The Java EE 7
Tutorial

Release 7 for Java EE Platform
E39031-01

August 2013

ORACLE

The Java EE 7 Tutorial, Release 7 for Java EE Platform
E39031-01
Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Primary Author: Eric Jendrock, Ricardo Cervera-Navarro, lan Evans, Devika Gollapudi, Kim Haase,
William Markito, Chinmayee Srivathsa

Contributing Author:
Contributor:

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

Contents

PIEFQACE ...t XXXVii
AUAIEIICE ...ttt ettt ettt et et b e beeas e beesaeeseesbesbeesbesseesbesbeesbesssenseessanteeseeseersenseenes XXXVii
Documentation AcCesSiDIlitycccccciiiiiiiiiiiiiiiiiiiiic e XXXVii
Before You Read This BOOK.......co.ccivieiriiiriiiieieieeeeeee ettt XXXVii
Related DOCUMENTATIONevitiiiiiieieietee ettt ettt ettt st sttt et et et e et eatebesbeneenean XXXViii
CONVEINTIONS ...vvieiiieiieeieecte ettt eceeetteesteesteeteessteebeeseesssaeseassseassasssesssaesssaassaesssessseeseesssessseesesassennsenns XXXViii
Default Paths and File INAMESccooeiviimirieniieirieretece ettt XXXiX

Partl Introduction

1 Overview
1.1 Java EE 7 Platform Highlights..........ccccooiiiiiir e 1-2
1.2 Java EE Application Modelc.co.ooiiiiii 1-2
1.3 Distributed Multitiered Applicationscccovuviriviiiiiininninir e 1-3
1.3.1 SECUTILY ... 1-4
1.3.2 Java EE COMPONENtSc.coovoiiiiiiiii s 1-4
1.3.3 JAVA EE CHENES «...eoviviiiieieieieestetetee ettt ettt sttt et s et s e s s e se b e sansenseneeneeneasas 1-5
1.3.3.1 TWED CHENTS. ...ttt ettt b ettt ne e 1-5
1.3.3.2 Application CHENtS.........coociiiiici e 1-5
1.3.3.3 APPIELS .. 1-5
1.3.34 The JavaBeans Component Architecturec.cocoeeeiiiiiiiiniiiiiicccns 1-6
1.3.3.5 Java EE Server CommuNiCatioNsS.cecuevueeriirirrienieienitetenieetesiee et 1-6
1.34 Web COMPONENLES ... 1-6
1.3.5 Business COMPONENLSccuiviviiiiiiiiiiiiciiiccc s 1-7
1.3.6 Enterprise Information System Tier...........ccoooioiiiiiii 1-8
1.4 JaVa EE CONEAINETS. ..ccutitieiieiieie ettt ettt ettt ettt e tesbe et e s b e tesbeeste st entesaeensesesnnas 1-8
1.41 CONLAINET SEIVICES ...ttt ettt ettt ettt ettt b e b s st be st et et et et ebeebeebe e 1-8
1.4.2 Container TYPeS.....cccueieiiiiiii s 1-9
1.5 WeD S€rViCes SUPPOTL.....cocuiuimiiiiiiiiiiiiccccc s 1-10
1.5.1 XIMIL oottt ettt ettt ettt ettt et ben et et et e e s et e b et et et ese st eneeseneetenees 1-11
1.5.2 SOAP Transport Protocol ... 1-11
1.5.3 WSDL Standard FOTMat.......c.cceeveieieieieieiesiesiesiesieese ettt sttt se e eseesessessens 1-11
1.6 Java EE Application Assembly and Deployment...........cccccooviviniinnininininen, 1-12
1.7 Development ROLES...........oouoiiiiiiic s 1-12
1.7.1 Java EE Product PrOVIAETcccecieieieiiieieriesieseeeetettee ettt 1-12

1.7.2 B e T0) B 55 X0)7 o <5 R 1-12

1.7.3 Application Component Provider..........c..cooiicc 1-13
1.7.3.1 Enterprise Bean Developer.........cccooiiiiiiiiiiicccerceccceeeeeee s 1-13
1.7.3.2 Web Component Developer ... 1-13
1.7.3.3 Application Client Developercooriiiiiiiiiiiicicc e 1-13
1.7.4 Application ASSEMDIETc.cccuiiiiiiiiiiieiiiccee s 1-13
1.7.5 Application Deployer and Administrator...........ccccooovvviiiiiiiiiiic 1-13
1.8 JAVA EE 7 APIS ..ot s 1-14
1.8.1 Enterprise JavaBeans TeChNOlOZYcccccceuiuiiiiiiiiiiciiiiicicceccceceeeeeeeeeee s 1-17
1.8.2 Java Servlet TecChNOlOZYccooiiuiiiiiiiiiii e 1-17
1.8.3 JavaServer Faces Technologyccoceuiiiiiiiiiniic 1-18
1.8.4 JavaServer Pages TEChNOLOZYcccocueuiuiiiuiuiuiiiiiiiieeieieceeteie e 1-18
1.8.5 JavaServer Pages Standard Tag Library ..o, 1-19
1.8.6 Java PersiStence AP ..ottt 1-19
1.8.7 Java Transaction APccooioirieriieieie ettt st eneenes 1-19
1.8.8 Java API for REST{ul Web SErviCes........cccveirieirieieieieieieeieieieiete et 1-19
1.8.9 Managed Beanscooiiiiii s 1-19
1.8.10 Contexts and Dependency Injection for Java EE.........c.cccccccoiiiiiiiiiiiiccne 1-20
1.8.11 Dependency Injection for Java........cccceeiiiiciniiiiniiicc 1-20
1.8.12 Bean Validationcciiiiiiiiiiiiiic s 1-20
1.8.13 Java Message Service APL..........cccovviiiiiiiiiiii s 1-20
1.8.14 Java EE Connector ATCRItECUTEc.ooirererieriniiieieteeteeeeeee ettt 1-20
1.8.15 JavaMail AP ... 1-21
1.8.16 Java Authorization Contract for CONtainers..........ccocvevevververieciereieieeneseseesseseeeenns 1-21
1.8.17 Java Authentication Service Provider Interface for Containers...........ccccoceevrveernnee. 1-21
1.8.18 Java APT fOr WEDSOCKELoiuiieieieieeeeet ettt 1-21
1.8.19 Java API fOr JSON ProCeSSINg.........ccoeueueuiuiiimimemeiiiiiieieieceieieieieieiereneaetereneseeeeeseneeeeennas 1-22
1.8.20 Concurrency Utilities for Java EE........cccccoooiiiiiiiii e, 1-22
1.8.21 Batch Applications for the Java Platform ... 1-22
1.9 Java EE 7 APIs in the Java Platform, Standard Edition 7cccoeevvevieeierieiecieieineeeenne 1-22
1.9.1 Java Database Connectivity APL.........cccoooviiiiiiiiiii e, 1-22
1.9.2 Java Naming and Directory Interface APcccccccoiiiiiiinniniie, 1-23
1.9.3 JavaBeans Activation FramewoOrkcccccecirieiniirienieieicieceiee et 1-23
1.94 Java API for XML Processing.........c.cocoeeueuiiiumieiiiinicicisicicieeeie i 1-23
1.95 Java Architecture for XML Bindingcccccccevviviiiiininiiiniiiiinnnininnccnee 1-23
1.9.6 Java API for XIML WED SEIVICESc.ccverierieierieiieiiniisiesteieteiesteiseeereesasessessessessessessesass 1-24
1.9.7 SOAP with Attachments API fOr Javac.ccceeieiriririnineeseseeeeeteeeeeeeesie e 1-24
1.9.8 Java Authentication and Authorization SErvice........occoeeevieeecieeeecieeieceeeeereeveenene 1-24
1.9.9 Common Annotations for the Java Platformccocoeevvevieviecieiniiniinieesesieeeeeeeeeeens 1-24
1.10 GlassFish Server TOOIS ... 1-24

2 Using the Tutorial Examples

2.1 Required SOftWATreccccviiiiiiiiiiiiccc s 2-1
2.1.1 Java EE 7 Software Development Kit............cccocouviiiniiinnnnniinicccces 2-1
21141 SDK Installation TipPsccoccciiiiiiiiieiceeeeeeeeeneeeieree et nenennes 2-2
2.1.2 Java Platform, Standard Editioncccceoeviiiiiininininieeeeetc e 2-2
2.1.3 Java EE 7 Tutorial COMPONENL.........ccocvvviiiiiiiniiiiiiiiiiiicccccce e 2-2

2.1.3.1 To Obtain the Tutorial Component Using the Update Toolc.cccecevvveveneninins 2-2

214 NetBeans IDEcccooiiiiiiiiiicicec et 2-3
2.1.4.1 To Install NetBeans IDE without GlassFish Server ..., 2-3
2.1.4.2 To Add GlassFish Server as a Server in NetBeans IDE............cccccccoceiiiniiiiinnn. 2-3
2.1.5 APaAChe MavVenooiiiii 2-3
2.2 Starting and Stopping the GlassFish Server...........ccocooviinininnrnccnee e, 2-4
2.2.1 To Start the GlassFish Server Using NetBeans IDE ..o 2-4
222 To Stop the GlassFish Server Using NetBeans IDE ..o, 2-4
223 To Start the GlassFish Server from the Command Line.........ccccooovviiiiviiiiiiinnnnnn. 2-4
224 To Stop the GlassFish Server from the Command Line..........cccccocovvvvininnnnnninnnn. 2-4
2.3 Starting the Administration CONSOlecccceueiiiiiiiiiiiicc e 2-5
2.3.1 To Start the Administration Console in NetBeans IDE............cccccoovviniiiiininnnnnn. 2-5
2.4 Starting and Stopping the Java DB Server............coooooiiiiiiice 2-5
2.41 To Start the Database Server Using NetBeans IDE............cccoooiiiiiiiii, 2-5
25 Building the EXampPlesc.cccociiiiiiiicccceeeceere e 2-6
2.6 Tutorial Example Directory Structure ..o 2-6
2.7 Java EE 7 Maven Archetypes in the Tutorialccccoooiiiiiiiii, 2-6
2.71 Installing the Tutorial Archetypesc.ccccocieiiiinnnncrr e 2-6
2.7.1.1 Installing the Tutorial Archetypes from NetBeans IDE..............cccoooiniiiinnie, 2-6
2.71.2 Installing the Tutorial Archetypes Using Mavenccccooomeieiniiccieiiicnccieaes 2-7
2.8 Getting the Latest Updates to the Tutorial..........ccccovviiinnniniinir e 2-7
2.8.1 To Update the Tutorial Using the Command Line..........ccccooooiiiiiiieiiiiciii, 2-7
2.8.2 To Update the Tutorial Using NetBeans IDEcccccoooiiiiii 2-7
2.9 Debugging Java EE APPLCAtiONSc.ccoeuiiiiiiririiiiicncr e 2-7
2.91 Using the Server LOg ... 2-7
2.9.11 To Use the Administration Console Log VieWerccccooorriiiiiicieiniiicieecne, 2-8
29.2 USING @ DEDUGEET ... 2-8
2.9.2.1 To Debug an Application Using a Debuggerc.ccoeeieiniiniiiniicicieiiccien, 2-8

Part Il Platform Basics

3 Resource Creation

3.1 Resources and JNDI NamMiNgccccoiieieiiiiiiicce e 3-1
3.2 DataSource Objects and Connection POOIScccoviiiiiiiiicciccce 3-2
3.3 Creating Resources Administratively ... 3-2

4 Injection

4.1 Resource INJECHONc.ciiiiiiiiiiiiii s 4-1
4.2 Dependency INJECHON........ccccviveiiiiiiiiiiiiccc s 4-2
4.3 Main Differences Between Resource Injection and Dependency Injection......................... 4-2

5 Packaging

5.1 Packaging APPLICAtiONSccceuiuiiiiiiiiiiiiiiiiiciccc e 5-1
5.2 Packaging Enterprise BEanscccccccceiiiiiiriniiiiiceccreeeeeeeeeeeee e 5-3
5.2.1 Packaging Enterprise Beans in E]JB JAR Modules..........c.cccoooiiiiiiiiiiniiiiicnn, 5-3
522 Packaging Enterprise Beans in WAR Modulescccccovivninninnnnnnnnnncne, 5-3

5.3 Packaging Web Archives ... 5-4
54 Packaging Resource Adapter AIChIVeS ..o 5-5

Part Il The Web Tier

6 Getting Started with Web Applications

6.1 Web APPLCAtIONS......oiviiiciei e 6-1
6.2 Web Application LifeCyCle........ooiiiiiiiiiicrr e 6-2
6.3 A Web Module That Uses JavaServer Faces Technology: The hellol Example................. 6-3
6.3.1 To View the hellol Web Module Using NetBeans IDE............cccccooooiiiiiiiiiinnnn. 6-3
6.3.1.1 INtroduction t0 SCOPESuouimmiiiiiiiiicieiciciciciccie e 6-6
6.3.2 Packaging and Deploying the hellol Web Module............c.cccooooiiiiiiiiiniie, 6-6
6.3.2.1 To Build and Package the hellol Web Module Using NetBeans IDE.................. 6-7
6.3.2.2 To Build and Package the hellol Web Module Using Mavenccccccccccueunene. 6-7
6.3.3 Viewing Deployed Web Modules.............ccouiiiiiiiiiiiiice e, 6-7
6.3.3.1 To View Deployed Web Modules Using the Administration Console................. 6-7
6.3.3.2 To View Deployed Web Modules Using the asadmin Command......................... 6-7
6.3.3.3 To View Deployed Web Modules Using NetBeans IDE.............ccccooeiiiiinin, 6-8
6.3.4 Running the Deployed hellol Web Module...........cccoooiiiiiiiiic 6-8
6.3.4.1 Dynamic Reloading of Deployed Modulescccccooueuivviiinninnnrnccnrcene. 6-8
6.3.5 Undeploying the hellol Web Module ..o 6-8
6.3.5.1 To Undeploy the hellol Web Module Using NetBeans IDEccccccooeeunnie. 6-8
6.3.5.2 To Undeploy the hellol Web Module Using the asadmin Command 6-8
6.4 A Web Module That Uses Java Servlet Technology: The hello2 Example.......................... 6-9
6.4.1 Mapping URLs to Web Components..........ccoceueuiirieiiiicieiciceeeeci e 6-9
6.4.2 Examining the hello2 Web Module...........ccccccoiiiiiiiiiiiiceccceeeeceeeees 6-9
6.4.2.1 To View the hello2 Web Module Using NetBeans IDEc.ccccccoveiiiiiinnnas 6-9
6.4.3 Running the hello2 Example..........cccooiiiiiiiii s 6-11
6.4.3.1 To Run the hello2 Example Using NetBeans IDE............cccccccccceiiiiininnnenne. 6-11
6.4.3.2 To Run the hello2 Example Using Maven ..o 6-11
6.5 Configuring Web Applications...........cccccceiiiiiiiiiiiiccee s 6-12
6.5.1 Setting Context Parameters ... 6-12
6.5.1.1 To Add a Context Parameter Using NetBeans IDE..............ccooooiiiiinnan. 6-12
6.5.1.2 To Create a web.xml File Using NetBeans IDE..............cccccccooiiiiiiinnninnn, 6-12
6.5.2 Declaring Welcome Filescccccciiiiiiiiiiiiceccccceceeeeeeeeeeeeeee s 6-13
6.5.3 Mapping Errors to Error SCreens...........occeeieieiiieiniiiciiiciieiceceeeeeeeeeeeeenns 6-13
6.5.3.1 To Set Up Error Mapping Using NetBeans IDE..............ccooniiiniinnnn 6-13
6.5.4 Declaring Resource References............ccoccicuiicuiiiiiiiiiiiiieieiceeeceeeeeeeeeeeeeeeeeeeeees 6-14
6.5.4.1 Declaring a Reference to a Resource............coooeuevoiiiiiiiiiiciice, 6-15
6.5.4.2 Declaring a Reference to a Web Service ..., 6-15
6.6 Further Information about Web Applications..........ccccoeuvuveveeiiirirniiiinrrccrcreceeeeees 6-15

7 JavaServer Faces Technology

71 What Is a JavaServer Faces APPLCation? ... 7-2
7.2 JavaServer Faces Technology Benefitsccooouiiiiiiiiiiiii 7-3
7.3 A Simple JavaServer Faces Application...........cccocociiiiiiiiiiiiiiiiicccceeeceeens 7-3

vi

7.4 User Interface Component Modelccccooviiiiiiiiiiiniiii, 7-5

7.41 User Interface Component Classescoceueuiiriniiiiicicie e 7-5
7.4.2 Component Rendering Modelcccociiiiiniiiinrrcsnreeee e 7-7
7.4.3 Conversion Model ... 7-8
7.4.4 Event and Listener Model ..o, 7-8
7.4.5 Validation Model ... 7-9
7.5 Navigation Model ..o 7-10
7.6 The Lifecycle of a JavaServer Faces Application..........ccccooieiiiiiiiiiiiiccci 7-13
7.6.1 Overview of the JavaServer Faces Lifecycle ..o 7-13
7.6.2 Restore VIew Phase ... 7-15
7.6.3 Apply Request Values Phasecooooiiiiic e 7-16
7.6.4 Process Validations Phase ..o 7-16
7.6.5 Update Model Values Phase. ..o 7-17
7.6.6 Invoke Application Phase..........cccoouoiiiiiiiiii e 7-17
7.6.7 Render ReSponse PRasec.cccccuiiiiiiieriiiiciccceee s 7-17
7.7 Further Information about JavaServer Faces Technologycccccooimeieiiiciiiiicicine, 7-18

8 Introduction to Facelets

8.1 What Is FACELEtS?oiiiiiiiiii e 8-1
8.2 The Lifecycle of a Facelets Application...........cccooveuiiiiiiiiiciiiiiccccce e 8-3
8.3 Developing a Simple Facelets Application..........ccccccucuceuiuiiiiiiicieicicceceeeeeeeeeieenas 8-3
8.3.1 Creating a Facelets Application.........ccccviiiiiiiiiiiiiiiic s 8-4
8.3.1.1 Developing a Managed Beanccccoooiiiiiiic 8-4
8.3.1.2 Creating Facelets VIEWS.......cccccciiiiiiiicicicccccceceeeeeeeeeee e 8-5
8.3.2 Configuring the Application.........cooiirieiiiiiii 8-7
8.3.3 Running the guessnumber-jsf Facelets Example..........cccocoooiiiii 8-7
8.3.3.1 To Build, Package, and Deploy the guessnumber-jsf Example Using NetBeans IDE
8-8
8.3.3.2 To Build, Package, and Deploy the guessnumber-jsf Example Using Maven 8-8
8.3.3.3 To Run the guessnumber-jsf Example............cccooviiiiiiiiiiiiiiccice e, 8-8
8.4 Using Facelets TEMPLAtes. ..o 8-8
8.5 Composite COMPONENLS.......coiuiuiiiririiiiiiiie s 8-10
8.6 TWED RESOUICEScoevviiiiiiiieicct ettt st 8-12
8.7 Relocatable RESOUTICEScceviuiiiiiiiiiiiiiiic s 8-13
8.8 Resource Library Contracts ...t 8-13
8.8.1 The hellol-rlc Example Applicationccccceeiviviviviiiiiniiiniininnccinncces 8-14
8.8.1.1 Configuring the hellol-rlc Example.........ccccoooiiiiiiiiiiiiiicccccecceee 8-15
8.8.1.2 The Facelets Pages for the hellol-rlc Exampleccooooiiiiiiiiiniiiicccne 8-15
8.8.1.3 To Build, Package, and Deploy the hellol-rlc Example Using NetBeans IDE. 8-16
8.8.1.4 To Build, Package, and Deploy the hellol-rlc Example Using Maven and the
asadmin Command 8-16

8.8.1.5 To Run the hellol-rlc EXample ... 8-16
8.9 HTMLS Friendly Markup ... 8-16
8.9.1 Using Pass-through Elements............cccccooiiiiiiiiiiccccceeceeeeeeeeeeeeeees 8-17
8.9.2 Using Pass-through Attributes ... 8-18
8.9.3 The reservation Example Applicationcccccccociiiiiiiiiiniiiccicccee 8-19
8.9.3.1 The Facelets Pages for the reservation Application............ccccceveverrvnrrrenccccne. 8-19

vii

8.9.3.2 The Managed Bean for the reservation Applicationccccceevviiiiiinnennnn 8-20

8.9.3.3 To Build, Package, and Deploy the reservation Example Using NetBeans IDE
8-21
8.9.3.4 To Build, Package, and Deploy the reservation Example Using Maven and the

asadmin Command 8-21
8.9.3.5 To Run the reservation Example ..o 8-21

9 Expression Language

10

viii

9.1 Overview Of the EL.......ccccoiiiiiiiiiiiiiic 9-1
9.2 Immediate and Deferred Evaluation Syntax ..o 9-2
9.2.1 Immediate Evaluation............ccoooeiiiiiiiiiii s 9-2
9.2.2 Deferred EvalUation ... 9-3
9.3 Value and Method EXPIessions ... 9-3
9.3.1 Value EXPIressions.........ccciiiiiiiiiiiici s 9-3
9.3.1.1 Referencing Objects Using Value EXpressions. ..., 9-4
9.3.1.2 Referring to Object Properties Using Value EXpressionscccccocceveieircieines 9-4
9.3.1.3 Where Value Expressions Can Be Used ... 9-6
9.3.2 Method EXPIeSsiONScccciviiiiiiiiiiiiiiiiciciiciicccc s 9-7
9.3.2.1 Parameterized Method Calls ..o, 9-8
9.4 Literal EXPIESSIONS.c.ceuviiiiiiiiiiieiciciciieieice e 9-8
9.5 OPEIALOTS ...t 9-9
9.6 Reserved WOrdsS ..o 9-10
9.7 Examples of EL EXPIESSIONS......c.cccueuiuiiiuiuiuiuiieieicicicieieieieieeiete et senenens 9-10

Using JavaServer Faces Technology in Web Pages

10.1 Setting Up @ Page......cccoiviiiiiiiiiiiciccc s 10-1
10.2 Adding Components to a Page Using HTML Tag Library Tagscccccooeeeuevriiurrernnnnen. 10-2
10.2.1 Common Component Tag Attributescocooeiiiiiiii 10-4
10.2.1.1 The id AttTIbULE ..o 10-5
10.2.1.2 The immediate Attribute ... 10-5
10.2.1.3 The rendered AIIDULEc.ccoviviiiciieiiecccccc e 10-6
10.2.1.4 The style and styleClass Attributes..........ccocoeeiuiieiciieeiiceceeceeceeeeeeees 10-6
10.2.1.5 The value and binding Attributes..........c.ccooieieiii 10-6
10.2.2 Adding HTML Head and Body Tagsccccccceeuiiiiiiiiiniiiiiicicicccccccccccces 10-7
10.2.3 Adding a Form Componentc.cccccocuciueuiiiiiiiiiieeeeeeeeeeeeeteeeeeneneeenene e 10-7
10.2.4 Using Text COMPONENLSc.oviuiiiiiiieiecie e 10-8
10.2.4.1 Rendering a Field with the h:inputText Tag..........cccccecevuivvniinnniiiiene 10-10
10.2.4.2 Rendering a Password Field with the h:inputSecret Tagccccoceeieicennes 10-10
10.2.4.3 Rendering a Label with the h:outputLabel Tagcccooeeiniriiiiiiine, 10-10
10.2.4.4 Rendering a Link with the h:outputLink Tagcccccccovvninniinniniiiinees 10-11
10.2.4.5 Displaying a Formatted Message with the h:outputFormat Tag 10-11
10.2.5 Using Command Component Tags for Performing Actions and Navigation....... 10-12
10.2.5.1 Rendering a Button with the h:commandButton Tag........c.ccccoeviiiiiinnnes 10-12
10.2.5.2 Rendering a Link with the h:commandLink Tag........cccccovvvvininininciiniicaes 10-13
10.2.6 Adding Graphics and Images with the h:graphicimage Tag..........cccccecevviirnnnnee. 10-13
10.2.7 Laying Out Components with the h:panelGrid and h:panelGroup Tags 10-14
10.2.8 Displaying Components for Selecting One Valuec.cccccceueeevvinnnnnnnnnenes 10-15

1

12

10.2.8.1 Displaying a Check Box Using the h:selectBooleanCheckbox Tag 10-16

10.2.8.2 Displaying a Menu Using the h:selectOneMenu Tag ..o, 10-16
10.2.9 Displaying Components for Selecting Multiple Values...........ccccccoiiiiinciicncnnes 10-17
10.2.10 Using the f:selectltem and f:selectltems Tags.........cccceuevirieieiiiiicieiicc 10-18
10.2.10.1 Using the f:selectItems Tagcccocevuviiiiiniiiiiiiiis 10-18
10.2.10.2 Using the f:selectItem Tagccoouiiiiiiiiiiciicceeeeceeeeeee e 10-18
10.2.11 Displaying the Results from Selection Components............c.ccooerieiiieirciiiincnnnn. 10-19
10.2.12 Using Data-Bound Table Components..........ccccouiiiieiiinieieiciceecce 10-19
10.2.13 Displaying Error Messages with the h:message and h:messages Tags 10-22
10.2.14 Creating Bookmarkable URLs with the h:button and h:link Tagscccc......... 10-23
10.2.15 Using View Parameters to Configure Bookmarkable URLscccooceviiinnnnnee. 10-23
10.2.16 The bookmarks Example Applicationcccccccviviviirirnnnnnnncncreeereeeenes 10-24
10.2.16.1 To Build, Package, and Deploy the bookmarks Example Using NetBeans IDE
10-25
10.2.16.2 To Build, Package, and Deploy the bookmarks Example Using Maven and the
asadmin Command 10-25
10.2.16.3 To Run the bookmarks Examplecccccceeuriiiinnnnnnrrccceeeeeeceeeee 10-25
10.2.17 Resource Relocation Using h:outputScript and h:outputStylesheet Tags.............. 10-25
10.3 USINg COre Tagscooviiiiiiiiiitt ettt 10-27
Using Converters, Listeners, and Validators
11.1 Using the Standard Converters...........cccoooirieiiiciiiiic s 11-1
11.1.1 Converting a Component's ValUec.ccccoeuiuiieirnniiinnrncrrceer e 11-2
11.1.2 Using DateTimeCoNnVerter ...t 11-3
11.1.3 Using NumberCOonvVerter ... s 11-4
11.2 Registering Listeners on COmMPONeNntscccceviviviiiiiiniiiiiininiiseecceenns 11-5
11.2.1 Registering a Value-Change Listener on a Component...........cccceeverieieiniicieininnen. 11-6
11.2.2 Registering an Action Listener on a Component.............cccoceveveieieiiiniiieeiiceen, 11-6
11.3 Using the Standard Validators............cccccocoiiiiiiiiiiiiiccccceeeieeeeeeeeeeeeeeeeeees 11-8
11.3.1 Validating a Component's Value.........cccccoieiiiiiiiiiiicc e 11-9
11.3.2 Using LongRangeValidator............cccccocueeiiiiiiiiiiiiiiiiiiicccccecccees 11-9
11.4 Referencing a Managed Bean Method ..o 11-10
11.4.1 Referencing a Method That Performs Navigation..........cccooeviiiieiiiiiiiinne, 11-10
11.4.2 Referencing a Method That Handles an Action Event...........ccccccoovvnninnnnnnnn. 11-11
11.4.3 Referencing a Method That Performs Validationcccccceeevvviinnnnnnnncenes 11-11
11.44 Referencing a Method That Handles a Value-Change Event.............ccccooooeenii. 11-11
Developing with JavaServer Faces Technology
121 Managed Beans in JavaServer Faces Technology..........ccccccooimiioiiiiiniicc 12-1
12.1.1 Creating a Managed Bean...........cccccccciuiiiiiiiiiiiiiiiiicces 12-1
12.1.2 Using the EL to Reference Managed Beans ... 12-2
12,2 Writing Bean Properties. ... 12-3
12.2.1 Writing Properties Bound to Component Values...........cccococeiiiiiiiiiiniinnnne 12-4
12.2.1.1 Ullnput and UIOutput Properties ... 12-5
12.2.1.2 UlIData Properties ...ttt 12-5
12.2.1.3 UlSelectBoolean Properties..........ccccciiieiiciiiiiiiciiiniciiciiniciecieeeeeceeeseseeeees 12-6

13

122.1.4 UlSelectMany Properties...........ooccuiiricieiiicieiceicie e 12-7

12.21.5 UISelectOne Properties..........ccciiiiiiiiiiiiiiiiiicccicieeenee s 12-7
12.2.1.6 UlSelectItem Properties ... eneneseeeneseneeeeens 12-8
12.21.7 UlSelectItems Properties ... 12-8
12.2.2 Writing Properties Bound to Component Instances............cccoooceueieiccieiiiccicienne. 12-9
12.2.3 Writing Properties Bound to Converters, Listeners, or Validators......................... 12-10
12.3 Writing Managed Bean Methods...........c.coiiiii 12-11
12.3.1 Writing a Method to Handle Navigation ... 12-11
12.3.2 Writing a Method to Handle an Action Event ..o 12-12
12.3.3 Writing a Method to Perform Validation..........cccooieioiiiiiiiiccce, 12-12
12.3.4 Writing a Method to Handle a Value-Change Event ..o 12-13
12.4 Using Bean Validation.......c.ccooiiiiiiiiiiiiicicccccceeccee e 12-14
12.4.1 Validating Null and Empty Strings ..o, 12-17

