery script or plugin

applied to a WordPress plugin! The ways to affect a WordPress site with jQuery are

numerous, and the pros and cons of each method is considered so that the reader can

assess their own projects accurately. The chapter also introduces the reader to their first

"hypothetical client" and covers how to create their own jQuery plugin and then wrap that

jQuery plugin into a WordPress plugin so that a site administrator could easily implement

the enhancement without having to know how to edit the theme.

Chapter 4, Doing a Lot More with Less: Making Use of Plugins for Both jQuery and

WordPress...You thought you learned quite a bit in Chapter 3? Hang on to your mouse.

You're about to embark on a nice little project that requires you getting familiar with the

popular jQuery plugin Colorbox, as well as the popular WordPress plugin Cforms II and

mashing the two with your own custom jQuery magic to whip up some slick event

registration that will knock a client's socks off.

https://www.packtpub.com/wordpress-30-jquery/book

For More Information: www.packtpub.com/wordpress-30-jquery/book

Chapter 5, jQuery Animation within WordPress...If you're going to use jQuery, you

might as well really use it to its fullest, which means animation. This chapter covers

using jQuery's animation functions and shortcuts to create some sharp, well timed visual

enhancements that grab the site user's attention as well as create a super slick navigation

enhancement and an awesome rotating slideshow of sticky posts.

Chapter 6, WordPress and jQuery's UI...Now that we have some animation chops under

our belt, we can make that work even easier by using jQuery's UI plugin which includes

the Easing and Color plugins we learned about in Chapter 5. In this chapter, we're going

to also take advantage of the UI plugin's widgets and events features to create some super

useful interfaces in our WordPress site.

Chapter7, AJAX with jQuery and WordPress...This chapter introduces you to what AJAX

is and isn't along with the top ways to get started using AJAX techniques in your

WordPress site; you'll load in HTML from other pages on your site, get your tweets and

favorite flickr pictures pulled in through JSON, and last but not least, custom AJAXing

the built in WordPress comment form.

Chapter 8, Tips and Tricks for Working with jQuery and WordPress...This chapter covers

the top tips and tricks for getting the most out of jQuery specifically within WordPress.

Most of these best practices are covered throughout the title but in this chapter we take a

look at exactly why they're so important, espeically within the context of WordPress and

how to implement them.

Appendix A, jQuery and WordPress Reference Guide...Dog-ear this appendix and

consider it your "cheat sheet". Once you work your way through the book, why waste

time hunting and pecking your way back through it to recall some function's bit of syntax

and what its parameters are? This book extracts the most important information about

jQuery and WordPress and breaks it down into an easy-to-skim reference guide so that

you can easily find the syntax for most jQuery selectors, remind yourself of the top

jQuery functions that you'll need for most WordPress development and their parameters,

as well as helpful WordPress template tags and API functions and other useful

WordPress know-how such as structuring the Loop and the Theme Template Hierarchy.

https://www.packtpub.com/wordpress-30-jquery/book

For More Information: www.packtpub.com/wordpress-30-jquery/book

Digging Deeper:
Understanding jQuery and

WordPress Together
Now that we've gotten a look at the basics of jQuery within WordPress, we're ready
to dig a little deeper by understanding the following:

What WordPress themes, WordPress plugins, and jQuery plugins are and do
The basics of creating your own WordPress themes, plugins, and
jQuery plugins
Best practices for how and when to apply jQuery directly to a theme or
to WordPress plugin, as a script or as a jQuery plugin

By taking a closer look at these two main components of WordPress, the theme
and the plugin as well as how to encapsulate our jQuery code for easier use across
projects inside a jQuery plugin, we're well on our way to mastering dynamic
WordPress development.

Two ways to "plugin" jQuery into a
WordPress site
 You're aware that WordPress is an impressive publishing platform. Its core strength
lies in its near perfect separation of content, display, and functionality. Likewise,
jQuery is an impressive JavaScript library with a lot of effort spent on making it
work across platforms, be very fl exible and extensible, and yet, elegantly degradable
(if a user doesn't have JavaScript enabled for some reason).

•

•

•

https://www.packtpub.com/wordpress-30-jquery/book

For More Information: www.packtpub.com/wordpress-30-jquery/book

Digging Deeper: Understanding jQuery and WordPress Together

[86]

You're aware that WordPress themes control the look and feel of your site and that
WordPress plugins can help your site do more, but we're going to take a look at
exactly how those two components work within the WordPress system and how to
use jQuery from either a theme or a WordPress plugin. In doing so, you'll be better
able to take advantage of them when developing your jQuery enhancements.

Speaking of jQuery enhancements, jQuery scripts can be turned into their own type
of plugins, not to be confused with WordPress plugins. This makes the work you
do in jQuery easily portable to different projects and uses.

Between these three components, themes, WordPress plugins, and jQuery plugins,
you'll fi nd that just about anything you can dream of creating is at your fi ngertips.
Even better, you'll realize that most of the work is already done. All three of these
component types have extensive libraries of already developed third-party creations.
Most are free! If they aren't free, you'll be prepared to determine if they're worth
their price.

By understanding the basics of editing themes and creating your own WordPress
and jQuery plugins, you'll be ready to traverse the world of third-party creations and
fi nd the best solutions for your projects. You'll also be able to determine if it's better
or faster to work with another developer's themes, plugins, or jQuery plugins, versus
creating your own from scratch.

WordPress themes overview
 A WordPress theme is, according to the WordPress codex, a collection of fi les that
work together to produce a graphical interface with an underlying unifying design for a weblog.
Themes comprise a collection of template fi les and web collateral such as images,
CSS stylesheets, and JavaScript. Themes are what allow you to modify the way your
WordPress site looks, without having to know much about how WordPress works,
much less change how it works. There are plenty of sites that host free themes and
or sell premium WordPress themes. A quick Google search for "wordpress themes"
will give you an idea of the enormity of options available. However, when fi rst
looking for or researching themes, a good place to start is always WordPress' free
theme gallery where you can easily review and demo different themes and styles:
http://wordpress.org/extend/themes/. The next screenshot shows the main
page of the WordPress theme's directory:

https://www.packtpub.com/wordpress-30-jquery/book

For More Information: www.packtpub.com/wordpress-30-jquery/book

Chapter 3

[87]

O nce you've selected a theme to use or work with, you'll activate the theme by
navigating to Administration | Appearance | Themes in the left-hand side panel of
your WordPress installation's administration panel. The next screenshot displays the
Manage Themes panel:

https://www.packtpub.com/wordpress-30-jquery/book

For More Information: www.packtpub.com/wordpress-30-jquery/book

Digging Deeper: Understanding jQuery and WordPress Together

[88]

 That's the minimum you need to know about themes as a WordPress user. Before
we get into more detail, let's get an overview of WordPress plugins and jQuery
plugins fi rst.

WordPress plugins overview
So themes change the look of WordPress without affecting its functionality. But
what if you want to change or add functionality? WordPress plugins allow easy
modifi cation, customization, and enhancement to a WordPress site. Instead of having
to dig in to the main fi les and change the core programming of WordPress, you can
add functionality by installing and activating WordPress plugins.

