Online Judge

Below are a collection of questions for you to practice. Click on the question’s title to expand the question description. Read the question and try to solve it by clicking on the “Solve this problem” link. You may start typing your code in the coding panel (bottom right side).

Once done, run your solution against the judge’s secret input to see if you’ve solved it correctly. It’s that easy!

Happy coding and remember to Follow or Like LeetCode and get the latest update when a new question is added!

IMPORTANT:
The Solution object is instantiated only once and is reused for each test case input. When declaring a class member variable, be extra cautious and remember to reset the variable!


Welcome, guest! Please login to start using Online Judge.

Questions List: (Click on title to expand)sort questions by: [ title ] [ freshness ]
Palindrome Partitioning IIMar 14096 / 14716

Given a string s, partition s such that every substring of the partition is a palindrome.

Return the minimum cuts needed for a palindrome partitioning of s.

For example, given s = "aab",
Return 1 since the palindrome partitioning ["aa","b"] could be produced using 1 cut.

» Solve this problem(link to this question)
Palindrome PartitioningFeb 282314 / 8132

Given a string s, partition s such that every substring of the partition is a palindrome.

Return all possible palindrome partitioning of s.

For example, given s = "aab",
Return

  [
    ["aa","b"],
    ["a","a","b"]
  ]

» Solve this problem(link to this question)
Surrounded RegionsFeb 223195 / 12058

Given a 2D board containing 'X' and 'O', capture all regions surrounded by 'X'.

A region is captured by flipping all 'O's into 'X's in that surrounded region .

For example,

X X X X
X O O X
X X O X
X O X X

After running your function, the board should be:

X X X X
X X X X
X X X X
X O X X

» Solve this problem(link to this question)
Sum Root to Leaf NumbersFeb 192766 / 7800

Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number.

An example is the root-to-leaf path 1->2->3 which represents the number 123.

Find the total sum of all root-to-leaf numbers.

For example,

    1
   / \
  2   3

The root-to-leaf path 1->2 represents the number 12.
The root-to-leaf path 1->3 represents the number 13.

Return the sum = 12 + 13 = 25.

» Solve this problem(link to this question)
Longest Consecutive SequenceFeb 142489 / 7141

Given an unsorted array of integers, find the length of the longest consecutive elements sequence.

For example,
Given [100, 4, 200, 1, 3, 2],
The longest consecutive elements sequence is [1, 2, 3, 4]. Return its length: 4.

Your algorithm should run in O(n) complexity.

» Solve this problem(link to this question)
Word Ladder IIFeb 112067 / 11556

Given two words (start and end), and a dictionary, find all shortest transformation sequence(s) from start to end, such that:

  1. Only one letter can be changed at a time
  2. Each intermediate word must exist in the dictionary

For example,

Given:
start = "hit"
end = "cog"
dict = ["hot","dot","dog","lot","log"]

Return

  [
    ["hit","hot","dot","dog","cog"],
    ["hit","hot","lot","log","cog"]
  ]

Note:

  • All words have the same length.
  • All words contain only lowercase alphabetic characters.

» Solve this problem(link to this question)
Word LadderFeb 112945 / 10734

Given two words (start and end), and a dictionary, find the length of shortest transformation sequence from start to end, such that:

  1. Only one letter can be changed at a time
  2. Each intermediate word must exist in the dictionary

For example,

Given:
start = "hit"
end = "cog"
dict = ["hot","dot","dog","lot","log"]

As one shortest transformation is "hit" -> "hot" -> "dot" -> "dog" -> "cog",
return its length 5.

Note:

  • Return 0 if there is no such transformation sequence.
  • All words have the same length.
  • All words contain only lowercase alphabetic characters.

» Solve this problem(link to this question)
Valid PalindromeJan 132368 / 7422

Given a string, determine if it is a palindrome, considering only alphanumeric characters and ignoring cases.

For example,
"A man, a plan, a canal: Panama" is a palindrome.
"race a car" is not a palindrome.

Note:
Have you consider that the string might be empty? This is a good question to ask during an interview.

For the purpose of this problem, we define empty string as valid palindrome.

» Solve this problem(link to this question)
Binary Tree Maximum Path SumNov 8 '122238 / 7909

Given a binary tree, find the maximum path sum.

The path may start and end at any node in the tree.

For example:
Given the below binary tree,

       1
      / \
     2   3

Return 6.

» Solve this problem(link to this question)
Best Time to Buy and Sell Stock IIINov 7 '121690 / 5272

Say you have an array for which the ith element is the price of a given stock on day i.

Design an algorithm to find the maximum profit. You may complete at most two transactions.

Note:
You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).

» Solve this problem(link to this question)
Best Time to Buy and Sell Stock IIOct 31 '121802 / 3585

Say you have an array for which the ith element is the price of a given stock on day i.

Design an algorithm to find the maximum profit. You may complete as many transactions as you like (ie, buy one and sell one share of the stock multiple times). However, you may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).

» Solve this problem(link to this question)
Best Time to Buy and Sell StockOct 30 '122290 / 5294

Say you have an array for which the ith element is the price of a given stock on day i.

If you were only permitted to complete at most one transaction (ie, buy one and sell one share of the stock), design an algorithm to find the maximum profit.

» Solve this problem(link to this question)
TriangleOct 30 '121852 / 5013

Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

For example, given the following triangle

[
     [2],
    [3,4],
   [6,5,7],
  [4,1,8,3]
]

The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.

» Solve this problem(link to this question)
Pascal's Triangle IIOct 29 '121527 / 3586

Given an index k, return the kth row of the Pascal's triangle.

For example, given k = 3,
Return [1,3,3,1].

Note:
Could you optimize your algorithm to use only O(k) extra space?

» Solve this problem(link to this question)
Pascal's TriangleOct 28 '121415 / 3177

Given numRows, generate the first numRows of Pascal's triangle.

For example, given numRows = 5,
Return

[
     [1],
    [1,1],
   [1,2,1],
  [1,3,3,1],
 [1,4,6,4,1]
]

» Solve this problem(link to this question)
Populating Next Right Pointers in Each Node IIOct 28 '121477 / 3647

Follow up for problem "Populating Next Right Pointers in Each Node".

What if the given tree could be any binary tree? Would your previous solution still work?

Note:

  • You may only use constant extra space.