Using Ajax with JavaServer Faces Technology

13.1 OVEIVIEW Of AJAX ceiviiiiiiiiiiiiiiiiicctct et 13-1
13.2 Using Ajax Functionality with JavaServer Faces Technologycccecevivivinininnnnn 13-2
13.3 Using Ajax With Facelets.......ccooiiiiiiiiiiccccccececcee s 13-3
13.3.1 Using the f:ajax Tagcccoveueiiiiicie s 13-3
13.4 Sending an Ajax ReqUEStcoouiiiiiiiiiiie e 13-4
13.4.1 Using the event AtIIDULE ... 13-5
13.4.2 Using the execute Attribute. ... 13-5
13.4.3 Using the immediate Attribute...........cooooiiiiii e 13-5
13.4.4 Using the listener Attribute..........ocoooioiiiiiiiiiiiiicceececceee s 13-6
13.5 Monitoring Events on the Clent..........cccooii 13-6
13.6 Handling EITOIScoooiiiiii e 13-6
13.7 Receiving an Ajax RESPONSE........ccccciviiiiiiiiiiiiiiiiiiiici e 13-7
13.8 Partial Processing and Partial Rendering..............cocooeueveiiiiiiiiiiciiiiiceece 13-8
13.9 Ajax Request LifeCycle ..o 13-8
13.10 Grouping Of COMPONENLS.......coccrvrieiiiiiicc et nenens 13-8
13.11 Loading JavaScript as a ReSOUICe..........ccoviiiriiiiiiicc e 13-9
13.11.1 Using JavaScript API in a Facelets Applicationcccccocvvvvivvinnninnnininnne 13-9
13.11.2 Using the @ResourceDependency Annotation in a Bean Class..........ccccccoeiuenneeee. 13-10
13.12 The ajaxguessnumber Example Applicationccocoovivviininnne, 13-10
13.12.1 The ajaxguessnumber Source Files...........cccccooiiiiiniiiininiiin 13-11
13.12.1.1 The ajaxgreeting.xhtml Facelets Page..........cccccceeeuevvrninnncnrrncereeecnee 13-11
13.12.1.2 The UserNumberBean Backing Bean............cccccoooviiiins 13-12
13.12.1.3 The DukesNumberBean CDI Beanccccoceueueinnieueicinnieiinneccceeeienccenenes 13-12
13.12.2 Running the ajaxguessnumber Example..........ccccocoeiviniiinnnnnneccaes 13-12
13.12.2.1 To Build, Package, and Deploy the ajaxguessnumber Example Using NetBeans
IDE 13-12
13.12.2.2 To Build, Package, and Deploy the ajaxguessnumber Example Using Maven...........
13-12

13.12.2.3 To Run the ajaxguessnumber Example.........ccccccoceiviiinnnnininnninreccnes 13-13
13.13 Further Information about Ajax in JavaServer Faces Technologycccccoevvvinnnnnnen. 13-13

14

15

Composite Components: Advanced Topics and Example
141 Attributes of a Composite COMPONENt.........ccccueviiiiiiiiiiieieicc e 14-1
14.2 Invoking a Managed Beamn...........ccciiiiiiiiiiiiicecceceeee s 14-2
14.3 Validating Composite Component Valuescccceveveiiiiniiiiininineeccceee 14-2
14.4 The compositecomponentlogin Example Application.........ccccceeoerieiiiiiicieiciiccicene 14-2
14.4.1 The Composite Component File.........cccccooiiiiiiiiiiniicircecceeeeeeeeeeeeeees 14-3
14.4.2 The USING Pagecoueviiiiiciie e 14-4
14.4.3 The Managed Bean ... 14-4
14.4.4 Running the compositecomponentlogin Example..........cccccccccciiiiiiiiiinccnnnne. 14-5
14.4.41 To Build, Package, and Deploy the compositecomponentlogin Example Using
NetBeans IDE 14-5
14.4.4.2 To Build, Package, and Deploy the compositecomponentlogin Example Using
Maven 14-5
14.4.4.3 To Run the compositecomponentlogin Example.........cccccccoovvvinrnnnnnncnccnes 14-5
Creating Custom Ul Components and Other Custom Objects
15.1 Determining Whether You Need a Custom Component or Renderer............c.cccc.co....... 15-2
15.1.1 When to Use a Custom COMPONENtccceeveiieieiiiiiiiiiiicecceeeeeeeesesenens 15-2
15.1.2 When to Use a Custom Renderercccccevviviiiinininiiiiiiiccs 15-4
15.1.3 Component, Renderer, and Tag Combinations...........cccccccocueueueeucuceieicceccnccnennnn 15-4
15.2 Understanding the Image Map Examplecccooiiiiiiiii 15-5
15.2.1 Why Use JavaServer Faces Technology to Implement an Image Map? 15-5
15.2.2 Understanding the Rendered HTML.........cccccocoiiiiiiiiiiiiccecceeeeeeneeeneees 15-5
15.2.3 Understanding the Facelets Page ..o 15-6
15.2.4 Configuring Model Data............ccooouiiiiiii e 15-7
15.2.5 Summary of the Image Map Application Classes..........ccccccoeueueueucueririeiinirrnicecerene 15-8
15.3 Steps for Creating a Custom Component..........c.cocovviiiiiiiiiniieieeeeeeeeeeeees 15-9
15.4 Creating Custom Component Classesccceuvrueieiiriciiiiiicie s 15-9
15.4.1 Specifying the Component Family.........c.cccoooiiiiiiiiiiiiicccicccecccenenes 15-12
15.4.2 Performing ENCOAINGcoooueiiiiiiieiiiici e 15-12
15.4.3 Performing Decoding..........ccccovueiiiviviiiiininiiiiiiiiiicrsc s 15-14
15.4.4 Enabling Component Properties to Accept EXpressionscccecevvvvvcncnrcncncnnes 15-14
15.4.5 Saving and Restoring State..........cccooviieiiiiiciii 15-15
15,5 Delegating Rendering to a Renderer............ccoviiiiiiiiiiiiiiiicccccceeeeeees 15-16
15.5.1 Creating the Renderer Class.........ccccccceuiiiiriiiiiiieininiiirreerere s 15-17
15.5.2 Identifying the Renderer Type.......cccooiiiiiiiciiiiii 15-18
15.6 Implementing an Event LiStener ... 15-18
15.6.1 Implementing Value-Change LiSteners...........cococoeeiirininiiiiniiicciicccececenenes 15-19
15.6.2 Implementing Action LiStenersccccovviiiiiiiiiiiiciicce e 15-20
15.7 Handling Events for Custom COmponents...........c.cococeeiiiiiiiiiiciciiicecccenennens 15-20
15.8 Defining the Custom Component Tag in a Tag Library Descriptor..........ccccccccceucuennnne. 15-21
15.9 Using a Custom COompPonent........ccocueviiiiieiiiiiicieec e 15-22
15.10 Creating and Using a Custom COonverter ... 15-23
15.10.1 Creating a Custom CONVETrter ... 15-24
15.10.2 Using a Custom CONVETRTcoeuiviiiieieiiccic s 15-26
15.11 Creating and Using a Custom Validator ..., 15-27

xi

16

Xii

15.11.1 Implementing the Validator Interfacecoccooooiiiiiiiii 15-28

15.11.2 Specifying a Custom Tagcccccovuviviiiiiiiiiiiiii s 15-30
15.11.3 Using a Custom Validator..........ooviiiiicccccccccccccceceeee e 15-30
15.12 Binding Component Values and Instances to Managed Bean Properties..................... 15-31
15.121 Binding a Component Value to a Property ... 15-32
15.12.2 Binding a Component Value to an Implicit Object........cccccovurruvrvrrnnnnnrrcnes 15-33
15.12.3 Binding a Component Instance to a Bean Property.........cccocovvvvnnnninnnnnn 15-34
15.13 Binding Converters, Listeners, and Validators to Managed Bean Properties............... 15-35

Configuring JavaServer Faces Applications

16.1 Using Annotations to Configure Managed Beansccooouiiiiiiiciiicc 16-1
16.1.1 Using Managed Bean SCOPESccoceueuiuiuiiuiiiieiiieiieieiceeeiecereeeneeeseeeeeee e eesees 16-2
16.1.1.1 Eager Application-Scoped Beans ... 16-3
16.2 Application Configuration Resource File.............ccoooooiiiiii 16-3
16.2.1 Ordering of Application Configuration Resource Files.........ccccccccevvivnnnnrnncncnes 16-4
16.3 Using Faces FIOWS........cooiuiiiiiiiic e 16-5
16.3.1 Packaging Flows in an Applicationccccooiiiiiiicicc e 16-7
16.3.2 The Simplest Possible Flow: The simple-flow Example Application 16-7
16.3.2.1 To Build, Package, and Deploy the simple-flow Example Using NetBeans IDE........
16-8
16.3.2.2 To Build, Package, and Deploy the simple-flow Example Using Maven and the
asadmin Command 16-9
16.3.2.3 To Run the simple-flow Example.........ccccccceiiiiiiiiiiiiiicccceeceeeeeeens 16-9
16.3.3 The checkout-module Example Application ..o, 16-9
16.3.3.1 The Facelets Pages for the checkout-module Example..........ccccooooiiiiinnne, 16-10
16.3.3.2 Using a Configuration File to Configure a Flow ... 16-11
16.3.3.3 Using a Java Class to Configure a FIOWccccovoiiiiiiiiiiie, 16-12
16.3.3.4 The Flow-Scoped Managed Beansccococueioiiiiiiiiiiicicce 16-13
16.3.3.5 To Build, Package, and Deploy the checkout-module Example Using NetBeans
IDE 16-13
16.3.3.6 To Build, Package, and Deploy the checkout-module Example Using Maven and
the asadmin Command 16-14
16.3.3.7 To Run the checkout-module Example.........cccccccoeeviiinnnniininncne, 16-14
16.4 Configuring Managed Beans...........cccooeiiiiiiiiiiiicicccccecccecee e 16-14
16.4.1 Using the managed-bean Elementccoooiiiiiiiiii 16-15
16.4.2 Initializing Properties Using the managed-property Element............ccccccceiuennee. 16-17
16.4.2.1 Referencing a Java ENum Type.......ccccecuiiiiiniiiciccisrrecee e 16-18
16.4.2.2 Referencing a Context Initialization Parameter ..., 16-18
16.4.2.3 Initializing Map Properties ... 16-19
16.4.2.4 Initializing Array and List Properties. ... 16-20
16.4.2.5 Initializing Managed Bean Properties ... 16-20
16.4.3 Initializing Maps and ListS.........ccccccvvviiiiniiiniiinccccee 16-21
16.5 Registering Application MESSAZEScevvvvurerireriniiriiiciiicc e 16-21
16.5.1 Using FacesMessage to Create a Message.........c.coueueueiiiiicicieiicicieecec 16-23
16.5.2 Referencing EITor MESSAGES..........cccvuvuiiiiriiiriiiiiiiririiiiiirciss s 16-23
16.6 Using Default Validatorscooeiiiieiiiiiiiiicecccccccceece e 16-24
16.7 Registering a Custom Validator ... 16-24
16.8 Registering a Custom CONVEIter ...t 16-25

17

16.9 Configuring Navigation Rules.............ccooeueiiiiiiiiiii 16-26

16.9.1 To Configure a Navigation Rule............coooiie 16-27
16.10 Registering a Custom Renderer with a Render Kit..........ccoccocoiiiiiiiiiiiiiicne. 16-28
16.11 Registering a Custom COmMPONENtcoviurieiiiiiiciecc s 16-30
16.12 Basic Requirements of a JavaServer Faces Application...........ccocoeeueiiirieieiiciiicicinen, 16-31
16.12.1 Configuring an Application with a Web Deployment Descriptorcceeueeee. 16-31
16.12.1.1 Identifying the Servlet for Lifecycle Processing...........c.cococoeueviicieiiininieieinnne, 16-32
16.12.1.2 To Specify a Path to an Application Configuration Resource File................... 16-33
16.12.1.3 To Specify Where State Is Saved.ccccceeueviiiiinirnniirncceceeeee e 16-33
16.12.2 Configuring Project Stage.........cooeeveviiiieiiiie 16-34
16.12.3 Including the Classes, Pages, and Other Resourcescccccoooreieiiiniiiniincnnan, 16-34
Java Servlet Technology

17.1 What Is @ SEIVIEt? ... 17-1
17.2 Servlet LifECyCle. ... e 17-2
17.2.1 Handling Servlet Lifecycle EVents ..o 17-2
17.2.11 Defining the Listener Classcccccooiiiieiiiiiiiiiiceec e 17-2
17.2.2 Handling Servlet EITOTScccccoiiiiiiiiiiecccceceeeeeeeeeeeeeeeeee s 17-3
17.3 Sharing InfOrmationccccoiiiiiiiiii e 17-3
17.3.1 USINg SCOPE ODJECES ...ttt e 17-4
17.3.2 Controlling Concurrent Access to Shared Resources...........ccccccuceueuciciccrccncncncnnnnes 17-4
17.4 Creating and Initializing a Servlet.........cccooooooiiiiiii e 17-4
17.5 Writing Service Methodscoooiiiiiii 17-5
17.5.1 Getting Information from Requestsccccceueuiiiiiiiiiiiiiiiiccccecceeceecceees 17-5
17.5.2 Constructing ReSPONSES.......c.c.oviiveieiiiciic e 17-6
17.6 Filtering Requests and ReSPONSESc.ccorueieiiiciiiiiicc s 17-7
17.6.1 Programming FILterscccccccoiiiiiiiiiiicccceceee s 17-7
17.6.2 Programming Customized Requests and Responses............cccoceuviiricieiicicieininnnen. 17-8
17.6.3 Specifying Filter Mappingscccevoiieieiiiicieieiccie et 17-9
17.6.3.1 To Specify Filter Mappings Using NetBeans IDE............ccccccccoeviiiiiiiininnne. 17-9
17.7 Invoking Other Web ReSourcesccoooueiiiiiiiiiiiiic 17-10
17.7.1 Including Other Resources in the Response............ccccovviiiiiiniiiiiiccciicnes 17-11
17.7.2 Transferring Control to Another Web Componentcccccceviiiiiinccccicncnenes 17-11
17.8 Accessing the Web Contextoooooiiiiiiii 17-11
17.9 Maintaining Client State ..o 17-12
17.9.1 ACCESSING @ SESSION ..ot s 17-12
17.9.2 Associating Objects with @ SeSSIONc.oviiiiiiiii e 17-12
17.9.3 Session Management...........cccocivieiiiiiiiiiiiiiic s 17-12
17.9.3.1 To Set the Timeout Period Using NetBeans IDE............ccccccoovvinnnnnnnncnne. 17-12
17.94 5€5S10N TTACKINGovviiiiitct e 17-13
17.10 Finalizing @ Servlet ... 17-13
17.10.1 Tracking Service REGUESEScoviviiiiiiiririiiiicrcc s 17-13
17.10.2 Notifying Methods to Shut DOWN..........ccouiiiiiiiiicc e 17-14
17.10.3 Creating Polite Long-Running Methodscccoioiiiiiiiiiiiiiiciccciccnes 17-15
17.11 Uploading Files with Java Servlet Technology.........c.cccocevvirrrinininninnieiccceeceee 17-15
17111 The @MultipartConfig ANNOtationccoceueieioiiiiiiiiiii e 17-15
17.11.2 The getParts and getPart Methods...........ccoviiiiiiiiiiias 17-16

xiii

18

Xiv

17.12 Asynchronous Processing..........cccoouiiiiiiiiiiiiiiccccs s 17-16

17.121 Asynchronous Processing in Servlets ... 17-17
17.12.2 Waiting for @ RESOUICE........oiuiuiuiiiiiiiiciccccccceice e eees 17-18
17.13 Non-Blocking I/ O ... s 17-19
17.131 Reading a Large HTTP POST Request Using Non-Blocking I/Oc.cc..c..c.... 17-20
17.14 Protocol Upgrade ProCeSSINgccociiiiuiiiiiciiiieccieeeeeetcre et 17-21
17.15 The mood Example Applicationcccooiiiiiiiiiiiiiicc s 17-23
17.151 Components of the mood Example Application.........c.c.ccoccueiiiiriciiiniicciciciccan, 17-23
17.15.2 Running the mood EXampleccooviirinininicccc e 17-23
17.15.2.1 To Run the mood Example Using NetBeans IDEcccccooiiiiiinine, 17-24
17.15.2.2 To Run the mood Example Using Maven............cccoccueioiinieiiiiiccieeccieee, 17-24
17.16 The fileupload Example AppLicationc.cooveeiviiririiiiiiicccccccccccce e 17-24
17.16.1 Architecture of the fileupload Example Applicationcccocooviiiiiiiiiiinnnnes 17-24
17.16.2 Running the fileupload Example...........cccccooiiiiiiiiiiiicece 17-27
17.16.2.1 To Build, Package, and Run the fileupload Example Using NetBeans IDE ... 17-27
17.16.2.2 To Build, Package, and Deploy the fileupload Example Using Maven 17-27
17.16.2.3 To Run the fileupload Example...........ccoooeuiiiiiiiiiiiiiiicec 17-27
17.17 The dukeetf Example APpliCation........cccoovuviriririniniriniriiincc e 17-28
17.17.1 Architecture of the dukeetf Example Application.........ccccovivviiinivnniciininnn, 17-28
17.17.1.1 The SEIVIEt ..o 17-28
17.17.1.2 The Enterprise Beamccccovviiiiiiiniii e 17-30
17.17.1.3 The HTML Page.....ccovviiiiiiiiiiiiiii s 17-31
17.17.2 Running the dukeetf Example Applicationcccooiirieiiiiiiiiiccccc 17-32
17.17.2.1 To Run the dukeetf Example Application Using NetBeans IDE 17-32
17.17.2.2 To Run the dukeetf Example Application Using Maven...........ccccccovviniununnnes 17-32
17.18 Further Information about Java Servlet Technologycccccoeuiriiiiiicieiiiiiciec, 17-32

Java API for WebSocket

18.1 Introduction to WebSocKetccciiiiiiiiiiiiiiiiiiiciccec e 18-1
18.2 Creating WebSocket Applications in Java EE ..o 18-2
18.3 Programmatic ENdpoints........ccccooiiiiiiiiiii s 18-3
18.4 Annotated ENAPOINEScocooiiiiiiiiiiiiicc s 18-4
18.5 Sending and Receiving MeSSAGES.........cvuiiiiiiiiiiiiiiicecieieeee e 18-5
18.5.1 SeNAINgG MESSAZEScvcviviviviiiiiiiiiiicicee s 18-5
18.5.1.1 Sending Messages to All Peers Connected to an Endpoint........c.c..cccoeeveennnen. 18-5
18.5.2 ReCeiving MESSAZEScouvuiuiiiiiiiiiiiiiiii s 18-6
18.6 Maintaining Client State ... 18-6
18.7 Using Encoders and Decoders ... 18-7
18.7.1 Implementing Encoders to Convert Java Objects into WebSocket Messages.......... 18-7
18.7.2 Implementing Decoders to Convert WebSocket Messages into Java Objects 18-8
18.8 Path Parameterscccciviiiciioiiiicictect ettt 18-9
18.9 Handling EITOTSccoiiiiiiiiiiiccicce et 18-10
18.10 The dukeetf2 Example Application.........cccooviviviiiiiiiiiniiniiecns 18-10
18.10.1 Architecture of the dukeetf2 Sample Applicationcccceeiiiiiiiiiciiicnnnns 18-10
18.10.1.1 The ENAPOINt.....ccovoviiieic e 18-10
18.10.1.2 The Enterprise Bean ... 18-11
18.10.1.3 The HTML Page......cevriiiieiiiicieirritieieccieseece et 18-12

19

18.10.2 Running the dukeetf2 Example Applicationcccccoceveviiiininnniinnnn 18-13

18.10.2.1 To Run the dukeetf2 Example Application Using NetBeans IDE 18-13
18.10.2.2 To Run the dukeetf2 Example Application Using Maven.............cccccvvrcnnns 18-13
18.11 The websocketbot Example Applicationcccovvviivviniiininnnine, 18-13
18.11.1 Architecture of the websocketbot Example Application ..o 18-13
18.11.1.1 The CDIBEAIcvuiviiiriiiiicc s 18-14
18.11.1.2 The WebSocket ENApointccoovviviiiiiniiiniiiiiiie 18-14
18.11.1.3 The Application MeSSagescccccvviriiiiiiiiiiiiiiiiiiiniiens 18-16
18.11.1.4 The Encoder Classes...........ooviiiiiiiiiiiiiiiiece e, 18-16
18.11.1.5 The Message Decoder ... 18-16
18.11.1.6 The HTML Page......coviiiiiiiiiiiiiic s 18-17
18.11.2 Running the websocketbot Example Applicationccccccevvvvvvnnnennnencncnaes 18-17
18.11.2.1 To Configure a Proxy Server in the GlassFish Serverccccccooiiiiinnn 18-18
18.11.2.2 To Run the websocketbot Example Application Using NetBeans IDE 18-18
18.11.2.3 To Run the websocketbot Example Application Using Maven........................ 18-18
18.11.2.4 To Test the websocketbot Example Application...........cocovviiiiiiiiiinnnns 18-19
18.12 Further Information about WebSocketccoiiiiiiiiiiiiiiiiccc 18-19
JSON Processing

19.1 INtroduction t0 JSONcouiiiiiiiiieeee ettt ettt ettt sttt ettt et neebeebeeaens 19-1
19.1.1 JSON SYNEAX c.voviiiiiiiiiiiicc e 19-1
19.1.2 USES Of JSON ..ottt sttt ettt st s bbbttt et et eb e e bt e bt ebeebebesaens 19-2
19.1.3 Generating and Parsing JSON Data..........cccooooiiiiiiiiiic 19-2
19.2 JSON Processing in Java EE..........ccccccoiiiiiniiiiiiiiinns 19-3
19.3 Using the Object Model APL........cccccoooiiiiiiiiiiccc s 19-3
19.3.1 Creating an Object Model from JSON Data.........cccccciiiiiiiiiiiiiiiiiicee 19-4
19.3.2 Creating an Object Model from Application Code.......c.ccccevuiuimivnvinnnnninrnecnes 19-4
19.3.3 Navigating an Object Model ... 19-5
19.34 Writing an Object Model to a Streamcccccovviviiininininiiiiiic 19-6
19.4 Using the Streaming AP ... 19-7
19.4.1 Reading JSON Data Using a Parser.........c.cccocoeoeeieiinieieiiiicieceec s 19-7
19.4.2 Writing JSON Data Using a Generator ..o, 19-8
19.5 JSON in Java EE RESTful WD SEIVICESceeverveieeieeieieiniieietiieieieieseeesee et seenas 19-8
19.6 Thejsonpmodel Example Application ..o 19-9
19.6.1 Components of the jsonpmodel Example Applicationccccccceeuceiiiicicinicicnnnnnne. 19-9
19.6.2 Running the jsonpmodel Example Application........cccccccccueueueiiccnienieicrrcceenes 19-9
19.6.2.1 To Run the jsonpmodel Example Application Using NetBeans IDE................. 19-9
19.6.2.2 To Run the jsonpmodel Example Application using Maven............cccceuvueucee. 19-10
19.7 The jsonpstreaming Example Application........ccccccceceuiciiiiiiiicnceeccceeeeeceeees 19-10
19.7.1 Components of the jsonpstreaming Example Application...........cccccoevvninnincnnne 19-10
19.7.2 Running the jsonpstreaming Example Applicationcccccecevuvvvvnnnnninnncnnes 19-11
19.7.2.1 To Run the jsonpstreaming Example Application Using NetBeans IDE 19-11
19.7.2.2 To Run the jsonpstreaming Example Application Using Maven..................... 19-11
19.8 Further Information about the Java API for JSON Processing...........cccccevuveeuerrininnnnnn. 19-11

XV

20

Internationalizing and Localizing Web Applications

20.1 Java Platform Localization CIasSes.........ccecteieiriririerienierieieteteie ettt ettt 20-1
20.2 Providing Localized Messages and Labels ... 20-2
20.2.1 Establishing the Locale.............cooiiiiiiii e 20-2
20.2.2 Setting the Resource Bundle............cccccoeiiiiiiiiiiiiiiniiiiiiii 20-3
20.2.3 Retrieving Localized MESSAGES..........cccuuimeuiuiuiuimiueieiimiieicieieeneneieieneeeneaene e nenesenesenenens 20-3
20.3 Date and Number FOrmatting..........ccccooveiiiiiiiiiiiiniiiiiiicciiciecceeeees 20-4
20.4 Character Sets and ENcodings. ..o 20-4
20.4.1 CRATACEET SEES ...ttt ettt ettt sttt ettt ste st be e ebeneebenees 20-4
20.4.2 Character ENCOAINgcoovvveviiiiiiiiiiiiiiiicccc s 20-5

Part IV Web Services

21

22

23

XVi

Introduction to Web Services

211 WHhat Are WED SEIVICES?ooovieieiieeieiieiesteeteeeete e ete e e testeesessaessessaessesseessesseessessaessanseens 21-1
21.2 Types of Web SEIVICES........ccoiuiiiiiiiiiiiiiiiiiciicc s 21-1
21.2.1 "Big" WED ServiCes.......cccoiiiiiiiiiiiiiiiiic s 21-1
21.2.2 RESTIUL WED SEIVICESeovviiieeiitieieeteteeteete sttt sttt s ve et re e e sressse e ennans 21-2
21.3 Deciding Which Type of Web Service to Usecccooeeieieiiiiiiiiiiiccce 21-3

Building Web Services with JAX-WS

22.1 Creating a Simple Web Service and Clients with JAX-WS.........ccccoon 22-2
2211 Requirements of a JAX-WS ENdpoint.......ccccccccueueiiiiiniiiiieiecceeeeeeeeeeeeeeeaes 22-2
22.1.2 Coding the Service Endpoint Implementation Classc.cccoceeveviiiiiriiiniennnnnn, 22-3
22.1.3 Building, Packaging, and Deploying the Service..........cccoueiiiiiiiiiiiiiiiicee 22-4
22.1.3.1 To Build, Package, and Deploy the Service Using NetBeans IDE....................... 22-4
22.1.3.2 To Build, Package, and Deploy the Service Using Mavencccceueurnnnen. 22-4
22.1.4 Testing the Methods of a Web Service Endpointcoooevoiiiiiiiii 22-4
22.1.4.1 To Test the Service without @ Client ..o, 22-4
22.1.5 A Simple JAX-WS Application Clent..........ccoviiiiiiiiiiicceeeeeeees 22-5
22.1.51 Coding the Application CLHent........c.ccccceuiieiriiiiiiiiiiiiiicccs 22-5
22.15.2 Running the Application CLentcccccoceiiiiiiiiiiceeeecceeeeeeeees 22-6
22.1.6 A Simple JAX-WS Web CLentccccceuvviiiiiiieiiiiiiicicieeeces 22-6
22.1.6.1 Coding the Servlet ... 22-6
22.1.6.2 Running the Web Clentccccciiiiiiiiiiiccccceeeeeeeeeeeeeeeeeeeeeees 22-8
22.2 Types Supported by JAX-WS ... 22-8
22.2.1 Schema-to-Java Mapping........cccccceeeiiuiiiiiiiiiiiciicceee s 22-9
22.2.2 Java-to-Schema Mapping.......cccccceeerriiiiirrccrrreeer e 22-9
22.3 Web Services Interoperability and JAX-WS.........cccccoooriiii 22-10
22.4 Further Information about JAX-WSccooiriieeeeee ettt 22-10

Building RESTful Web Services with JAX-RS

23.1 What Are REST{ul Web Services?cccoeiiinrieiininieieiineeeceesee e eeenene 23-1
23.2 Creating a RESTful Root Resource Class.........cccccovueuriririreririreiiiirririceeeeeeeeeeeeeeeeeeeeees 23-2
23.2.1 Developing RESTful Web Services with JAX-RSccccooiiiii 23-2
23.2.2 Overview of a JAX-RS Application.........ccccccceuciciiiiiiiiiiiiiiiiiciccceceeces 23-3

24

25

23.2.3 The @Path Annotation and URI Path Templates...........cccccocevviiiiniiiniiiine, 23-5

23.2.4 Responding to HTTP Methods and Requestsccocooeiiiiiiiniiinie 23-6
23.2.4.1 The Request Method Designator ANNotations...........c.cceeeueueucuvueueieieeeencecncecenenes 23-6
23.2.4.2 Using Entity Providers to Map HTTP Response and Request Entity Bodies... 23-8
23.2.5 Using @Consumes and @Produces to Customize Requests and Responses 23-9
23.2.5.1 The @Produces ANNOtAtioN.........cccvvviiiiiiiiiiiiie e, 23-9
23.2.5.2 The @Consumes ANNOtAtioN..........ccevvviiiiiiiiiiniiiiii 23-10
23.2.6 Extracting Request Parameters ... 23-11
23.3 Example Applications for JAX-RS.......cccccoriiirriirrnrrrc e 23-14
23.3.1 Creating A Simple RESTful Web Serviceccccooviiieiiiiii 23-14
23.3.1.1 To Create a RESTful Web Service Using NetBeans IDE ..o, 23-14
23.3.2 The rsvp Example Applicationccccccceciiiiiiinniiicecccceeeeeeeeeeeeaes 23-15
23.3.2.1 Components of the rsvp Example Application...........ccccceevvvviviinnnnnnnnn 23-15
23.3.2.2 Running the rsvp Example Application...........cccoeeeieiicieiiiiiiiccce, 23-16
23.3.3 Real-World EXampIeEs........cccovuiiiiiiririiiiicieirecrcreeeeeee s 23-17
23.4 Further Information about JAX-RS......ccccoiirimiiininiietet ettt 23-17
Accessing REST Resources with the JAX-RS Client API

241 Overview of the Client AP ... 24-1
2411 Creating a Basic Client Request using the Client API............cccoooiiiiiiiiine 24-1
24111 Obtaining the Client INSTANCEcccceueueiiieiiiiiiiiccrrcerreeeeee s 24-2
241.1.2 Setting the Client Target..........ccoooeeviiiiiiiiii e, 24-2
241.1.3 Setting Path Parameters in Targetscccccooeeieiiiiiieiiiicieccc e, 24-2
2411.4 Invoking the REGUESTcceuiuiiiiiiiiiiicccccce s 24-3
24.2 Using the Client APl in the JAX-RS Example Applicationsccccceeveviviviiiiiinnnnnn 24-4
24.2.1 The Client API in the rsvp Example Application ..o 24-4
2422 The Client API in the customer Example Application.........cccccccceveeevvnvccnnnenes 24-5
24.3 Advanced Features of the Client AP ... 24-6
24.31 Configuring the Client Requestcccouoiiiiiiiicc 24-7
24.3.1.1 Setting Message Headers in the Client Request..........cccocoovvviinnnnnnncnccne. 24-7
24.3.1.2 Setting Cookies in the Client Request.........c.ccooviiiiiiiiiiii 24-7
24.31.3 Adding Filters to the CLent.........cccccoiiiiiiininiiiiiiiccs 24-8
24.3.2 Asynchronous Invocations in the Client API..........ccccocoviviinnnnirrcrreenes 24-9
24.3.2.1 Using Custom Callbacks in Asynchronous Invocations...........cccceeevucieiirinnnee. 24-9
JAX-RS: Advanced Topics and Example