Th e WordPress development team took great care to make it easy to create
plugins using access points and methods provided by the WordPress' Plugin
API (Application Program Interface). The best place to search for plugins is:
http://wordpress.org/extend/plugins/. The following is a screenshot of
the WordPress plugin directory's main page:

https://www.packtpub.com/wordpress-30-jquery/book

For More Information: www.packtpub.com/wordpress-30-jquery/book

Chapter 3

[89]

Once you have a plugin, it's a simple matter of decompressing the fi le (usually
just unzipping it) and reading the included readme.txt fi le for installation and
activation instructions. For most WordPress plugins, this is simply a matter of
uploading the fi le or directory to your WordPress installation's wp-content/
plugins directory and then navigating to the Administration | Plugins | Installed
panel to activate it. The next screenshot shows the Plugins admin panel with
the activation screen for the default Askimet, Hello Dolly, and new WordPress
Importer plugins:

So h ow does a WordPress plugin differ from a jQuery plugin? In theory and intent,
not that much, but in practice, there are quite a few differences. Let's take a look at
jQuery plugins.

jQuery plugins overview
jQue ry has the ability to allow you to take the scripts that you've created and
encapsulate them into the jQuery function object. This allows your jQuery code
to do a couple of key things. First, it becomes more easily ported over to different
situations and uses. Second, your plugin works as a function that can be integrated
into larger scripts as part of the jQuery statement chain.

https://www.packtpub.com/wordpress-30-jquery/book

For More Information: www.packtpub.com/wordpress-30-jquery/book

Digging Deeper: Understanding jQuery and WordPress Together

[90]

The best place to browse for jQuery plugins is the jQuery plugins page
(http://plugins.jquery.com/), as seen in the next screenshot:

In ad dition to having jQuery already bundled, WordPress has quite a few jQuery
plugins already bundled with it as well. WordPress comes bundled with Color,
Thickbox as well as Form and most of the jQuery UI plugins. Each of these plugins
can be enabled with the wp_enqueue_script either in the theme's header.php fi le
or function.php fi le, as we learned in Chapter 2, Working with jQuery in WordPress.
In this chapter, we'll shortly learn how to enable a jQuery plugin directly in a
WordPress plugin.

Of course, you can also download jQuery plugins and include them manually into
your WordPress theme or plugins. You'd do this for plugins that aren't bundled
with WordPress, or if you need to amend the plugins in anyway.

Yes, you've noticed there's no easy jQuery plugin activation panel in WordPress.
This is where understanding your chosen theme and WordPress plugins will come
in handy! You'll soon fi nd you have quite a few options to choose from when
leveraging jQuery. Now that we have an overview of what WordPress themes,
plugins, and jQuery plugins are, let's learn how to take better advantage of them.

https://www.packtpub.com/wordpress-30-jquery/book

For More Information: www.packtpub.com/wordpress-30-jquery/book

Chapter 3

[91]

The basics of a WordPress theme
By now you've gotten the point that the WordPress theme essentially contains the
HTML and CSS that wrap and style your WordPress content. Thus, it's usually the
fi rst place you'll start when incorporating jQuery into a site. Most of the time, this is
a good approach. Understanding a bit more about how themes work can only make
your jQuery development go a little smoother. Let's take a look at how themes are
structured and best practices for editing them.

Want to know more about WordPress theme design?
This title focuses on what you most need to know to work with jQuery
in WordPress. If you're interested in WordPress theme development I
highly recommend April Hodge Silver and Hasin Hayer's WordPress 2.7
Complete. Along with covering the complete core competencies for
managing a WordPress site, Chapter 6, WordPress and jQuery's UI has an
overview on editing and creating standard themes for WordPress.
If you want to really dig deep into theme design, my title WordPress 2.8
Theme Design will walk you through creating a working HTML and CSS
design mockup and coding it up from scratch.

Understanding the template's hierarchy
We've discussed that a WordPress theme comprises many fi le types including
template pages. Template pages have a structure or hierarchy to them. That means,
if one template type is not present, then the WordPress system will call up the next
level template type. This allows developers to create themes that are fantastically
detailed, which take full advantage of all of the hierarchy's available template page
types, to make the setup unbelievably simple. It's possible to have a fully functioning
WordPress theme that consists of no more than an index.php fi le!

To really leverage a theme for jQuery enhancement (not to mention help you with
general WordPress troubleshooting), it's good to start with an understanding of the
theme's hierarchy.

In addition to these template fi les, themes of course also include image fi les,
stylesheets, and even custom template pages, and PHP code fi les. Essentially,
you can have 14 different default page templates in your WordPress theme, not
including your style.css sheet or includes such as header.php, sidebar.php, and
searchform.php. You can have more template pages than that if you take advantage
of WordPress' capability for individual custom page, category, and tag templates.

https://www.packtpub.com/wordpress-30-jquery/book

For More Information: www.packtpub.com/wordpress-30-jquery/book

Digging Deeper: Understanding jQuery and WordPress Together

[92]

If yo u open up the default theme's directory that we've been working with, you'll
see most of these template fi les as well as an image directory, style.css and the js
directory with the custom-jquery.js fi le we started in Chapter 2, Working with jQuery
in WordPress. The following screenshot shows you the main fi les in WordPress 3.0's
new default theme, Twenty Ten:

The next list contains the general template hierarchy rules. The absolute simplest
theme you can have must contain an index.php page. If no other specifi c template
pages exist, then index.php is the default.

https://www.packtpub.com/wordpress-30-jquery/book

For More Information: www.packtpub.com/wordpress-30-jquery/book

Chapter 3

[93]

You can then begin expanding your theme by adding the following pages:

archive.php trumps index.php when a category, tag, date, or author page
is viewed.
hom e.php trumps index.php when the home page is viewed.
single.php trumps index.php when an individual post is viewed.
search.php trumps index.php when the results from a search are viewed.
404.php trumps index.php when the URI address fi nds no existing content.
page.php trumps index.php when looking at a static page.

A custom template page, such as: page_about.php, when
selected through the page's Administration panel, trumps
page.php, which trumps index.php when that particular
page is viewed.

category.php trumps archive.php, which then trumps index.php when a
category is viewed.

A custom category-ID page, such as: category-12.php
trumps category.php. This then trumps archive.php,
which trumps index.php.

tag.php trumps archive.php. This in turn trumps index.php when a tag
page is viewed.

A custom tag-tagname page, such as: tag-reviews.php
trumps tag.php. This trumps archive.php, which trumps
index.php.

author.php trumps archive.php. This in turn trumps index.php, when an
author page is viewed.

•

•

•

•

•

•

°

•

°

•

°

•

https://www.packtpub.com/wordpress-30-jquery/book

For More Information: www.packtpub.com/wordpress-30-jquery/book

Digging Deeper: Understanding jQuery and WordPress Together

[94]

date.php trumps archive.php. This trumps index.php when a date page
is viewed.

You can learn more about the WordPress theme template hierarchy here:
http://codex.wordpress.org/Template_Hierarchy.