For example,
Given the following binary tree,

         1
       /  \
      2    3
     / \    \
    4   5    7

After calling your function, the tree should look like:

         1 -> NULL
       /  \
      2 -> 3 -> NULL
     / \    \
    4-> 5 -> 7 -> NULL

» Solve this problem(link to this question)
Populating Next Right Pointers in Each NodeOct 28 '121666 / 3487

Given a binary tree

    struct TreeLinkNode {
      TreeLinkNode *left;
      TreeLinkNode *right;
      TreeLinkNode *next;
    }

Populate each next pointer to point to its next right node. If there is no next right node, the next pointer should be set to NULL.

Initially, all next pointers are set to NULL.

Note:

  • You may only use constant extra space.
  • You may assume that it is a perfect binary tree (ie, all leaves are at the same level, and every parent has two children).

For example,
Given the following perfect binary tree,

         1
       /  \
      2    3
     / \  / \
    4  5  6  7

After calling your function, the tree should look like:

         1 -> NULL
       /  \
      2 -> 3 -> NULL
     / \  / \
    4->5->6->7 -> NULL

» Solve this problem(link to this question)
Distinct SubsequencesOct 19 '121780 / 4934

Given a string S and a string T, count the number of distinct subsequences of T in S.

A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, "ACE" is a subsequence of "ABCDE" while "AEC" is not).

Here is an example:
S = "rabbbit", T = "rabbit"

Return 3.

» Solve this problem(link to this question)
Flatten Binary Tree to Linked ListOct 14 '122199 / 6538

Given a binary tree, flatten it to a linked list in-place.

For example,
Given

         1
        / \
       2   5
      / \   \
     3   4   6

The flattened tree should look like:
   1
    \
     2
      \
       3
        \
         4
          \
           5
            \
             6

click to show hints.

Hints:

If you notice carefully in the flattened tree, each node's right child points to the next node of a pre-order traversal.

» Solve this problem(link to this question)
Path Sum IIOct 14 '121783 / 5074

Given a binary tree and a sum, find all root-to-leaf paths where each path's sum equals the given sum.

For example:
Given the below binary tree and sum = 22,
              5
             / \
            4   8
           /   / \
          11  13  4
         /  \    / \
        7    2  5   1

return

[
   [5,4,11,2],
   [5,8,4,5]
]

» Solve this problem(link to this question)
Path SumOct 14 '122079 / 4931

Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up all the values along the path equals the given sum.

For example:
Given the below binary tree and sum = 22,
              5
             / \
            4   8
           /   / \
          11  13  4
         /  \      \
        7    2      1

return true, as there exist a root-to-leaf path 5->4->11->2 which sum is 22.

» Solve this problem(link to this question)
Minimum Depth of Binary TreeOct 10 '122251 / 5550

Given a binary tree, find its minimum depth.

The minimum depth is the number of nodes along the shortest path from the root node down to the nearest leaf node.

» Solve this problem(link to this question)
Balanced Binary TreeOct 9 '122443 / 6001

Given a binary tree, determine if it is height-balanced.

For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.

» Solve this problem(link to this question)
Convert Sorted List to Binary Search TreeOct 3 '121629 / 4449

Given a singly linked list where elements are sorted in ascending order, convert it to a height balanced BST.

» Solve this problem(link to this question)
Convert Sorted Array to Binary Search TreeOct 2 '121579 / 3020

Given an array where elements are sorted in ascending order, convert it to a height balanced BST.

» Solve this problem(link to this question)
Binary Tree Level Order Traversal IIOct 1 '121287 / 2875

Given a binary tree, return the bottom-up level order traversal of its nodes' values. (ie, from left to right, level by level from leaf to root).

For example:
Given binary tree {3,9,20,#,#,15,7},

    3
   / \
  9  20
    /  \
   15   7

return its bottom-up level order traversal as:

[
  [15,7]
  [9,20],
  [3],
]

confused what "{1,#,2,3}" means? > read more on how binary tree is serialized on OJ.


OJ's Binary Tree Serialization:

The serialization of a binary tree follows a level order traversal, where '#' signifies a path terminator where no node exists below.

Here's an example:

   1
  / \
 2   3
    /
   4
    \
     5
The above binary tree is serialized as "{1,2,3,#,#,4,#,#,5}".

» Solve this problem(link to this question)
Construct Binary Tree from Inorder and Postorder TraversalSep 30 '121190 / 3260

Given inorder and postorder traversal of a tree, construct the binary tree.

Note:
You may assume that duplicates do not exist in the tree.

» Solve this problem(link to this question)
Construct Binary Tree from Preorder and Inorder TraversalSep 30 '121358 / 4036

Given preorder and inorder traversal of a tree, construct the binary tree.

Note:
You may assume that duplicates do not exist in the tree.

» Solve this problem(link to this question)
Maximum Depth of Binary TreeSep 30 '121995 / 2825

Given a binary tree, find its maximum depth.

The maximum depth is the number of nodes along the longest path from the root node down to the farthest leaf node.

» Solve this problem(link to this question)
Binary Tree Zigzag Level Order TraversalSep 29 '121230 / 3248

Given a binary tree, return the zigzag level order traversal of its nodes' values. (ie, from left to right, then right to left for the next level and alternate between).

For example:
Given binary tree {3,9,20,#,#,15,7},

    3
   / \
  9  20
    /  \
   15   7

return its zigzag level order traversal as:

[
  [3],
  [20,9],
  [15,7]
]

confused what "{1,#,2,3}" means? > read more on how binary tree is serialized on OJ.


OJ's Binary Tree Serialization:

The serialization of a binary tree follows a level order traversal, where '#' signifies a path terminator where no node exists below.

Here's an example:

   1
  / \
 2   3
    /
   4
    \
     5
The above binary tree is serialized as "{1,2,3,#,#,4,#,#,5}".

» Solve this problem(link to this question)
Binary Tree Level Order TraversalSep 29 '121771 / 4392

Given a binary tree, return the level order traversal of its nodes' values. (ie, from left to right, level by level).

For example:
Given binary tree {3,9,20,#,#,15,7},

    3
   / \
  9  20
    /  \
   15   7

return its level order traversal as:

[
  [3],
  [9,20],
  [15,7]
]

confused what "{1,#,2,3}" means? > read more on how binary tree is serialized on OJ.


OJ's Binary Tree Serialization:

The serialization of a binary tree follows a level order traversal, where '#' signifies a path terminator where no node exists below.

Here's an example:

   1
  / \
 2   3
    /
   4
    \
     5
The above binary tree is serialized as "{1,2,3,#,#,4,#,#,5}".