25.1 Annotations for Field and Bean Properties of Resource Classescccocvvvivinininiinnns 25-1
25.1.1 Extracting Path Parameters ..o 25-2
25.1.2 Extracting Query Parameters..........ccccoeviviiiiiiiniiiiiies 25-2
25.1.3 Extracting Form Datacccooeiiiiii 25-3
25.14 Extracting the Java Type of a Request or Response...........cccccccevvvvvvinnnininnnnes 25-3
25.2 Validating Resource Data with Bean Validation...........c.cccocoevvvviinnnnninrricrnne 25-4
25.2.1 Using Constraint Annotations on Resource Methods............coooooiiinn, 25-4
25.2.2 Validating Entity Datacccooviiiiininiiniiiiiccc s 25-5
25.2.3 Validation Exception Handling and Response Codescccccccucurueiciivinrinicecennnnne. 25-6
25.3 Subresources and Runtime Resource Resolution............ccccceevveeiiiiininiciiniciiiie, 25-7

xvii

25.3.1 SUDIESOUTCE IMETNOASevviiieeieeeee ettt st e s e e e snnes 25-7

25.3.2 Subresource LOCAtOLSccciiiiiiiiiiiiiiiiii s 25-7
25.4 Integrating JAX-RS with EJB Technology and CDIccccccocovviinnnniirnrccerenes 25-8
25.5 Conditional HTTP ReqQUESES.........ccceceeviiiiiiiiiiiiiiiiiiciccieccee s 25-9
25.6 Runtime Content Negotiation ... 25-10
25.7 Using JAX-RS With JAXBc.coooiiiiiiiiiic s 25-11
25.7.1 Using Java Objects to Model Your Data.........ccccooiiiiiiinii 25-13
25.7.2 Starting from an Existing XML Schema Definition ..., 25-14
25.7.3 Using JSON with JAX-RS and JAXBccooviiinrrriceccccccceceeceenens 25-16
25.8 The customer Example Application..........cccovveiviiiiinininiiiniiiia 25-17
25.8.1 Overview of the customer Example Application..........cccooeueieiiriiieiiiiniiiiice, 25-17
25.8.2 The Customer and Address Entity Classes........ccccoccevueurrvrnrrnnnrrrnnreneeeenes 25-17
25.8.3 The CustomerService Classccoviiiiiiiiiiiiiiiiii s 25-19
25.84 Using the JAX-RS Client in the CustomerBean Classes..........cccccooviiiiiiiiinnnnes 25-21
25.8.5 Running the customer EXamplecccocooviiiiinnnnnininiccccccccceceeenenes 25-22
25.8.5.1 To Build, Package, and Deploy the customer Example Using NetBeans IDE 25-22
25.8.5.2 To Build, Package, and Deploy the customer Example Using Maven............. 25-22

Part V Enterprise Beans

26

xviii

Enterprise Beans

26.1 What Is an Enterprise Bean?............cccoooiiiiiiic 26-1
26.1.1 Benefits of Enterprise Beans.........cccccceeiiiiiiiiiciiiiiiiiceceecece s 26-1
26.1.2 When to Use Enterprise Beans...........cccccooviiiiiniiicccccccces 26-2
26.1.3 Types of Enterprise Beans ..o 26-2
26.2 What Is a Session Bean? ... 26-2
26.2.1 Types of Session Beans.............cooeuiiiiiciiic 26-2
26.2.11 Stateful Session Beans ... 26-2
26.2.1.2 Stateless Session Beans.........ccccccuiciiiiiiiiciiiccc s 26-3
26.2.1.3 Singleton Session Beans..........cocueuiiiiiiiiic e, 26-3
26.2.2 When to Use SeSsion Beans........c.covueueuiviririeiiiriniiieiiineecreeeeereee e 26-3
26.3 What Is a Message-Driven Bean?cccccccciiiiiiiiiciiniicceceeeceeeeeeeneeceeeeeeeeeeeeees 26-4
26.3.1 What Makes Message-Driven Beans Different from Session Beans?........................ 26-4
26.3.2 When to Use Message-Driven Beans ... 26-5
26.4 Accessing Enterprise Beans ... 26-5
26.4.1 Using Enterprise Beans in Clients.............oooeiiiiiiiiiiiicc e 26-6
26.4.1.1 Portable JINDI SYNaXcccocoeuiuiiiiiieiiiiiiiiiiieiciciiceeeeee e 26-6
26.4.2 Deciding on Remote or Local ACCESS........cceueuimeiiuiiimiieiiieieeieicieiciceeieeeieeneeeeene s 26-7
26.4.3 LOCal CHENLS ...t 26-7
26.4.3.1 Accessing Local Enterprise Beans Using the No-Interface View 26-8
26.4.3.2 Accessing Local Enterprise Beans That Implement Business Interfaces........... 26-8
26.4.4 Remote CHENLS ..o 26-9
26.4.5 WeD Service CLENTScucuiiriiieiiiiiriicctereicce et 26-10
26.4.6 Method Parameters and ACCESS.........cccueururururicieiririiieiieeeeeeeereeseee s 26-10
26.4.6.1 ISOIAtION.....eiuiiiiiiiic e 26-10
26.4.6.2 Granularity of Accessed Data..........cccoceviviiiiiiiiiiniiiiicce 26-10
26.5 The Contents of an Enterprise Beanccccooviiininnnnnnniccccccccccccccccnenes 26-11

27

28

26.6 Naming Conventions for Enterprise Beans..............cooooouoiiiiiiiiiiice 26-11

26.7 The Lifecycles of Enterprise Beansccccoovoiiiiiiiiiiiiiiciicc e 26-11
26.7.1 The Lifecycle of a Stateful Session Beancccccceeeeirirviinrnninnnncene 26-11
26.7.2 The Lifecycle of a Stateless Session Beanccoooeeiiiiii, 26-12
26.7.3 The Lifecycle of a Singleton Session Bean.............coooooiiiiiiic 26-13
26.7.4 The Lifecycle of a Message-Driven Bean...........cccocoevvvvvnnnnnnnnnnecceeeene 26-13
26.8 Further Information about Enterprise Beans............c.cccocovvveviiiininnniniinn, 26-14
Getting Started with Enterprise Beans
27.1 Creating the Enterprise Bean...........ccooooiiiii 27-1
2711 Coding the Enterprise Bean Class.........ccccooreieiiiiiiiniiiicc 27-1
2712 Creating the converter Web CLent..........ccccociciiiiiiiiiieccccceceeeeeeeeeees 27-2
271.3 Running the converter Example ..o 27-3
27.1.3.1 To Run the converter Example in NetBeans IDE............ccccocooiiiiiiieene, 27-3
271.3.2 To Run the converter Example Using Mavenc.cccccceeciiiecccecncnccnennns 27-3
27.2 Moditying the Java EE Application.........cccceueiiiiiiiiiiiciec s 27-4
27.2.1 To Modify a Class File.........cccooiiniiiiiiiiiiiiicce s 27-4
Running the Enterprise Bean Examples
28.1 The cart EXample ..o e 28-1
28.1.1 The Business INterface............ccoovvviiiiiiiic s 28-2
28.1.2 Session Bean Classccccviiiieiiiiiiiiiiiiiiiiicc s 28-2
28.1.2.1 Lifecycle Callback Methodsccccccviviiiniiiiiiiiiiiii, 28-4
28.1.2.2 Business Methods ..o, 28-4
28.1.3 The @Remove Method ... 28-5
28.1.4 Helper Classes.........coeuiiiiurieieicicie ettt e 28-5
28.15 Running the cart EXamplecccccoiiiiiiiiiiecceeeeeeceeeee e 28-5
28.1.5.1 To Run the cart Example Using NetBeans IDE............cccocooiiiincii 28-6
28.1.5.2 To Run the cart Example Using Mavencccoooeruiiiiiiieieiiicceeccceeee, 28-6
28.2 A Singleton Session Bean Example: COUNteT..........cccciuimiiiiiiiiiiiiiiiiicccceceeeeeeens 28-7
28.2.1 Creating a Singleton Session Beancooooiiiiiiii 28-7
28.2.11 Initializing Singleton Session Beans...........ccccccovuviiiiiiniiiniiiniiinne 28-7
28.2.1.2 Managing Concurrent Access in a Singleton Session Bean............c.ccccccceeeeeee 28-8
28.2.1.3 Handling Errors in a Singleton Session Bean ..., 28-11
28.2.2 The Architecture of the counter Exampleccccccoovvniinnnnnniiccae 28-11
28.2.3 Running the counter EXamplecccccoceiiiiiinniiinrrnnere s 28-13
28.2.3.1 To Run the counter Example Using NetBeans IDEccccccoooiiiiiiinicnn, 28-13
28.2.3.2 To Run the counter Example Using Maven...........cccccccevuiivicnniiinnnnnnnnenes 28-13
28.3 A Web Service Example: helloService..........ccovvviiiirvinininnncnsrcrcenseeceee e 28-14
28.3.1 The Web Service Endpoint Implementation Classccocveiiiiiiiiiiiniinnnnnes 28-14
28.3.2 Stateless Session Bean Implementation Class............cccocovreieiicceieincceieiecceee 28-14
28.3.3 Running the helloservice EXample........ccccccooiuiiriiiinnnnrrrrnnneeceeeecens 28-15
28.3.3.1 To Build, Package, and Deploy the helloservice Example Using NetBeans IDE
28-15
28.3.3.2 To Build, Package, and Deploy the helloservice Example Using Maven........ 28-15
28.3.3.3 To Test the Service without a Client...........ccooevveiviiiiniiiiices 28-15

Xix

29

30

28.4 Using the Timer SeIVICeccviiiiiiiieiiiiiiiicccc s 28-16

28.4.1 Creating Calendar-Based Timer EXpressions..........cccccccooerieieiiiicicieinicnicecce 28-16
28.4.1.1 Specifying Multiple Values in Calendar EXpressions..........c.ccccoeovcciccccnnes 28-17
28.4.2 Programmatic TImeTs.........ccccoeuiiiiiiiiiiiiiiii 28-18
28.4.2.1 The @Timeout Method ..o, 28-18
28.4.2.2 Creating Programmatic TImers ..., 28-19
28.4.3 AUtomMAatic TIMETScvoveeiiiic s 28-20
28.4.4 Canceling and Saving TimMeTrsccccoioirieiiiiiiicieicce e 28-20
28.4.5 Getting Timer INfOrmationc.ccccceuiiciiiiiiiiiirececrrrrre s 28-21
28.4.6 Transactions and TiMers..........ccoeiiiiiiiiiiii s 28-21
28.4.7 The timersession EXample.........c.ccooiiiiiiiiiieiiicic e 28-21
28.4.8 Running the timersession Example..........cccccccceeiiiiiinnicnnneeeeeeeenes 28-23
28.4.8.1 To Run the timersession Example Using NetBeans IDEc.c.c.ccoooeiniie, 28-24
28.4.8.2 To Build, Package, and Deploy the timersession Example Using Maven 28-24
28.4.8.3 To Run the Web Client.........coovviiiiiiiiiiiii e 28-24
28.5 Handling EXCEPHIONScccoviuiuiieiiiciecti e 28-24

Using the Embedded Enterprise Bean Container

29.1 Overview of the Embedded Enterprise Bean Container..........cccccoeeeviiiiieiiiinennnnn, 29-1
29.2 Developing Embeddable Enterprise Bean Applications..........ccccccevvviviiiiiniiniiiinnnnnn 29-1
29.2.1 Running Embedded Applications.........cccccueurieiririiiciininiiiicceccceeeeeeeeeeeeeeeeeees 29-2
29.2.2 Creating the Enterprise Bean Container ..o 29-2
29.2.2.1 Explicitly Specifying Enterprise Bean Modules to be Initialized 29-3
29.2.3 Looking Up Session Bean Referencesc.cccccucucuiinieiciiiicininiciccreceeeeeeeeeeeeenns 29-3
20.2.4 Shutting Down the Enterprise Bean Container..........ccccoovueeeiiiiecinineicininieennen, 29-3
29.3 The standalone Example Application...........cccciiiiiiiiiiiiiiiiiiiiiiices 29-4
29.3.1 Runing the standalone Example Application in NetBeans IDEccccccccceoeeee. 29-5
29.3.2 Running the standalone Example Application using Mavencccccoevvnriniinnns 29-5

Using Asynchronous Method Invocation in Session Beans

30.1 Asynchronous Method INVOCAtION........ccccouiviiiiiiiiiiiiiiics 30-1
30.1.1 Creating an Asynchronous Business Methodccccccevviiiiniinnnnninnin 30-1
30.1.2 Calling Asynchronous Methods from Enterprise Bean Clients.........c.ccccoeurererecncee 30-2
30.1.2.1 Retrieving the Final Result from an Asynchronous Method Invocation 30-2
30.1.2.2 Cancelling an Asynchronous Method Invocation ... 30-3
30.1.2.3 Checking the Status of an Asynchronous Method Invocationc.ccccecevucece. 30-3
30.2 The async Example Applicationcccveeieiieiniiiiiiiiiic s 30-3
30.2.1 Architecture of the async Example Applicationccccccvuviviviiciininiiiiciiiciiicne, 30-3
30.2.2 Running the async Example.......c.cccccociiiiiiiiiiiiiiceceececceeeeeeeeeeeeeeeees 30-4
30.2.2.1 To Configure the Keystore and Truststore in GlassFish Server 30-4
30.2.2.2 To Run the async Example Application Using NetBeans IDE............................ 30-5
30.2.2.3 To Run the async Example Application Using Mavencccccccccucucueucucncncnenne. 30-6

Part VI Contexts and Dependency Injection for Java EE

XX

31

32

33

Introduction to Contexts and Dependency Injection for Java EE
311 Getting Started........cccviiiiiiiiiicc s 31-2
31.2 OVerview of CDl ..o s 31-3
31.3 ADOUL BEANS.....cuiiiiiiiiiiii s 31-4
31.4 About CDI Managed Beans..........c.cc.c.oueeiiiiuiiiiiiccec s 31-4
31.5 Beans as Injectable ODJECES.......ccccuiuiuiuiiiiiiiiiiiccciceccece e 31-5
31.6 Using QUALIfIETS ...ooouviiiecii e 31-5
31.7 Injecting BEANS.......c.cooviiiiiiii e 31-6
31.8 USING SCOPESocviiiiiiiiiiiiiic s 31-7
31.9 Giving Beans EL INAMES..........cccooeueiiiiiiiiic e 31-8
31.10 Adding Setter and Getter Methodscooiiiiiiiiri 31-9
31.11 Using a Managed Bean in a Facelets Page............cccovvvnnieininininiciiiiccccccccccecnnes 31-9
31.12 Injecting Objects by Using Producer Methodsc.ccouoiriiiiiiniiiiiie 31-10
31.13 Configuring a CDI APPLCationccoceueiiiiiiiiiicicecec s 31-10
31.14 Using the @PostConstruct and @PreDestroy Annotations With CDI Managed Bean Classes
31-11
31.141 To Initialize a Managed Bean Using the @PostConstruct Annotation 31-11
31.14.2 To Prepare for the Destruction of a Managed Bean Using the @PreDestroy Annotation
31-11
31.15 Further Information about CDIcccoiiiiiccccccceeeeeeeeenes 31-12
Running the Basic Contexts and Dependency Injection Examples
32.1 The simplegreeting CDI EXamplecccccociiiiiiiiiiiicceceeeeeeieiee e 32-1
32.1.1 The simplegreeting Source Files..........ccoooiiiiiiiiiiii e 32-1
32.1.2 The Facelets Template and Page...........cccoooiruiieiiiiiiicc 32-2
32.1.3 Running the simplegreeting Example ... 32-3
32.1.3.1 To Build, Package, and Run the simplegreeting Example Using NetBeans IDE
32-3
32.1.3.2 To Build, Package, and Deploy the simplegreeting Example Using Maven.... 32-4
32.1.3.3 To Run the simplegreeting Examplec.ccccooeveiininnnnniicnrnnceceeeeces 32-4
32.2 The guessnumber-cdi CDI EXample ..o 32-4
32.2.1 The guessnumber-cdi Source Files..........cccccociiiiiiiiiiiiiccccccce, 32-4
32.2.1.1 The @MaxNumber and @Random Qualifier Interfaces...........occcceevvevveereecveennne. 32-5
32.2.1.2 The Generator Managed Bean ..o, 32-6
32.2.1.3 The UserNumberBean Managed Bean.............cccccovuviviviiininnnnnninncnne, 32-6
32.2.2 The Facelets Pagec.ccccuvuriiiiiiiiiiciciceccce s 32-8
32.2.3 Running the guessnumber-cdi Exampleccccoooiiiiiiii 32-10
32.2.3.1 To Build, Package, and Deploy the guessnumber-cdi Example Using NetBeans
IDE 32-10
32.2.3.2 To Build, Package, and Deploy the guessnumber-cdi Example Using Maven..........
32-10
32.2.3.3 To Run the guessnumber EXamplec..cccoorieiiiiiiieiiiiiiccece, 32-10
Contexts and Dependency Injection for Java EE: Advanced Topics
33.1 Packaging CDI ApPlicationscooiueieiiiiieiicccec e 33-1
33.2 Using Alternatives in CDI Applications.........ccccouvuviviviiininiininiiiiiiiiccccccccicceennas 33-2

XXi

34

XXii

33.2.1 Using SpecialiZation ... 33-3

33.3 Using Producer Methods, Producer Fields, and Disposer Methods in CDI Applications
33-4
33.3.1 Using Producer Methods............ccviiiiiiiiiiiiicccceece e 33-4
33.3.2 Using Producer Fields to Generate ReSOUICESc.coviueveieiiecieiciicicecce 33-5
33.3.3 Using a Disposer Method ... 33-5
33.4 Using Predefined Beans in CDI Applications.......c.ccccucueueueucieieinineiiiicirrreereeeeeeeeeeecenes 33-5
33.5 Using Events in CDI Applications.........cccoeueveiiiiiiiiiniiiiiiiiiiiccn s 33-7
33.5.1 Defining EVeNtS........ccoviiiiiiic e 33-7
33.5.2 Using Observer Methods to Handle Events ... 33-7
33.5.3 Firing EVents........ooooiiiiii s 33-8
33.6 Using Interceptors in CDI Applicationscccoeueiiirieieiiicicieeeccecc s 33-9
33.7 Using Decorators in CDI APPplicationscovuveveriririninininirinnici e 33-11
33.8 Using Stereotypes in CDI Applications..........cccocuvveveieiiiiiiiiiiiiiiiiniics 33-12

Running the Advanced Contexts and Dependency Injection Examples

34.1 The encoder Example: Using Alternatives..........ccccooerueieiiniciniiiicicciccceceees 34-1
34.1.1 The Coder Interface and Implementationscccceeeiiiieiiiiceiicce 34-1
34.1.2 The encoder Facelets Page and Managed Bean...........c.cccccoccceiiicccccccccccnenees 34-2
34.1.3 Running the encoder Example..........ccooouoviiiiiiiiiiii e 34-3
34.1.3.1 To Build, Package, and Deploy the encoder Example Using NetBeans IDE.... 34-3
34.1.3.2 To Run the encoder Example Using NetBeans IDEcccccccceciiiiccnnne. 34-4
34.1.3.3 To Build, Package, and Deploy the encoder Example Using Maven 34-4
34.1.3.4 To Run the encoder Example Using Maven..........cccccoooirieiniiccieiniccieee, 34-5

34.2 The producermethods Example: Using a Producer Method To Choose a Bean
Implementation 34-5

34.2.1 Components of the producermethods Example ..., 34-6
34.2.2 Running the producermethods Example..........c.ccooooiiiiiiioiiiiice 34-7
34.2.2.1 To Build, Package, and Deploy the producermethods Example Using NetBeans
IDE 34-7
34.2.2.2 To Build, Package, and Deploy the producermethods Example Using Maven 34-7
34.2.2.3 To Run the producermethods Examplecccccccoeiiiiiiiiiiiiiiiiccce, 34-7
34.3 The producerfields Example: Using Producer Fields to Generate Resources 34-8
34.3.1 The Producer Field for the producerfields Exampleccccooovuvviiniiiniinnnnnn, 34-8
34.3.2 The producerfields Entity and Session Beancccccccciuiiiiciiiiiinniicicicicne, 34-9
34.3.3 The producerfields Facelets Pages and Managed Beancccccceevvvvvnninncnne. 34-10
34.3.4 Running the producerfields Example..........ccccovviiiiiiiiiniiicn, 34-12
34.3.4.1 To Build, Package, and Deploy the producerfields Example Using NetBeans IDE ...
34-12

34.3.4.2 To Build, Package, and Deploy the producerfields Example Using Maven... 34-12
34.3.4.3 To Run the producerfields Example..........cccooovvviiiiiiiniiiiiiiiinns 34-13
34.4 The billpayment Example: Using Events and Interceptorsccccccceeueuriiiiicinnennne 34-13
34.4.1 The PaymentEvent Event Class..........cccccevviiiiirininiinirrcncrres s 34-13
34.4.2 The PaymentHandler Event Listenerccooooiiiiiiiiciiiic 34-14
34.4.3 The billpayment Facelets Pages and Managed Bean...........cccccooviiiiiiiiiinnnn. 34-14
34.4.4 The LoggedInterceptor Interceptor Classccccoeeveieurrevvirrrnnrrrreeereeeeceaes 34-16
34.4.5 Running the billpayment Examplecccccocoviiiiiiiiiiii 34-17

34.4.5.1 To Build, Package, and Deploy the billpayment Example Using NetBeans IDE........

34-17
34.4.5.2 To Build, Package, and Deploy the billpayment Example Using Maven 34-17
34453 To Run the billpayment Example.........c.ccccccceiiiiinnninnrrcnreeeeeeeeee 34-18
34.5 The decorators Example: Decorating a Beancccoooiiiiiiiiiii 34-18
34.5.1 Components of the decorators Examplecccoooiiiiiiiiiccce 34-19
3452 Running the decorators EXampleccocoovininnininininniiiccccccccececenenes 34-19
34.5.2.1 To Build, Package, and Deploy the decorators Example Using NetBeans IDE
34-19
34.5.2.2 To Build, Package, and Deploy the decorators Example Using Maven.......... 34-20
34523 To Run the decorators EXamplecccccccceueiiiiiinninirrnccre e 34-20

Part VIl Persistence

35

Introduction to the Java Persistence API

35.1 BNHHES ot s 35-1
35.1.1 Requirements for Entity Classes.........cccocoeuoiiiriiiiiicicicc 35-1
35.1.2 Persistent Fields and Properties in Entity Classes.........cccccccooereiiiiiciciicicciecce 35-2
35.1.2.1 Persistent Fields ..o 35-2
35.1.2.2 Persistent PrOPerties. ...t 35-3
35.1.2.3 Using Collections in Entity Fields and Properties...........ccccocevinniiinnnnnnnn 35-3
35.1.2.4 Validating Persistent Fields and Properties...........ccccccceeeieiiinviennnnicrenes 35-4
35.1.3 Primary Keys in ENtities ... 35-6
35.1.4 Multiplicity in Entity Relationships..........cccooeeioiiiiiiiiiic 35-7
35.15 Direction in Entity Relationshipsccccccceiiiiiiiiiiiicccceccceccecceees 35-8
35.1.5.1 Bidirectional Relationships ... 35-8
35.1.5.2 Unidirectional Relationshipscooeiuiiiiiieiii 35-9
35.1.5.3 Queries and Relationship Direction...........cccccccoeceiciiinniiiicrcececeeeeeeees 35-9
35.1.5.4 Cascade Operations and Relationships..........c.ccceeviiiiniiiiiciiiic, 35-9
35.1.5.5 Orphan Removal in Relationships.........c.coooeiioiiiiiie, 35-9
35.1.6 Embeddable Classes in ENtitiescccooviiiiiiiiiiiiiicccce 35-10
35.2 Entity INheTitance.oooeveiii e 35-11
35.2.1 ADSEract ENHEESc.ooveveeiiiiciiiiiccrcce et 35-11
35.2.2 Mapped SUPEICIASSES ..o 35-11
35.2.3 Non-Entity SUPerclasses...........ccoceueiiicieiiiiniciecci s 35-12
35.2.4 Entity Inheritance Mapping Strategies..........c.cccoviiiiiiiiiiiiicciicccececennes 35-12
35.2.4.1 The Single Table per Class Hierarchy Strategyc.cccoovveverrrrncecnnncreeccaes 35-12
35.2.4.2 The Table per Concrete Class Strategyccoooeeeueueieiiiciciiiiccecce, 35-13
35.24.3 The Joined Subclass Strategycccoccvvvininiininiiiiincces 35-14
35.3 Managing Entities ... 35-14
35.3.1 The EntityManager Interfacecooovvueirieiiiniiiecce e 35-14
35.3.1.1 Container-Managed Entity Managersccccccoeiiiiiiiiiciiicicciccennes 35-14
35.3.1.2 Application-Managed Entity Managers..........ccccouevveiiiiicciiicicccicenenes 35-15
35.3.1.3 Finding Entities Using the EntityManagerccoooeeviiieiiiiincieiiccen 35-16
35.3.1.4 Managing an Entity Instance's Lifecycle ..o 35-16
35.3.1.5 Persisting Entity INStances ... 35-16
35.3.1.6 Removing Entity INStances.........c.coooeeeiiiiiinciiiiiii 35-17

xXiii

36

XXiv

35.3.1.7 Synchronizing Entity Data to the Database............cccccoooiiiii, 35-17

35.3.2 PerSiStONCE UNILS ...vviiiiiiiiiiieeeeeeeee ettt e e et a e e e eebar e e e s sesaaaeeeseenes 35-17
35.4 Querying ENtities ... 35-18
35.5 Further Information about PersSiStenCecovveiiiveiiiiiieeeeeeeeee et 35-19

Running the Persistence Examples

36.1 The order APPLiCAtIONc.cuiveiiiiiiiiiicici s 36-1
36.1.1 Entity Relationships in the order Application.........cccooeeieieiiiiiiiiiiicccee 36-2
36.1.1.1 Self-Referential Relationships........cccoceeeiviriviiiriiiriiriiiircccereeeeeeeceeas 36-2
36.1.1.2 One-to-One RelationShipsccccceeviiiiiiiiiiiiiiiiiiiis 36-3
36.1.1.3 One-to-Many Relationship Mapped to Overlapping Primary and Foreign Keys
36-3
36.1.1.4 Unidirectional RelationsShipsccoovrerriiniiiniiiicicccccceeeeeeeeeenenens 36-4
36.1.2 Primary Keys in the order Application ..o 36-4
36.1.2.1 Generated Primary Keysccooouoiiiiiiiiic 36-4
36.1.2.2 Compound Primary Keys.........ccooiiiiiiiiniiiiiiiicccces 36-5
36.1.3 Entity Mapped to More Than One Database Table.............cccccooeviiiiiininiinnnnn, 36-7
36.1.4 Cascade Operations in the order Application..........ccccooeoiiieiiiiiiciiicc 36-7
36.1.5 BLOB and CLOB Database Types in the order Applicationcccccoeeeveererencecnnee 36-8
36.1.6 Temporal Types in the order Application.........cccccviiiiiiiiciiiccce 36-8
36.1.7 Managing the order Application's Entitiescccooooioiorieiiiiiciec 36-9
36.1.7.1 Creating ENtities ... 36-9
36.1.7.2 FInding BENtties ..o 36-9
36.1.7.3 Setting Entity Relationships.........cccooiiiiiiiiie, 36-9
36.1.7.4 USING QUETIES.....ooviviiiiiiiiiiiic s 36-10
36.1.7.5 Removing ENtties ... 36-10
36.1.8 Running the order Exampleccoooiiiiiiiiiii 36-10
36.1.8.1 To Run the order Example Using NetBeans IDEccccccovvinninnnnncne. 36-11
36.1.8.2 To Run the order Example Using Maven ..., 36-11
36.2 The roster APPLiCatioN......ccoviiuiieiiceiee e 36-11
36.2.1 Relationships in the roster Applicationcccccocvcueucciiiiiiiccciniceeeeeeeeeeeaes 36-12
36.2.1.1 The Many-To-Many Relationship in rostercccoooiieieiiicciiicce, 36-12
36.2.2 Entity Inheritance in the roster Applicationccoeviiiiiiiiiiiiiiciiccnes 36-13
36.2.3 Criteria Queries in the roster Application.........cccocoevevvivrvnvrrnrrrreeeeereeees 36-14
36.2.3.1 Metamodel Classes in the roster Application..........cccceceveveviiiniiniinnnn, 36-14
36.2.3.2 Obtaining a CriteriaBuilder Instance in RequestBeancccccccevvvvininnnne. 36-15
36.2.3.3 Creating Criteria Queries in RequestBean's Business Methods 36-15
36.2.4 Automatic Table Generation in the roster Application.........cccccooviviviiiiiiinnnns 36-16
36.2.5 Running the roster EXamplecccccccoeivniiiiiiiiinnsnnceeces 36-16
36.2.5.1 To Run the roster Example Using NetBeans IDEccccccocovvnvivnnnncnne. 36-16
36.2.5.2 To Run the roster Example Using Maven ..o, 36-17
36.3 The address-book APPLCation ... 36-18
36.3.1 Bean Validation Constraints in address-book ..., 36-18
36.3.2 Specifying Error Messages for Constraints in address-bookccccccevvnininnn 36-19
36.3.3 Validating Contact Input from a JavaServer Faces Application..........ccccocoeeunneee. 36-19
36.3.4 Running the address-book Example..........cccccceevviiiirnnnnnircrnneeeeeereeecnes 36-20
36.3.4.1 To Run the address-book Example Using NetBeans IDE...........c...cccccoeeeeiie. 36-20