A whol e new theme
If you wanted to create a new theme, or as in the case of this book, if you'll be
modifying a theme considerably, you'll want to create a directory with a fi le structure
similar to the hierarchy explained previously. Again, because it's hierarchal, you
don't have to create every single page suggested, higher up pages will assume the
role unless you decide otherwise. As I've mentioned, it is possible to have a working
theme with nothing but an index.php fi le.

I'll be modifying the default theme, yet would like the original default theme
available for reference. I'll make a copy of the default theme's directory and rename
it to: twentyten-wp-jq. WordPress depends on the theme directories namespace.
Meaning, each theme requires a uniquely named folder! Otherwise, you'll copy over
another theme. The next screenshot shows this directory's creation:

•

https://www.packtpub.com/wordpress-30-jquery/book

For More Information: www.packtpub.com/wordpress-30-jquery/book

Chapter 3

[95]

I'll then open up the style.css fi le and modify the information at the beginning of
the CSS fi le:

/*
Theme Name: Twenty Ten - edited for Chapter 3 of WordPress & jQuery
Theme URI: http://wordpress.org/
Description: The 2010 default theme for WordPress.
Author: the WordPress team & Tessa Silver
Version: 1.0
Tags: black, blue, white, two-columns, fixed-width, custom-header,
custom-background, threaded-comments, sticky-post, translation-ready,
microformats, rtl-language-support, editor-style

*/
...

My "new" theme will then show up in the administration panel's Manage Themes
page. You can take a new screenshot to update your new or modifi ed theme. If there
is no screenshot, the frame will display a grey box. As the look of the theme is going
to change a little, I've removed the screenshot.png fi le from the directory for now,
as you can see in the next screenshot:

https://www.packtpub.com/wordpress-30-jquery/book

For More Information: www.packtpub.com/wordpress-30-jquery/book

Digging Deeper: Understanding jQuery and WordPress Together

[96]

The Loop
In Chapte r 1, Getting Started: WordPress and jQuery and Chapter 2, Working with jQuery
in WordPress we learned how useful it was that jQuery "looped" through the selected
elements in the wrapper for you. WordPress does a little looping of its own; in fact,
it's important enough to be named "The Loop". The Loop is an essential part of
your WordPress theme. It displays your posts in chronological order and lets you
defi ne custom display properties with various WordPress template tags wrapped
in HTML markup.

The Loop in WordPress is a while loop and therefore starts with the PHP code:
while (have_posts()): followed by the template tag the_post(). All the markup
and additional template tags are then applied to each post that gets looped through
for display. The Loop is then ended with the PHP endwhile statement.

Every te mplate page view can have its own loop so that you can modify and change
the look and layout of each type of post sort. Every template page is essentially, just
sorting your posts in different ways. For example, different category or tag template
pages sort and refi ne your posts down to meet specifi c criteria. Those sorted posts
can appear different from posts on your main page, or in your archive lists, and so
on. The next example is a very simple loop taken from WordPress 2.9.2's default
Kubrick theme:

...
<?php while (have_posts()) : the_post(); ?>

 <div <?php post_class() ?> id="post-<?php the_ID(); ?>">
 <h2>
 <a href="<?php the_permalink() ?>"
 rel="bookmark" title="Permanent Link to
 <?php the_title_attribute(); ?>">
 <?php the_title(); ?>

 </h2>
 <small><?php the_time('F jS, Y') ?>
 <!-- by <?php the_author() ?> -->
 </small>

 <div class="entry">
 <?php the_content('Read the rest of this entry »'); ?>
 </div>

 <p class="postmetadata">
 <?php the_tags('Tags: ', ', ', '
'); ?>
 Posted in <?php the_category(', ') ?> |

https://www.packtpub.com/wordpress-30-jquery/book

For More Information: www.packtpub.com/wordpress-30-jquery/book

Chapter 3

[97]

 <?php edit_post_link('Edit', '', ' | '); ?>
 <?php comments_popup_link('No Comments »',
 '1 Comment »', '% Comments »'); ?>
 </p>
 </div>

 <?php endwhile; ?>
...

The loop is tucked into a large if/else statement that most importantly checks if
there are posts to sort. If there are no matching posts to display, a "Sorry" message
is displayed, and the searchform.php fi le is included with the get_search_form()
include tag.

The new WordPress 3.0 Twenty Ten theme has its loop separated out into its own
template page called loop.php, and it has quite a few more if/else statements
within it so that the same loop code can handle many different situations, instead of
writing individual loops for different template pages. On the whole, the same basic
template tags as well as conditional and include tags are used in the new theme
as they were before in the previous default theme. There are now just a few new
template and include tags that help you streamline your theme.

Let's take a closer look at some of these template tags, include and conditional tags,
and the API hooks available to us in a WordPress theme.

Tags and hooks
Within The Loop, you probably noticed some interesting bits of code wrapped
in PHP tags. The code isn't pure PHP, most of them are WordPress-specifi c tags
and functions such as template tags, which on ly work within a WordPress system.
The most obviously important template tags in The Loop are the_title(), and
the_content(). You'll notice that most tags and functions can have various
parameters passed through them. You'll notice that in the previous code snippet,
the_content tag has a parameter 'Read the rest of this entry »'
passed to it. That string of text with a right angle quote, will appear if the
<!--more--> tag is placed into a post.

Not all WordPress tags and functions go inside the loop. If you poked around the
header.php fi le at all in Chapter 1, Getting Started: WordPress and jQuery and Chapter 2,
Working with jQuery in WordPress, you probably noticed things such as blog_info()
and body_class(), and of course the wp_enqueue_script() that we used to
register jQuery in our installation.

https://www.packtpub.com/wordpress-30-jquery/book

For More Information: www.packtpub.com/wordpress-30-jquery/book

Digging Deeper: Understanding jQuery and WordPress Together

[98]

When having to work with theme template fi les for development and enhancement,
I've found that the following template tags and functions are useful to recognize
and know:

bloginfo()—this tag can be passed parameters to retrieve all sorts of
information about your blog. In the header.php fi le, you'll note it's most
commonly used to fi nd your stylesheet directory bloginfo('stylesheet_
directory') and stylesheet URL bloginfo('stylesheet_url'). It can
also display your RSS URL, what version of WordPress your site is
running, and quite a few other details. For more details, have a look at:
http://codex.wordpress.org/Template_Tags/bloginfo.
wp_tit le()—this tag can be outside the loop and it displays the title of a page
or single post (not a sorted list of several posts). You can pass it a few options
such as what text separator to use in the title, and if the separator text should
show up on the left or the right. You can also pass this tag a Boolean true or
false to display the title. wp_title("--",true,"right"). For more details,
have a look at http://codex.wordpress.org/Template_Tags/wp_title.
 the_title()—this tag goes inside the loop. It displays the title of the current
post and you can pass it any text characters you'd like the title to be wrapped
in: the_title("<h2>", "</h2>"). For more details, have a look at
http://codex.wordpress.org/Template_Tags/the_title.
 the_content()—this tag goes inside the loop and it displays the
post's content. If you don't pass it any params, it will display a generic
Read More link if the <!--more--> tag is used in the post. Otherwise,
you can pass it what you'd like the 'read more' instructions to say (I've
even found passing an existing tag works here. the_content("Continue
Reading".the_title()). For more details, have a look at
http://codex.wordpress.org/Template_Tags/the_content.
the_category()— this tag also has to go into the loop and it displays
a link or links to the categories assigned to the post. You can pass it
the text separators of your choice if there's more than one category.
the_category(", "). For more details, have a look at
http://codex.wordpress.org/Template_Tags/the_category.
 the_author_meta()—this tag also has to go into the loop. It has a
wealth of parameters that can be passed to it. You'll be most familiar with
the_author_meta("nickname"), or the_author_meta("first_name"), or
the_author_meta("last_name"). You can also get the author's bio,
the_author_meta("description"), as well as e-mail and website URLs.
Your best bet is to review the codex for all that you can do with this tag:
http://codex.wordpress.org/Template_Tags/the_author_meta.