» Solve this problem(link to this question)
Symmetric TreeSep 24 '122308 / 4740

Given a binary tree, check whether it is a mirror of itself (ie, symmetric around its center).

For example, this binary tree is symmetric:

    1
   / \
  2   2
 / \ / \
3  4 4  3

But the following is not:

    1
   / \
  2   2
   \   \
   3    3

Note:
Bonus points if you could solve it both recursively and iteratively.

confused what "{1,#,2,3}" means? > read more on how binary tree is serialized on OJ.


OJ's Binary Tree Serialization:

The serialization of a binary tree follows a level order traversal, where '#' signifies a path terminator where no node exists below.

Here's an example:

   1
  / \
 2   3
    /
   4
    \
     5
The above binary tree is serialized as "{1,2,3,#,#,4,#,#,5}".

» Solve this problem(link to this question)
Same TreeSep 3 '122087 / 3166

Given two binary trees, write a function to check if they are equal or not.

Two binary trees are considered equal if they are structurally identical and the nodes have the same value.

» Solve this problem(link to this question)
Recover Binary Search TreeSep 1 '121389 / 4756

Two elements of a binary search tree (BST) are swapped by mistake.

Recover the tree without changing its structure.

Note:
A solution using O(n) space is pretty straight forward. Could you devise a constant space solution?

confused what "{1,#,2,3}" means? > read more on how binary tree is serialized on OJ.


OJ's Binary Tree Serialization:

The serialization of a binary tree follows a level order traversal, where '#' signifies a path terminator where no node exists below.

Here's an example:

   1
  / \
 2   3
    /
   4
    \
     5
The above binary tree is serialized as "{1,2,3,#,#,4,#,#,5}".

» Solve this problem(link to this question)
Validate Binary Search TreeAug 31 '122048 / 5757

Given a binary tree, determine if it is a valid binary search tree (BST).

Assume a BST is defined as follows:

  • The left subtree of a node contains only nodes with keys less than the node's key.
  • The right subtree of a node contains only nodes with keys greater than the node's key.
  • Both the left and right subtrees must also be binary search trees.

confused what "{1,#,2,3}" means? > read more on how binary tree is serialized on OJ.


OJ's Binary Tree Serialization:

The serialization of a binary tree follows a level order traversal, where '#' signifies a path terminator where no node exists below.

Here's an example:

   1
  / \
 2   3
    /
   4
    \
     5
The above binary tree is serialized as "{1,2,3,#,#,4,#,#,5}".

» Solve this problem(link to this question)
Interleaving StringAug 31 '122033 / 6959

Given s1, s2, s3, find whether s3 is formed by the interleaving of s1 and s2.

For example,
Given:
s1 = "aabcc",
s2 = "dbbca",

When s3 = "aadbbcbcac", return true.
When s3 = "aadbbbaccc", return false.

» Solve this problem(link to this question)
Unique Binary Search Trees IIAug 27 '12955 / 2878

Given n, generate all structurally unique BST's (binary search trees) that store values 1...n.

For example,
Given n = 3, your program should return all 5 unique BST's shown below.

   1         3     3      2      1
    \       /     /      / \      \
     3     2     1      1   3      2
    /     /       \                 \
   2     1         2                 3

confused what "{1,#,2,3}" means? > read more on how binary tree is serialized on OJ.


OJ's Binary Tree Serialization:

The serialization of a binary tree follows a level order traversal, where '#' signifies a path terminator where no node exists below.

Here's an example:

   1
  / \
 2   3
    /
   4
    \
     5
The above binary tree is serialized as "{1,2,3,#,#,4,#,#,5}".

» Solve this problem(link to this question)
Unique Binary Search TreesAug 27 '121492 / 2887

Given n, how many structurally unique BST's (binary search trees) that store values 1...n?

For example,
Given n = 3, there are a total of 5 unique BST's.

   1         3     3      2      1
    \       /     /      / \      \
     3     2     1      1   3      2
    /     /       \                 \
   2     1         2                 3

» Solve this problem(link to this question)
Binary Tree Inorder TraversalAug 27 '122188 / 4679

Given a binary tree, return the inorder traversal of its nodes' values.

For example:
Given binary tree {1,#,2,3},

   1
    \
     2
    /
   3

return [1,3,2].

Note: Recursive solution is trivial, could you do it iteratively?

confused what "{1,#,2,3}" means? > read more on how binary tree is serialized on OJ.


OJ's Binary Tree Serialization:

The serialization of a binary tree follows a level order traversal, where '#' signifies a path terminator where no node exists below.

Here's an example:

   1
  / \
 2   3
    /
   4
    \
     5
The above binary tree is serialized as "{1,2,3,#,#,4,#,#,5}".

» Solve this problem(link to this question)
Restore IP AddressesAug 8 '121337 / 5126

Given a string containing only digits, restore it by returning all possible valid IP address combinations.

For example:
Given "25525511135",

return ["255.255.11.135", "255.255.111.35"]. (Order does not matter)

» Solve this problem(link to this question)
Reverse Linked List IIJun 27 '121585 / 4903

Reverse a linked list from position m to n. Do it in-place and in one-pass.

For example:
Given 1->2->3->4->5->NULL, m = 2 and n = 4,

return 1->4->3->2->5->NULL.

Note:
Given m, n satisfy the following condition:
1 ? m ? n ? length of list.

» Solve this problem(link to this question)
Subsets IIJun 25 '121360 / 3696

Given a collection of integers that might contain duplicates, S, return all possible subsets.

Note:

  • Elements in a subset must be in non-descending order.
  • The solution set must not contain duplicate subsets.

For example,
If S = [1,2,2], a solution is:

[
  [2],
  [1],
  [1,2,2],
  [2,2],
  [1,2],
  []
]
» Solve this problem(link to this question)
Decode WaysJun 25 '121916 / 7304

A message containing letters from A-Z is being encoded to numbers using the following mapping:

'A' -> 1
'B' -> 2
...
'Z' -> 26

Given an encoded message containing digits, determine the total number of ways to decode it.

For example,
Given encoded message "12", it could be decoded as "AB" (1 2) or "L" (12).

The number of ways decoding "12" is 2.

» Solve this problem(link to this question)
Gray CodeMay 20 '121071 / 2394

The gray code is a binary numeral system where two successive values differ in only one bit.

Given a non-negative integer n representing the total number of bits in the code, print the sequence of gray code. A gray code sequence must begin with 0.