37

36.3.4.2 To Run the address-book Example Using Mavencccooveeueiniinieiecnnne, 36-20

The Java Persistence Query Language

37.1 Query Language Terminologycccocoeueuriiurieiiiiiiicieicieie e 37-1
37.2 Creating Queries Using the Java Persistence Query Language..........c.cccocoooeveiiirruenennnc. 37-2
37.2.1 Named Parameters in QUETIES.........cvccvieiiieieeeeereeeeereeeeereee et et eree e ereereeveereeanens 37-2
37.2.2 Positional Parameters in QUETIEScceecveruieierieeierieeierieeiereeeee e eesaeseeessesaessesssensens 37-3
37.3 Simplified Query Language SYntaxcccccoeueiiirieiiiiicieecce s 37-3
37.3.1 Select StatemMents.........ccoeveveieieieiee s 37-3
37.3.2 Update and Delete Statements............cccoueuiiiiiiiiiiiniciiiiiiiies 37-4
37.4 EXample QUETIESc.c.oviuiiiiiiicietct et 37-4
37.4.1 SIMple QUETIEScovviiiiiiiiic s 37-4
37.4.1.1 A Basic Select QUETY ..ot 37-4
37.4.1.2 Eliminating Duplicate Values............ccooouiiieiiiiiccc 37-4
37.41.3 Using Named Parameters ..o 37-5
37.4.2 Queries That Navigate to Related Entities............ccooooiiiiiiie 37-5
37.4.2.1 A Simple Query with Relationshipscccoooioiiiiie, 37-5
37422 Navigating to Single-Valued Relationship Fields.........c.ccccccoeeviiinnninnnene 37-5
37.4.2.3 Traversing Relationships with an Input Parameterc.cccocoeeiinininnnnnn 37-5
37.4.2.4 Traversing Multiple Relationships...........cccooooioiiiiiiii, 37-6
37425 Navigating According to Related Fields..........cccocovuiivnnininniiiiriiccene 37-6
37.4.3 Queries with Other Conditional EXpressions.............ccceiieiieiiiiieiineiieeceeeenens 37-6
37.4.3.1 The LIKE EXPIESSION......ouiiiiiiiiiieiiicicie et 37-6
37.43.2 The IS NULL EXPTIESSIONccoviieviieiciiiiciciicicieieiccee s 37-7
37.4.3.3 The IS EMPTY EXPIESSION.....cccviiiiiiiiiiiiiiciiiciciciciccece s 37-7
37.4.3.4 The BETWEEN EXPIeSSionccccueiiuiiiiiiiiicie et 37-7
37.4.3.5 Comparison OPETAtorscccvvivuiuiiiiiiiiiiiii e 37-7
37.4.4 Bulk Updates and Deletescoveueiiiiiiiiiiiiiiiiicicicee s 37-8
37.4.4.1 Update QUETIESc.cuiiieiiiiecec e 37-8
37.4.4.2 DElete QUETIEScveeerereeereeteeteete et ettt et et ettt te et e eteeseeteeteereenseerseseersenseereenns 37-8
37.5 Full Query Language SYntaX.........cocococeieiiuiueiiiiiicieieccci i 37-8
37.5.1 BINF SYMDOLS ..ot s 37-8
37.5.2 BNF Grammar of the Java Persistence Query Language........ccccccccoeueucucucuecuncucncnnnnes 37-9
37.5.3 FROM ClLAUSEoovvvriiiiiiiciiitc s s 37-12
37.5.3.1 TAENEEIETS ...t 37-12
37.5.3.2 Identification Variables............cccoiiiiiiiiiiiiiiiie 37-14
37.5.3.3 Range Variable Declarations.............ccooeeueiiiiieiiiiiicieccc e 37-15
37.5.3.4 Collection Member Declarations...........cccceeeeeerreeueinnnierenenineeeeeseeneeseenenes 37-15
37.5.3.5 JOIIS ettt ettt sttt ettt ettt en et e et e a e et e seenseareens e seentenneenee 37-15
3754 Path EXPIessions ..o 37-16
37.5.41 Examples of Path EXPIessions ... 37-16
37.5.4.2 EXPIession TYPes.......cviiiiiniiiiiiiicc s 37-17
37.5.4.3 NaVIGAtioN ...cvcveveiiiieii s 37-17
37.5.5 WHERE ClaUSE ..ottt 37-17
37.5.5.1 LIterals ..coveviieciiiic s 37-18
37.5.5.2 Input Parameters ... 37-18
37.5.5.3 Conditional EXPIessions..........cccccccieiiiiiiiiiniiiniiniiiiiinness s 37-18

XXV

38

39

40

XXVi

37.5.5.4 Operators and Their Precedence.............ccoeeeeiniiiiiiiiiniiiii 37-19

37.55.5 BETWEEN EXPIESSIONSc.cvuiiiiiiiiiiiiiiiccccccciisssnssene 37-19
37.5.5.6 IN EXPIESSIONS ...t 37-19
37.5.5.7 LIKE EXPTIESSIONS......cvetiiiiiiritiiiietetisiiete ettt tese ettt ene et 37-20
37.5.5.8 NULL Comparison EXPressions..........cccceueieiiiiiininiiiiiiseiesecessssssisieans 37-20
37.55.9 Empty Collection Comparison EXpressions...........ccccceeeeuervvinrnvnnecrnenenes 37-20
37.5.5.10 Collection Member EXPressions............cccouveiviniiiiiciniiiiiiiiecs 37-21
37.5.5.11 SUDQUETIES ...t 37-21
37.56.5.12 Functional EXPIessions ..o 37-22
37.5.5.13 Case EXPIESSIONSc.cueviiiiiiiiiiiiiii e 37-23
37.5.5.14 INULL ValUES.....ocvviiiiiiiiiiiiiiiin s 37-24
37.5.5.15 Equality Semanticscccoceiiviiiiiiiiiniiiii e 37-24
37.5.6 SELECT CIaUSE.......ooviviiiiiiiiiiciciiit s 37-25
37.5.6.1 Return TYPeS ...cocvviiiii 37-25
37.5.6.2 The DISTINCT KeYWOTd......ccooviiiiiiiiriicccccccccceiceesc e 37-26
37.5.6.3 Constructor EXPIessions..........cccvviiiiiiiiiininiiii s 37-26
37.5.7 ORDER BY ClaUSecccviviiiiiiiiiiiiiiiiic s 37-27
37.5.8 GROUP BY and HAVING Clausesccccvueeeiriiniiiiiiieiceeceessscsnenesns 37-27

Using the Criteria API to Create Queries

38.1 Overview of the Criteria and Metamodel APISs.........cccccoevivrvnnnnrninrrreeeeceene 38-1
38.2 Using the Metamodel API to Model Entity Classes............ccooeeieiiieieiniiiicieiccie 38-2
38.2.1 Using Metamodel Classesccccciiiininiiiiiiiniiiiiiiiiesnesnns 38-3
38.3 Using the Criteria API and Metamodel API to Create Basic Typesafe Queries.............. 38-4
38.3.1 Creating a Criteria QUETYccoviviiiiiiiiiiiiic s 38-4
38.3.2 QUETY ROOES ..ot 38-5
38.3.3 Querying Relationships Using JOINScccccccceiiiiiiiiiiiccecceecceeeeeeeeeeenees 38-5
38.3.4 Path Navigation in Criteria QUETIesccooiiiiiiiiiiiiicce 38-6
38.3.5 Restricting Criteria Query Resultsccccccovvviiiiiiiiiiii 38-6
38.3.5.1 The Expression Interface Methods.........c.ccccceiiiiiiiiiiiiicccccecceee 38-6
38.3.5.2 Expression Methods in the CriteriaBuilder Interface.........c.ccccovvviiiiiinnnnnnn 38-7
38.3.6 Managing Criteria Query Results..........ccccccvivviiiiiiiiiiiiiiiniiiiccicnces 38-8
38.3.6.1 Ordering ReSUIES.......ccoiiiiiiiiiiiiiciccccee s 38-8
38.3.6.2 Grouping ReSULLS........cooviiiiiiiiiiiiiiccc s 38-9
38.3.7 Executing QUETIES.........coooviiiiiiiiiiiiicicccc s 38-9
38.3.7.1 Single-Valued Query Results..........cccccocciiiriiiiiiniinrcccrreereeeeeeeeeas 38-9
38.3.7.2 Collection-Valued Query Results..........cccocoviiiiiiiiiiiiiiiiicenen 38-9

Creating and Using String-Based Criteria Queries

39.1 Overview of String-Based Criteria API QUeries..........cccoovvviiiiiiiiiiiiniiiiiiicennes 39-1
39.1.1 Creating String-Based QUETIES...........ccccoiiiiiiiiiiiiiiicccees 39-1
39.1.2 Executing String-Based QUETIESc.cccueuiuiiiuiiiiiiiiiiiieiciceieceeeeeeeeeeeee e 39-2

Controlling Concurrent Access to Entity Data with Locking

40.1 Overview of Entity Locking and ConCUITency..........cccocovvurrrnerirrerennnrreeeeeseeeeeenns 40-1
40.1.1 Using Optimistic LOCKINGcoiiuiiiiiiieic e 40-2

41

40.2) G T LY [Y LT 40-2

40.2.1 Setting the Lock MOdec.coiiiiiiiiiiiiiiiiiiici s 40-3
40.2.2 Using Pessimistic LOCKINGcccoviiiininiiiiiiiiiccs 40-4
40.2.2.1 Pessimistic Locking Timeouts...........coceueviiiieiniiiiiciiiccc 40-4
Using a Second-Level Cache with Java Persistence APl Applications

41.1 Overview of the Second-Level Cachecccccovviiiiiiiiiiiiiiii 41-1
41141 Controlling Whether Entities May Be Cachedc.c.ccooii 41-2
41.2 Specifying the Cache Mode Settings to Improve Performance...........cccccoevuvvvnrnccncnee 41-3
41.21 Setting the Cache Retrieval and Store Modes............cccouiiiiiiiiieiniiciccce 41-3
41211 Cache Retrieval Mode...........cooiiiiiiiiiiiiiiii s 41-3
41.21.2 Cache Store Mode...........ciiiiiiiii e 41-3
41.21.3 Setting the Cache Retrieval or Store Modecccoveiiiiiiiiiiii, 41-4
41.2.2 Controlling the Second-Level Cache Programmatically.........ccccooovoiriiniiiinine. 41-4
41.2.21 Checking Whether An Entity's Data is Cached........c.ccccoceevrviinnnnnnincnes 41-5
41.2.2.2 Removing an Entity from the Cache............ccoooiii, 41-5
41.2.2.3 Removing All Data from the Cache...........ccccooeuoiiiiiii e, 41-5

Part VI Messaging

42 Java Message Service Concepts

42.1 OVerview Of the JIMS AP ..ottt sttt eb et ebe b sbesaens 42-1
4211 What IS MESSAZING?.....c.cuiuimiiimiiiiiiiiiiieieieieieeetee ettt eees 42-1
42.1.2 What Is the JMS API? ..o s 42-2
42.1.3 When Can You Use the JMS API? ... 42-2
42.1.4 How Does the J]MS API Work with the Java EE Platform?ccccoeveevevvecinciniennnnn, 42-3
42.2 Basic JMS API CONCEPLS.....cuiimiiiriiiiiiiiciiciicet s 42-4
42.2.1 JMS APT ATChIteCtUTE ...t 42-4
42.2.2 MeSSAZING STYLES.....oviiiiiiiiiiiciciciiccee et 42-4
42.2.2.1 Point-to-Point Messaging Style ... 42-5
42.2.2.2 Publish/Subscribe Messaging Styleccccccovvvviiiiininnniiiinnce, 42-5
42.2.3 Message CONSUMPLION........c.ciiiiiiiiiiiiiiii s 42-6
42.3 The JMS API Programming Modelcccouoiiiiiiiiiiiiii s 42-6
42.3.1 JMS Administered ODJECEScccuiuiiiiviiiiiiiiiiiriiiiir e 42-7
42.3.1.1 JMS ConnNection FaCTOTIEs.c.eoveieririerieeiereeeeseeteieeee e esae e stesreesesneessessnens 42-8
42.3.1.2 JIMS DIESHINATIONS.ceueeuieiieieriieteeiesie ettt ettt sttt ettt et be b aes 42-8
42.3.2 CONNECEIONS ..ttt 42-9
42.3.3 SESSIONS ...t s 42-9
42.3.4 JMSContext ODJECSc.cevvviiiiiiiiiiciciciccccc s 42-9
42.3.5 JMS Message ProdUCETS..........cccvviviiviiiiiiiiiiiic e 42-10
42.3.6 JMS Message CONSUIMETS. ..o 42-10
42.3.6.1 JMS Message LiSteners..........coocueviieiuciiiiicic s 42-11
42.3.6.2 JMS Message SELectOrscouvuvuriviiiiiiiiiiiiiiiiiirccr e 42-12
42.3.6.3 Consuming Messages from TOPICSccovuvevreririrrnninnrerece e 42-12
42.3.6.4 Creating Durable SUbSCriptionscccocoviviiiiiiiiic 42-13
42.3.6.5 Creating Shared SUbSCIIPtionsccccccciiiiieiiiiiiiiiiiiae 42-15

XXVii

43

XXViii

42.3.7 JMS MESSAZESovviiiiiiic s 42-16

42.3.7.1 Message Headers............ooceuiiiiiiiiccic e 42-16
42.3.7.2 Message Properties..........coooiiiiiiniiiiiiiic e 42-17
42.3.7.3 Message Bodiescccueuiiuiieiiiiiicit e 42-17
42.3.8 JMS QUEUE BIOWSETScuvieuiiiieiieiteie ettt ettt ettt ettt et sttt st e b sheebe st enaesbeens 42-18
42.3.9 JMS Exception Handlingcccccceiiiiiiiiiiiinneecreecee e 42-19
42.4 Using Advanced JMS Featurescccooieiiiiiniciicci e 42-19
42.41 Controlling Message Acknowledgment............cccoooiiiiiiiiiiiccc, 42-20
42.4.2 Specifying Options for Sending MeSSagescccccewiiiriiiiiiciciiieeeneecenenes 42-21
42.4.2.1 Specifying Message Persistencec.coueueueieiiiiciciiiccieccee e, 42-22
42.4.2.2 Setting Message Priority Levelsccoooiiii, 42-22
42.42.3 Allowing Messages to EXPIrecccccoeviiirniniinnnicnceeeere e 42-22
42.4.2.4 Specifying a Delivery Delay.........cccooieueiiiiiiiiiic e, 42-23
42.4.2.5 Using JMSProducer Method Chaining..............coooiiiiiiiiccce, 42-23
42.4.3 Creating Temporary Destinations............cccccceviviviiiininiiinniccecen 42-23
42.4.4 Using JMS Local Transactionscoceueiiiiicioiiciciecice s 42-24
42.4.5 Sending Messages Asynchronously.............ccocoii 42-25
42.5 Using the JMS APl in Java EE Applications........cccccccccuvueuiiiiciinniniirrcncreeeceececenes 42-26
42.5.1 Creating Resources for Java EE Applications..........ccccovvvivinininiiiiinininens 42-26
42.5.2 Using Resource Injection in Enterprise Bean or Web Components........................ 42-28
425.2.1 Injecting a ConnectionFactory, Topic, or Queue............cccccevvviiiiiiiiiiininnnnnn. 42-28
425.2.2 Injecting a JMSContext Object ..o 42-28
42.5.3 Using Java EE Components to Produce and to Synchronously Receive Messages...........
42-28
42.5.3.1 Managing JMS Resources in Web and EJB Components.........c.cccceveevurerrccncee 42-29
42.53.2 Managing Transactions in Session Beans.............ccoooeueviiiiiiiiiiicciice, 42-29
42.5.4 Using Message-Driven Beans to Receive Messages Asynchronously 42-29
42.5.5 Managing JTA Transactions.........cccccvvieiviniiiiiininiiic s 42-32
42.6 Further Information about JIMS........cooiiiiiiiiiiii et 42-34

Java Message Service Examples

43.1 Overview of the JMS EXampIesccccocvveiiiiiiiiiiiiiiiiiiiieccens 43-1
43.2 Writing Simple JMS AppLications.........c.cccccucuiiiiiiiiiiiiiiiiicicnsse s 43-2
43.2.1 Starting the JMS Provider ... 43-3
43.2.2 Creating J]MS Administered Objectsooeueviiiiiiiiiii e 43-3
43.2.21 To Create Resources for the Simple Examples...........cccccccoeuciiiiiiiiicciinnen 43-3
43.2.3 Building All the Simple EXamplescccccccevviviiiiinniiiircceneeeeeeeeeeeeeeeeas 43-4
43.2.3.1 To Build All the Simple Examples Using NetBeans IDE.............c.cccccoevvivnnnnnnn. 43-4
43.2.3.2 To Build All the Simple Examples on the Command Line...........cccccccceueuruennenn. 43-4
43.2.4 Sending MeSSAZES........ccciviiiiiiiiiiiiiiiiii s 43-4
43.2.41 The Producer.java ClIentccccooveiiiiiiiiiiiiccs 43-5
43.2.4.2 To Run the Producer CHENtc.ccccovrueeininiieiiiniccinieerecereeeeesesee e 43-6
43.2.5 Receiving Messages SyNChronOUSLYcccccccueuciciiiinieiiiiieeecceeeeeeeeeeeeeeeees 43-7
43.2.5.1 The SynchConsumer.java CLHent ..o, 43-7
43.2.5.2 To Run the SynchConsumer and Producer Clients.............cccccoecueiiiiiiinninncnnen. 43-7
43.2.6 Using a Message Listener for Asynchronous Message Delivery...........cccccccceucuenene. 43-9
43.2.6.1 Writing the AsynchConsumer java and TextListener.java Clients..................... 43-9

43.2.6.2 To Run the AsynchConsumer and Producer Clients.............ccccoeevvviiinininenne. 43-10

43.2.7 Browsing Messages on a QUeUeccoveiiiiiiiiiiii 43-11
43.2.7 1 The MessageBrowser.java CHENtcoeviriininiinicciicccccncccececennes 43-11
43.2.7.2 To Run the QueueBrowser CHENtcccceeveevierierieeieieeeeie e 43-12
43.2.8 Running Multiple Consumers on the Same Destinationcccocevvvnninncnnnn 43-13
43.2.9 Acknowledging MeSSageS..........ccoeuiiiiiiiiiiiiiiiiiiii s 43-14
43.2.91 To Run the ClientAckConsumer Clientcccccoeeveviiiiniiiiiiii, 43-15
43.3 Writing More Advanced JMS Applications..........ccoerueiiiiinieiciniciceccce e 43-16
43.3.1 Using Durable SUbSCIIPHONSocoveeiiiiiiiccccccccccccee e 43-16
43.3.11 To Create Resources for the Durable Subscription Example ..o 43-17
43.3.1.2 To Run the Durable Subscription Exampleccooooiiiiiiiiniiene, 43-17
43.3.1.3 To Run the unsubscriber Example...........cccccoooiiiiiiiniiiccncccrrcene 43-18
43.3.2 Using Local Transactions..........cccceueviicieiiiicieiccee e 43-18
43.3.2.1 To Create Resources for the transactedexample Example..........ccccooooeiieinniie, 43-20
43.3.2.2 To Run the transactedexample CHENts...........ccccovvieiiiiiicciiiccceccceenes 43-21
43.4 Writing High Performance and Scalable JMS Applications...........cccccoevvoeinicinicinininnes 43-23
43.4.1 Using Shared Nondurable Subscriptions.........cccoooiiiiiiiiic, 43-23
43.4.1.1 Writing the Clients for the Shared Consumer Examplecccccciiinnnnee. 43-23
43.4.1.2 To Run the SharedConsumer and Producer Clients.............cccccceevviviinnininnnne. 43-24
43.4.2 Using Shared Durable Subscriptions...........ccocueiiiiiiiiiic 43-24
43.4.2.1 To Run the ShareDurableSubscriberExample and Producer Clients 43-25
43.5 Sending and Receiving Messages Using a Simple Web Application..........ccccccevevene. 43-26
43.5.1 The websimplemessage Facelets Pages.........ccccooooiioiiiiiiic 43-26
43.5.2 The websimplemessage Managed Beansccccoovvvvvnrinnnnnnnnneeeecenes 43-26
43.5.3 Running the websimplemessage Exampleccccocoviviininnnnnnnnn 43-28
43.5.3.1 Creating Resources for the websimplemessage Examplec.c.cccooeeiiiie, 43-28
43.5.3.2 To Package and Deploy websimplemessage Using NetBeans IDE 43-28
43.5.3.3 To Package and Deploy websimplemessage Using Maven............cccccoeuveenne. 43-28
43.5.3.4 To Run the websimplemessage Example...........ccooeiiiiiiiiiiiiiiice, 43-28
43.6 Receiving Messages Asynchronously using a Message-Driven Beanc.ccccec..... 43-29
43.6.1 Overview of the simplemessage Example ..., 43-29
43.6.2 The simplemessage Application CLent...........cccccevuvieiiiviiiiiiiiniiiiinnnenes 43-29
43.6.3 The simplemessage Message-Driven Bean Class...........cccocovuvrvvnnrnncncncncnencnencnes 43-30
43.6.3.1 The onMessage Method............c.coviiiiiiiii e, 43-30
43.6.4 Running the simplemessage Example...........cccccovviviiinnnnninnnninnccccecans 43-31
43.6.4.1 Ereating Resources for the simplemessage Example..........cccccooviiiniiincnnns 43-31
43.6.4.2 To Run the simplemessage Example Using NetBeans IDE.................c.c........... 43-31
43.6.4.3 To Run the simplemessage Example Using Mavenccccccevvvevvinnnnennnnes 43-32
43.7 Sending Messages from a Session Bean to an MDBccccccoeiinnniiinnnnnreenes 43-32
43.7.1 Writing the Application Components for the clientsessionmdb Example............. 43-32
43.7.11 Coding the Application Client: MyAppClient.java..........cccooeoiiiiiiiiincnnes 43-33
43.7.1.2 Coding the Publisher Session Bean...........cccooveivivnininincniniiiccciccccccccnes 43-33
43.7.1.3 Coding the Message-Driven Bean: MessageBean.java..........ccccccooirueieiinnnnen. 43-34
43.7.2 Running the clientsessionmdb Examplecccccoeviviininiininnnnnincnes 43-35
43.7.2.1 To Run clientsessionmdb Using NetBeans IDEccccccovuvvivnnnnnncnccne. 43-35
43.7.2.2 To Run clientsessionmdb Using Maven.........cccoimrieiiicieiiiineeceeae 43-35
43.8 Using an Entity to Join Messages from Two MDBs..........cccccovveiniinniniininiiiiiiccnes 43-36

XXiX

43.8.1 Overview of the clientmdbentity Example Applicationcccocoevviviniiiinnnnnes 43-36

43.8.2 Writing the Application Components for the clientmdbentity Example............... 43-38
43.8.2.1 Coding the Application Client: HumanResourceClient.java........c.cccccoeevvunneees 43-38
43.8.2.2 Coding the Message-Driven Beans for the clientmdbentity Example............. 43-38
43.8.2.3 Coding the Entity Class for the clientmdbentity Example...........c.c.cccoooueieeie. 43-39
43.8.3 Running the clientmdbentity Example.........ccccccccoviiiiinniniinnreeereene 43-40
43.8.3.1 To Run clientmdbentity Using NetBeans IDE..........c.cccccooiiiiiiiiiie, 43-40
43.8.3.2 To Run clientmdbentity Using Mavencocooriieiiiiciciicicceeccee 43-40
43.8.3.3 Viewing the Application OUtPUL.........cccociiiiiiiiiiccccccceeee e 43-41
43.9 Using NetBeans IDE to Create JMS ReSOUICEScccoeveiiuriciiiiiicicceic e 43-42
43.9.1 To Create JMS Resources Using NetBeans IDE..............ccoooiiiiiiiiiiiiiinn, 43-42
43.9.2 To Delete JMS Resources Using NetBeans IDE ..., 43-42

Part IX Security

44

XXX

Introduction to Security in the Java EE Platform

441 Overview of Java EE SECUTILY ...c.coeviiiiiiiiriiiiiicccccrcc s 44-1
4411 A Simple Application Security Walkthrough............ccccoooviiiii 44-2
44111 Step 1: Initial ReQUESL.........coiuiiiiiiiiiiiiic s 44-2
4411.2 Step 2: Initial Authentication ...t 44-2
44113 Step 3: URL AUthOorizZationcceeeviieiiiiiiiiiiiiiicceeeeeeens 44-3
4411.4 Step 4: Fulfilling the Original Request...........ccccouoiiriiiiiiiiiie, 44-3
44115 Step 5: Invoking Enterprise Bean Business Methodscccccceevvvnninnncnnee 44-4
441.2 Features of a Security MechaniSm.............ccoieiiiiiiii 44-4
441.3 Characteristics of Application SeCUTityccoooiiiciiiiiiciicc 44-5
44.2 Security MeChamiSImS.cccoceuiuiuiuiuiuiuiiiiiicicieieeeieeetete ettt enenes 44-5
44.21 Java SE Security MechaniSmscouieioiiiniiic 44-5
44.2.2 Java EE Security MechaniSmsccocueuiiiiiioiiicccce e 44-6
44221 Application-Layer SECUTIYcccceuiuiiiiiiiiiiiiiccecieeeeee e 44-6
442.2.2 Transport-Layer SeCUrity ..., 44-7
44.2.2.3 Message-Layer SeCUTity ..o 44-8
44.3 Securing CONtAINETS........ccoiiiiiiiiiiiiiiii s 44-8
44.3.1 Using Annotations to Specify Security Information..........c.ccoooeieiiinicn 44-8
44.3.2 Using Deployment Descriptors for Declarative Security...........ccccccevvvvrinininnnnne 44-9
44.3.3 Using Programmatic SECUTItY ... 44-9
44.4 Securing the GlassFish Server ... 44-9
44.5 Working with Realms, Users, Groups, and Roles............ccccccovvinnnnnnnnnnninnnes 44-10
4451 What Are Realms, Users, Groups, and Roles?...........cccccccoceueiceininceccencneennnn 44-10
44.5.1.1 What Is @ Realm? ... 44-11
4451.2 WHRhat IS @ USEI? ...t 44-12
4451.3 WHhat IS @ GIOUP? ... 44-12
4451.4 What Is @ ROIe? ... 44-12
44515 Some Other Terminologycccccciiiiiiiiiiiiiiiiiiiic s 44-12
4452 Managing Users and Groups on the GlassFish Server...........cccocoioiiiciniicncnns 44-13
44.5.2.1 To Add Users to the GlassFish Server ... 44-13
44.5.3 Setting Up Security ROIESccccvueiviiiiiiiiiiiiiiiiiiiiccs 44-13
4454 Mapping Roles to Users and GIoUpPS.........cocvueerereveririririneninirrresesseseee s 44-15

45

46

44.6 Establishing a Secure Connection Using SSL...........cccccoviviiiiininininininines 44-16

44.6.1 Verifying and Configuring SSL SUPPOTt.......cccoooiiiiiiiiiiiieccc e 44-16
44.7 Further Information about SECUTILYccccceueuiiiiriiiiiiiiiiccrrcrcrre e 44-17
Getting Started Securing Web Applications
45.1 Overview of Web Application SECUTILYcccocuiuiiuiiiuiiiiciiiiiccceceeeeee s 45-1
45.2 Securing Web AppPliCatiONnScccoueuiviiiiiiiiiiiiiiiicccc s 45-3
45.2.1 Specifying Security CONStraints.cooeeuiiiicieieiiiciccce s 45-3
45.2.1.1 Specifying a Web Resource Collectionccccoeevueevivnvernnnncnnnceeceeecenes 45-4
45.2.1.2 Specifying an Authorization Constraintcccoeeoiiciiiiiicccc, 45-4
45.2.1.3 Specifying a Secure CONNECHONcocviveiiiciic e, 45-5
45.2.1.4 Specifying Security Constraints for ReSOUrces..........cccoceveverivvveverrnnercecenene 45-5
45.2.2 Specifying Authentication Mechanisms............ccooceueiiiiiiieiiicicc e 45-6
45.2.21 HTTP Basic Authentication.........cccccoviieiviiniinininiicniicscece e 45-7
45.2.2.2 Form-Based Authentication ..., 45-8
45.2.2.3 Digest Authenticationoooieiiiiiiii 45-9
45.2.3 Specifying an Authentication Mechanism in the Deployment Descriptor 45-9
45.2.4 Declaring Security ROLES.......cccocuiiiiiiiiiiiiiicirr e 45-10
45.3 Using Programmatic Security with Web Applicationsc.c.cccoooriiiiniiniincii 45-10
45.3.1 Authenticating Users Programmatically.........cccccoovieiiiniiniiic 45-10
45.3.2 Checking Caller Identity Programmaticallyccccooioiiiiiiiiiiininccecicenenes 45-12
45.3.3 Example Code for Programmatic Securitycccocoeeuieinieiiiieiieiecececes 45-13
45.3.4 Declaring and Linking Role References ..o, 45-14
45.4 Examples: Securing Web Applications........ccccceuvueuiueiririiiniirinrcrrrsereereeree s 45-15
45.4.1 To Set Up Your System for Running the Security Examplesccccccoevvirininnnne. 45-15
45.4.2 The hello2-basicauth Example: Basic Authentication with a Servlet...................... 45-16
45.4.2.1 Specifying Security for Basic Authentication Using Annotations.................... 45-16
45.42.2 To Build, Package, and Deploy the hello2-basicauth Example Using NetBeans IDE

45-17
45.4.2.3 To Build, Package, and Deploy the hello2-basicauth Example Using Maven 45-17
45.42.4 To Run the hello2-basicauth Example.........ccccccoeiiiniiinnniiirniinreene 45-17
45.4.3 The hellol-formauth Example: Form-Based Authentication with a JavaServer Faces

Application 45-18

45.4.31 Creating the Login Form and the Error Page.........cccccccovvvniinnnnnnnnnnes 45-18
45.43.2 Specifying Security for the Form-Based Authentication Example................... 45-20
45.4.3.3 To Build, Package, and Deploy the hellol-formauth Example Using NetBeans IDE

45-20
45.4.3.4 To Build, Package, and Deploy the hellol-formauth Example Using Maven and

the asadmin Command 45-21
45.4.3.5 To Run the hellol-formauth Exampleccccccoeiiiiniinnnniirnnnereenes 45-21
Getting Started Securing Enterprise Applications
46.1 Basic Security Tasks for Enterprise Applications..........cccocevevervvverrinrnvnrrrnceeereenes 46-1
46.2 Securing Enterprise Beans ... 46-1
46.2.1 Securing an Enterprise Bean Using Declarative Securityccccccovvvninnnccnnes 46-4
46.2.1.1 Specifying Authorized Users by Declaring Security Rolescccccoeueuvereencne. 46-4
46.2.1.2 Specifying an Authentication Mechanism and Secure Connection................... 46-7