•

•

•

•

•

•

https://www.packtpub.com/wordpress-30-jquery/book

For More Information: www.packtpub.com/wordpress-30-jquery/book

Chapter 3

[99]

The WordPress template tag library is extensive and the creative ways
you can use the tags in your themes can just stretch to infi nity. I've
included the tags that make a template useful and great, but by all means,
do check out the codex:
http://codex.wordpress.org/Template_Tags.

Conditional tags
 The conditional tags can be used in your template fi les to change what content is
displayed and how that content is displayed on a particular page depending on
what conditions that page matches. For example, you might want to display a
snippet of text above the series of posts, but only on the main page of your blog.
With the is_home() conditional tag, that task is made easy.

There are conditional tags for just about everything; out of all of them, these are the
few that I fi nd I need most in my theme development:

is_page()

is_home() or is_front_page()
is_single()

is_sticky()

All of those functions can take the following parameters: the post ID or page ID
number, the post or page title, or the post or page slug. As great as themes are, I'm
sure you've run into the conundrum that you or your client doesn't want the exact
same sidebar on every single page or post.

I use these conditional tags to ensure specifi c pages can have particular styles or divs
of content turned on and off and display or not display specifi c content. These tags
really help give project sites a true, custom website feel.

The conditional tag fun doesn't end there. There are many more that you
may fi nd invaluable in aiding your theme's customization:
http://codex.wordpress.org/Conditional_Tags.

•

•

•

•

https://www.packtpub.com/wordpress-30-jquery/book

For More Information: www.packtpub.com/wordpress-30-jquery/book

Digging Deeper: Understanding jQuery and WordPress Together

[100]

Template include tags
In the index.php template page and other template pages like single.php or
page.php and so on, you probably noticed these include tags. They let you include
standard page includes into the other template pages:

get_header()

get_footer()

get_sidebar()

comments_template()

custom include: include(TEMPLATEPATH."/file-name.php")

Creating custom header, footer, sidebar includes
 A while back, WordPress 2.7 introduced the ability to create custom headers, footers,
and sidebar templates for a theme. You simply create your custom header, footer, or
sidebar and call it using the standard include template tag. Be sure to add a fi le prefi x
of header-, footer-, or sidebar-, and your own fi le name. You can then call your
custom template fi le as follows:

get_header('customHeader') will include header-customHeader.php
get_footer('customFooter') will include footer-customFooter.php
get_sidebar('customSidebar') will include sidebar-customSidebar.
php

Plugin hooks
 In general, unless you're a plugin developer, you probably don't have much need
to pour over the plugin API. There are, however, a few hooks that should be placed
into themes in order for plugins to work effectively with your theme. If you're
editing a theme, be sure to not remove these hook tags, or if you're creating a
custom theme, be sure to include them:

wp_head: Place within the <head> tags of a header.php template:
<?php wp_head(); ?>

wp_footer: Place within the footer.php template:
<?php wp_footer(); ?>

•

•

•

•

•

•

•

•

•

•

https://www.packtpub.com/wordpress-30-jquery/book

For More Information: www.packtpub.com/wordpress-30-jquery/book

Chapter 3

[101]

wp_meta: You'll most likely place this hook within the sidebar.php
template. However, it's best to add this hook wherever you intend
plugins and widgets to appear:
<?php wp_meta(); ?>

comment_form: Goes in comments.php and comments-popup.php, before the
</form> closing tag:
<?php do_action('comment_form'); ?>

Project: Editing the main loop and sidebar in
the default theme
 Alright! That may seem like a lot to know about themes! As someone just looking to
enhance a WordPress site with jQuery, you may be asking: "Is it really necessary to
know all that?" Even if you have no interest in creating custom themes, from time to
time, when working with jQuery, you'll fi nd it very useful to be able to understand
how WordPress themes work, what HTML markup the theme is outputting, and
what most of the different tags and functions do.

Granted, in Chapter 2, Working with jQuery in WordPress, I strongly advocated that
you learn how to handle jQuery's selectors, inside and out, specifi cally so that you
would be able to enhance any WordPress site without having to edit its theme. While
you should know your jQuery selectors and fi lters like the back of your hand, it's
not always the quickest or easiest approach. Sometimes, while you can select and
edit anything that you want on the page, the jQuery selection process and statement
chain is bloated; it could be cleaned up and trimmed down if only some element
just had a specifi c HTML tag, class or id attribute. There will be lots of situations
where being able to edit the theme directly will allow you to create your jQuery
enhancements faster and with less code. Not to mention, many themes are great,
but can usually be made a little better and more customized to your site with just
the simplest theme tweaks. Let's do that now and take what we've just learned
about themes and put it to use.

Now, the new Twenty Ten default theme we're using is great, but it would be better
if the date was a bit more prominent in the posts and if the Sidebar was cleaned up to
look more like "offi cial" links, instead of just lists of bullets.

•

•

https://www.packtpub.com/wordpress-30-jquery/book

For More Information: www.packtpub.com/wordpress-30-jquery/book

Digging Deeper: Understanding jQuery and WordPress Together

[102]

Changing the loop
 Since we're touching up the theme, I want to change what the loop displays. We're
going to assume this is a site for a client, and I know the client will eventually want to
focus on the post's authors (there are many authors on this "hypothetical" site) and
while the date is important, it shouldn't be on the same line as the author's name. I'm
sure you've seen some blogs that have a little calendar or iCal-ish icons next to the
post. I think that's a visually appealing way to display information like that, and not
have the date take up a lot of room.

Using the free open source vector editor Inkscape (http://inkscape.org), I made
a calendar background icon that can have the day's date up top in red and the three
letter month below it. The icon is about 32 pixels square. You can use whichever
graphic program you prefer, GIMP, Photoshop, Illustrator, and so on, to create a
similar icon, or you can probably fi nd a royalty-free image on the Web.

https://www.packtpub.com/wordpress-30-jquery/book

For More Information: www.packtpub.com/wordpress-30-jquery/book

Chapter 3

[103]

To get our calendar background behind our date and formatted properly, let's
dig into the loop. The default theme's loop is located inside the template fi le called
loop.php. This is a much longer loop than you may be used to if this is your fi rst
time working with the Twenty Ten default theme. Ultimately, we're interested in
the "normal" or "everything else" view that is displayed on the site's "home"
or default blog page. You'll fi nd this code around line 127 starting with
<div class="entry-meta">.

