

Seeking PostgreSQL (2013)

Mechanical Drive Physics

- Head seeking time
 - 3 to 12 ms
 - Small SAS drives faster than Big SATA drives
- Rotation
 - 15K to 5400 RPM
 - 250 to 90 Rotations/Second
 - 4 to 11 ms
- I/O operations per second (IOPS)
 - Average head seek plus ½ rotation

+ Throughput

- 10 ms per seek is 100 seeks/second
 AKA 100 IOPS
- PostgreSQL pages are 8192 bytes each
- 100 / sec * 8192 = 0.8 MB/s

- Optimizations

- Elevator sorting
 - Native Command Queueing
 - Typically 32 request queue
- Read/write combining
- Read-ahead
- Non-volatile write caches
 - http://wiki.postgresql.org/wiki/Reliable_Writes
 - Look for the battery

- https://github.com/gregs1104/seek-scaling/
- Executes using sysbench
- Cache clearing code is Linux only
- Simple disk seeks
- Fixed size
 - Test sizes need to match
- Variable number of clients

Short-stroked 7200RPM Disk

3 Disk RAID-0

Silicon State Devices (SSD)

- AKA Flash RAM drives
- Intel 320 Series SSD
 - Enterprise 710 series mainly longer lifetime

 - Up to 270MB/s reads!Up to 47K Read IOPS!

Up to no good

Seek Scaling

Threads

Database tests

- pgbench
- PostgreSQL 9.0
 - 9.1 mostly the same
- 9.2 very different on larger servers
 4 Hyperthreaded cores = 8 threads
- Server with 16GB of RAM
- 2 PCI-E slots with storage controllers
- 7 drive bays
- Scientific Linux 6.0, XFS filesystems

SELECT-only Client scaling

SELECT-only, 3 disk RAID-0

Intel 320 SSD

Big data!

pgbench transactions/sec

Concurrency

pgbench transactions/sec

Money can buy you scaling

- PCI-E flash cards
- Fusion-io, TMS RAMSAN, Virident
- Many channels of flash
- Many dollars of cash
 - Typically >\$10K each for small capacities

Fusion-io ioDrive 80GB

pgbench transactions/sec

pgbench TPC-B writes

Cache refill

- Server has been restarted
- No cached information
- 7.5GB database, 32 clients
- Possible to do 50K TPS when in memory
- How long until original performance?

3-disk RAID0: 11 minutes

Greg Smith -

3;003;40;003;31;003;34;003;37;004;00;004;03;004;00;0

Time during test

Intel 320: 5 minutes

Fusion-io: 20 seconds

Greg Smith -

Time during test

- Measured refill rates

- 3 disk RAID-0: 7 to 15MB/s
- Intel SSD: 29 to 32MB/s
- Fusion-io ioDrive: 583 to 621MB/s

- Intel 320 Series drive didn't enable NCQ
- Should have scaled smoothly to handle 32 concurrent readers
- Instead rate was flat, showing no queue
- Motherboard BIOS fix enabled NCQ
- Check Linux with:

cat /sys/block/sdb/device/queue_depth

Intel 320 NCQ Speedup

Threads

pgbench TPC-B writes

Random reads

pgbench transactions/sec

Intel 320 w/NCQ: 1 minute refill

- Measured refill rates

- 3 disk RAID-0: 7 to 15MB/s
- Intel SSD without NCQ: 29 to 32MB/s
- Intel SSD with NCQ: 160 to 192MB/s
- Fusion-io ioDrive: 583 to 621MB/s

PostgreSQL Papers

- Greg Smith greg@2ndQuadrant.com
- Talks: http://www.2ndquadrant.com/en/talks/
- Blog: http://blog.2ndquadrant.com/
- Twitter: @postgresperf
- This presentation licensed under the Creative Commons Attribution 3.0
 - http://creativecommons.org/licenses/by/3.0/

PostgreSQL Books & Talks

http://www.2ndquadrant.com/books