XXXi

47

XXXii

46.2.2 Securing an Enterprise Bean Programmatically..........c.cccooorueiiiiiiiiii 46-7

46.2.2.1 Accessing an Enterprise Bean Caller's Security Contextccccooooriieieinnnen. 46-7
46.2.3 Propagating a Security Identity (RUN-AS)........ccccooevviiiiiiniiiiic 46-8
46.2.3.1 Configuring a Component's Propagated Security Identity..........c.ccccoceeneennie. 46-9
46.2.3.2 Trust between Containers ... 46-9
46.2.4 Deploying Secure Enterprise Beansccccocccevviiicnnninrcnnnceeeeeeeeee 46-10
46.3 Examples: Securing Enterprise Beans...........ccccocoviiiiiiiiiiiiiiiin 46-10
46.3.1 The cart-secure Example: Securing an Enterprise Bean with Declarative Security
46-10
46.3.1.1 Annotating the Bean.........c.cccccciiiiiiiiiicrccccrece s 46-10
46.3.1.2 To Run the cart-secure Example Using NetBeans IDE ..., 46-12
46.3.1.3 To Run the cart-secure Example Using Maven...........ccccccceevvviininiininnnnnnne 46-13
46.3.2 The converter-secure Example: Securing an Enterprise Bean with Programmatic
Security 46-13
46.3.2.1 Modifying ConverterBean............c.ccooiiuiiiiiiiiiiiic e 46-14
46.3.2.2 Modifying ConverterServlet ..., 46-15
46.3.2.3 To Run the converter-secure Example Using NetBeans IDE 46-15
46.3.2.4 To Run the converter-secure Example Using Maven.........c.c.ccoooeueieiinicieinnnne, 46-15
46.3.2.5 To Run the converter-secure Examplecoooooiiiiiiiie, 46-16

Java EE Security: Advanced Topics

471 Working with Digital Certificates..........c.cocooreiiioiiiiiii 47-1
47.1.1 Creating a Server Certificate ... 47-2
47111 To Use keytool to Create a Server Certificate.........ccocooveriiiiiiniiiiii, 47-3
471.2 Adding Users to the Certificate Realm..........ccoooooiiiii 47-4
4713 Using a Different Server Certificate with the GlassFish Server.............cccccccceeeene. 47-4
47.1.3.1 To Specity a Different Server Certificate............coooeueiiiiiiiniiiii, 47-4
47.2 Authentication MeChanisSms...........cccceuiiiiiiiiiiiiiiiiiiiiii s 47-5
47.2.1 Client AuthenticCation..........ccccoviiiiiiiiiii s 47-5
47.2.2 Mutual Authentication..........ccviiiiiiiii s 47-5
47.2.21 Enabling Mutual Authentication over SSL..........ccccocovvviiiiiniiinicnne, 47-7
47222 Creating a Client Certificate for Mutual Authentication..........ccccccccceueucccennne. 47-7
47.3 Using Form-Based Login in JavaServer Faces Web Applicationsccccceuvvrriennnne. 47-9
47.3.1 Using j_security_check in JavaServer Faces FOrmsccccocoeiiiiiiiiinicnnnnn 47-9
47.3.2 Using a Managed Bean for Authentication in JavaServer Faces Applications........ 47-9
47.4 Using the JDBC Realm for User Authenticationcccocoooriiiriiiiiiiinicnice, 47-11
47.4 1 To Configure a JDBC Authentication Realmcccccceeviviviininiinnnninines 47-11
47.5 Securing HTTP RESOUICESccccouvuiuimiiiiiiiiiiiiiciic s 47-13
47.6 Securing Application CHEnts...........ccoceeviiiiiiiiiiiiiic e 47-15
47.6.1 Using Login MOdULES..........ccccviiiiriiiiniiiiiiiiincc e 47-15
47.6.2 Using Programmatic LOGINccccoiiiiiniiiiiiiiicccnes 47-16
47.7 Securing Enterprise Information Systems Applicationscccccocoviiinininiiiiinnnns 47-16
47.71 Container-Managed Sign-On.........ccccccovuiiiniiiiiniiininiiss 47-16
47.7.2 Component-Managed Sign-On..........cccccevuiiiiiinnininieneere s 47-17
47.7.3 Configuring Resource Adapter SecUrity ..ot 47-17
47.7.4 Mapping an Application Principal to EIS Principals.........ccccccccevviiinvnnninnnnes 47-18
47.8 Configuring Security Using Deployment Descriptorsccocoviinicciiicciicccnenes 47-19

47.8.1 Specifying Security for Basic Authentication in the Deployment Descriptor........ 47-19

47.8.2 Specifying Non-Default Principal-to-Role Mapping in the Deployment Descriptor
47-20
47.9 Further Information about SECUTItYccccceueueuiiriiiiiiiiiiiirrrerrrre e 47-20

Part X Java EE Supporting Technologies

48

49

Transactions

48.1 Transactions in Java EE APpliCationscccccoceueuiiiiiiiiininiiiiccrccsreeeeeee s 48-1
48.2 WhatIs a Transaction? ... s 48-2
48.3 Container-Managed Transactionscccococeueieircieiiiicie e 48-2
48.3.1 Transaction AHIIDULES ..o 48-3
48.3.1.1 Required AHIIDULE ..o 48-3
48.3.1.2 RequiresNew Attribute.........cccccevivviiiiiiiiiiiiiiiiiiiiccs 48-3
48.3.1.3 Mandatory AHIIDULEcccciiiiiiiicccce s 48-4
48.3.1.4 NotSupported Attribute ..o 48-4
48.3.1.5 Supports Atribute. ..o, 48-4
48.3.1.6 Never AHITDULE.......cooviiiiic e 48-4
48.3.1.7 Summary of Transaction Attributes ..., 48-4
48.3.1.8 Setting Transaction Attributes............cooooioiiiiic, 48-5
48.3.2 Rolling Back a Container-Managed Transactionccceceeeeverrvevecrnenrenecerenenenes 48-6
48.3.3 Synchronizing a Session Bean's Instance Variables...........ccccccooooeiiiiinne. 48-6
48.3.4 Methods Not Allowed in Container-Managed Transactions...........cccccececeveieinnnee 48-6
48.4 Bean-Managed TTanSacCtioNscccccoccuiuiuimiuciiiiicicieicieeeiceieiere et nenenens 48-7
48.4.1 JTA TTanSACtIONSceuveruieiiriieieriteteritee sttt ettt st see st sae st sbeeabesbesaesbeeseenaeenee 48-7
48.4.2 Returning without Committing...........cooeoiiiiiii e 48-7
48.4.3 Methods Not Allowed in Bean-Managed Transactions...........cccccccoeeueueueucueunicicnennnnes 48-8
48.5 Transaction TimMeOULS. ...t 48-8
48.5.1 To Set a Transaction TimMeEOUt........cccoveviiiiiiiiic s 48-8
48.6 Updating Multiple Databasesc.cccccciiuiiiiiiiiiiiicceccceccceeeeeeeeee s 48-8
48.7 Transactions in Web COMPONENLS.........ccoiuiviiiiiiiiiiiiiiiiiiieciee s 48-9
48.8 Further Information about Transactionsc.ccccoreueieniieieiinnnecerreeeeseee e 48-9
Resource Adapters and Contracts

49.1 What Is a Resource Adapter? ... 49-1
49.1.1 Management CONtIaACES.........ceevviviiiiiiiiiiiiic s 49-2
49.1.1.1 Lifecycle Managementcoooeueiiiiiiiiiiiieec 49-2
49.1.1.2 Work Management CONtIact ... 49-3
49.1.2 Generic Work Context CONtractcoovvvviiiiiiiiiiiiiiiceccee s 49-3
49.1.3 Outbound and Inbound Contracts...........cccceeeveiiiiiniiiiiiiiis 49-4
49.2 Metadata ANNOTATIONScovuiueuiiririiceie ettt 49-4
49.3 Common Client INterface.........cccooviiiiiiiiiiiiiic s 49-6
49.4 Using Resource Adapters With Contexts and Dependency Injection for Java EE (CDI).........

49-7
49.5 Further Information about Resource Adapters...........cccocoeeieiriiiiiiiceinincccee 49-7

XXXxiii

50

51

52

XXXiV

The Resource Adapter Examples

50.1 The outboundconnector Example ... 50-1
50.1.1 Using the Outbound Resource Adapter ... 50-2
50.1.2 Implementing the Outbound Resource Adaptercccovierineiiiinccinicennen, 50-4
50.1.3 Running the outboundconnector Example...........cccccocoviiiiiniiiinniiii 50-5
50.1.3.1 To Run the outboundconnector Example using NetBeans IDE 50-5
50.1.3.2 To Run the outboundconnector Example from the Command Line.................. 50-6
50.2 The inboundconnector Example..........ccccooooiiiiiiiiiiiiiiiiiis 50-6
50.2.1 Using the Inbound Resource Adapter ... 50-7
50.2.2 Implementing the Inbound Resource Adapter ..., 50-8
50.2.3 Running the inboundconnector Exampleccccccooviviiiinnnnnni 50-10
50.2.3.1 To Run the inboundconnector Example using NetBeans IDE........................... 50-10
50.2.3.2 To Run the inboundconnector Example from the Command Line.................. 50-10

Bean Validation: Advanced Topics

51.1 Creating Custom CONStraints.cccoeueiiiiirieiiiiiciecci s 51-1
51.1.1 Using the Built-In Constraints to Make a New Constraint.........c.cocooooeeviiineinne. 51-1
51.2 Customizing Validator MESSaZES ..o enenenenas 51-2
51.21 The ValidationMessages Resource Bundlecccoooiiiiii 51-2
51.2.1.1 Localizing Validation Messages..........c.ccourumueiniicieieiiicciecce e 51-2
51.3 Grouping Constraints..........cccoviiiiiiiiiiiiiii s 51-2
51.3.1 Customizing Group Validation Order ... 51-3
51.4 Using Method Constraints in Type Hierarchies...........ccccoooceiiiiininiiciccce 51-3
51.4.1 Rules for Using Method Constraints in Type Hierarchiescccccccccceciccnnane. 51-4

Using Java EE Interceptors

521 Overview Of INErCePLOTSccovuiuiiieiiiiiccccccccccee e 52-1
52.1.1 INterceptor ClasSes..........oiiuiuiiiiiiiiciiiiiii s 52-2
52.1.2 Interceptor Lifecycle ... 52-2
52.1.3 Interceptors and CDI ... 52-2
52.2 Using INterCePOrS.cuiviiiiiiitiiiiiicicictictc s 52-2
52.2.1 Intercepting Method INVOCAtIONS ..o 52-3
52.2.1.1 Using Multiple Method INterceptors............ccccoeeciiccceciccceeceeceecnenenenens 52-3
52.21.2 Accessing Target Method Parameters From an Interceptor Class..................... 52-4
52.2.2 Intercepting Lifecycle Callback Events.........c.cccccccvuviiiiiiiiniininiiiicnicicn 52-4
52.2.2.1 Using AroundConstruct Interceptor Methods...........cccccccciiiiiicnicciene, 52-5
52.2.2.2 Using Multiple Lifecycle Callback Interceptors...........cocoooeueveiireieiiiciciinen, 52-5
52.2.3 Intercepting Timeout EVents..........ccocooiiiiiiiiiiiicc 52-6
52.2.3.1 Using Multiple Timeout INterceptors ... 52-6
52.2.4 Binding Interceptors to COmMpPONeNts...........ccceiiiiiiiiiieiiiiiieecceee s 52-6
52.2.4.1 Declaring the Interceptor Bindings on an Interceptor Class...........ccccceeueuennnee 52-7
52.2.4.2 Binding a Component to an Interceptor ... 52-7
52.2.5 Ordering INtercePlOrs........ccueviiueieiicieiee e 52-8
52.3 The interceptor Example Application...........cccccciiiiiiiiiiiiiiiiiiiiiiiicccceeeees 52-9
52.3.1 Running the interceptor EXample ... 52-9
52.3.1.1 To Run the interceptor Example Using NetBeans IDEcccccoceviiiininnne. 52-10

53

52.3.1.2

Batch

53.1
53.1.1
53.1.2
53.1.3
53.1.4
53.2
53.2.1
53.2.2
53.2.3
53.2.4
53.2.5
53.2.6
53.3
53.3.1
53.3.2
53.4
53.4.1
53.4.2
53.4.2.1
53.4.2.2
53.4.2.3
53.4.3
53.4.4
53.4.5
53.5
53.5.1
53.5.2
53.5.3
53.6
53.6.1
53.6.2
53.6.3
53.7
53.8
53.8.1
53.8.1.1
53.8.1.2
53.8.1.3
53.8.1.4
53.8.1.5
53.8.1.6
53.8.1.7
53.8.2
53.8.2.1

To Run the interceptor Example Using Maven...........ccccoeeveiiiieiinienennne, 52-10
Processing

Introduction to Batch Processing ..o 53-1
Steps in Batch JObSc.uiiii 53-2
Status and Decision Elements............ccccccovuviiiiiniiiniiic s 53-3
Parallel ProceSSINgccouiurueiiiiiiiiieiiici e 53-4
Batch Framework Functionality ... 53-4
Batch Processing in Java EE.........ccccccooiiiiiiiiiicceecccceeee s 53-4
The Batch Processing Framework ... 53-4
Creating Batch Applicationsc.cooieioiiiiciiic s 53-4
Elements of @ BatCh JODociiiviiiiiiiicieeeete ettt sa e s enens 53-5
Properties and Parameters ... 53-5

Job Instances and JOb EXECULIONSccceiruiriiriiriiniiiieieeieeeee e 53-6
Batch and EXit Status.........ccooviiiiiiiiii s 53-6
SIMPLE USE CASEvvviiiiiciciicieiee s 53-7
ChUnk STeP ..o e 53-7
TASK SEEP .. 53-9
Using the Job Specification Language...........cccoceuieiieiieiiiiciieicec s 53-9
The job Element............c.ooiimiioiiii e 53-10
The step EIEMENL......c.cooiiiiiiiiiiicc e 53-10
The chunk Element..........cccccooviiiiiiiiie 53-12

The batchlet Element..........ccccccoviviiiiiiiiiiiiis 53-13

The partition Elementccccooeiiiiiiiiniirncnnr e 53-14

The flow Element........cccccociviviiiiiiiiiiiiiii s 53-16
The split EIement ..o 53-16
The decision Element ..o 53-16
Creating Batch Artifactsoooiiii 53-17
Batch Artifact Interfaces..........ccooiiiiiiiiiiiiiiiii 53-17
Dependency Injection in Batch Artifacts ..o 53-19
Using the Context Objects from the Batch Runtime...........ccccocoovoiiiriiiiiinnnn, 53-20
Submitting Jobs to the Batch Runtimeccocooeoiiiiiiie 53-21
SEATHING @ JOD.c..niiiiiiiiicce s 53-21
Checking the Status of @ JOb ... 53-22
Invoking the Batch Runtime in Your Application ..o 53-22
Packaging Batch Applications...........ccouvuveviriririniiiiiiccccccccceceeeeeeee e 53-22
The webserverlog Example Applicationcccccoevvveiiiiiiiiiiiiiicn 53-22
Architecture of the webserverlog Example Application.........cccocoeveveiiiviinininnncnen. 53-23
The Job Definition Fileccccveieiriiririiriiieieieetecee ettt ese e ere e 53-23

The LogLine and LogFilteredLine Items............ccooooeiiiiiiiiiiiiiie, 53-24

The Chunk Step Batch Artifactsccccoeviviviviiiiiniiinnnccccccae 53-24

The Listener Batch Artifacts.......ccccooviiiiiiiiiiiiiices 53-26

The Task Step Batch Artifact........cccccoeeiiiiiiiiiii 53-26

The JavaServer Faces Pages..........cccccovvvviininininininininiiiiicccccnccccccenes 58-27

The Session Beamn...........ccoviiiiiiiiiiiiii s 53-27
Running the webserverlog Example Application.........cccccovvvvvviiinnnnnnnne, 53-27

To Run the webserverlog Example Application Using NetBeans IDE............ 53-28

XXXV

54

53.8.2.2 To Run the webserverlog Example Application Using Maven............ccc.c...... 53-28

53.9 The phonebilling Example Application...........ccoceueoiiiiiiiiiiicccc e 53-28
53.9.1 Architecture of the phonebilling Example Application..........cccccocevvvvvnnrncncanee 53-28
53.9.1.1 The Job Definition Fileccccooiiiiiiiiiinieeeeteee e 53-29
53.9.1.2 The CallRecord and PhoneBill Entitiescccccovvviiinninins 53-30
53.9.1.3 The Call Records Chunk Stepcoccvvnrrinniniiicccccccceeccccceenenes 53-31
53.9.1.4 The Phone Billing Chunk Step ..., 53-32
53.9.1.5 The JavaServer Faces Pages........cccccoouiruiiiiiiicieiicccc 53-33
53.9.1.6 The Session Beamn...........ccoviiiiiiiiiiic e, 53-34
53.9.2 Running the phonebilling Example Applicationcccoeveeiiiiinnnniinnn, 53-34
53.9.2.1 To Run the phonebilling Example Application Using NetBeans IDE 53-34
53.9.2.2 To Run the phonebilling Example Application Using Maven...........cccccccueueeee 53-35
53.10 Further Information about Batch Processing.............cccocoeueviiiiiiniiiciciiiccccee 53-35

Concurrency Utilities

541 Concurrency BasiCs.......coooiiiiiioiiicici s 54-1
54.1.1 Threads and Processes ... 54-1
54.2 Main Components of the Concurrency UtItIescocovvivvrnnirinininnciiiicccccenes 54-2
54.3 Concurrency and TranSaCtiONSccocoeueuiiurieiiiiniciec e 54-3
54.4 Concurrency and SECUTILYcocoeiiiiirieiiiiiccieie et 54-3
54.5 Thejobs Concurrency EXample ..ot 54-3
54.5.1 Running the jobs EXample..........cccccooviiiiiiiiiiiiiiiiiices 54-4
54.5.1.1 To Configure GlassFish Server for the Basic Concurrency Example................ 54-4
54.5.1.2 To Build, Package, and Deploy the jobs Example Using NetBeans IDE 54-5
54.5.1.3 To Build, Package, and Deploy the jobs Example Using Maven........................ 54-5
54.5.1.4 To Run the jobs Example and Submit Jobs With Low Priority.......cccccooeeuene. 54-5
54.5.1.5 To Run the jobs Example and Submit Jobs With High Priority........c.cccccceucuce. 54-6

Part XI Case Studies

55 Duke's Bookstore Case Study Example
55.1 Design and Architecture of Duke's BOOKSLOTE............ccoovriiiiiiniiiiiiccccicccccecenas 55-1
55.2 The Duke's Bookstore INterface ... 55-2
55.2.1 The Book Java Persistence API ENtity.........ccccccooiiiiiiiiiiiiiiicccccccccee, 55-2
55.2.2 Enterprise Beans Used in Duke's BOOKStOrecccovueiiiiiiiviiniiiiiccicccccee 55-3
55.2.3 Facelets Pages and Managed Beans Used in Duke's Bookstore...........c.ccccccvvevennnnn. 55-3
55.2.4 Custom Components and Other Custom Objects Used in Duke's Bookstore......... 55-4
55.2.5 Properties Files Used in Duke's BOOKSTOTeccccccciuiiiiiiiiiiiiiiiccccccecceees 55-5
55.2.6 Deployment Descriptors Used in Duke's BooKstorecccccovvevviiiiiiiiiiniiniicninnnn, 55-6
55.3 Running the Duke's Bookstore Case Study Application..........cccocoeoevivviecriininiccieicnnn, 55-6
55.3.1 To Build and Deploy Duke's Bookstore Using NetBeans IDEccccccccceuennene. 55-6
556.3.2 To Build and Deploy Duke's Bookstore Using Maven...........ccccooirieieiniiiciiiininen 55-6
55.3.3 To Run Duke's BOOKSEOTEcccoueueuieiririiiiiiieiciciiiecet ettt 55-7

Index

XXXVi

Audience

Preface

This tutorial is a guide to developing enterprise applications for the Java Platform,
Enterprise Edition 7 (Java EE 7) using GlassFish Server Open Source Edition.

Oracle GlassFish Server, a Java EE compatible application server, is based on GlassFish
Server Open Source Edition, the leading open-source and open-community platform
for building and deploying next-generation applications and services. GlassFish Server
Open Source Edition, developed by the GlassFish project open-source community at
https://glassfish.java.net/, is the first compatible implementation of the
Java EE 7 platform specification. This lightweight, flexible, and open-source
application server enables organizations not only to leverage the new capabilities
introduced within the Java EE 7 specification, but also to add to their existing
capabilities through a faster and more streamlined development and deployment
cycle. Oracle GlassFish Server, the product version, and GlassFish Server Open Source
Edition, the open-source version, are hereafter referred to as GlassFish Server.

The following topics are addressed here:
= Audience

= Documentation Accessibility

= Before You Read This Book

= Related Documentation

= Conventions

s Default Paths and File Names

This tutorial is intended for programmers interested in developing and deploying Java
EE 7 applications. It covers the technologies comprising the Java EE platform and
describes how to develop Java EE components and deploy them on the Java EE
Software Development Kit (SDK).

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

XXXVii

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Before You Read This Book

Before proceeding with this tutorial, you should have a good knowledge of the Java
programming language. A good way to get to that point is to work through the Java
Tutorials (http://docs.oracle.com/javase/tutorial/index.html).

Related Documentation

The GlassFish Server documentation set describes deployment planning and system
installation. To obtain documentation for GlassFish Server Open Source Edition, go to
https://glassfish.java.net/docs/.

The Java EE 7 API specification can be viewed at
http://docs.oracle.com/javaee/7/api/ and is also provided in the Java EE 7
SDK.

Additionally, the Java EE Specifications at
http://www.oracle.com/technetwork/java/javaee/tech/index.html
might be useful.

For information about creating enterprise applications in the NetBeans Integrated
Development Environment (IDE), see http: //www.netbeans.org/kb/.

For information about the Java DB database for use with the GlassFish Server, see
http://www.oracle.com/technetwork/java/javadb/overview/index.htm
1.

The GlassFish Samples project is a collection of sample applications that demonstrate a
broad range of Java EE technologies. The GlassFish Samples are bundled with the Java
EE Software Development Kit (SDK) and are also available from the GlassFish
Samples project page at https://glassfish-samples.java.net/.

Conventions

XXXViii

The following table describes the typographic conventions that are used in this book.

Convention Meaning Example

Boldface Boldface type indicates graphical From the File menu, select Open Project.
user interface elements associated
with an action, or terms defined in
text or the glossary.

A cache is a copy that is stored locally.

Monospace Monospace type indicates the names Edit your .login file.
of files and directories, commands . .
L. . Use 1s -a to list all files.
within a paragraph, URLs, code in
examples, text that appears on the machine_name% you have mail.
screen, or text that you enter.

Convention Meaning Example

Italic Italic type indicates book titles, Read Chapter 6 in the User’s Guide.
emphasis, or placeholder variables
for which you supply particular
values. The command to remove a file is rm

filename.

Do not save the file.

Default Paths and File Names

The following table describes the default paths and file names that are used in this

book.
Placeholder Description Default Value
as-install Represents the base Installations on the Solaris operating system,

installation directory for the Linux operating system, and Mac operating
GlassFish Server or the SDK system:
of which the GlassFish

Server is a part user’s-home-directory/glassfishd/glassfish

Windows, all installations:

SystemDrive: \glassfish4\glassfish

as-install-parent Represents the parent of the Installations on the Solaris operating system,
base installation directory Linux operating system, and Mac operating
for GlassFish Server. system:

user’s-home-directory/glassfishd
Windows, all installations:

SystemDrive: \glassfish4

tut-install Represents the base as-install-parent/docs/javaee-tutorial
installation directory for the
Java EE Tutorial after you
install the GlassFish Server
or the SDK and run the
Update Tool.

domain-dir Represents the directory in as-install/domains/domainl
which a domain's
configuration is stored.

XXXiX

xl

Part |

Introduction

Part I introduces the platform, the tutorial, and the examples. This part contains the
following chapters:

s Chapter 1, "Overview"

» Chapter 2, "Using the Tutorial Examples"

1

Overview

This chapter introduces you to Java EE enterprise application development. Here you
will review development basics, learn about the Java EE architecture and APIs,
become acquainted with important terms and concepts, and find out how to approach
Java EE application programming, assembly, and deployment.

Developers today increasingly recognize the need for distributed, transactional, and
portable applications that leverage the speed, security, and reliability of server-side
technology. Enterprise applications provide the business logic for an enterprise. They
are centrally managed and often interact with other enterprise software. In the world
of information technology, enterprise applications must be designed, built, and
produced for less money, with greater speed, and with fewer resources.

With the Java Platform, Enterprise Edition (Java EE), development of Java enterprise
applications has never been easier or faster. The aim of the Java EE platform is to
provide developers with a powerful set of APIs while shortening development time,
reducing application complexity, and improving application performance.

The Java EE platform is developed through the Java Community Process (JCP), which
is responsible for all Java technologies. Expert groups, composed of interested parties,
have created Java Specification Requests (JSRs) to define the various Java EE
technologies. The work of the Java Community under the JCP program helps to ensure
Java technology's standard of stability and cross-platform compatibility.

The Java EE platform uses a simplified programming model. XML deployment
descriptors are optional. Instead, a developer can simply enter the information as an
annotation directly into a Java source file, and the Java EE server will configure the
component at deployment and runtime. These annotations are generally used to
embed in a program data that would otherwise be furnished in a deployment
descriptor. With annotations, you put the specification information in your code next
to the program element affected.

In the Java EE platform, dependency injection can be applied to all resources a
component needs, effectively hiding the creation and lookup of resources from
application code. Dependency injection can be used in EJB containers, web containers,
and application clients. Dependency injection allows the Java EE container to
automatically insert references to other required components or resources, using
annotations.

This tutorial uses examples to describe the features available in the Java EE platform
for developing enterprise applications. Whether you are a new or experienced
Enterprise developer, you should find the examples and accompanying text a valuable
and accessible knowledge base for creating your own solutions.

The following topics are addressed here:

» Java EE 7 Platform Highlights

Overview 1-1

Java EE 7 Platform Highlights

= Java EE Application Model

s Distributed Multitiered Applications

» Java EE Containers

s Web Services Support

= Java EE Application Assembly and Deployment

= Development Roles

s JavaEE7 APIs

s Java EE 7 APIs in the Java Platform, Standard Edition 7

s GlassFish Server Tools

1.1 Java EE 7 Platform Highlights

The most important goal of the Java EE 7 platform is to simplify development by
providing a common foundation for the various kinds of components in the Java EE
platform. Developers benefit from productivity improvements with more annotations
and less XML configuration, more Plain Old Java Objects (POJOs), and simplified
packaging. The Java EE 7 platform includes the following new features:

= New technologies, including the following:
- Batch Applications for the Java Platform
- Concurrency Utilities for Java EE
- Java API for JSON Processing (JSON-P)
— Java API for WebSocket

= New features for Enterprise JavaBeans (EJB) components (see Enterprise
JavaBeans Technology for details)

= New features for servlets (see Java Servlet Technology for details)

= New features for JavaServer Faces components (see JavaServer Faces Technology
for details)

= New features for the Java Message Service (JMS) (see Java Message Service API for
details)

1.2 Java EE Application Model

The Java EE application model begins with the Java programming language and the
Java virtual machine. The proven portability, security, and developer productivity they
provide forms the basis of the application model. Java EE is designed to support
applications that implement enterprise services for customers, employees, suppliers,
partners, and others who make demands on or contributions to the enterprise. Such
applications are inherently complex, potentially accessing data from a variety of
sources and distributing applications to a variety of clients.

To better control and manage these applications, the business functions to support
these various users are conducted in the middle tier. The middle tier represents an
environment that is closely controlled by an enterprise's information technology
department. The middle tier is typically run on dedicated server hardware and has
access to the full services of the enterprise.

1-2 The Java EE 7 Tutorial

Distributed Multitiered Applications

The Java EE application model defines an architecture for implementing services as
multitier applications that deliver the scalability, accessibility, and manageability
needed by enterprise-level applications. This model partitions the work needed to
implement a multitier service into the following parts:

s The business and presentation logic to be implemented by the developer
s The standard system services provided by the Java EE platform

The developer can rely on the platform to provide solutions for the hard systems-level
problems of developing a multitier service.

1.3 Distributed Multitiered Applications

The Java EE platform uses a distributed multitiered application model for enterprise
applications. Application logic is divided into components according to function, and
the application components that make up a Java EE application are installed on
various machines, depending on the tier in the multitiered Java EE environment to
which the application component belongs.

Figure 1-1 shows two multitiered Java EE applications divided into the tiers described
in the following list. The Java EE application parts shown in Figure 1-1 are presented
in Java EE Components.

» Client-tier components run on the client machine.

= Web-tier components run on the Java EE server.

= Business-tier components run on the Java EE server.

» Enterprise information system (EIS)-tier software runs on the EIS server.

Although a Java EE application can consist of all tiers shown in Figure 1-1, Java EE
multitiered applications are generally considered to be three-tiered applications
because they are distributed over three locations: client machines, the Java EE server
machine, and the database or legacy machines at the back end. Three-tiered
applications that run in this way extend the standard two-tiered client-and-server
model by placing a multithreaded application server between the client application
and back-end storage.

Overview 1-3

Distributed Multitiered Applications

Figure 1-1 Multitiered Applications

Java EE Java EE
Application 1
Client Client
_— Tier Machine
Application
Client

JavaServer |
Faces
Pages Web
Tier
- ‘ Java EE
Server
Enterprise Enterprise l
Beans Beans Business
* * Tier

4

‘ . EIS Database
E_j'/ Database E\jj:: Database Tier Server
1.3.1 Security

Although other enterprise application models require platform-specific security
measures in each application, the Java EE security environment enables security
constraints to be defined at deployment time. The Java EE platform makes
applications portable to a wide variety of security implementations by shielding
application developers from the complexity of implementing security features.

The Java EE platform provides standard declarative access control rules that are
defined by the developer and interpreted when the application is deployed on the
server. Java EE also provides standard login mechanisms so application developers do
not have to implement these mechanisms in their applications. The same application
works in a variety of security environments without changing the source code.

1.3.2 Java EE Components

Java EE applications are made up of components. A Java EE component is a
self-contained functional software unit that is assembled into a Java EE application
with its related classes and files and that communicates with other components.

The Java EE specification defines the following Java EE components:
= Application clients and applets are components that run on the client.