 To start, comment out the custom PHP function twentyten_posted_on (it references
a custom function in the theme's function.php fi le, getting into which is a bit
beyond the scope of this title), and then add the following HTML markup and
PHP template tags in bold:

...

<div class="entry-meta">
 <?php //twentyten_posted_on();//comment this out ?>
 <small class="date">
 <?php the_time('d') ?>

 <?php the_time('M') ?>
 </small>
</div><!-- .entry-meta -->
...

What we're focusing on is the date display. The date is displayed with a template
tag called the_time which has parameters set to display the full month, the day
"as said", and the year; for example; February 4, 2010.

I just want to display the date's number and the three-letter abbreviation of the
month underneath that. the_time tag's parameters don't really let me add HTML
break tags, so I'll separate my date into two separate the_time tag calls so that I can
control the HTML a little better. I'll also want to ensure my style only applies to this
loop and not the <small> date and content that's wrapped in other template page's
loops, so I'll be sure to add a custom date class to the <small> tag. I'll also wrap the
year date display inside some tags so that I can have some additional style
control over it. My date display and classes end up looking like this:

...

 <small class="date">
 <?php the_time('d') ?>

 <?php the_time('M') ?>
 <!-- by <?php the_author() ?>-->
 </small>
...

https://www.packtpub.com/wordpress-30-jquery/book

For More Information: www.packtpub.com/wordpress-30-jquery/book

Digging Deeper: Understanding jQuery and WordPress Together

[104]

We'll then open up the CSS style.css stylesheet and add the rules for the special
class name that we added to the date display, and modify the header display. I
simply add my modifi cations to the very bottom of the style.css stylesheet. If on
the odd chance, any of my style names are the same as anything already defi ned in
the stylesheet, my rules will inherit from the previous rule and amend it (Either that,
or make it blatantly clear that I need a more unique style name.)

 First, I'll move the h2 headers on the home page itself that are inside the .post class
over 40 pixels, in order to make room for my date. Next, I'll move my date inside
the .post class up about 25 pixels to have it sit next to the header. Within this rule,
I also assign the dateBackground.png that I created in Inkscape and tweak the date
number's size, color, and a few other properties a bit. Lastly, I set my month display
size and color inside the span tag as follows:

...
/*----------twentyten chapter 3 customizations------------*/

.home .post .entry-title{
 padding-left: 40px;
}

.post small.date{
 display:block;
 background: url(images/dateBackground.png) no-repeat;
 margin-top: -25px;
 padding-top: 4px;
 width: 32px;
 height: 32px;
 font-size: 20px;
 line-height: 12px;
 text-align: center;
 color: #eee;
}

.post small.date span{
 font-size: 10px;
 color: #666;
}
...

https://www.packtpub.com/wordpress-30-jquery/book

For More Information: www.packtpub.com/wordpress-30-jquery/book

Chapter 3

[105]

And with that, the next screenshot shows what our post's headers and dates appear
like now:

Not bad! Now, let's tackle the sidebar.

C hanging the sidebar
Th e sidebar will be easy. The whole thing in the Twenty Ten default theme
is widgetized, so any reordering that we want to do can be done through the
administration panel. However, we do want to adjust the CSS of the sidebar's
bulleted lists a bit. When amending a theme you didn't create yourself from scratch,
it's always best to add new classes to the markup and stylesheet, rather than change
or edit any of the original styles that the author put in. This just makes it easier to
revert for various reasons. As you must have noticed earlier, I always add my new
custom styles to the bottom of the style.css stylesheet.

Let's start off by opening up sidebar.php in our editor and just adding in a new
class name that we can use to style any widgets that get loaded up into any of the
widget areas. Wherever I fi nd a <ul class="xoxo"> tag, I'll just add an additional
class called .currentsidebar after the .xoxo class. This appears twice in the
sidebar.php fi le approximately around line 12, and again, approximately
around line 51.

...
<ul class="xoxo currentsidebar">
...
<ul class="xoxo currentsidebar">
...

Next, we'll now simply open up our style.css stylesheet, and again at its bottom,
let's write up our new .currentsidebar CSS rules to affect the list items:

...

.currentsidebar li{
 padding: 0;
 margin: 15px 0 20px 0;
}

https://www.packtpub.com/wordpress-30-jquery/book

For More Information: www.packtpub.com/wordpress-30-jquery/book

Digging Deeper: Understanding jQuery and WordPress Together

[106]

.currentsidebar li ul li{
 list-style: none;
 padding: 5px 0; margin: 0 0 0 -15px; border-bottom: 1px solid #ddd;
 font-size: 105%;
}
...

Tada! As you can see in the next screenshot, our page and sidebar navigation now
look like this:

As you can see, touching up a WordPress theme is easy. Not only can you customize
your theme to look and work the way you want, you can imagine how easy it is
to tweak the theme's HTML markup so that your jQuery enhancements are easier
to add in. Next, let's move on to WordPress plugins.

https://www.packtpub.com/wordpress-30-jquery/book

For More Information: www.packtpub.com/wordpress-30-jquery/book

Chapter 3

[107]

The basics of a WordPress plugin
Now honestly, the details of writing WordPress plugins are far beyond the scope of
this title; my goal is to show you the structure of a simple WordPress plugin and the
basics of how to construct one. Understanding this, you can begin to write your own
basic plugins and feel more confi dent looking through other people's plugins when
assessing what kind of features they provide to your WordPress site and if you need
to tweak anything for your jQuery enhancements. Even as simply and basically as
we're going to work, you'll see how truly powerful WordPress plugins can be.

Want to become a WordPress plugin rockstar?
You can start off with, yet again, WordPress 2.7 Complete by April
Hodge Silver and Hasin Hayder. There's a chapter on plugins that walks
you through creating very useful simple plugins, as well as a more
complex plugin that writes to the WordPress database. Beyond that,
you'll want to check out WordPress Plugin Development: Beginner's
Guide by Vladimir Prelovac. Don't let the title fool you, Vladimir will
have you generating feature rich and dynamic WordPress plugins using
WordPress' coding standards all explained with clear, step-by-step code.

Working with plugins does require some experience with PHP. I'll keep this
explanation fairly straightforward for non-PHP developers, and those of you
with PHP experience should be able to see how to expand on this example to your
advantage in WordPress. On the whole, if you've been following the jQuery and
WordPress PHP examples in this book so far, you should be fi ne.

Just as with themes, WordPress plugins require a little structure to get started with
them. There's no defi ned hierarchy for plugin fi les, but you do need, at the very least,
a PHP fi le with a special comment up top so that WordPress can display it within the
Plugin Management page. While there are some single-fi le plugins out there, such
as the Hello Dolly plugin, which comes with your WordPress installation, you never
know when you fi rst start developing, the ways in which a plugin may grow. To be
safe, I like to organize my plugins into a uniquely named folder. Again, like with
themes, WordPress relies on the plugin directory's namespace, so uniqueness is of
key importance!

https://www.packtpub.com/wordpress-30-jquery/book

For More Information: www.packtpub.com/wordpress-30-jquery/book

Digging Deeper: Understanding jQuery and WordPress Together

[108]

In the wp-content/plugins directory you can place a unique folder and inside that,
create a .php fi le, and at the beginning of the fi le, inside the <?php ?> tags, include
the following header information. Only the bold information is absolutely required.
The rest of the information is optional and populates the Manage Plugins page in
the Administration panel.