For example, given n = 2, return [0,1,3,2]. Its gray code sequence is:

00 - 0
01 - 1
11 - 3
10 - 2

Note:
For a given n, a gray code sequence is not uniquely defined.

For example, [0,2,3,1] is also a valid gray code sequence according to the above definition.

For now, the judge is able to judge based on one instance of gray code sequence. Sorry about that.

» Solve this problem(link to this question)
Merge Sorted ArrayMay 20 '121849 / 3998

Given two sorted integer arrays A and B, merge B into A as one sorted array.

Note:
You may assume that A has enough space to hold additional elements from B. The number of elements initialized in A and B are m and n respectively.

» Solve this problem(link to this question)
Scramble StringApr 30 '121120 / 3528

Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.

Below is one possible representation of s1 = "great":

    great
   /    \
  gr    eat
 / \    /  \
g   r  e   at
           / \
          a   t

To scramble the string, we may choose any non-leaf node and swap its two children.

For example, if we choose the node "gr" and swap its two children, it produces a scrambled string "rgeat".

    rgeat
   /    \
  rg    eat
 / \    /  \
r   g  e   at
           / \
          a   t

We say that "rgeat" is a scrambled string of "great".

Similarly, if we continue to swap the children of nodes "eat" and "at", it produces a scrambled string "rgtae".

    rgtae
   /    \
  rg    tae
 / \    /  \
r   g  ta  e
       / \
      t   a

We say that "rgtae" is a scrambled string of "great".

Given two strings s1 and s2 of the same length, determine if s2 is a scrambled string of s1.

» Solve this problem(link to this question)
Partition ListApr 30 '121476 / 4609

Given a linked list and a value x, partition it such that all nodes less than x come before nodes greater than or equal to x.

You should preserve the original relative order of the nodes in each of the two partitions.

For example,
Given 1->4->3->2->5->2 and x = 3,
return 1->2->2->4->3->5.

» Solve this problem(link to this question)
Maximal RectangleApr 24 '12928 / 3296

Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing all ones and return its area.

» Solve this problem(link to this question)
Largest Rectangle in HistogramApr 23 '121825 / 5877

Given n non-negative integers representing the histogram's bar height where the width of each bar is 1, find the area of largest rectangle in the histogram.


Above is a histogram where width of each bar is 1, given height = [2,1,5,6,2,3].


The largest rectangle is shown in the shaded area, which has area = 10 unit.

For example,
Given height = [2,1,5,6,2,3],
return 10.

» Solve this problem(link to this question)
Remove Duplicates from Sorted List IIApr 22 '121532 / 4646

Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.

For example,
Given 1->2->3->3->4->4->5, return 1->2->5.
Given 1->1->1->2->3, return 2->3.

» Solve this problem(link to this question)
Remove Duplicates from Sorted ListApr 22 '121905 / 3594

Given a sorted linked list, delete all duplicates such that each element appear only once.

For example,
Given 1->1->2, return 1->2.
Given 1->1->2->3->3, return 1->2->3.

» Solve this problem(link to this question)
Search in Rotated Sorted Array IIApr 20 '121032 / 2692

Follow up for "Search in Rotated Sorted Array":
What if duplicates are allowed?

Would this affect the run-time complexity? How and why?

Write a function to determine if a given target is in the array.

» Solve this problem(link to this question)
Remove Duplicates from Sorted Array IIApr 19 '121349 / 3334

Follow up for "Remove Duplicates":
What if duplicates are allowed at most twice?

For example,
Given sorted array A = [1,1,1,2,2,3],

Your function should return length = 5, and A is now [1,1,2,2,3].

» Solve this problem(link to this question)
Word SearchApr 18 '121984 / 6492

Given a 2D board and a word, find if the word exists in the grid.

The word can be constructed from letters of sequentially adjacent cell, where "adjacent" cells are those horizontally or vertically neighboring. The same letter cell may not be used more than once.

For example,
Given board =

[
  ["ABCE"],
  ["SFCS"],
  ["ADEE"]
]
word = "ABCCED", -> returns true,
word = "SEE", -> returns true,
word = "ABCB", -> returns false.

» Solve this problem(link to this question)
SubsetsApr 18 '121783 / 4541

Given a set of distinct integers, S, return all possible subsets.

Note:

  • Elements in a subset must be in non-descending order.
  • The solution set must not contain duplicate subsets.

For example,
If S = [1,2,3], a solution is:

[
  [3],
  [1],
  [2],
  [1,2,3],
  [1,3],
  [2,3],
  [1,2],
  []
]
» Solve this problem(link to this question)
CombinationsApr 18 '121629 / 3905

Given two integers n and k, return all possible combinations of k numbers out of 1 ... n.

For example,
If n = 4 and k = 2, a solution is:

[
  [2,4],
  [3,4],
  [2,3],
  [1,2],
  [1,3],
  [1,4],
]
» Solve this problem(link to this question)
Minimum Window SubstringApr 15 '121273 / 5497

Given a string S and a string T, find the minimum window in S which will contain all the characters in T in complexity O(n).

For example,
S = "ADOBECODEBANC"
T = "ABC"

Minimum window is "BANC".

Note:
If there is no such window in S that covers all characters in T, return the emtpy string "".

If there are multiple such windows, you are guaranteed that there will always be only one unique minimum window in S.

» Solve this problem(link to this question)
Sort ColorsApr 9 '121705 / 4013

Given an array with n objects colored red, white or blue, sort them so that objects of the same color are adjacent, with the colors in the order red, white and blue.

Here, we will use the integers 0, 1, and 2 to represent the color red, white, and blue respectively.

Note:
You are not suppose to use the library's sort function for this problem.

click to show follow up.

Follow up:
A rather straight forward solution is a two-pass algorithm using counting sort.
First, iterate the array counting number of 0's, 1's, and 2's, then overwrite array with total number of 0's, then 1's and followed by 2's.

Could you come up with an one-pass algorithm using only constant space?

» Solve this problem(link to this question)
Search a 2D MatrixApr 7 '121581 / 3466

Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:

  • Integers in each row are sorted from left to right.
  • The first integer of each row is greater than the last integer of the previous row.

For example,

Consider the following matrix:

[
  [1,   3,  5,  7],
  [10, 11, 16, 20],
  [23, 30, 34, 50]
]

Given target = 3, return true.

» Solve this problem(link to this question)
Set Matrix ZeroesApr 6 '121251 / 2890

Given a m x n matrix, if an element is 0, set its entire row and column to 0. Do it in place.

click to show follow up.