= Java Servlet, JavaServer Faces, and JavaServer Pages (JSP) technology components
are web components that run on the server.

1-4 The Java EE 7 Tutorial

Distributed Multitiered Applications

» Enterprise JavaBeans (EJB) components (enterprise beans) are business
components that run on the server.

Java EE components are written in the Java programming language and are compiled
in the same way as any program in the language. The differences between Java EE
components and "standard" Java classes are that Java EE components are assembled
into a Java EE application, they are verified to be well formed and in compliance with
the Java EE specification, and they are deployed to production, where they are run and
managed by the Java EE server.

1.3.3 Java EE Clients

A Java EE client is usually either a web client or an application client.

1.3.3.1 Web Clients

A web client consists of two parts:

= Dynamic web pages containing various types of markup language (HTML, XML,
and so on), which are generated by web components running in the web tier

= A web browser, which renders the pages received from the server

A web client is sometimes called a thin client. Thin clients usually do not query
databases, execute complex business rules, or connect to legacy applications. When
you use a thin client, such heavyweight operations are off-loaded to enterprise beans
executing on the Java EE server, where they can leverage the security, speed, services,
and reliability of Java EE server-side technologies.

1.3.3.2 Application Clients

An application client runs on a client machine and provides a way for users to handle
tasks that require a richer user interface than can be provided by a markup language.
An application client typically has a graphical user interface (GUI) created from the
Swing or the Abstract Window Toolkit (AWT) API, but a command-line interface is
certainly possible.

Application clients directly access enterprise beans running in the business tier.
However, if application requirements warrant it, an application client can open an
HTTP connection to establish communication with a servlet running in the web tier.
Application clients written in languages other than Java can interact with Java EE
servers, enabling the Java EE platform to interoperate with legacy systems, clients, and
non-Java languages.

1.3.3.3 Applets

A web page received from the web tier can include an embedded applet. Written in the
Java programming language, an applet is a small client application that executes in the
Java virtual machine installed in the web browser. However, client systems will likely
need the Java Plug-in and possibly a security policy file for the applet to successfully
execute in the web browser.

Web components are the preferred API for creating a web client program, because no
plug-ins or security policy files are needed on the client systems. Also, web
components enable cleaner and more modular application design because they
provide a way to separate applications programming from web page design.
Personnel involved in web page design thus do not need to understand Java
programming language syntax to do their jobs.

Overview 1-5

Distributed Multitiered Applications

1.3.3.4 The JavaBeans Component Architecture

The server and client tiers might also include components based on the JavaBeans
component architecture (JavaBeans components) to manage the data flow between the
following:

= Anapplication client or applet and components running on the Java EE server
= Server components and a database

JavaBeans components are not considered Java EE components by the Java EE
specification.

JavaBeans components have properties and have get and set methods for accessing
the properties. JavaBeans components used in this way are typically simple in design
and implementation but should conform to the naming and design conventions
outlined in the JavaBeans component architecture.

1.3.3.5 Java EE Server Communications

Figure 1-2 shows the various elements that can make up the client tier. The client
communicates with the business tier running on the Java EE server either directly or,
as in the case of a client running in a browser, by going through web pages or servlets
running in the web tier.

Figure 1-2 Server Communication

Application Client and | Web Browser, Web /
Optional JavaBeans Pages, Applets, /
Components and Optional
p Y JavaBeans &)
\‘R‘} Components \‘g} C'I|'|i<eerr]t

>

r’

Business Tier Java EE
Server

7/

74

<«

1.3.4 Web Components

Java EE web components are either servlets or web pages created using JavaServer
Faces technology and/or JSP technology (JSP pages). Servlets are Java programming
language classes that dynamically process requests and construct responses. JSP pages
are text-based documents that execute as servlets but allow a more natural approach to
creating static content. JavaServer Faces technology builds on servlets and JSP
technology and provides a user interface component framework for web applications.

Static HTML pages and applets are bundled with web components during application
assembly but are not considered web components by the Java EE specification.
Server-side utility classes can also be bundled with web components and, like HTML
pages, are not considered web components.

1-6 The Java EE 7 Tutorial

Distributed Multitiered Applications

As shown in Figure 1-3, the web tier, like the client tier, might include a JavaBeans
component to manage the user input and send that input to enterprise beans running
in the business tier for processing.

Figure 1-3 Web Tier and Java EE Applications

Application Client | Web Browser, Web /
and Optional Pages, Applets,
JavaBeans and Optional
Components JavaBeans
¥ Components & ;
Y '
&\Q \Q‘!\Q C_Il_|lent
R o} R ol ier
JavaBeans Web Pages
Components Servlets
(Optional) Web ,
5 Tier
! ') Java EE
Business Server
Tier

1.3.5 Business Components

Business code, which is logic that solves or meets the needs of a particular business
domain such as banking, retail, or finance, is handled by enterprise beans running in
either the business tier or the web tier. Figure 1-4 shows how an enterprise bean
receives data from client programs, processes it (if necessary), and sends it to the
enterprise information system tier for storage. An enterprise bean also retrieves data
from storage, processes it (if necessary), and sends it back to the client program.

Overview 1-7

Java EE Containers

Figure 1-4 Business and EIS Tiers

Application Client and | Web Browser, Web /
Optional JavaBeans Pages, Applets, and ~/
Components Optional JavaBeans -
& Components \‘\ \(;I\/t
) e T
R\ 9 ler
'
JavaBeans Web Pages

Components Servlets
(Optional) | / Web

/QQ Tier
* ¢ oo

A

v

Java Persistence Entities

N

|

Session Beans Business Java EE
Message-Driven Beans * Tier Server
A
|
A\
-~ Database
_ # and Legacy EIS
Systems Tier

1.3.6 Enterprise Information System Tier

The enterprise information system tier handles EIS software and includes enterprise
infrastructure systems, such as enterprise resource planning (ERP), mainframe
transaction processing, database systems, and other legacy information systems. For
example, Java EE application components might need access to enterprise information
systems for database connectivity.

1.4 Java EE Containers

Normally, thin-client multitiered applications are hard to write because they involve
many lines of intricate code to handle transaction and state management,
multithreading, resource pooling, and other complex low-level details. The
component-based and platform-independent Java EE architecture makes Java EE
applications easy to write because business logic is organized into reusable
components. In addition, the Java EE server provides underlying services in the form
of a container for every component type. Because you do not have to develop these
services yourself, you are free to concentrate on solving the business problem at hand.

1.4.1 Container Services

Containers are the interface between a component and the low-level platform-specific
functionality that supports the component. Before it can be executed, a web, enterprise
bean, or application client component must be assembled into a Java EE module and
deployed into its container.

1-8 The Java EE 7 Tutorial

Java EE Containers

The assembly process involves specifying container settings for each component in the
Java EE application and for the Java EE application itself. Container settings customize
the underlying support provided by the Java EE server, including such services as
security, transaction management, Java Naming and Directory Interface (JNDI) API
lookups, and remote connectivity. Here are some of the highlights.

s The Java EE security model lets you configure a web component or enterprise
bean so that system resources are accessed only by authorized users.

s The Java EE transaction model lets you specify relationships among methods that
make up a single transaction so that all methods in one transaction are treated as a
single unit.

= JNDI lookup services provide a unified interface to multiple naming and directory
services in the enterprise so that application components can access these services.

s The Java EE remote connectivity model manages low-level communications
between clients and enterprise beans. After an enterprise bean is created, a client
invokes methods on it as if it were in the same virtual machine.

Because the Java EE architecture provides configurable services, application
components within the same Java EE application can behave differently based on
where they are deployed. For example, an enterprise bean can have security settings
that allow it a certain level of access to database data in one production environment
and another level of database access in another production environment.

The container also manages nonconfigurable services, such as enterprise bean and
servlet lifecycles, database connection resource pooling, data persistence, and access to
the Java EE platform APIs (see Java EE 7 APIs).

1.4.2 Container Types

The deployment process installs Java EE application components in the Java EE
containers as illustrated in Figure 1-5.

Overview 1-9

Web Services Support

Figure 1-5 Java EE Server and Containers

Application Client
Container
Client
Machine
Application
Client
Servlet
« Web
! Container
\ B
Java EE
v Server
'
Enterprise Enterprise
Bean Bean EJB
. . Container

A
v
| 3

Database

= Java EE server: The runtime portion of a Java EE product. A Java EE server
provides EJB and web containers.

= Enterprise JavaBeans (EJB) container: Manages the execution of enterprise beans
for Java EE applications. Enterprise beans and their container run on the Java EE
server.

= Web container: Manages the execution of web pages, servlets, and some E]JB
components for Java EE applications. Web components and their container run on
the Java EE server.

= Application client container: Manages the execution of application client
components. Application clients and their container run on the client.

= Applet container: Manages the execution of applets. Consists of a web browser
and Java Plug-in running on the client together.

1.5 Web Services Support

Web services are web-based enterprise applications that use open, XML-based
standards and transport protocols to exchange data with calling clients. The Java EE
platform provides the XML APIs and tools you need to quickly design, develop, test,
and deploy web services and clients that fully interoperate with other web services
and clients running on Java-based or non-Java-based platforms.

To write web services and clients with the Java EE XML APIs, all you do is pass
parameter data to the method calls and process the data returned; for

1-10 The Java EE 7 Tutorial

Web Services Support

1.5.1 XML

document-oriented web services, you send documents containing the service data
back and forth. No low-level programming is needed, because the XML API
implementations do the work of translating the application data to and from an
XML-based data stream that is sent over the standardized XML-based transport
protocols. These XML-based standards and protocols are introduced in the following
sections.

The translation of data to a standardized XML-based data stream is what makes web
services and clients written with the Java EE XML APIs fully interoperable. This does
not necessarily mean that the data being transported includes XML tags, because the
transported data can itself be plain text, XML data, or any kind of binary data, such as
audio, video, maps, program files, computer-aided design (CAD) documents, and the
like. The next section introduces XML and explains how parties doing business can
use XML tags and schemas to exchange data in a meaningful way.

Extensible Markup Language (XML) is a cross-platform, extensible, text-based
standard for representing data. Parties that exchange XML data can create their own
tags to describe the data, set up schemas to specify which tags can be used in a
particular kind of XML document, and use XML style sheets to manage the display
and handling of the data.

For example, a web service can use XML and a schema to produce price lists, and
companies that receive the price lists and schema can have their own style sheets to
handle the data in a way that best suits their needs. Here are examples.

= One company might put XML pricing information through a program to translate
the XML to HTML so that it can post the price lists to its intranet.

= A partner company might put the XML pricing information through a tool to
create a marketing presentation.

= Another company might read the XML pricing information into an application for
processing.

1.5.2 SOAP Transport Protocol

Client requests and web service responses are transmitted as Simple Object Access
Protocol (SOAP) messages over HI'TP to enable a completely interoperable exchange
between clients and web services, all running on different platforms and at various
locations on the Internet. HTTP is a familiar request-and-response standard for
sending messages over the Internet, and SOAP is an XML-based protocol that follows
the HTTP request-and-response model.

The SOAP portion of a transported message does the following:

s Defines an XML-based envelope to describe what is in the message and explain
how to process the message

s Includes XML-based encoding rules to express instances of application-defined
data types within the message

s Defines an XML-based convention for representing the request to the remote
service and the resulting response

1.5.3 WSDL Standard Format

The Web Services Description Language (WSDL) is a standardized XML format for
describing network services. The description includes the name of the service, the

Overview 1-11

Java EE Application Assembly and Deployment

location of the service, and ways to communicate with the service. WSDL service
descriptions can be published on the Web. GlassFish Server provides a tool for
generating the WSDL specification of a web service that uses remote procedure calls to
communicate with clients.

1.6 Java EE Application Assembly and Deployment

A Java EE application is packaged into one or more standard units for deployment to
any Java EE platform-compliant system. Each unit contains

= A functional component or components, such as an enterprise bean, web page,
servlet, or applet

= An optional deployment descriptor that describes its content

Once a Java EE unit has been produced, it is ready to be deployed. Deployment
typically involves using a platform's deployment tool to specify location-specific
information, such as a list of local users who can access it and the name of the local
database. Once deployed on a local platform, the application is ready to run.

1.7 Development Roles

Reusable modules make it possible to divide the application development and
deployment process into distinct roles so that different people or companies can
perform different parts of the process.

The first two roles, Java EE product provider and tool provider, involve purchasing
and installing the Java EE product and tools. After software is purchased and installed,
Java EE components can be developed by application component providers,
assembled by application assemblers, and deployed by application deployers. In a
large organization, each of these roles might be executed by different individuals or
teams. This division of labor works because each of the earlier roles outputs a portable
file that is the input for a subsequent role. For example, in the application component
development phase, an enterprise bean software developer delivers EJB JAR files. In
the application assembly role, another developer may combine these EJB JAR files into
a Java EE application and save it in an EAR file. In the application deployment role, a
system administrator at the customer site uses the EAR file to install the Java EE
application into a Java EE server.

The different roles are not always executed by different people. If you work for a small
company, for example, or if you are prototyping a sample application, you might
perform tasks in every phase.

1.7.1 Java EE Product Provider

The Java EE product provider is the company that designs and makes available for
purchase the Java EE platform APIs and other features defined in the Java EE
specification. Product providers are typically application server vendors that
implement the Java EE platform according to the Java EE 7 Platform specification.

1.7.2 Tool Provider

The tool provider is the company or person who creates development, assembly, and
packaging tools used by component providers, assemblers, and deployers.

1-12 The Java EE 7 Tutorial

Development Roles

1.7.3 Application Component Provider

The application component provider is the company or person who creates web
components, enterprise beans, applets, or application clients for use in Java EE
applications.

1.7.3.1 Enterprise Bean Developer

An enterprise bean developer performs the following tasks to deliver an EJB JAR file
that contains one or more enterprise beans:

= Writes and compiles the source code
» Specifies the deployment descriptor (optional)
» Packages the .class files and deployment descriptor into the EJB JAR file

1.7.3.2 Web Component Developer

A web component developer performs the following tasks to deliver a WAR file
containing one or more web components:

= Writes and compiles servlet source code
» Writes JavaServer Faces, JSP, and HTML files
» Specifies the deployment descriptor (optional)

» Packages the .class, . jsp, and.htnl files and deployment descriptor into the
WAR file

1.7.3.3 Application Client Developer

An application client developer performs the following tasks to deliver a JAR file
containing the application client:

= Writes and compiles the source code
= Specifies the deployment descriptor for the client (optional)
» Packages the .class files and deployment descriptor into the JAR file

1.7.4 Application Assembler

The application assembler is the company or person who receives application modules
from component providers and may assemble them into a Java EE application EAR
file. The assembler or deployer can edit the deployment descriptor directly or can use
tools that correctly add XML tags according to interactive selections.

A software developer performs the following tasks to deliver an EAR file containing
the Java EE application:

= Assembles EJB JAR and WAR files created in the previous phases into a Java EE
application (EAR) file

» Specifies the deployment descriptor for the Java EE application (optional)

= Verifies that the contents of the EAR file are well formed and comply with the Java
EE specification

1.7.5 Application Deployer and Administrator

The application deployer and administrator is the company or person who configures
and deploys application clients, web applications, Enterprise JavaBeans components,

Overview 1-13

Java EE 7 APIs

and Java EE applications, administers the computing and networking infrastructure

where Java EE components and applications run, and oversees the runtime

environment. Duties include setting transaction controls and security attributes and

specifying connections to databases.

During configuration, the deployer follows instructions supplied by the application
component provider to resolve external dependencies, specify security settings, and
assign transaction attributes. During installation, the deployer moves the application
components to the server and generates the container-specific classes and interfaces.

A deployer or system administrator performs the following tasks to install and

configure a Java EE application or components:

s Configures the Java EE application or components for the operational

environment

m Verifies that the contents of the EAR, JAR, and/or WAR filesare well formed and

comply with the Java EE specification

= Deploys (installs) the Java EE application or components into the Java EE server

1.8 Java EE 7 APIs

Figure 1-6 shows the relationships among the Java EE containers.

Figure 1-6 Java EE Containers

Client System

Browser

Application
Client
Container

A

Java EE Server

Web Container

Application
Client |

JavaServer
Servlet
Faces
EJB Container ‘ _,/
| EJB ‘ BE |] ’H j-/

Database

Figure 1-7 shows the availability of the Java EE 7 APIs in the web container.

1-14 The Java EE 7 Tutorial

Java EE 7 APIs

Figure 1-7 Java EE APIs in the Web Container

Web t WebSocket Java SE
Container

L oncurrency Utilities
\Eatch

| JSON-P

Bean Validation

EJB Lite

EL

JavaMail
JSP

JavaServer | connectors
Faces

Servlet

Java Persistence
JMS

Management
WS Metadata

Web Services
JACC

JASPIC
JAX-RS
JAX-WS
JSTL

JTA

CDI

Dependency Injection

h New in Java EE 7

Figure 1-8 shows the availability of the Java EE 7 APIs in the EJB container.

Overview 1-15

Java EE 7 APIs

Figure 1-8 Java EE APIs in the EJB Container

EJB Concurrency Utilities | Java SE
Container Batch

JSON-P

CDI

Dependency Injection

JavaMail

Java Persistence

JTA
Connectors
EJB JMS
mnagement

WS Metadata

Web Services
JACC

JASPIC

Bean Validation
JAX-RS
JAX-WS

h New in Java EE 7

Figure 1-9 shows the availability of the Java EE 7 APIs in the application client
container.

1-16 The Java EE 7 Tutorial

Java EE 7 APIs

Figure 1-9 Java EE APIs in the Application Client Container

Application Java Persistence Java SE
Client M
Container anagement

WS Metadata

Web Services

Application
Client JSON-P
JMS
JAX-WS

Bean Validation

JavaMail

CDI

Dependency Injection

L New in Java EE 7

The following sections give a brief summary of the technologies required by the Java
EE platform and the APIs used in Java EE applications.

1.8.1 Enterprise JavaBeans Technology

An Enterprise JavaBeans (EJB) component, or enterprise bean, is a body of code
having fields and methods to implement modules of business logic. You can think of
an enterprise bean as a building block that can be used alone or with other enterprise
beans to execute business logic on the Java EE server.

Enterprise beans are either session beans or message-driven beans.

= A session bean represents a transient conversation with a client. When the client
finishes executing, the session bean and its data are gone.

= A message-driven bean combines features of a session bean and a message
listener, allowing a business component to receive messages asynchronously.
Commonly, these are Java Message Service (JMS) messages.

In the Java EE 7 platform, new enterprise bean features include the following:
= Asynchronous local session beans in EJB Lite
= Non-persistent timers in EJB Lite

The Java EE 7 platform requires Enterprise JavaBeans 3.2 and Interceptors 1.2. The
Interceptors specification is part of the E]JB specification.

1.8.2 Java Servlet Technology

Java Servlet technology lets you define HTTP-specific servlet classes. A servlet class
extends the capabilities of servers that host applications accessed by way of a
request-response programming model. Although servlets can respond to any type of
request, they are commonly used to extend the applications hosted by web servers.

Overview 1-17

Java EE 7 APIs

In the Java EE 7 platform, new Java Servlet technology features include the following:
= Non-blocking I/O

= HTTP protocol upgrade

The Java EE 7 platform requires Servlet 3.1.

1.8.3 JavaServer Faces Technology

JavaServer Faces technology is a user interface framework for building web
applications. The main components of JavaServer Faces technology are as follows:

= A GUI component framework.

= A flexible model for rendering components in different kinds of HTML or different
markup languages and technologies. A Renderer object generates the markup to
render the component and converts the data stored in a model object to types that
can be represented in a view.

= A standard RenderKit for generating HTML/4.01 markup.
The following features support the GUI components:

s Input validation

= Event handling

= Data conversion between model objects and components

= Managed model object creation

= Page navigation configuration

= Expression Language (EL)

All this functionality is available using standard Java APIs and XML-based
configuration files.

In the Java EE 7 platform, new features of JavaServer Faces technology include the
following:

s HTML 5 friendly markup
= Faces Flows
= Resource library contracts

The Java EE 7 platform requires JavaServer Faces 2.2 and Expression Language 3.0.

1.8.4 JavaServer Pages Technology

JavaServer Pages (JSP) technology lets you put snippets of servlet code directly into a
text-based document. A JSP page is a text-based document that contains two types of
text:

= Static data, which can be expressed in any text-based format such as HTML or
XML

= JSP elements, which determine how the page constructs dynamic content

For information about JSP technology, see the The Java EE 5 Tutorial at
http://docs.oracle.com/javaee/5/tutorial/doc/.

The Java EE 7 platform requires JavaServer Pages 2.3 for compatibility with earlier
releases, but recommends the use of Facelets as the display technology in new
applications.

1-18 The Java EE 7 Tutorial

Java EE 7 APIs

1.8.5 JavaServer Pages Standard Tag Library

The JavaServer Pages Standard Tag Library (JSTL) encapsulates core functionality
common to many JSP applications. Instead of mixing tags from numerous vendors in
your JSP applications, you use a single, standard set of tags. This standardization
allows you to deploy your applications on any JSP container that supports JSTL and
makes it more likely that the implementation of the tags is optimized.

JSTL has iterator and conditional tags for handling flow control, tags for manipulating
XML documents, internationalization tags, tags for accessing databases using SQL,
and commonly used functions.

The Java EE 7 platform requires JSTL 1.2.

1.8.6 Java Persistence API

The Java Persistence API (JPA) is a Java standards-based solution for persistence.
Persistence uses an object/relational mapping approach to bridge the gap between an
object-oriented model and a relational database. The Java Persistence API can also be
used in Java SE applications, outside of the Java EE environment. Java Persistence
consists of the following areas:

» The Java Persistence API
s The query language
s Object/relational mapping metadata

The Java EE 7 platform requires Java Persistence API 2.1.

1.8.7 Java Transaction API

The Java Transaction API (JTA) provides a standard interface for demarcating
transactions. The Java EE architecture provides a default auto commit to handle
transaction commits and rollbacks. An auto commit means that any other applications
that are viewing data will see the updated data after each database read or write
operation. However, if your application performs two separate database access
operations that depend on each other, you will want to use the JTA API to demarcate
where the entire transaction, including both operations, begins, rolls back, and
commits.

The Java EE 7 platform requires Java Transaction API1.2.

1.8.8 Java API for RESTful Web Services

The Java API for RESTful Web Services (JAX-RS) defines APIs for the development of
web services built according to the Representational State Transfer (REST) architectural
style. A JAX-RS application is a web application that consists of classes packaged as a
servlet in a WAR file along with required libraries.

The Java EE 7 platform requires JAX-RS 2.0.

1.8.9 Managed Beans

Managed Beans, lightweight container-managed objects (POJOs) with minimal
requirements, support a small set of basic services, such as resource injection, lifecycle
callbacks, and interceptors. Managed Beans represent a generalization of the managed
beans specified by JavaServer Faces technology and can be used anywhere in a Java EE
application, not just in web modules.

Overview 1-19

Java EE 7 APIs

The Managed Beans specification is part of the Java EE 7 platform specification (JSR
342). The Java EE 7 platform requires Managed Beans 1.0.

1.8.10 Contexts and Dependency Injection for Java EE

Contexts and Dependency Injection for Java EE (CDI) defines a set of contextual
services, provided by Java EE containers, that make it easy for developers to use
enterprise beans along with JavaServer Faces technology in web applications.
Designed for use with stateful objects, CDI also has many broader uses, allowing
developers a great deal of flexibility to integrate different kinds of components in a
loosely coupled but type-safe way.

The Java EE 7 platform requires CDI 1.1.

1.8.11 Dependency Injection for Java

Dependency Injection for Java defines a standard set of annotations (and one interface)
for use on injectable classes.

In the Java EE platform, CDI provides support for Dependency Injection. Specifically,
you can use DI injection points only in a CDI-enabled application.

The Java EE 7 platform requires Dependency Injection for Java 1.0.

1.8.12 Bean Validation

The Bean Validation specification defines a metadata model and API for validating
data in JavaBeans components. Instead of distributing validation of data over several
layers, such as the browser and the server side, you can define the validation
constraints in one place and share them across the different layers.

The Java EE 7 platform requires Bean Validation 1.1.

1.8.13 Java Message Service API

The Java Message Service (JMS) API is a messaging standard that allows Java EE
application components to create, send, receive, and read messages. It enables
distributed communication that is loosely coupled, reliable, and asynchronous.

In the platform, new features of J]MS include the following.

= A new, simplified API offers a simpler alternative to the previous API. This API
includes a JMSContext object that combines the functions of a Connection and a
Session.

= All objects with a close method implement the java.lang.Autocloseable
interface so that they can be used in a Java SE 7 try-with-resources statement.

The Java EE 7 platform requires JMS 2.0.

1.8.14 Java EE Connector Architecture

The Java EE Connector Architecture is used by tools vendors and system integrators to
create resource adapters that support access to enterprise information systems that can
be plugged in to any Java EE product. A resource adapter is a software component
that allows Java EE application components to access and interact with the underlying
resource manager of the EIS. Because a resource adapter is specific to its resource
manager, a different resource adapter typically exists for each type of database or
enterprise information system.

1-20 The Java EE 7 Tutorial

Java EE 7 APIs

The Java EE Connector Architecture also provides a performance-oriented, secure,
scalable, and message-based transactional integration of Java EE based web services
with existing EISs that can be either synchronous or asynchronous. Existing
applications and EISs integrated through the Java EE Connector Architecture into the
Java EE platform can be exposed as XML-based web services by using JAX-WS and
Java EE component models. Thus JAX-WS and the Java EE Connector Architecture are
complementary technologies for enterprise application integration (EAI) and
end-to-end business integration.

The Java EE 7 platform requires Java EE Connector Architecture 1.7.

1.8.15 JavaMail API

Java EE applications use the JavaMail API to send email notifications. The JavaMail
API has two parts:

= An application-level interface used by the application components to send mail
= A service provider interface

The Java EE platform includes the JavaMail API with a service provider that allows
application components to send Internet mail.

The Java EE 7 platform requires JavaMail 1.5.

1.8.16 Java Authorization Contract for Containers

The Java Authorization Contract for Containers (JACC) specification defines a contract
between a Java EE application server and an authorization policy provider. All Java EE
containers support this contract.

The JACC specification defines java.security.Permission classes that satisfy the
Java EE authorization model. The specification defines the binding of container-access
decisions to operations on instances of these permission classes. It defines the
semantics of policy providers that use the new permission classes to address the
authorization requirements of the Java EE platform, including the definition and use of
roles.

The Java EE 7 platform requires JACC 1.5.

1.8.17 Java Authentication Service Provider Interface for Containers

The Java Authentication Service Provider Interface for Containers (JASPIC)
specification defines a service provider interface (SPI) by which authentication
providers that implement message authentication mechanisms may be integrated in
client or server message-processing containers or runtimes. Authentication providers
integrated through this interface operate on network messages provided to them by
their calling containers. The authentication providers transform outgoing messages so
that the source of each message can be authenticated by the receiving container, and
the recipient of the message can be authenticated by the message sender.
Authentication providers authenticate each incoming messages and return to their
calling containers the identity established as a result of the message authentication.

The Java EE 7 platform requires JASPIC 1.1.

1.8.18 Java API for WebSocket

WebSocket is an application protocol that provides full-duplex communications
between two peers over TCP. The Java API for WebSocket enables Java EE applications

Overview 1-21

Java EE 7 APlIs in the Java Platform, Standard Edition 7

to create endpoints using annotations that specify the configuration parameters of the
endpoint and designate its lifecycle callback methods.

The WebSocket API is new to the Java EE 7 platform. The Java EE 7 platform requires
Java API for WebSocket 1.0.

1.8.19 Java API for JSON Processing

JSON is a text-based data exchange format derived from JavaScript that is used in web
services and other connected applications. The Java API for JSON Processing (JSON-P)
enables Java EE applications to parse, transform, and query JSON data using the object
model or the streaming model.

JSON-P is new to the Java EE 7 platform. The Java EE 7 platform requires JSON-P 1.0.

1.8.20 Concurrency Utilities for Java EE

The Concurrency Utilities for Java EE is a standard API for providing asynchronous
capabilities to Java EE application components through the following types of objects:
managed executor service, managed scheduled executor service, managed thread
factory, and context service.

Concurrency Ultilities for Java EE are new to the Java EE 7 platform. The Java EE 7
platform requires Concurrency Ultilities for Java EE 1.0.

1.8.21 Batch Applications for the Java Platform

Batch jobs are tasks that can be executed without user interaction. The Batch
Applications for the Java Platform specification is a batch framework that provides
support for creating and running batch jobs in Java applications. The batch framework
consists of a batch runtime, a job specification language based on XML, a Java API to
interact with the batch runtime, and a Java API to implement batch artifacts.

Batch Applications for the Java Platform is new to the Java EE 7 platform. The Java EE
7 platform requires Batch Applications for the Java Platform 1.0.

1.9 Java EE 7 APIs in the Java Platform, Standard Edition 7

Several APIs that are required by the Java EE 7 platform are included in the Java
Platform, Standard Edition 7 (Java SE 7) and are thus available to Java EE applications.

1.9.1 Java Database Connectivity API

The Java Database Connectivity (JDBC) API lets you invoke SQL commands from Java
programming language methods. You use the JDBC APl in an enterprise bean when
you have a session bean access the database. You can also use the JDBC API from a
servlet or a JSP page to access the database directly without going through an
enterprise bean.

The JDBC API has two parts:

= An application-level interface used by the application components to access a
database

= A service provider interface to attach a JDBC driver to the Java EE platform

The Java SE 7 platform requires JDBC 4.1.

1-22 The Java EE 7 Tutorial

Java EE 7 APIs in the Java Platform, Standard Edition 7

1.9.2 Java Naming and Directory Interface API

The Java Naming and Directory Interface (JNDI) API provides naming and directory
functionality, enabling applications to access multiple naming and directory services
such as LDAP, DNS, and NIS. The JNDI API provides applications with methods for
performing standard directory operations, such as associating attributes with objects
and searching for objects using their attributes. Using JND], a Java EE application can
store and retrieve any type of named Java object, allowing Java EE applications to
coexist with many legacy applications and systems.

Java EE naming services provide application clients, enterprise beans, and web
components with access to a JNDI naming environment. A naming environment
allows a component to be customized without the need to access or change the
component's source code. A container implements the component's environment and
provides it to the component as a JNDI naming context.