<? php
/*
Plugin Name: your WordPress Plugin Name goes here
Plugin URI: http://yoururl.com/plugin-info
Description: Explanation of what it does
Author: Your Name
Version: 1.0
Author URI: http://yoururl.com
*/
//plugin code will go here
?>

Make sure that you don't have any spaces before your <?php tag or
after your ?> tag. If you do, WordPress will display some errors because
the system will get some errors about page headers already being sent.

Onc e you have your .php fi le set up in its own directory, inside your plugin
directory, you can add a basic PHP function. You can then decide how you
want to evoke that function, using an action hook or a fi lter hook. For example:

<? php
/*
Plugin Name: your WordPress Plugin Name goes here
Plugin URI: http://yoururl.com/plugin-info
Description: Explanation of what it does
Author: Your Name
Version: 1.0
Author URI: http://yoururl.com
*/

function myPluginFunction(){
 //function code will go here
}

https://www.packtpub.com/wordpress-30-jquery/book

For More Information: www.packtpub.com/wordpress-30-jquery/book

Chapter 3

[109]

add_filter('the_title', 'myPluginFunction');

//or you could:
/*add_action('wp_head', 'myPluginFunction');*/

?>

Remember that in the theme section earlier, I covered plugin hooks and how it's
important to have them in your theme? This is why. If you didn't have wp_head
or wp_footer in your theme, many plugins can't function, and you limit yourself
to the plugins you can write. In my plugins, I mostly use wp_header and the init
action hooks.

Luckily, most fi lter hooks will work in your plugins as WordPress will run through
them in The Loop. For the most part, you'll get the most work done in your plugin
using the_title and the_content fi lter hooks. Each of these fi lter's hooks will
execute your function when WordPress loops through those template tags in
the loop.

Wa nt to know what fi lter and action hooks are available?
The list is exhaustive. In fact, it's so immense that the WordPress codex
doesn't seem to have them all documented! For the most complete listing
available of all action and fi lter hooks, including newer hooks available in
version 2.9.x, you'll want to check out Adam Brown's WordPress Hooks
Database: http://adambrown.info/p/wp_hooks.
Overwhelmed by the database? Of course, checking out Vladimir's
WordPress Plugin Development: Beginner's Guide will get you started
with an arsenal of action and fi lter hooks as well.

You now understand the basics of a WordPress plugin! Let's do something with it.

Project: Writing a WordPress plugin to
display author bios
As we've discussed, plugins can help expand WordPress and give it new
functionality. However, we've seen that adding jQuery scripts directly to the theme
and editing its template pages here and there will do the trick in most cases. But
let's imagine a more complicated scenario using our modifi ed default theme and
the hypothetical client mentioned in the previous project in this chapter.

https://www.packtpub.com/wordpress-30-jquery/book

For More Information: www.packtpub.com/wordpress-30-jquery/book

Digging Deeper: Understanding jQuery and WordPress Together

[110]

While we tweaked the default theme, I fi gured that this client might want to have
her site's focus be more journalism oriented, and thus, she'd want some attention
drawn to the author of each post upfront. I was right, she does. However, there's a
catch. She doesn't just want their WordPress nickname displayed; she'd prefer their
full fi rst and last name be displayed as well, as it's more professional. She'd also like
their quick biography displayed with a link to their own URL and yet, not have that
information "get in the way" of the article itself, or lost down at the bottom of the
post. And here's the really fun part; she wants this change affected not just on this
site, but across her network of genre-specifi c news sites, over 20 of them at last count
(dang, I forgot she had so many sites! Good thing she's hypothetical).

 For this specifi c WordPress site, it's easy enough to go in and comment out the
custom function we dealt with earlier: add in the_author tag and display it twice,
passing each tag some parameters to display the fi rst and last name. I can also add a
tag to display the author's biography snippet from the user panel and URL (if they've
fi lled out that information). Also, it's certainly easy enough to add a little jQuery
script to make that bio div show up on a rollover of the author's name. However,
having to take all that work and then re-copy it into 20 different sites, many of which
are not using the default theme, and most of which have not had jQuery included
into their theme, does sound like an unnecessary amount of work (to boot, the client
has mentioned that she's deciding on some new themes for some of the sites, but she
doesn't know which sites will get what new themes yet).

It is an unnecessary amount of work. Instead of amending this theme and then
poking through, pasting, testing, and tweaking in 20 other themes, we'll spend that
time creating a WordPress plugin. It will then be easy to deploy it across all the
client's sites, and it shouldn't matter what theme each site is using. Let's get started!

Coding the plugin
 First up, looking through the client's network of sites, not many display the author's
nickname or name. Only a handful do and of those, the name is listed unobtrusively.
It will be much easier to have a plugin display the author's name and then comment
out or remove the_author tag from a few themes.

Here's a quick detail to note: template tags don't do so well in plugins. This is because
the template tag, which is a function, is set to display text, which, within another
function, we don't really want. What we want to do is get the information and pass it
to our hook, which will display it when the plugin function runs. Most template tags
have comparable WordPress functions, which will only get the information and not
write or display it immediately. For writing plugins, instead of looking through the
WordPress Codex's Template Tag function list, I like to look through the Function
Reference. Just about anything that starts with get_ will work great in a plugin. For
more details, have a look at http://codex.wordpress.org/Function_Reference.

https://www.packtpub.com/wordpress-30-jquery/book

For More Information: www.packtpub.com/wordpress-30-jquery/book

Chapter 3

[111]

The Codex Function Reference has get_the_author() which would suit some of
my needs for this project, but I prefer to use a newer function that came about in
WordPress version 2.8, called get_the_author_meta(). Unlike get_the_author,
you can pass this function over 25 parameters to fi nd out just about anything you
care to on a WordPress user.

Given next is my plugin's base addAuthor function, followed by my add_filter
hook which will run my function on every post's content. You can read the
comments in bold for more detail:

...
//add author function
function addAuthor($text) {
 /*the $text var picks up content from hook filter*/
 //check if author has a url, a first name and last name.
 //if not, no "Find out more" link will be displayed
 //and just the required nickname will be used.
 if (get_the_author_meta('user_url')){
 $bioUrl = "
 Find Out More";
 }
 if (get_the_author_meta('first_name')
 && get_the_author_meta('last_name')){
 $bioName = get_the_author_meta('first_name').
 " ".get_the_author_meta('last_name');
 }else{
 $bioName = get_the_author_meta('nickname');
 }

 //check if author has a description, if not
 //then, no author bio is displayed.
 if (get_the_author_meta('description')){
 $bio = "<div class='authorName'>by ".$bioName."
 <div class='authorBio'>"
 .get_the_author_meta('description')." ".$bioUrl."
 </div>
 </div>";
 }else{
 $bio = "<div class='authorName'>
 by ".$bioName."
 </div>";

 }

https://www.packtpub.com/wordpress-30-jquery/book

For More Information: www.packtpub.com/wordpress-30-jquery/book

Digging Deeper: Understanding jQuery and WordPress Together

[112]

 //returns the post content
 //and prepends the bio to the top of the content
 return $bio.$text;
}//addAuthor

//calls the post content and runs the function on it.
add_filter('the_content', 'addAuthor');
...

