Let $j \in \mathbb{N}$. Set $$ a_j^{(1)}=a_j:=\sum_{i=0}^j\frac{(-1)^{j-i}}{i!6^i(2(j-i)+1)!} $$ and $a_j^{(l+1)}=\sum_{i=0}^ja_ia_{j-i}^{(l)}$.
Please help me to prove that the following sum is finite $$ \sum_{j=1}^{\infty}j!\, a_j^{(l)} $$
Thank you.