Follow up:

Did you use extra space?
A straight forward solution using O(mn) space is probably a bad idea.
A simple improvement uses O(m + n) space, but still not the best solution.
Could you devise a constant space solution?

» Solve this problem(link to this question)
Edit DistanceApr 4 '121466 / 4407

Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)

You have the following 3 operations permitted on a word:

a) Insert a character
b) Delete a character
c) Replace a character

» Solve this problem(link to this question)
Simplify PathApr 4 '12898 / 3625

Given an absolute path for a file (Unix-style), simplify it.

For example,
path = "/home/", => "/home"
path = "/a/./b/../../c/", => "/c"

click to show corner cases.

Corner Cases:

  • Did you consider the case where path = "/../"?
    In this case, you should return "/".
  • Another corner case is the path might contain multiple slashes '/' together, such as "/home//foo/".
    In this case, you should ignore redundant slashes and return "/home/foo".
» Solve this problem(link to this question)
Climbing StairsApr 3 '121978 / 3599

You are climbing a stair case. It takes n steps to reach to the top.

Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?

» Solve this problem(link to this question)
Sqrt(x)Apr 3 '122641 / 9107

Implement int sqrt(int x).

Compute and return the square root of x.

» Solve this problem(link to this question)
Text JustificationApr 3 '12952 / 4571

Given an array of words and a length L, format the text such that each line has exactly L characters and is fully (left and right) justified.

You should pack your words in a greedy approach; that is, pack as many words as you can in each line. Pad extra spaces ' ' when necessary so that each line has exactly L characters.

Extra spaces between words should be distributed as evenly as possible. If the number of spaces on a line do not divide evenly between words, the empty slots on the left will be assigned more spaces than the slots on the right.

For the last line of text, it should be left justified and no extra space is inserted between words.

For example,
words: ["This", "is", "an", "example", "of", "text", "justification."]
L: 16.

Return the formatted lines as:

[
   "This    is    an",
   "example  of text",
   "justification.  "
]

Note: Each word is guaranteed not to exceed L in length.

click to show corner cases.

Corner Cases:

  • A line other than the last line might contain only one word. What should you do in this case?
    In this case, that line should be left-justified.
» Solve this problem(link to this question)
Plus OneApr 2 '121653 / 3802

Given a number represented as an array of digits, plus one to the number.

» Solve this problem(link to this question)
Valid NumberApr 2 '12879 / 4732

Validate if a given string is numeric.

Some examples:
"0" => true
" 0.1 " => true
"abc" => false
"1 a" => false
"2e10" => true

Note: It is intended for the problem statement to be ambiguous. You should gather all requirements up front before implementing one.

» Solve this problem(link to this question)
Add BinaryApr 2 '121799 / 5022

Given two binary strings, return their sum (also a binary string).

For example,
a = "11"
b = "1"
Return "100".

» Solve this problem(link to this question)
Merge Two Sorted ListsMar 30 '121958 / 4040

Merge two sorted linked lists and return it as a new list. The new list should be made by splicing together the nodes of the first two lists.

» Solve this problem(link to this question)
Minimum Path SumMar 29 '121339 / 2894

Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.

Note: You can only move either down or right at any point in time.

» Solve this problem(link to this question)
Unique Paths IIMar 29 '121243 / 3143

Follow up for "Unique Paths":

Now consider if some obstacles are added to the grids. How many unique paths would there be?

An obstacle and empty space is marked as 1 and 0 respectively in the grid.

For example,

There is one obstacle in the middle of a 3x3 grid as illustrated below.

[
  [0,0,0],
  [0,1,0],
  [0,0,0]
]

The total number of unique paths is 2.

Note: m and n will be at most 100.

» Solve this problem(link to this question)
Unique PathsMar 28 '121679 / 3706

A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

How many possible unique paths are there?


Above is a 3 x 7 grid. How many possible unique paths are there?

Note: m and n will be at most 100.

» Solve this problem(link to this question)
Rotate ListMar 28 '121501 / 5086

Given a list, rotate the list to the right by k places, where k is non-negative.

For example:
Given 1->2->3->4->5->NULL and k = 2,
return 4->5->1->2->3->NULL.

» Solve this problem(link to this question)
Permutation SequenceMar 28 '121094 / 3721

The set [1,2,3,…,n] contains a total of n! unique permutations.

By listing and labeling all of the permutations in order,
We get the following sequence (ie, for n = 3):

  1. "123"
  2. "132"
  3. "213"
  4. "231"
  5. "312"
  6. "321"

Given n and k, return the kth permutation sequence.

Note: Given n will be between 1 and 9 inclusive.

» Solve this problem(link to this question)
Spiral Matrix IIMar 28 '12877 / 2105

Given an integer n, generate a square matrix filled with elements from 1 to n2 in spiral order.

For example,
Given n = 3,

You should return the following matrix:
[
 [ 1, 2, 3 ],
 [ 8, 9, 4 ],
 [ 7, 6, 5 ]
]
» Solve this problem(link to this question)
Length of Last WordMar 27 '121571 / 3649

Given a string s consists of upper/lower-case alphabets and empty space characters ' ', return the length of last word in the string.

If the last word does not exist, return 0.

Note: A word is defined as a character sequence consists of non-space characters only.

For example,
Given s = "Hello World",
return 5.

» Solve this problem(link to this question)
Insert IntervalMar 27 '121424 / 5112

Given a set of non-overlapping intervals, insert a new interval into the intervals (merge if necessary).

You may assume that the intervals were initially sorted according to their start times.

Example 1:
Given intervals [1,3],[6,9], insert and merge [2,5] in as [1,5],[6,9].

Example 2:
Given [1,2],[3,5],[6,7],[8,10],[12,16], insert and merge [4,9] in as [1,2],[3,10],[12,16].

This is because the new interval [4,9] overlaps with [3,5],[6,7],[8,10].

» Solve this problem(link to this question)
Merge IntervalsMar 27 '121692 / 6117

Given a collection of intervals, merge all overlapping intervals.

For example,
Given [1,3],[2,6],[8,10],[15,18],
return [1,6],[8,10],[15,18].

» Solve this problem(link to this question)
Jump GameMar 25 '122185 / 4868

Given an array of non-negative integers, you are initially positioned at the first index of the array.

Each element in the array represents your maximum jump length at that position.

Determine if you are able to reach the last index.

For example:
A = [2,3,1,1,4], return true.

A = [3,2,1,0,4], return false.