 You'll note that in the previous code snippet I took some extra care to check if the
WordPress user has a URL fi lled out in their profi le, and if they've added in their
fi rst and last name as well as a bio description. If they don't, my plugin will merely
display the user's nickname (the nickname is a required fi eld) which is usually the
same as the user's login name.

If any author doesn't have their fi rst and last name, or a biography fi lled out, I'll
leave it up to our client to force them to update their profi le. In the meantime, the
plugin won't display anything blank, empty, or broken, so no harm done.

Right now I'm just focused on getting the author's name and bio into WordPress, and
now that the name and bio should be getting generated, I just want to make sure that
the biography is styled nicely so that it stands apart from the post content but doesn't
draw too much attention to itself.

To accomplish this, I'll add a stylesheet called authover.css to my plugin directory
and add the following style to it:

.authorBio {
 border-top: 2px solid #666;
 border-bottom: 2px solid #999;
 background-color: #ccc;
 padding: 10px;
 font-size: 10px;
}

Now, the reason why I placed the CSS inside its own stylesheet instead of scripted
as a string into the plugin as another function was mostly to illustrate the best
practice of using the wp_register_style and wp_enqueue_style functions from
the Script API. Just as using the wp_enqueue_scripts function helps us avoid
confl ict with other JavaScript and jQuery libraries, these functions register the
new stylesheet and load it up, ensuring that there won't be any confl icts with
other same-named stylesheets.

https://www.packtpub.com/wordpress-30-jquery/book

For More Information: www.packtpub.com/wordpress-30-jquery/book

Chapter 3

[113]

For a stylesheet I'm pretty sure it will be unique to my plugin, and even more, just
for a single rule, this may be overkill, but you should be aware of this method,
especially since you'll probably run into it looking through more robust popular
plugins. Also, this makes the plugin more easily extendable in the future. You won't
need to futz through your PHP string to edit or amend the CSS. In fact, if you were
to write a plugin that had a lengthy enough stylesheet, you could hand the stylesheet
over to a CSS designer while you focused on the PHP functionality. Not to mention,
this makes your plugin useful to other users. A WordPress user with no PHP
experience could download and install this plugin and easily edit its CSS stylesheet
so that it looks good with their site's design.

Here's my addCSS function . Also, afterward instead of activating the stylesheet off a
fi lter hook, I want the stylesheet to register and load as soon as WordPress loads up,
even before the wp_head hook! Hence, you'll see that I've used the init action hook.

You'll note in addition to my comments in bold, the use of the WP_PLUGIN_URL
variable. This is similar to the TEMPLATEPATH variable I showed you in the theme
section to create a custom include, except of course, this works inside plugins to help
WordPress dynamically fi nd your plugin fi les without you hard coding them in.

Please read the bold comments in the next code block to understand what each code
statement does:

...
// Some CSS to position for the paragraph
function authorCSS() {
 //These variables set the url and directory paths:
 $authorStyleUrl =
 WP_PLUGIN_URL . '/add_author_bio-tbs/authover.css';
 $authorStyleFile =
 WP_PLUGIN_DIR . '/add_author_bio-tbs/authover.css';
 //if statement checks that file does exist
 if (file_exists($authorStyleFile)) {
 //registers and evokes the stylesheet
 wp_register_style('authorStyleSheet', $authorStyleUrl);
 wp_enqueue_style('authorStyleSheet');
 }

}

//evoke the authorCSS function on WordPress initialization
add_action('init', 'authorCSS');

OK! That should do it. We now need to activate our plugin and check it out in
WordPress.

https://www.packtpub.com/wordpress-30-jquery/book

For More Information: www.packtpub.com/wordpress-30-jquery/book

Digging Deeper: Understanding jQuery and WordPress Together

[114]

Activating our plugin in WordPress
 Our plugin is already in the WordPress wp-content/plugins directory. That means
all we have to do is navigate over to our Manage Plugins page and activate it.

The plugin called jQuery Add Author Biography in the Plugin Name: space in the
code's comment header appears in the plugins table as shown in the next screenshot:

Once the plugin is activated, we can navigate to the site to see it in action:

It 's working! The theme, which does not have the_author_meta tags in it, is now
displaying the author's full name and bio description underneath it. The biography
description is styled using the CSS rule in our plugin's class.

https://www.packtpub.com/wordpress-30-jquery/book

For More Information: www.packtpub.com/wordpress-30-jquery/book

Chapter 3

[115]

You've now edited a theme by hand and further extended the site by creating
a WordPress plugin from scratch. Great job! But what's that you say? You were
expecting to do a little more jQuery? You're right. Let's enhance this site a little
further by creating a jQuery plugin.

The basics of a jQuery plugin
We 'll discover that compared to WordPress themes and plugins, jQuery plugins are
actually not that complex.

To set up a jQuery plugin, you need to follow jQuery's plugin construct. The
basic construct consists of setting up a jQuery function for your plugin as follows.
Note the bold .fn added to the jQuery object. This is what makes your function
a jQuery function.

jQuery.fn.yourFunctionName = function() {
 //code
};

Within that, it's best practice to then add a return this.each(function(){...});
so that your function will run through each item in the jQuery selector.

j Query.fn.yourFunctionName = function() {
 return this.each(function(){
 //code
 });
};

Unlike WordPress, which requires specifi cally formatted comments in theme CSS
stylesheets and in plugin headers, jQuery does not require a commented-out header,
but it's nice to add one up top.

/*
You can name the plugin
Give some information about it
Share some details about yourself
Maybe offer contact info for support questions
*/
jQuery.fn.yourFunctionName = function() {
 return this.each(function(){
 //code
 });
};

https://www.packtpub.com/wordpress-30-jquery/book

For More Information: www.packtpub.com/wordpress-30-jquery/book

Digging Deeper: Understanding jQuery and WordPress Together

[116]

Note that each function and method you wrap your plugin in and use inside your
plugin must end in a ";" semicolon. Your code may otherwise break, and if you ever
compress it, it will defi nitely break.

That's it, all that's required of a jQuery plugin. Now, let's dive in to enhancing the
output of our WordPress plugin with a jQuery plugin.

Project: jQuery fade in a child div plugin
 Taking the required jQuery function discussed previously, I'm going to write
up a basic function, which can be passed not only to the main jQuery wrapper
selection, but an additional selector parameter so that it's easy to target the child
div of a selection, or the specifi c parameter of the jQuery selection that's passed
the parameter.