A Java EE component can locate its environment naming context by using JNDI
interfaces. A component can create a javax.naming. InitialContext object and look
up the environment naming context in InitialContext under the name
java:comp/env. A component's naming environment is stored directly in the
environment naming context or in any of its direct or indirect subcontexts.

A Java EE component can access named system-provided and user-defined objects.
The names of system-provided objects, such as JTA UserTransaction objects, are
stored in the environment naming context java: comp/env. The Java EE platform
allows a component to name user-defined objects, such as enterprise beans,
environment entries, JDBC DataSource objects, and message connections. An object
should be named within a subcontext of the naming environment according to the
type of the object. For example, enterprise beans are named within the subcontext
java:comp/env/ejb, and JDBC DataSource references are named within the
subcontext java:comp/env/jdbe.

1.9.3 JavaBeans Activation Framework

The JavaBeans Activation Framework (JAF) is used by the JavaMail API. JAF provides
standard services to determine the type of an arbitrary piece of data, encapsulate
access to it, discover the operations available on it, and create the appropriate
JavaBeans component to perform those operations.

1.9.4 Java API for XML Processing

The Java API for XML Processing (JAXP), part of the Java SE platform, supports the
processing of XML documents using Document Object Model (DOM), Simple API for
XML (SAX), and Extensible Stylesheet Language Transformations (XSLT). JAXP
enables applications to parse and transform XML documents independently of a
particular XML processing implementation.

JAXP also provides namespace support, which lets you work with schemas that might
otherwise have naming conflicts. Designed to be flexible, JAXP lets you use any
XML-compliant parser or XSL processor from within your application and supports
the Worldwide Web Consortium (W3C) schema. You can find information on the W3C
schema at this URL: http://www.w3 .org/XML/Schema.

1.9.5 Java Architecture for XML Binding

The Java Architecture for XML Binding (JAXB) provides a convenient way to bind an
XML schema to a representation in Java language programs. JAXB can be used
independently or in combination with JAX-WS, where it provides a standard data

Overview 1-23

GlassFish Server Tools

binding for web service messages. All Java EE application client containers, web
containers, and EJB containers support the JAXB APIL

The Java EE 7 platform requires JAXB 2.2.

1.9.6 Java API for XML Web Services

The Java API for XML Web Services (JAX-WS) specification provides support for web
services that use the JAXB API for binding XML data to Java objects. The JAX-WS
specification defines client APIs for accessing web services as well as techniques for
implementing web service endpoints. The Implementing Enterprise Web Services
specification describes the deployment of JAX-WS-based services and clients. The EJB
and Java Servlet specifications also describe aspects of such deployment.
JAX-WS-based applications can be deployed using any of these deployment models.

The JAX-WS specification describes the support for message handlers that can process
message requests and responses. In general, these message handlers execute in the
same container and with the same privileges and execution context as the JAX-WS
client or endpoint component with which they are associated. These message handlers
have access to the same JNDI java:comp/env namespace as their associated
component. Custom serializers and deserializers, if supported, are treated in the same
way as message handlers.

The Java EE 7 platform requires JAX-WS 2.2.

1.9.7 SOAP with Attachments API for Java

The SOAP with Attachments API for Java (SAAJ) is a low-level API on which JAX-WS
depends. SAA] enables the production and consumption of messages that conform to
the SOAP 1.1 and 1.2 specifications and SOAP with Attachments note. Most
developers do not use the SAAJ AP], instead using the higher-level JAX-WS API.

1.9.8 Java Authentication and Authorization Service

The Java Authentication and Authorization Service (JAAS) provides a way for a Java
EE application to authenticate and authorize a specific user or group of users to run it.

JAAS is a Java programming language version of the standard Pluggable
Authentication Module (PAM) framework, which extends the Java Platform security
architecture to support user-based authorization.

1.9.9 Common Annotations for the Java Platform

Annotations enable a declarative style of programming in the Java platform.

The Java EE 7 platform requires Common Annotations for the Java Platform 1.2.

1.10 GlassFish Server Tools

The GlassFish Server is a compliant implementation of the Java EE 7 platform. In
addition to supporting all the APIs described in the previous sections, the GlassFish
Server includes a number of Java EE tools that are not part of the Java EE 7 platform
but are provided as a convenience to the developer.

This section briefly summarizes the tools that make up the GlassFish Server.
Instructions for starting and stopping the GlassFish Server, starting the Administration
Console, and starting and stopping the Java DB server are in Chapter 2, "Using the
Tutorial Examples".

1-24 The Java EE 7 Tutorial

GlassFish Server Tools

The GlassFish Server contains the tools listed in Table 1-1. Basic usage information for
many of the tools appears throughout the tutorial. For detailed information, see the
online help in the GUI tools.

Table 1-1 GlassFish Server Tools

Tool

Description

Administration Console

A web-based GUI GlassFish Server administration utility. Used to
stop the GlassFish Server and to manage users, resources, and
applications.

asadmin A command-line GlassFish Server administration utility. Used to
start and stop the GlassFish Server and to manage users, resources,
and applications.

appclient A command-line tool that launches the application client container

and invokes the client application packaged in the application client
JAR file.

capture-schema

A command-line tool to extract schema information from a database,
producing a schema file that the GlassFish Server can use for
container-managed persistence.

package-appclient

A command-line tool to package the application client container
libraries and JAR files.

Java DB database A copy of the Java DB server.

xjc A command-line tool to transform, or bind, a source XML schema to
a set of JAXB content classes in the Java programming language.

schemagen A command-line tool to create a schema file for each namespace
referenced in your Java classes.

wsimport A command-line tool to generate JAX-WS portable artifacts for a
given WSDL file. After generation, these artifacts can be packaged in
a WAR file with the WSDL and schema documents, along with the
endpoint implementation, and then deployed.

wsgen A command-line tool to read a web service endpoint class and

generate all the required JAX-WS portable artifacts for web service
deployment and invocation.

Overview 1-25

GlassFish Server Tools

1-26 The Java EE 7 Tutorial

2

Using the Tutorial Examples

This chapter tells you everything you need to know to install, build, and run the
examples.

The following topics are addressed here:

= Required Software

= Starting and Stopping the GlassFish Server
= Starting the Administration Console

= Starting and Stopping the Java DB Server

= Building the Examples

s Tutorial Example Directory Structure

= Java EE 7 Maven Archetypes in the Tutorial
» Getting the Latest Updates to the Tutorial

= Debugging Java EE Applications

2.1 Required Software
The following software is required to run the examples:
» Java Platform, Standard Edition
= Java EE 7 Software Development Kit
s Java EE 7 Tutorial Component
s NetBeans IDE
= Apache Maven

2.1.1 Java EE 7 Software Development Kit

GlassFish Server Open Source Edition 4 is targeted as the build and runtime
environment for the tutorial examples. To build, deploy, and run the examples, you
need a copy of the GlassFish Server and, optionally, NetBeans IDE. To obtain the
GlassFish Server, you must install the Java EE 7 Software Development Kit (SDK),
which you can download from
http://www.oracle.com/technetwork/java/javaee/downloads/index.ht
ml. Make sure you download the Java EE 7 SDK, not the Java EE 7 Web Profile SDK.
There are distributions of the Java EE 7 SDK with and without the Java Platform,
Standard Edition 7 Development Kit.

Using the Tutorial Examples 2-1

Required Software

2.1.1.1 SDK Installation Tips
During the installation of the SDK, do the following;:

= Allow the installer to download and configure the Update Tool. If you access the
Internet through a firewall, provide the proxy host and port.

= Configure the GlassFish Server administration user name as admin, and specify no
password. This is the default setting.

= Accept the default port values for the Admin Port (4848) and the HTTP Port
(8080).

= Do not select the check box to create an operating system service for the domain.

You can leave the check box to start the domain after creation selected if you wish, but
this is not required.

This tutorial refers to as-install-parent, the directory where you install the
GlassFish Server. For example, the default installation directory on Microsoft
Windows is C:\glassfish4, so as-install-parent is C:\glassfish4. The GlassFish
Server itself is installed in as-install, the glassfish directory under
as-install-parent. So on Microsoft Windows, as-install is
C:\glassfish4\glassfish.

After you install the GlassFish Server, add the following directories to your PATH to
avoid having to specify the full path when you use commands:

as-install-parent/bin
as-install/bin

2.1.2 Java Platform, Standard Edition

To build, deploy, and run the examples, you need a copy of the Java Platform,
Standard Edition 7 Development Kit (JDK 7). Some distributions of the Java EE 7 SDK
include JDK 7. You can download JDK 7 software separately from
http://www.oracle.com/technetwork/java/javase/downloads/index.ht
ml.

2.1.3 Java EE 7 Tutorial Component

The tutorial example source is contained in the tutorial component. To obtain the
tutorial component, use the Update Tool.

2.1.3.1 To Obtain the Tutorial Component Using the Update Tool
1. Start the Update Tool by doing one of the following:

s From the command line, enter the command updatetool.

s Ona Windows system, from the Start menu, select All Programs, then select
Java EE 7 SDK, then select Start Update Tool.

Expand the Java EE 7 SDK node.

Select Available Updates.

From the list, select the Java EE 7 Tutorial check box.
Click Install.

o g k0D

Accept the license agreement.

2-2 The Java EE 7 Tutorial

Required Software

After installation, the Java EE 7 Tutorial appears in the list of installed
components. The tool is installed in the
as-parent-install/docs/javaee-tutorial directory, which is referred to
throughout the Tutorial as tut-install. This directory contains two
subdirectories: docs and examples. The examples directory contains subdirectories
for each of the technologies discussed in the tutorial.

Next Steps

Updates to the Java EE 7 Tutorial are published periodically. For details on obtaining
these updates, see Getting the Latest Updates to the Tutorial.

2.1.4 NetBeans IDE

The NetBeans integrated development environment (IDE) is a free, open-source IDE
for developing Java applications, including enterprise applications. NetBeans IDE
supports the Java EE platform. You can build, package, deploy, and run the tutorial
examples from within NetBeans IDE.

To run the tutorial examples, you need the latest version of NetBeans IDE. You can
download NetBeans IDE from
https://www.netbeans.org/downloads/index.html. Make sure that you
download the Java EE bundle.

2.1.4.1 To Install NetBeans IDE without GlassFish Server

When you install NetBeans IDE, do not install the version of GlassFish Server that
comes with NetBeans IDE. To skip the installation of GlassFish Server, follow these
steps.

1. On the first page of the NetBeans IDE Installer wizard, deselect the check box for
GlassFish Server and click OK.

2. Accept both the License Agreement and the Junit License Agreement.
A few of the tutorial examples use the Junit library, so you should install it.

3. Continue with the installation of NetBeans IDE.

2.1.4.2 To Add GlassFish Server as a Server in NetBeans IDE

To run the tutorial examples in NetBeans IDE, you must add your GlassFish Server as
a server in NetBeans IDE. Follow these instructions to add the GlassFish Server to
NetBeans IDE.

1. From the Tools menu, select Servers.

2. In the Servers wizard, click Add Server.

3. Under Choose Server, select GlassFish Server and click Next.
4

Under Server Location, browse to the location of the Java EE 7 SDK and click
Next.

a

Under Domain Location, select Register Local Domain.

6. Click Finish.

2.1.5 Apache Maven

Maven is a Java technology-based build tool developed by the Apache Software
Foundation and is used to build, package, and deploy the tutorial examples. To run the

Using the Tutorial Examples 2-3

Starting and Stopping the GlassFish Server

tutorial examples from the command line, you need Maven 3.0 or higher. If you do not
already have Maven, you can install it from:

http://maven.apache.org
Be sure to add the maven-install/bin directory to your path.

If you are using NetBeans IDE to build and run the examples, it includes a copy of
Maven.

2.2 Starting and Stopping the GlassFish Server

You can start and stop the GlassFish Server using either NetBeans IDE or the
command line.

2.2.1 To Start the GlassFish Server Using NetBeans IDE
1. Click the Services tab.

2. Expand Servers.

3. Right-click the GlassFish Server instance and select Start.

2.2.2 To Stop the GlassFish Server Using NetBeans IDE

To stop the GlassFish Server using NetBeans IDE, right-click the GlassFish Server
instance and select Stop.

2.2.3 To Start the GlassFish Server from the Command Line

To start the GlassFish Server from the command line, open a terminal window or
command prompt and execute the following:

asadmin start-domain --verbose

A domain is a set of one or more GlassFish Server instances managed by one
administration server. Associated with a domain are the following;:

» The GlassFish Server's port number. The default is 8080.

s The administration server's port number. The default is 4848.

= Anadministration user name and password. The default user name is admin, and
by default no password is required.

You specify these values when you install the GlassFish Server. The examples in this
tutorial assume that you chose the default ports as well as the default user name and
lack of password.

With no arguments, the start-domain command initiates the default domain, which is
domainl. The --verbose flag causes all logging and debugging output to appear on the
terminal window or command prompt. The output also goes into the server log, which
is located in domain-dir/logs/server.log.

Or, on Windows, from the Start menu, select All Programs, then select Java EE 7
SDK, then select Start Application Server.

2.2.4 To Stop the GlassFish Server from the Command Line

To stop the GlassFish Server, open a terminal window or command prompt and
execute:

2-4 The Java EE 7 Tutorial

Starting and Stopping the Java DB Server

asadmin stop-domain domainl

Or, on Windows, from the Start menu, select All Programs, then select Java EE 7 SDK,
then select Stop Application Server.

2.3 Starting the Administration Console

To administer the GlassFish Server and manage users, resources, and Java EE
applications, use the Administration Console tool. The GlassFish Server must be
running before you invoke the Administration Console. To start the Administration
Console, open a browser at http://localhost:4848/.

Or, on Windows, from the Start menu, select All Programs, then select Java EE 7
SDK, then select Administration Console.

2.3.1 To Start the Administration Console in NetBeans IDE
1. Click the Services tab.

2. Expand Servers.

3. Right-click the GlassFish Server instance and select View Domain Admin
Console.

Note: NetBeans IDE uses your default web browser to open the
Administration Console.

2.4 Starting and Stopping the Java DB Server
The GlassFish Server includes the Java DB database server.

To start the Java DB server from the command line, open a terminal window or
command prompt and execute:

asadmin start-database

To stop the Java DB server from the command line, open a terminal window or
command prompt and execute:

asadmin stop-database

For information about the Java DB included with the GlassFish Server, see

http://www.oracle.com/technetwork/java/javadb/overview/index.htm
1.

2.4.1 To Start the Database Server Using NetBeans IDE

When you start the GlassFish Server using NetBeans IDE, the database server starts
automatically. If you ever need to start the server manually, however, follow these
steps.

1. Click the Services tab.
2. Expand Databases.
3. Right-click Java DB and select Start Server.

Next Steps
To stop the database using NetBeans IDE, right-click Java DB and select Stop Server.

Using the Tutorial Examples 2-5

Building the Examples

2.5 Building the Examples

The tutorial examples are distributed with a configuration file for either NetBeans IDE
or Maven. Either NetBeans IDE or Maven may be used to build, package, deploy, and
run the examples. Directions for building the examples are provided in each chapter.

2.6 Tutorial Example Directory Structure

To facilitate iterative development and keep application source separate from
compiled files, the tutorial examples use the Maven application directory structure.

Each application module has the following structure:
s pom.xml: Maven build file
m src/main/java: Java source files for the module

» src/main/resources: configuration files for the module, with the exception of web
applications

» src/main/webapp: web pages, style sheets, tag files, and images (web applications
only)

» src/main/webapp/WEB-INF: configuration files for web applications (web
applications only)

When an example has multiple application modules packaged into an EAR file, its
submodule directories use the following naming conventions:

» example-name-app-client: application clients
» example-name-ejb: enterprise bean JAR files

» example-name-war: web applications

» example-name-ear: enterprise applications

» example-name-common: library JAR containing components, classes, and files used
by other modules

The Maven build file (pom.xml) distributed with the examples contain goals to compile
and assemble the application into the target directory and deploy the archive to
GlassFish Server.

2.7 Java EE 7 Maven Archetypes in the Tutorial

Some of the chapters have instructions on how to build an example application using
Maven archetypes. Archetypes are templates for generating a particular Maven project.
The Tutorial includes several Maven archetypes for generating Java EE 7 projects.

2.7.1 Installing the Tutorial Archetypes

You must install the included Maven archetypes into your local Maven repository
before you can create new projects based on the archetypes. You can install the
archetypes using NetBeans IDE or Maven.

2.7.1.1 Installing the Tutorial Archetypes from NetBeans IDE
1. From the File menu choose Open Project.

2. Navigate to tut-install/examples/, select archetypes, and click Open Project.

3. In the Projects pane right-click on archetypes and select Build.

2-6 The Java EE 7 Tutorial

Debugging Java EE Applications

2.7.1.2 Installing the Tutorial Archetypes Using Maven

1. In aterminal window, navigate to tut-install/examples/archetypes.
2. Enter the following command:

mvn install

2.8 Getting the Latest Updates to the Tutorial

Check for any updates to the tutorial by using the Update Tool included with the Java
EE 7 SDK.

2.8.1 To Update the Tutorial Using the Command Line

1. Open a terminal window and enter the following command to display the Update
Tool:

updatetool

2. Select Available Updates in the tree to display a list of updated packages.
3. Look for updates to the Java EE 7 Tutorial (javaee-tutorial) package.

4. If there is an updated version of the Tutorial, select Java EE 7 Tutorial
(javaee-tutorial) and click Install.

2.8.2 To Update the Tutorial Using NetBeans IDE

1. Open the Services tab in NetBeans IDE and expand Servers.

2. Right-click the GlassFish Server instance and select View Domain Update Center
to display the Update Tool.

3. Select Available Updates in the tree to display a list of updated packages.
4. Look for updates to the Java EE 7 Tutorial (javaee-tutorial) package.

5. If there is an updated version of the Tutorial, select Java EE 7 Tutorial
(javaee-tutorial) and click Install.

2.9 Debugging Java EE Applications

This section explains how to determine what is causing an error in your application
deployment or execution.

2.9.1 Using the Server Log

One way to debug applications is to look at the server log in
domain-dir/logs/server.log. The log contains output from the GlassFish Server and
your applications. You can log messages from any Java class in your application with
System.out.println and the Java Logging APIs (documented at
http://docs.oracle.com/javase/7/docs/technotes/guides/logging/in
dex.html) and from web components with the ServletContext.log method.

If you use NetBeans IDE, logging output appears in the Output window as well as the
server log.

If you start the GlassFish Server with the --verbose flag, all logging and debugging
output will appear on the terminal window or command prompt and the server log. If

Using the Tutorial Examples 2-7

Debugging Java EE Applications

you start the GlassFish Server in the background, debugging information is available
only in the log. You can view the server log with a text editor or with the
Administration Console log viewer.

2.9.11

To Use the Administration Console Log Viewer

1. Select the GlassFish Server node.
2. Click View Log Files.

The log viewer opens and displays the last 40 entries.

3. To display other entries, follow these steps.

a.
b.

C.

Click Modify Search.
Specify any constraints on the entries you want to see.

Click Search at the top of the log viewer.

2.9.2 Using a Debugger

The GlassFish Server supports the Java Platform Debugger Architecture (JPDA). With
JPDA, you can configure the GlassFish Server to communicate debugging information
using a socket.

2.9.2.1 To Debug an Application Using a Debugger

1. Enable debugging in the GlassFish Server using the Administration Console:

a.

b.

C.

d.

Expand the Configurations node, then expand the server-config node.

Select the JVM Settings node. The default debug options are set to:
-agentlib:jdwp=transport=dt_socket, server=y, suspend=n, address=9009

As you can see, the default debugger socket port is 9009. You can change it to a
port not in use by the GlassFish Server or another service.

Select the Debug Enabled check box.

Click Save.

2. Stop the GlassFish Server and then restart it.

2-8 The Java EE 7 Tutorial

Part li

Platform Basics

Part Il introduces platform basics. This part contains the following chapters:
s Chapter 3, "Resource Creation"
» Chapter 4, "Injection”

» Chapter 5, "Packaging"

3

Resource Creation

A resource is a program object that provides connections to such systems as database
servers and messaging systems. Java EE components can access a wide variety of
resources, including databases, mail sessions, Java Message Service objects, and URLs.
The Java EE 7 platform provides mechanisms that allow you to access all these
resources in a similar manner. This chapter examines several types of resources and
explains how to create them.

The following topics are addressed here:
= Resources and JNDI Naming
= DataSource Objects and Connection Pools

» Creating Resources Administratively

3.1 Resources and JNDI Naming

In a distributed application, components need to access other components and
resources, such as databases. For example, a servlet might invoke remote methods on
an enterprise bean that retrieves information from a database. In the Java EE platform,
the Java Naming and Directory Interface (JNDI) naming service enables components
to locate other components and resources.

A resource is a program object that provides connections to systems, such as database
servers and messaging systems. (A Java Database Connectivity resource is sometimes
referred to as a data source.) Each resource object is identified by a unique,
people-friendly name, called the JNDI name. For example, the JNDI name of the
preconfigured JDBC resource for the Java DB database that is shipped with the
GlassFish Server is java:comp/DefaultDataSource.

An administrator creates resources in a JNDI namespace. In the GlassFish Server, you
can use either the Administration Console or the asadmin command to create
resources. Applications then use annotations to inject the resources. If an application
uses resource injection, the GlassFish Server invokes the JNDI API, and the application
is not required to do so. However, it is also possible for an application to locate
resources by making direct calls to the JNDI APL

A resource object and its JNDI name are bound together by the naming and directory
service. To create a new resource, a new name/object binding is entered into the JNDI
namespace. You inject resources by using the @Resource annotation in an application.

You can use a deployment descriptor to override the resource mapping that you
specify in an annotation. Using a deployment descriptor allows you to change an
application by repackaging it rather than by both recompiling the source files and

Resource Creation 3-1

DataSource Objects and Connection Pools

repackaging. However, for most applications, a deployment descriptor is not
necessary.

3.2 DataSource Objects and Connection Pools

To store, organize, and retrieve data, most applications use a relational database. Java
EE 7 components may access relational databases through the JDBC API. For
information on this API, see
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136
101.html.

In the JDBC AP]I, databases are accessed by using DataSource objects. A DataSource
has a set of properties that identify and describe the real-world data source that it
represents. These properties include such information as the location of the database
server, the name of the database, the network protocol to use to communicate with the
server, and so on. In the GlassFish Server, a data source is called a JDBC resource.

Applications access a data source by using a connection, and a DataSource object can
be thought of as a factory for connections to the particular data source that the
DataSource instance represents. In a basic DataSource implementation, a call to the
getConnection method returns a connection object that is a physical connection to the
data source.

A DataSource object may be registered with a JNDI naming service. If so, an
application can use the JNDI API to access that DataSource object, which can then be
used to connect to the data source it represents.

DataSource objects that implement connection pooling also produce a connection to
the particular data source that the DataSource class represents. The connection object
that the getConnection method returns is a handle to a PooledConnection object
rather than being a physical connection. An application uses the connection object in
the same way that it uses a connection. Connection pooling has no effect on
application code except that a pooled connection, like all connections, should always
be explicitly closed. When an application closes a connection that is pooled, the
connection is returned to a pool of reusable connections. The next time getConnection
is called, a handle to one of these pooled connections will be returned if one is
available. Because connection pooling avoids creating a new physical connection every
time one is requested, applications can run significantly faster.

A JDBC connection pool is a group of reusable connections for a particular database.
Because creating each new physical connection is time consuming, the server
maintains a pool of available connections to increase performance. When it requests a
connection, an application obtains one from the pool. When an application closes a
connection, the connection is returned to the pool.

Applications that use the Persistence API specify the DataSource object they are using
in the jta-data-source element of the persistence.xml file:

<jta-data-source>jdbc/MyOrderDB</jta-data-source>

This is typically the only reference to a JDBC object for a persistence unit. The
application code does not refer to any JDBC objects.

3.3 Creating Resources Administratively

Before you deploy or run many applications, you may need to create resources for
them. An application can include a glassfish-resources.xml file that can be used to
define resources for that application and others. You can then use use the asadmin

3-2 The Java EE 7 Tutorial

Creating Resources Administratively

command, specifying as the argument a file named glassfish-resources.xml, to
create the resources administratively, as shown.

asadmin create-resources glassfish-resources.xml

The glassfish-resources.xnl file can be created in any project using NetBeans IDE,
or by hand. Some of the JMS examples use this approach to resource creation. A file
for creating the resources needed for the JMS simple producer example can be found
in the jms/simple/producer/src/main/setup directory.

You could also use the asadmin create-jms-resource command to create the
resources for this example. When you are done using the resources, you would use
the asadmin list-jms-resources command to display their names, and the asadmin
delete-jms-resource command to remove them, regardless of the way you created
the resources.

Resource Creation 3-3

Creating Resources Administratively

3-4 The Java EE 7 Tutorial

4

Injection

This chapter provides an overview of injection in Java EE and describes the two
injection mechanisms provided by the platform: resource injection and dependency
injection.

Java EE provides injection mechanisms that enable your objects to obtain references to
resources and other dependencies without having to instantiate them directly. You
declare the required resources and other dependencies in your classes by decorating
fields or methods with one of the annotations that mark the field as an injection point.
The container then provides the required instances at run time. Injection simplifies
your code and decouples it from the implementations of its dependencies.

The following topics are addressed here:
= Resource Injection
= Dependency Injection

= Main Differences Between Resource Injection and Dependency Injection

4.1 Resource Injection

Resource injection enables you to inject any resource available in the JNDI namespace
into any container-managed object, such as a servlet, an enterprise bean, or a managed
bean. For example, you can use resource injection to inject data sources, connectors, or
custom resources available in the JNDI namespace.

The type you use for the reference to the injected instance is usually an interface,
which decouples your code from the implementation of the resource.

For example, the following code injects a data source object that provides connections
to the default Java DB database shipped with the GlassFish Server:

public class MyServlet extends HttpServlet {
@Resource (name="java:comp/DefaultDataSource")
private javax.sqgl.DataSource dsc;

}
In addition to field-based injection as in the previous example, you can inject resources
using method-based injection:

public class MyServlet extends HttpServlet {
private javax.sqgl.DataSource dsc;

@Resource (name="java:comp/DefaultDataSource")
public void setDsc(java.sqgl.DataSource ds) {
dsc = ds;

Injection 4-1

Dependency Injection

}

To use method-based injection, the setter method must follow the JavaBeans
conventions for property names: The method name must begin with set, have a void
return type, and only one parameter.

The Resource annotation is in the javax.annotation package and is defined in
JSR-250 (Common Annotations for the Java Platform). Resource injection resolves by
name, so it is not type safe: the type of the resource object is not known at compile
time, so you can get runtime errors if the types of the object and its reference do not
match.

4.2 Dependency Injection

Dependency injection enables you to turn regular Java classes into managed objects
and to inject them into any other managed object. Using dependency injection, your
code can declare dependencies on any managed object. The container automatically
provides instances of these dependencies at the injection points at run time, and it also
manages the lifecycle of these instances for you.

Dependency injection in Java EE defines scopes, which determine the lifecycle of the
objects that the container instantiates and injects. For example, a managed object that
is only needed to respond to a single client request (such as a currency converter) has a
different scope than a managed object that is needed to process multiple client
requests within a session (such as a shopping cart).

You can define managed objects (also called managed beans) that you can later inject
by assigning a scope to a regular class:

@javax.enterprise.context.RequestScoped
public class CurrencyConverter { ... }
Use the javax.inject.Inject annotation to inject managed beans; for example:
public class MyServlet extends HttpServlet {
@Inject CurrencyConverter cc;

}

As opposed to resource injection, dependency injection is type safe because it resolves
by type. To decouple your code from the implementation of the managed bean, you
can reference the injected instances using an interface type and have your managed
bean implement that interface.

For more information about dependency injection, see Chapter 31, "Introduction to
Contexts and Dependency Injection for Java EE" and JSR-299 (Contexts and
Dependency Injection for the Java EE Platform).

4.3 Main Differences Between Resource Injection and Dependency
Injection

Table 4-1 lists the main differences between resource injection and dependency
injection.

4-2 The Java EE 7 Tutorial

Main Differences Between Resource Injection and Dependency Injection

Table 4-1 Differences between Resource Injection and Dependency Injection

Can Inject JNDI Can Inject Regular
Injection Mechanism Resources Directly Classes Directly Resolves By Type Safe
Resource Injection Yes No Resource name No
Dependency Injection No Yes Type Yes

Injection 4-3

Main Differences Between Resource Injection and Dependency Injection

4-4 The Java EE 7 Tutorial

O

Packaging

This chapter describes packaging. A Java EE application is packaged into one or more
standard units for deployment to any Java EE platform-compliant system. Each unit
contains a functional component or components, such as an enterprise bean, web page,
servlet, or applet, and an optional deployment descriptor that describes its content.

The following topics are addressed here:

= Packaging Applications

= Packaging Enterprise Beans

= Packaging Web Archives

= Packaging Resource Adapter Archives

5.1 Packaging Applications

A Java EE application is delivered in a Java Archive (JAR) file, a Web Archive (WAR)
file, or an Enterprise Archive (EAR) file. A WAR or EAR file is a standard JAR (.jar)
file with a .war or .ear extension. Using JAR, WAR, and EAR files and modules
makes it possible to assemble a number of different Java EE applications using some of
the same components. No extra coding is needed; it is only a matter of assembling (or
packaging) various Java EE modules into Java EE JAR, WAR, or EAR files.

An EAR file (see Figure 5-1) contains Java EE modules and, optionally, deployment
descriptors. A deployment descriptor, an XML document with an .xml extension,
describes the deployment settings of an application, a module, or a component.
Because deployment descriptor information is declarative, it can be changed without
the need to modify the source code. At runtime, the Java EE server reads the
deployment descriptor and acts upon the application, module, or component
accordingly.

Deployment information is most commonly specified in the source code by
annotations. Deployment descriptors, if present, override what is specified in the
source code.

Packaging 5-1

Packaging Applications

Figure 5-1 EAR File Structure

‘ Assembly Root
I

| | |
META-INF Web EJB
Module Module

Application Client
Module

Resource Adapter
Module

application.xml
glassfish-application.xml
(optional)

The two types of deployment descriptors are Java EE and runtime. A Java EE
deployment descriptor is defined by a Java EE specification and can be used to
configure deployment settings on any Java EE-compliant implementation. A runtime
deployment descriptor is used to configure Java EE implementation-specific
parameters. For example, the GlassFish Server runtime deployment descriptor
contains such information as the context root of a web application, as well as GlassFish
Server implementation-specific parameters, such as caching directives. The GlassFish
Server runtime deployment descriptors are named glassfish-moduleType.xml and are
located in the same META-INF directory as the Java EE deployment descriptor.