» Solve this problem(link to this question)
Spiral MatrixMar 25 '121227 / 4595

Given a matrix of m x n elements (m rows, n columns), return all elements of the matrix in spiral order.

For example,
Given the following matrix:

[
 [ 1, 2, 3 ],
 [ 4, 5, 6 ],
 [ 7, 8, 9 ]
]

You should return [1,2,3,6,9,8,7,4,5].

» Solve this problem(link to this question)
Maximum SubarrayMar 21 '121715 / 3373

Find the contiguous subarray within an array (containing at least one number) which has the largest sum.

For example, given the array [−2,1,−3,4,−1,2,1,−5,4],
the contiguous subarray [4,−1,2,1] has the largest sum = 6.

click to show more practice.

More practice:

If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.

» Solve this problem(link to this question)
N-Queens IIMar 20 '121376 / 3026

Follow up for N-Queens problem.

Now, instead outputting board configurations, return the total number of distinct solutions.

» Solve this problem(link to this question)
N-QueensMar 20 '121166 / 3602

The n-queens puzzle is the problem of placing n queens on an nn chessboard such that no two queens attack each other.

Given an integer n, return all distinct solutions to the n-queens puzzle.

Each solution contains a distinct board configuration of the n-queens' placement, where 'Q' and '.' both indicate a queen and an empty space respectively.

For example,
There exist two distinct solutions to the 4-queens puzzle:

[
 [".Q..",  // Solution 1
  "...Q",
  "Q...",
  "..Q."],

 ["..Q.",  // Solution 2
  "Q...",
  "...Q",
  ".Q.."]
]
» Solve this problem(link to this question)
Pow(x, n)Mar 20 '123196 / 8445
AnagramsMar 19 '121764 / 5814

Given an array of strings, return all groups of strings that are anagrams.

Note: All inputs will be in lower-case.

» Solve this problem(link to this question)
Rotate ImageMar 18 '121181 / 2747

You are given an n x n 2D matrix representing an image.

Rotate the image by 90 degrees (clockwise).

Follow up:
Could you do this in-place?

» Solve this problem(link to this question)
Permutations IIMar 17 '121537 / 4109

Given a collection of numbers that might contain duplicates, return all possible unique permutations.

For example,
[1,1,2] have the following unique permutations:
[1,1,2], [1,2,1], and [2,1,1].

» Solve this problem(link to this question)
PermutationsMar 17 '121827 / 4199

Given a collection of numbers, return all possible permutations.

For example,
[1,2,3] have the following permutations:
[1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], and [3,2,1].

» Solve this problem(link to this question)
Jump Game IIMar 17 '122105 / 5975

Given an array of non-negative integers, you are initially positioned at the first index of the array.

Each element in the array represents your maximum jump length at that position.

Your goal is to reach the last index in the minimum number of jumps.

For example:
Given array A = [2,3,1,1,4]

The minimum number of jumps to reach the last index is 2. (Jump 1 step from index 0 to 1, then 3 steps to the last index.)

» Solve this problem(link to this question)
Wildcard MatchingMar 16 '121942 / 7560

Implement wildcard pattern matching with support for '?' and '*'.

'?' Matches any single character.
'*' Matches any sequence of characters (including the empty sequence).

The matching should cover the entire input string (not partial).

The function prototype should be:
bool isMatch(const char *s, const char *p)

Some examples:
isMatch("aa","a") ? false
isMatch("aa","aa") ? true
isMatch("aaa","aa") ? false
isMatch("aa", "*") ? true
isMatch("aa", "a*") ? true
isMatch("ab", "?*") ? true
isMatch("aab", "c*a*b") ? false
» Solve this problem(link to this question)
Multiply StringsMar 12 '121264 / 4954

Given two numbers represented as strings, return multiplication of the numbers as a string.

Note: The numbers can be arbitrarily large and are non-negative.

» Solve this problem(link to this question)
Trapping Rain WaterMar 10 '121192 / 3086

Given n non-negative integers representing an elevation map where the width of each bar is 1, compute how much water it is able to trap after raining.

For example,
Given [0,1,0,2,1,0,1,3,2,1,2,1], return 6.


The above elevation map is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped. Thanks Marcos for contributing this image!

» Solve this problem(link to this question)
First Missing PositiveMar 8 '121780 / 5240

Given an unsorted integer array, find the first missing positive integer.

For example,
Given [1,2,0] return 3,
and [3,4,-1,1] return 2.

Your algorithm should run in O(n) time and uses constant space.

» Solve this problem(link to this question)
Combination Sum IIMar 7 '121301 / 3849

Given a collection of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.

Each number in C may only be used once in the combination.

Note:

  • All numbers (including target) will be positive integers.
  • Elements in a combination (a1, a2, � , ak) must be in non-descending order. (ie, a1 ? a2 ? � ? ak).
  • The solution set must not contain duplicate combinations.

For example, given candidate set 10,1,2,7,6,1,5 and target 8,
A solution set is:
[1, 7]
[1, 2, 5]
[2, 6]
[1, 1, 6]

» Solve this problem(link to this question)
Combination SumMar 7 '121760 / 4786

Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.

The same repeated number may be chosen from C unlimited number of times.

Note:

  • All numbers (including target) will be positive integers.
  • Elements in a combination (a1, a2, � , ak) must be in non-descending order. (ie, a1 ? a2 ? � ? ak).
  • The solution set must not contain duplicate combinations.

For example, given candidate set 2,3,6,7 and target 7,
A solution set is:
[7]
[2, 2, 3]

» Solve this problem(link to this question)
Count and SayMar 6 '121385 / 3718

The count-and-say sequence is the sequence of integers beginning as follows:
1, 11, 21, 1211, 111221, ...

1 is read off as "one 1" or 11.
11 is read off as "two 1s" or 21.
21 is read off as "one 2, then one 1" or 1211.

Given an integer n, generate the nth sequence.

Note: The sequence of integers will be represented as a string.

» Solve this problem(link to this question)
Sudoku SolverMar 4 '12891 / 3078

Write a program to solve a Sudoku puzzle by filling the empty cells.

Empty cells are indicated by the character '.'.

You may assume that there will be only one unique solution.


A sudoku puzzle...


...and its solution numbers marked in red.

» Solve this problem(link to this question)
Valid SudokuMar 3 '12923 / 3170

Determine if a Sudoku is valid, according to: Sudoku Puzzles - The Rules.

The Sudoku board could be partially filled, where empty cells are filled with the character '.'.


A partially filled sudoku which is valid.