Again, note the bold comments in my authorHover function to follow along:

...
//sets up the new plugin function: authorHover
jQuery.fn.authorHover = function(applyTo) {
 //makes sure each item in the wrapper is run
 return this.each(function(){

 //if/else to determine if parameter has been passed
 //no param, just looks for the child div
 if(applyTo){
 obj = applyTo
 }else{
 obj = "div";
 }

 //hides the child div or passed selector
 jQuery(this).find(obj).hide();

 //sets the main wrapper selection with a hover
 jQuery(this).css("cursor", "pointer").hover(function(){

 //restyles the child div or passed selector
 // and fades it in
 jQuery(this).find(obj).css("position","absolute")
 .css("margin-top","-10px").css("margin-left","-10px")
 .css("width","400px")
 .css("border", "1px solid #666").fadeIn("slow");
 }, function(){

https://www.packtpub.com/wordpress-30-jquery/book

For More Information: www.packtpub.com/wordpress-30-jquery/book

Chapter 3

[117]

 //fades out the child selector
 jQuery(this).find(obj).fadeOut("slow");

 });
 });

};

That's all it takes. Now that we've created a jQuery plugin script, let's quickly test
it out in our theme fi rst. All we have to do is embed our new jQuery plugin named
jquery.authover.js to our theme, under the wp_enque_script call, below the
wp_head hook and evoke it with a simple script:

...
<script type="text/javascript">
jQuery(function(){
 jQuery(".authorName").authorHover();
});
</script>
...

We can take a look at the results in our site. I've grabbed two screenshots so that you
can see the fade-in effect. In the following screenshot you can see the new div start
to fade in:

https://www.packtpub.com/wordpress-30-jquery/book

For More Information: www.packtpub.com/wordpress-30-jquery/book

Digging Deeper: Understanding jQuery and WordPress Together

[118]

In this next screenshot you can see the completed fade animation:

Extra credit: Adding your new jQuery plugin to your
WordPress plugin
Now you're free to go and install your WordPress plugin and include jQuery plugin
on as many sites as needed! However, in case you're wondering, yes, we can refi ne
the installation process a bit more and just incorporate this jQuery plugin inside our
WordPress plugin.

The fi rst step is to simply drop our jquery.authover.js script inside our plugin
directory and then use the wp_enqueue_script to evoke it. You'll want to pay
particular attention to this use of the wp_enqueue_script function, as it will also
include jQuery 1.4.2 IF its NOT already registered in the theme or plugin! This means
that client's sites, which don't already have jQuery included, don't need to worry!
Just installing this plugin will automatically include it!

...
function addjQuery() {

 wp_enqueue_script('authover',
 WP_PLUGIN_URL . '/add_author_bio-tbs/jquery.authover.js',
 array('jquery'), '1.4.2');
}
...

https://www.packtpub.com/wordpress-30-jquery/book

For More Information: www.packtpub.com/wordpress-30-jquery/book

Chapter 3

[119]

We'll then add a function to our WordPress plugin which writes in the jQuery script
that uses the authorHover function of the plugin. Normally, it would be better, and
it is recommended to load up all scripts through the wp_enque_script function, but
for very small scripts that are so customized, you're sure will not ever confl ict, and
you know jQuery is already loading in properly (as we are with the plugin), if you
want, you can just hardcode script tags like so:

...
function addAuthorHover(){
 echo '<script type="text/javascript">
jQuery(function(){
 jQuery(".authorName").authorHover();
});
</script>';
}
...

Lastly, we add the action fi lters which will evoke those functions:

...
add_action('init', 'addjQuery');

add_action('wp_head', 'addAuthorHover');
?>

Now, if you remove your jQuery plugin from your theme and make sure that your
plugin is activated, you should see the exact same results as before! In the next
screenshot, you'll notice that I've added a URL to my profi le, and now the Find
Out More feature set to degrade nicely if no URL was present, just automatically
works. Wonderful.

https://www.packtpub.com/wordpress-30-jquery/book

For More Information: www.packtpub.com/wordpress-30-jquery/book

Digging Deeper: Understanding jQuery and WordPress Together

[120]

Putting it all together: Edit the theme or
create a custom plugin?
We've learned in this chapter how easy it is to edit a theme, create a WordPress
plugin, and a jQuery plugin. For the majority of your WordPress development work,
adding jQuery enhancements right to the theme will do the trick. If you feel your
jQuery scripts are a bit cumbersome and you're allowed to edit the theme (assuming
of course, you don't break the layout or dramatically alter the look) you'll probably
fi nd that being able to wrap WordPress content in custom HTML tags with special
class or id attributes is a huge help and time saver.

This chapter's project example's "hypothetical client request" also showed that if
there's any chance that your work can or will be reused or deployed across multiple
individual WordPress installations, you should consider encapsulating the work in
either a jQuery plugin, a WordPress plugin, or as we discovered, both.

In ad dition to considering if your work will need to be reused or deployed, you
may also want to consider the lifespan of the jQuery enhancement and that of the
WordPress theme. It's easy to think that the jQuery enhancement is really more a
part of the theme as it visually affects it, but is it really? I've found that more often
than not, a large part of my WordPress and jQuery development seems to center
around encapsulating jQuery development into a WordPress plugin, or making
WordPress plugins more effective with jQuery.

As there are only two ways to include jQuery into a WordPress site, through the
theme, or a plugin, if you're at all comfortable with editing and creating plugins,
you'll probably start to fi nd that its the better way to go (sure, there are always
exceptions). Enhancing WordPress plugins with jQuery and even encapsulating
jQuery plugins in WordPress plugins will allow you to easily scale your theme
design and any jQuery functionality/enhancements independently of each other.

This approach comes in very handy if you do like to redesign or update your theme
a lot, or perhaps you have a client who's a little "theme swap happy". If you want to
keep the cool jQuery enhanced forms, image and gallery lightboxing, and various
other functionality, or even just "neat eye candy" that you've created for a site,
without having to manually update a new theme constantly with all of that over and
over again, creating a plugin is the way to go, be it for jQuery, WordPress, or both.

Ultimately, it's up to you and your comfort level, and what's best for the project,
but I've found, with a few exceptions, which we will cover examples of in later
chapters, that trying to keep most jQuery enhancements from being embedded
in the WordPress theme has served me well.

https://www.packtpub.com/wordpress-30-jquery/book

For More Information: www.packtpub.com/wordpress-30-jquery/book

Chapter 3

[121]

Summary
You should now understand the following:

What WordPress themes, WordPress plugins, and jQuery plugins are.
How to edit a theme and create your own basic WordPress and
jQuery plugins.
Best practices for knowing when to edit and customize a theme, or make a
WordPress plugin, a jQuery plugin, or all three!

Armed with this information, we're going to move on to the next chapter where we'll
take a look at using a jQuery plugin with a plug-n-play WordPress plugin. We will
also discuss enhancing and expanding the capabilities of WordPress plugins with
jQuery. Get ready to dazzle with lightbox modal windows and wow users with
easy-to-use forms.

•

•

•

https://www.packtpub.com/wordpress-30-jquery/book

For More Information: www.packtpub.com/wordpress-30-jquery/book

Where to buy this book
You can buy WordPress 3.0 jQuery from the Packt Publishing website:
https://www.packtpub.com/wordpress-30-jquery/book

Free shipping to the US, UK, Europe and selected Asian countries. For more information, please

read our shipping policy.

Alternatively, you can buy the book from Amazon, BN.com, Computer Manuals and

most internet book retailers.

www.PacktPub.com

https://www.packtpub.com/wordpress-30-jquery/book
http://www.packtpub.com/Shippingpolicy