» Solve this problem(link to this question)
Search Insert PositionMar 3 '121721 / 3464

Given a sorted array and a target value, return the index if the target is found. If not, return the index where it would be if it were inserted in order.

You may assume no duplicates in the array.

Here are few examples.
[1,3,5,6], 5 → 2
[1,3,5,6], 2 → 1
[1,3,5,6], 7 → 4
[1,3,5,6], 0 → 0

» Solve this problem(link to this question)
Search for a RangeMar 3 '121727 / 4755

Given a sorted array of integers, find the starting and ending position of a given target value.

Your algorithm's runtime complexity must be in the order of O(log n).

If the target is not found in the array, return [-1, -1].

For example,
Given [5, 7, 7, 8, 8, 10] and target value 8,
return [3, 4].

» Solve this problem(link to this question)
Search in Rotated Sorted ArrayMar 3 '121994 / 5175

Suppose a sorted array is rotated at some pivot unknown to you beforehand.

(i.e., 0 1 2 4 5 6 7 might become 4 5 6 7 0 1 2).

You are given a target value to search. If found in the array return its index, otherwise return -1.

You may assume no duplicate exists in the array.

» Solve this problem(link to this question)
Longest Valid ParenthesesMar 1 '121713 / 6063

Given a string containing just the characters '(' and ')', find the length of the longest valid (well-formed) parentheses substring.

For "(()", the longest valid parentheses substring is "()", which has length = 2.

Another example is ")()())", where the longest valid parentheses substring is "()()", which has length = 4.

» Solve this problem(link to this question)
Next PermutationFeb 25 '121302 / 3759

Implement next permutation, which rearranges numbers into the lexicographically next greater permutation of numbers.

If such arrangement is not possible, it must rearrange it as the lowest possible order (ie, sorted in ascending order).

The replacement must be in-place, do not allocate extra memory.

Here are some examples. Inputs are in the left-hand column and its corresponding outputs are in the right-hand column.
1,2,31,3,2
3,2,11,2,3
1,1,51,5,1

» Solve this problem(link to this question)
Substring with Concatenation of All WordsFeb 24 '121487 / 5460

You are given a string, S, and a list of words, L, that are all of the same length. Find all starting indices of substring(s) in S that is a concatenation of each word in L exactly once and without any intervening characters.

For example, given:
S: "barfoothefoobarman"
L: ["foo", "bar"]

You should return the indices: [0,9].
(order does not matter).

» Solve this problem(link to this question)
Divide Two IntegersFeb 18 '122045 / 8143

Divide two integers without using multiplication, division and mod operator.

» Solve this problem(link to this question)
Implement strStr()Feb 18 '122115 / 6644

Implement strStr().

Returns a pointer to the first occurrence of needle in haystack, or null if needle is not part of haystack.

» Solve this problem(link to this question)
Remove ElementFeb 16 '121966 / 4023

Given an array and a value, remove all instances of that value in place and return the new length.

The order of elements can be changed. It doesn't matter what you leave beyond the new length.

» Solve this problem(link to this question)
Remove Duplicates from Sorted ArrayFeb 16 '122188 / 4606

Given a sorted array, remove the duplicates in place such that each element appear only once and return the new length.

Do not allocate extra space for another array, you must do this in place with constant memory.

For example,
Given input array A = [1,1,2],

Your function should return length = 2, and A is now [1,2].

» Solve this problem(link to this question)
Reverse Nodes in k-GroupFeb 16 '121248 / 3921

Given a linked list, reverse the nodes of a linked list k at a time and return its modified list.

If the number of nodes is not a multiple of k then left-out nodes in the end should remain as it is.

You may not alter the values in the nodes, only nodes itself may be changed.

Only constant memory is allowed.

For example,
Given this linked list: 1->2->3->4->5

For k = 2, you should return: 2->1->4->3->5

For k = 3, you should return: 3->2->1->4->5

» Solve this problem(link to this question)
Swap Nodes in PairsFeb 15 '121793 / 4078

Given a linked list, swap every two adjacent nodes and return its head.

For example,
Given 1->2->3->4, you should return the list as 2->1->4->3.

Your algorithm should use only constant space. You may not modify the values in the list, only nodes itself can be changed.

» Solve this problem(link to this question)
Merge k Sorted ListsFeb 14 '121872 / 6343

Merge k sorted linked lists and return it as one sorted list. Analyze and describe its complexity.

» Solve this problem(link to this question)
Generate ParenthesesFeb 13 '121942 / 4540

Given n pairs of parentheses, write a function to generate all combinations of well-formed parentheses.

For example, given n = 3, a solution set is:

"((()))", "(()())", "(())()", "()(())", "()()()"

» Solve this problem(link to this question)
Valid ParenthesesJan 30 '121805 / 4608

Given a string containing just the characters '(', ')', '{', '}', '[' and ']', determine if the input string is valid.

The brackets must close in the correct order, "()" and "()[]{}" are all valid but "(]" and "([)]" are not.

» Solve this problem(link to this question)
Remove Nth Node From End of ListJan 28 '121972 / 5186

Given a linked list, remove the nth node from the end of list and return its head.

For example,

   Given linked list: 1->2->3->4->5, and n = 2.

   After removing the second node from the end, the linked list becomes 1->2->3->5.

Note:
Given n will always be valid.
Try to do this in one pass.

» Solve this problem(link to this question)
Letter Combinations of a Phone NumberJan 27 '121699 / 4857

Given a digit string, return all possible letter combinations that the number could represent.

A mapping of digit to letters (just like on the telephone buttons) is given below.

Input:Digit string "23"
Output: ["ad", "ae", "af", "bd", "be", "bf", "cd", "ce", "cf"].

Note:
Although the above answer is in lexicographical order, your answer could be in any order you want.

» Solve this problem(link to this question)
4SumJan 27 '121691 / 4773

Given an array S of n integers, are there elements a, b, c, and d in S such that a + b + c + d = target? Find all unique quadruplets in the array which gives the sum of target.

Note:

  • Elements in a quadruplet (a,b,c,d) must be in non-descending order. (ie, a ? b ? c ? d)
  • The solution set must not contain duplicate quadruplets.

    For example, given array S = {1 0 -1 0 -2 2}, and target = 0.

    A solution set is:
    (-1,  0, 0, 1)
    (-2, -1, 1, 2)
    (-2,  0, 0, 2)
» Solve this problem(link to this question)
3Sum ClosestJan 18 '121763 / 4345

Given an array S of n integers, find three integers in S such that the sum is closest to a given number, target. Return the sum of the three integers. You may assume that each input would have exactly one solution.

    For example, given array S = {-1 2 1 -4}, and target = 1.

    The sum that is closest to the target is 2. (-1 + 2 + 1 = 2).
» Solve this problem(link to this question)
3SumJan 18 '123050 / 11307

Given an array S of n integers, are there elements a, b, c in S such that a + b + c = 0? Find all unique triplets in the array which gives the sum of zero.

Note:

  • Elements in a triplet (a,b,c) must be in non-descending order. (ie, a ? b ? c)
  • The solution set must not contain duplicate triplets.

    For example, given array S = {-1 0 1 2 -1 -4},

    A solution set is:
    (-1, 0, 1)
    (-1, -1, 2)
» Solve this problem(link to this question)
Longest Common PrefixJan 17 '121978 / 5412

Write a function to find the longest common prefix string amongst an array of strings.

» Solve this problem(link to this question)
Roman to IntegerJan 15 '121204 / 2489

Given a roman numeral, convert it to an integer.

Input is guaranteed to be within the range from 1 to 3999.

» Solve this problem(link to this question)
Integer to RomanJan 15 '121183 / 2819

Given an integer, convert it to a roman numeral.

Input is guaranteed to be within the range from 1 to 3999.

» Solve this problem(link to this question)
Container With Most WaterJan 9 '121835 / 4047

Given n non-negative integers a1, a2, ..., an, where each represents a point at coordinate (i, ai). n vertical lines are drawn such that the two endpoints of line i is at (i, ai) and (i, 0). Find two lines, which together with x-axis forms a container, such that the container contains the most water.

Note: You may not slant the container.

» Solve this problem(link to this question)
Regular Expression MatchingJan 8 '121989 / 7294

Implement regular expression matching with support for '.' and '*'.

'.' Matches any single character.
'*' Matches zero or more of the preceding element.

The matching should cover the entire input string (not partial).

The function prototype should be:
bool isMatch(const char *s, const char *p)

Some examples:
isMatch("aa","a") ? false
isMatch("aa","aa") ? true
isMatch("aaa","aa") ? false
isMatch("aa", "a*") ? true
isMatch("aa", ".*") ? true
isMatch("ab", ".*") ? true
isMatch("aab", "c*a*b") ? true
» Solve this problem(link to this question)
Palindrome NumberJan 4 '122370 / 5805

Determine whether an integer is a palindrome. Do this without extra space.

click to show spoilers.

Some hints:

Could negative integers be palindromes? (ie, -1)

If you are thinking of converting the integer to string, note the restriction of using extra space.

You could also try reversing an integer. However, if you have solved the problem "Reverse Integer", you know that the reversed integer might overflow. How would you handle such case?

There is a more generic way of solving this problem.

» Solve this problem(link to this question)
String to Integer (atoi)Dec 27 '112255 / 10556

Implement atoi to convert a string to an integer.

Hint: Carefully consider all possible input cases. If you want a challenge, please do not see below and ask yourself what are the possible input cases.

Notes: It is intended for this problem to be specified vaguely (ie, no given input specs). You are responsible to gather all the input requirements up front.

spoilers alert... click to show requirements for atoi.

Requirements for atoi:

The function first discards as many whitespace characters as necessary until the first non-whitespace character is found. Then, starting from this character, takes an optional initial plus or minus sign followed by as many numerical digits as possible, and interprets them as a numerical value.

The string can contain additional characters after those that form the integral number, which are ignored and have no effect on the behavior of this function.

If the first sequence of non-whitespace characters in str is not a valid integral number, or if no such sequence exists because either str is empty or it contains only whitespace characters, no conversion is performed.

If no valid conversion could be performed, a zero value is returned. If the correct value is out of the range of representable values, INT_MAX (2147483647) or INT_MIN (-2147483648) is returned.

» Solve this problem(link to this question)
Reverse IntegerDec 26 '112523 / 4393

Reverse digits of an integer.

Example1: x = 123, return 321
Example2: x = -123, return -321

click to show spoilers.

Have you thought about this?

Here are some good questions to ask before coding. Bonus points for you if you have already thought through this!

If the integer's last digit is 0, what should the output be? ie, cases such as 10, 100.

Did you notice that the reversed integer might overflow? Assume the input is a 32-bit integer, then the reverse of 1000000003 overflows. How should you handle such cases?

Throw an exception? Good, but what if throwing an exception is not an option? You would then have to re-design the function (ie, add an extra parameter).

» Solve this problem(link to this question)
ZigZag ConversionDec 6 '111947 / 5528

The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows like this: (you may want to display this pattern in a fixed font for better legibility)

P   A   H   N
A P L S I I G
Y   I   R
And then read line by line: "PAHNAPLSIIGYIR"

Write the code that will take a string and make this conversion given a number of rows:

string convert(string text, int nRows);
convert("PAYPALISHIRING", 3) should return "PAHNAPLSIIGYIR".

» Solve this problem(link to this question)
Longest Palindromic SubstringNov 11 '112446 / 8035

Given a string S, find the longest palindromic substring in S. You may assume that the maximum length of S is 1000, and there exists one unique longest palindromic substring.

» Solve this problem(link to this question)
Add Two NumbersNov 1 '113085 / 9868

You are given two linked lists representing two non-negative numbers. The digits are stored in reverse order and each of their nodes contain a single digit. Add the two numbers and return it as a linked list.

Input: (2 -> 4 -> 3) + (5 -> 6 -> 4)
Output: 7 -> 0 -> 8

» Solve this problem(link to this question)
Longest Substring Without Repeating CharactersMay 16 '113410 / 10349

Given a string, find the length of the longest substring without repeating characters. For example, the longest substring without repeating letters for "abcabcbb" is "abc", which the length is 3. For "bbbbb" the longest substring is "b", with the length of 1.

» Solve this problem(link to this question)
Median of Two Sorted ArraysMar 28 '112336 / 12324

There are two sorted arrays A and B of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).

» Solve this problem(link to this question)
Two SumMar 14 '115118 / 16310

Given an array of integers, find two numbers such that they add up to a specific target number.

The function twoSum should return indices of the two numbers such that they add up to the target, where index1 must be less than index2. Please note that your returned answers (both index1 and index2) are not zero-based.

You may assume that each input would have exactly one solution.

Input: numbers={2, 7, 11, 15}, target=9
Output: index1=1, index2=2

» Solve this problem(link to this question)