A Java EE module consists of one or more Java EE components for the same container
type and, optionally, one component deployment descriptor of that type. An
enterprise bean module deployment descriptor, for example, declares transaction
attributes and security authorizations for an enterprise bean. A Java EE module can be
deployed as a stand-alone module.

Java EE modules are of the following types:

= EJB modules, which contain class files for enterprise beans and, optionally, an EJB
deployment descriptor. EJB modules are packaged as JAR files with a . jar
extension.

= Web modules, which contain servlet class files, web files, supporting class files,
GIF and HTML files, and, optionally, a web application deployment descriptor.
Web modules are packaged as JAR files with a .war (web archive) extension.

= Application client modules, which contain class files and, optionally, an
application client deployment descriptor. Application client modules are packaged
as JAR files with a . jar extension.

= Resource adapter modules, which contain all Java interfaces, classes, native
libraries, and, optionally, a resource adapter deployment descriptor. Together,
these implement the Connector architecture (see Java EE Connector Architecture)
for a particular EIS. Resource adapter modules are packaged as JAR files with an
.rar (resource adapter archive) extension.

5-2 The Java EE 7 Tutorial

Packaging Enterprise Beans

5.2 Packaging Enterprise Beans

This section explains how enterprise beans can be packaged in EJB JAR or WAR
modules.

5.2.1 Packaging Enterprise Beans in EJB JAR Modules

An EJB JAR file is portable and can be used for various applications.

To assemble a Java EE application, package one or more modules, such as E]B JAR
files, into an EAR file, the archive file that holds the application. When deploying the
EAR file that contains the enterprise bean's EJB JAR file, you also deploy the enterprise
bean to the GlassFish Server. You can also deploy an EJB JAR that is not contained in
an EAR file. Figure 5-2 shows the contents of an EJB JAR file.

Figure 5-2 Structure of an Enterprise Bean JAR

Assembly Root
|

META-INF
|
|

All .class files
for this module

ejb-jar.xml MANIFEST.MF

glassfish-ejb-jar.xml

(optional)

5.2.2 Packaging Enterprise Beans in WAR Modules

Enterprise beans often provide the business logic of a web application. In these cases,
packaging the enterprise bean within the web application's WAR module simplifies
deployment and application organization. Enterprise beans may be packaged within a
WAR module as Java programming language class files or within a JAR file that is
bundled within the WAR module.

To include enterprise bean class files in a WAR module, the class files should be in the
WEB-INF/classes directory.

To include a JAR file that contains enterprise beans in a WAR module, add the JAR to
the WEB-INF/1ib directory of the WAR module.

WAR modules that contain enterprise beans do not require an ejb-jar.xml
deployment descriptor. If the application uses ejb-jar.xml, it must be located in the
WAR module's WEB-INF directory.

JAR files that contain enterprise bean classes packaged within a WAR module are not
considered EJB JAR files, even if the bundled JAR file conforms to the format of an EJB
JAR file. The enterprise beans contained within the JAR file are semantically
equivalent to enterprise beans located in the WAR module's WEB-INF/classes
directory, and the environment namespace of all the enterprise beans are scoped to the
WAR module.

Packaging 5-3

Packaging Web Archives

For example, suppose that a web application consists of a shopping cart enterprise
bean, a credit card processing enterprise bean, and a Java servlet front end. The
shopping cart bean exposes a local, no-interface view and is defined as follows:

package com.example.cart;

@Stateless
public class CartBean { ... }

The credit card processing bean is packaged within its own JAR file, cc. jar, exposes a
local, no-interface view, and is defined as follows:

package com.example.cc;

@Stateless
public class CreditCardBean { ... }

The servlet, com.example.web. StoreServlet, handles the web front end and uses both
CartBean and CreditCardBean. The WAR module layout for this application looks as
follows:

WEB-INF/classes/com/example/cart/CartBean.class
WEB-INF/classes/com/example/web/StoreServlet
WEB-INF/lib/cc.jar

WEB-INF/ejb-jar.xml

WEB-INF/web.xml

5.3 Packaging Web Archives

In the Java EE architecture, a web module is the smallest deployable and usable unit
of web resources. A web module contains web components and static web content
files, such as images, which are called web resources. A Java EE web module
corresponds to a web application as defined in the Java Servlet specification.

In addition to web components and web resources, a web module can contain other
files:

= Server-side utility classes, such as shopping carts
s Client-side classes, such as utility classes

A web module has a specific structure. The top-level directory of a web module is the
document root of the application. The document root is where XHTML pages,
client-side classes and archives, and static web resources, such as images, are stored.

The document root contains a subdirectory named WEB-INF, which can contain the
following files and directories:

»s classes: A directory that contains server-side classes: servlets, enterprise bean
class files, utility classes, and JavaBeans components

s lib: A directory that contains JAR files that contain enterprise beans, and JAR
archives of libraries called by server-side classes

s Deployment descriptors, such as web.xml (the web application deployment
descriptor) and ejb-jar.xml (an EJB deployment descriptor)

A web module needs a web. xml file if it uses JavaServer Faces technology, if it must
specify certain kinds of security information, or if you want to override information
specified by web component annotations.

5-4 The Java EE 7 Tutorial

Packaging Resource Adapter Archives

You can also create application-specific subdirectories (that is, package directories) in
either the document root or the WEB-INF/classes/ directory.

A web module can be deployed as an unpacked file structure or can be packaged in a
JAR file known as a Web Archive (WAR) file. Because the contents and use of WAR
files differ from those of JAR files, WAR file names use a .war extension. The web
module just described is portable; you can deploy it into any web container that
conforms to the Java Servlet specification.

To deploy a WAR on the GlassFish Server, the file must contain a runtime deployment
descriptor. The runtime DD is an XML file that contains such information as the
context root of the web application and the mapping of the portable names of an
application's resources to the GlassFish Server's resources. The GlassFish Server web
application runtime DD is named glassfish-web.xml and is located in the WEB-INF
directory (it is rarely used). The structure of a web module that can be deployed on the
GlassFish Server is shown in Figure 5-3.

Figure 5-3 Web Module Structure

’ Assembly Root
[

|
WEB-INF

lib classes
T Web pages

web.xml

glassfish-web.xml

(optional)
Library All server-side
archive files .class files for

this web module

5.4 Packaging Resource Adapter Archives

A Resource Adapter Archive (RAR) file stores XML files, Java classes, and other
objects for Java EE Connector Architecture (JCA) applications. A resource adapter can
be deployed on any Java EE server, much like a Java EE application. A RAR file can be
contained in an Enterprise Archive (EAR) file, or it can exist as a separate file.

The RAR file contains:
= AJAR file with the implementation classes of the resource adapter

= An optional META-INF/ directory that can store an ra.xnl file and/or an
application server-specific deployment descriptor used for configuration
purposes.

A RAR file can be deployed on the application server as a standalone component or as
part of a larger application. In both cases, the adapter is available to all applications
using a lookup procedure.

Packaging 5-5

Packaging Resource Adapter Archives

5-6 The Java EE 7 Tutorial

Part lli

The Web Tier

Part I1I explores the technologies in the web tier. This part contains the following
chapters:

Chapter 6, "Getting Started with Web Applications"

Chapter 7, "JavaServer Faces Technology"

Chapter 8, "Introduction to Facelets"

Chapter 9, "Expression Language"

Chapter 10, "Using JavaServer Faces Technology in Web Pages"
Chapter 11, "Using Converters, Listeners, and Validators"

Chapter 12, "Developing with JavaServer Faces Technology"

Chapter 13, "Using Ajax with JavaServer Faces Technology"

Chapter 14, "Composite Components: Advanced Topics and Example"
Chapter 15, "Creating Custom UI Components and Other Custom Objects"
Chapter 16, "Configuring JavaServer Faces Applications"

Chapter 17, "Java Servlet Technology"

Chapter 18, "Java API for WebSocket"

Chapter 19, "J[SON Processing"

Chapter 20, "Internationalizing and Localizing Web Applications"

6

Getting Started with Web Applications

This chapter introduces web applications, which typically use JavaServer Faces
technology and/or Java Servlet technology. A web application is a dynamic extension
of a web or application server. Web applications are of the following types:

» Presentation-oriented: A presentation-oriented web application generates
interactive web pages containing various types of markup language (HTML,
XHTML, XML, and so on) and dynamic content in response to requests.
Development of presentation-oriented web applications is covered in Chapter 7,
"JavaServer Faces Technology," through Chapter 17, "Java Servlet Technology."

= Service-oriented: A service-oriented web application implements the endpoint of
a web service. Presentation-oriented applications are often clients of
service-oriented web applications. Development of service-oriented web
applications is covered in Chapter 22, "Building Web Services with JAX-WS," and
Chapter 23, "Building RESTful Web Services with JAX-RS," in Part IV, "Web
Services."

The following topics are addressed here:

= Web Applications

s Web Application Lifecycle

= A Web Module That Uses JavaServer Faces Technology: The hellol Example
= A Web Module That Uses Java Servlet Technology: The hello2 Example

= Configuring Web Applications

» Further Information about Web Applications

6.1 Web Applications

In the Java EE platform, web components provide the dynamic extension capabilities
for a web server. Web components can be Java servlets, web pages implemented with
JavaServer Faces technology, web service endpoints, or JSP pages. Figure 6-1
illustrates the interaction between a web client and a web application that uses a
servlet. The client sends an HTTP request to the web server. A web server that
implements Java Servlet and JavaServer Pages technology converts the request into an
HITPServletRequest object. This object is delivered to a web component, which can
interact with JavaBeans components or a database to generate dynamic content. The
web component can then generate an HTTPServletResponse or can pass the request to
another web component. A web component eventually generates a
HTTPServletResponse object. The web server converts this object to an HTTP response
and returns it to the client.

Getting Started with Web Applications 6-1

Web Application Lifecycle

Figure 6—1 Java Web Application Request Handling

el © Hit
! s pServlet (2 “ ‘
Client ™ prrp Request — ||| WeD — j
Request ||| Components
B Database
©/ le
® HttpServiet
“ATTP Response JavaBeans
Response | BEEEEEEE ||| Components
&
-
E\i
Database

Servlets are Java programming language classes that dynamically process requests and
construct responses. Java technologies, such as JavaServer Faces and Facelets, are used
for building interactive web applications. (Frameworks can also be used for this
purpose.) Although servlets and JavaServer Faces and Facelets pages can be used to
accomplish similar things, each has its own strengths. Servlets are best suited for
service-oriented applications (web service endpoints can be implemented as servlets)
and the control functions of a presentation-oriented application, such as dispatching
requests and handling nontextual data. JavaServer Faces and Facelets pages are more
appropriate for generating text-based markup, such as XHTML, and are generally
used for presentation-oriented applications.

Web components are supported by the services of a runtime platform called a web
container. A web container provides such services as request dispatching, security,
concurrency, and lifecycle management. A web container also gives web components
access to such APIs as naming, transactions, and email.

Certain aspects of web application behavior can be configured when the application is
installed, or deployed, to the web container. The configuration information can be
specified using Java EE annotations or can be maintained in a text file in XML format
called a web application deployment descriptor (DD). A web application DD must
conform to the schema described in the Java Servlet specification.

This chapter gives a brief overview of the activities involved in developing web
applications. First, it summarizes the web application lifecycle and explains how to
package and deploy very simple web applications on the GlassFish Server. The
chapter moves on to configuring web applications and discusses how to specify the
most commonly used configuration parameters.

6.2 Web Application Lifecycle

A web application consists of web components; static resource files, such as images
and cascading style sheets (CSS); and helper classes and libraries. The web container
provides many supporting services that enhance the capabilities of web components
and make them easier to develop. However, because a web application must take these
services into account, the process for creating and running a web application is
different from that of traditional stand-alone Java classes.

6-2 The Java EE 7 Tutorial

A Web Module That Uses JavaServer Faces Technology: The hello1 Example

The process for creating, deploying, and executing a web application can be
summarized as follows:

1. Develop the web component code.
2. Develop the web application deployment descriptor, if necessary.

3. Compile the web application components and helper classes referenced by the
components.

4. Optionally, package the application into a deployable unit.
5. Deploy the application into a web container.
6. Access a URL that references the web application.

Developing web component code is covered in the later chapters. Steps 2 through 4 are
expanded on in the following sections and illustrated with a Hello, World-style
presentation-oriented application. This application allows a user to enter a name into
an HTML form and then displays a greeting after the name is submitted.

The Hello application contains two web components that generate the greeting and the
response. This chapter discusses the following simple applications:

= hellol, a JavaServer Faces technology-based application that uses two XHTML
pages and a managed bean

= hello2, a servlet-based web application in which the components are
implemented by two servlet classes

The applications are used to illustrate tasks involved in packaging, deploying,
configuring, and running an application that contains web components. The source
code for the examples is in the tut-install/examples/web/jsf/hellol/ and
tut-install /examples/web/servlet /hello2/ directories.

6.3 A Web Module That Uses JavaServer Faces Technology: The hello1
Example

The hellol application is a web module that uses JavaServer Faces technology to
display a greeting and response. You can use a text editor to view the application files,
or you can use NetBeans IDE.

6.3.1 To View the hello1 Web Module Using NetBeans IDE

1. From the File menu, select Open Project.
2. In the Open Project dialog box, navigate to:

tut-install/examples/web/jsf

3. Select the hellol folder and click Open Project.

4. Expand the Web Pages node and double-click the index.xhtml file to view it in
the editor.

The index.xhtnl file is the default landing page for a Facelets application. In a
typical Facelets application, web pages are created in XHTML. For this application,
the page uses simple tag markup to display a form with a graphic image, a header,
a field, and two command buttons:

<?xml version='1.0"' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">

Getting Started with Web Applications 6-3

A Web Module That Uses JavaServer Faces Technology: The hello1 Example

<html lang="en"
xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://xmlns.jcp.org/jsf/html">
<h:head>
<title>Facelets Hello Greeting</title>
</h:head>
<h:body>
<h:form>
<h:graphicImage url="#{resource['images:duke.waving.gif']}"
alt="Duke waving his hand"/>
<h2>Hello, my name is Duke. What's yours?</h2>
<h:inputText id="username"
title="My name is: "
value="#{hello.name}"
required="true"
requiredMessage="Error: A name is required."
maxlength="25" />
<p></p>
<h:commandButton id="submit" value="Submit"
action="response">
</h:commandButton>
<h:commandButton id="reset" value="Reset" type="reset">
</h:commandButton>
</h:form>

</h:body>
</html>

The most complex element on the page is the inputText field. The maxlength
attribute specifies the maximum length of the field. The required attribute
specifies that the field must be filled out; the requirediessage attribute provides
the error message to be displayed if the field is left empty. The title attribute
provides the text to be used by screen readers for the visually disabled. Finally, the
value attribute contains an expression that will be provided by the Hello managed
bean.

The web page connects to the Hello managed bean through the Expression
Language () value expression #{hello.name}, which retrieves the value of the name
property from the managed bean. Note the use of hello to reference the managed
bean Hello. If no name is specified in the @Named annotation of the managed bean,
the managed bean is always accessed with the first letter of the class name in
lowercase.

The Submit commandBut ton element specifies the action as response, meaning that
when the button is clicked, the response.xhtml page is displayed.

5. Double-click the response.xhtml file to view it.

The response page appears. Even simpler than the greeting page, the response
page contains a graphic image, a header that displays the expression provided by
the managed bean, and a single button whose action element transfers you back
to the index.xhtml page:

<?xml version='1.0"' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0org/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html lang="en"
xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://xmlns.jcp.org/jsf/html">
<h:head>
<title>Facelets Hello Response</title>

6-4 The Java EE 7 Tutorial

A Web Module That Uses JavaServer Faces Technology: The hello1 Example

</h:head>
<h:body>
<h:form>
<h:graphicImage url="#{resourcel'images:duke.waving.gif']}"
alt="Duke waving his hand"/>
<h2>Hello, #{hello.name}!</h2>
<p></p>
<h:commandButton id="back" value="Back" action="index" />
</h:form>
</h:body>
</html>

Expand the Source Packages node, then the javaeetutorial.hellol node.
Double-click the Hello. java file to view it.

The Hello class, called a managed bean class, provides getter and setter methods
for the name property used in the Facelets page expressions. By default, the
expression language refers to the class name, with the first letter in lowercase
(hello.name).

package javaeetutorial.hellol;

import javax.enterprise.context.RequestScoped;
import javax.inject.Named;

@Named
@RequestScoped
public class Hello {

private String name;

public Hello() {
}

public String getName() {
return name;

}

public void setName (String user_name) {
this.name = user_name;
}
}

If you use the default name for the bean class, you can specify @Model as the
annotation instead of having to specify both @Named and @RequestScoped. The
@Model annotation is called a stereotype, a term for an annotation that
encapsulates other annotations. It is described later in Using Stereotypes in CDI
Applications. Other examples will use @Model where it is appropriate.

Under the Web Pages node, expand the WEB-INF node and double-click the
web.xml file to view it.

The web.xml file contains several elements that are required for a Facelets
application. All these are created automatically when you use NetBeans IDE to
create an application:

= A context parameter specifying the project stage:

<context-param>
<param-name>javax.faces.PROJECT_STAGE</param-name>
<param-value>Development</param-value>

Getting Started with Web Applications 6-5

A Web Module That Uses JavaServer Faces Technology: The hello1 Example

</context-param>

A context parameter provides configuration information needed by a web
application. An application can define its own context parameters. In addition,
JavaServer Faces technology and Java Servlet technology define context
parameters that an application can use.

= A servlet element and its servlet-mapping element specifying the
FacesServlet:

<servlet>
<servlet-name>Faces Servlet</servlet-name>
<servlet-class>
javax.faces.webapp.FacesServlet
</servlet-class>
<load-on-startup>1</load-on-startup>
</servlet>
<servlet-mapping>
<servlet-name>Faces Servlet</servlet-name>
<url-pattern>/faces/*</url-pattern>
</servlet-mapping>

s Awelcome-file-list element specifying the location of the landing page;
note that the location is faces/index.xhtml, not just index.xhtml:

<welcome-file-list>
<welcome-file>faces/index.xhtml</welcome-file>
</welcome-file-list>

6.3.1.1 Introduction to Scopes

In the Hello. java class, the annotations javax.inject .Named and
javax.enterprise.context.RequestScoped identify the class as a managed bean
using request scope. Scope defines how application data persists and is shared.

The most commonly used scopes in JavaServer Faces applications are the following:

= Request (@RequestScoped): Request scope persists during a single HTTP request in
a web application. In an application like hellol, where the application consists of
a single request and response, the bean uses request scope.

= Session (@SessionScoped): Session scope persists across multiple HTTP requests in
a web application. When an application consists of multiple requests and
responses where data needs to be maintained, beans use session scope.

= Application (éApplicationScoped): Application scope persists across all users'
interactions with a web application.

For more information on scopes in JavaServer Faces technology, see Using Managed
Bean Scopes.

6.3.2 Packaging and Deploying the hello1 Web Module

A web module must be packaged into a WAR in certain deployment scenarios and
whenever you want to distribute the web module. You can package a web module into
a WAR file by using Maven or by using the IDE tool of your choice. This tutorial
shows you how to use NetBeans IDE or Maven to build, package, and deploy the
hellol sample application.

You can deploy a WAR file to the GlassFish Server by
s Using NetBeans IDE

6-6 The Java EE 7 Tutorial

A Web Module That Uses JavaServer Faces Technology: The hello1 Example

s Using the asadmin command
= Using the Administration Console
s Copying the WAR file into the domain-dir/autodeploy/ directory

Throughout the tutorial, you will use NetBeans IDE or Maven for packaging and
deploying.

6.3.2.1 To Build and Package the hello1 Web Module Using NetBeans IDE

1. Start the GlassFish Server as described in To Start the GlassFish Server Using
NetBeans IDE, if you have not already done so.

2. From the File menu, select Open Project.
3. In the Open Project dialog box, navigate to:

tut-install/examples/web/jsf

4. Select the hellol folder.
5. Click Open Project.

6. In the Projects tab, right-click the hellol project and select Build. This command
deploys the project to the server.

6.3.2.2 To Build and Package the hello1 Web Module Using Maven

1. Start the GlassFish Server as described in To Start the GlassFish Server from the
Command Line, if you have not already done so.

2. Ina terminal window, go to:

tut-install/examples/web/jsf/hellol/

3. Enter the following command:

mvn install

This command spawns any necessary compilations and creates the WAR file in
tut-install /examples/web/jsf/hellol/target/. It then deploys the project to the
server.

6.3.3 Viewing Deployed Web Modules

The GlassFish Server provides two ways to view the deployed web modules: the
Administration Console and the asadmin command. You can also use NetBeans IDE to
view deployed modules.

6.3.3.1 To View Deployed Web Modules Using the Administration Console
1. Open the URL http://localhost:4848/ in a browser.

2. Select the Applications node.
The deployed web modules appear in the Deployed Applications table.

6.3.3.2 To View Deployed Web Modules Using the asadmin Command

Enter the following command:

asadmin list-applications

Getting Started with Web Applications 6-7

A Web Module That Uses JavaServer Faces Technology: The hello1 Example

6.3.3.3 To View Deployed Web Modules Using NetBeans IDE

1. In the Services tab, expand the Servers node, then expand the GlassFish Server
node.

2. Expand the Applications node to view the deployed modules.

6.3.4 Running the Deployed hello1 Web Module

Now that the web module is deployed, you can view it by opening the application in a
web browser. By default, the application is deployed to host localhost on port 8080.
The context root of the web application is hellol.

1. Open a web browser.
2. Enter the following URL:

http://localhost:8080/hellol/

3. In the field, enter your name and click Submit.

The response page displays the name you submitted. Click Back to try again.

6.3.4.1 Dynamic Reloading of Deployed Modules

If dynamic reloading is enabled, you do not have to redeploy an application or module
when you change its code or deployment descriptors. All you have to do is copy the
changed pages or class files into the deployment directory for the application or
module. The deployment directory for a web module named context-root is
domain-dir/applications/context-root. The server checks for changes periodically and
redeploys the application, automatically and dynamically, with the changes.

This capability is useful in a development environment because it allows code changes
to be tested quickly. Dynamic reloading is not recommended for a production
environment, however, because it may degrade performance. In addition, whenever a
reload is done, the sessions at that time become invalid, and the client must restart the
session.

In the GlassFish Server, dynamic reloading is enabled by default.

6.3.5 Undeploying the hello1 Web Module

You can undeploy web modules and other types of enterprise applications by using
either NetBeans IDE or the asadmin command.

6.3.5.1 To Undeploy the hello1 Web Module Using NetBeans IDE

1. In the Services tab, expand the Servers node, then expand the GlassFish Server
node.

2. Expand the Applications node.
3. Right-click the hellol module and select Undeploy.

4. To delete the class files and other build artifacts, go back to the Projects tab,
right-click the project and select Clean.

6.3.5.2 To Undeploy the hello1 Web Module Using the asadmin Command

1. In a terminal window, go to:

tut-install/examples/web/jsf/hellol/

6-8 The Java EE 7 Tutorial

A Web Module That Uses Java Servlet Technology: The hello2 Example

2. Enter the following command:

mvn cargo:undeploy

3. To delete the class files and other build artifacts, enter the following command:

mvn clean

6.4 A Web Module That Uses Java Servlet Technology: The hello2
Example

Web applications are configured by means of annotations or by elements contained in
the web application deployment descriptor.

The following sections give a brief introduction to the web application features you
will usually want to configure. Examples demonstrate procedures for configuring the
Hello, World application.

6.4.1 Mapping URLs to Web Components

When it receives a request, the web container must determine which web component
should handle the request. The web container does so by mapping the URL path
contained in the request to a web application and a web component. A URL path
contains the context root and, optionally, a URL pattern:

http://host:port/context-root[/url-pattern]
You set the URL pattern for a servlet by using the @WebServlet annotation in the
servlet source file. For example, the GreetingServlet.java file in the hello2

application contains the following annotation, specifying the URL pattern as
/greeting:

@WebServlet ("/greeting")
public class GreetingServlet extends HttpServlet {

This annotation indicates that the URL pattern /greeting follows the context root.
Therefore, when the servlet is deployed locally, it is accessed with the following URL:

http://localhost:8080/hello2/greeting

To access the servlet by using only the context root, specify "/" as the URL pattern.

6.4.2 Examining the hello2 Web Module

The hello2 application behaves almost identically to the hellol application, but it is
implemented using Java Servlet technology instead of JavaServer Faces technology.
You can use a text editor to view the application files, or you can use NetBeans IDE.

6.4.2.1 To View the hello2 Web Module Using NetBeans IDE

1. From the File menu, select Open Project.
2. In the Open Project dialog box, navigate to:

tut-install/examples/web/servlet

3. Select the hello2 folder and click Open Project.

4. Expand the Source Packages node, then the javaeetutorial.hello2 node.

Getting Started with Web Applications 6-9

A Web Module That Uses Java Servlet Technology: The hello2 Example

Double-click the GreetingServlet.java file to view it.

This servlet overrides the doGet method, implementing the GET method of HTTP.
The servlet displays a simple HTML greeting form whose Submit button, like that
of hellol, specifies a response page for its action. The following excerpt begins
with the @WebServlet annotation that specifies the URL pattern, relative to the
context root:

@WebServlet ("/greeting")
public class GreetingServlet extends HttpServlet {

@override

public void doGet (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {

response.setContentType ("text/html") ;
response.setBufferSize(8192);
PrintWriter out = response.getWriter();

// then write the data of the response
out.println("<html lang=\"en\">"
+ "<head><title>Servlet Hello</title></head>");

// then write the data of the response
out.println("<body bgcolor=\"#ffffff\">"

+ "<img src=\"duke.waving.gif\" "

+ "alt=\"Duke waving his hand\">"
"<form method=\"get\">"
"<h2>Hello, my name is Duke. What's yours?</h2>"
"<input title=\"My name is: \"type=\"text\" "
"name=\"username\" size=\"25\">"
"<p></p>"
"<input type=\"submit\" value=\"Submit\">"
"<input type=\"reset\" value=\"Reset\">"
"</form>");

+ + 4+ + + + 4+ o+

String username = request.getParameter ("username");
if (username != null && username.length()> 0) {
RequestDispatcher dispatcher =
getServletContext () .getRequestDispatcher ("/response") ;

if (dispatcher !'= null) {
dispatcher.include (request, response);

}
out.println("</body></html>");
out.close();

Double-click the ResponseServlet.java file to view it.

This servlet also overrides the doGet method, displaying only the response. The
following excerpt begins with the @WebServlet annotation, which specifies the
URL pattern, relative to the context root:

@WebServlet (" /response")
public class ResponseServlet extends HttpServlet {

@override

6-10 The Java EE 7 Tutorial

A Web Module That Uses Java Servlet Technology: The hello2 Example

public void doGet (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
PrintWriter out = response.getWriter();

// then write the data of the response

String username = request.getParameter ("username");

if (username != null && username.length()> 0) {
out.println("<h2>Hello, " + username + "!</h2>");

}

6.4.3 Running the hello2 Example

You can use either NetBeans IDE or Maven to build, package, deploy, and run the
hello2 example.

6.4.3.1 To Run the hello2 Example Using NetBeans IDE

1. Start the GlassFish Server as described in To Start the GlassFish Server Using
NetBeans IDE, if you have not already done so.

2. From the File menu, select Open Project.
3. In the Open Project dialog box, navigate to:

tut-install/examples/web/servlet

4. Select the hello2 folder.
5. Click Open Project.

6. In the Projects tab, right-click the hello2 project and select Build to package and
deploy the project.

7. In the browser, specify the URL http://localhost:8080/hello2/greeting.
The URL specifies the context root, followed by the URL pattern.

The application looks much like the hellol application. The major difference is
that after you click Submit, the response appears below the greeting, not on a
separate page.

6.4.3.2 To Run the hello2 Example Using Maven

1. Start the GlassFish Server as described in To Start the GlassFish Server from the
Command Line, if you have not already done so.

2. Ina terminal window, go to:

tut-install/examples/web/servlet/hello2/

3. Enter the following command:

mvn install

This target builds the WAR file, copies it to the
tut-install/examples/web/hello2/target/ directory, and deploys it.

4. Inaweb browser, open the URL http://localhost:8080/hello2/greeting.
The URL specifies the context root, followed by the URL pattern.

Getting Started with Web Applications 6-11

Configuring Web Applications

The application looks much like the hellol application. The major difference is
that after you click Submit, the response appears below the greeting, not on a
separate page.

6.5 Configuring Web Applications

This section describes the following tasks involved with configuring web applications:

Setting context parameters
Declaring welcome files
Mapping errors to error screens

Declaring resource references

6.5.1 Setting Context Parameters

The web components in a web module share an object that represents their application
context. You can pass context parameters to the context, or initialization parameters to
a servlet. Context parameters are available to the entire application. For information on
initialization parameters, see Creating and Initializing a Servlet.

6.5.1.1 To Add a Context Parameter Using NetBeans IDE

These steps apply generally to web applications, but do not apply specifically to the
examples in this chapter.

1.

2
3.
4

©® N o o

9.

Open the project.

Expand the project's node in the Projects tree.

Expand the Web Pages node and then the WEB-INF node.
Double-click web . xml.

If the project does not have a web.xml file, follow the steps in To Create a web.xml
File Using NetBeans IDE.

Click General at the top of the editor window.
Expand the Context Parameters node.
Click Add.

In the Add Context Parameter dialog box, in the Parameter Name field, enter the
name that specifies the context object.

In the Parameter Value field, enter the parameter to pass to the context object.

10. Click OK.

6.5.1.2 To Create a web.xml File Using NetBeans IDE

1.
2

From the File menu, select New File.

In the New File wizard, select the Web category, then select Standard Deployment
Descriptor under File Types.

Click Next.
Click Finish.

A basic web.xml file appears in web/WEB-INF/.

6-12 The Java EE 7 Tutorial

Configuring Web Applications

6.5.2 Declaring Welcome Files

The welcome files mechanism allows you to specify a list of files that the web
container will use for appending to a request for a URL (called a valid partial request)
that is not mapped to a web component. For example, suppose that you define a
welcome file welcome.html. When a client requests a URL such as

host : port /webapp / directory, where directory is not mapped to a servlet or XHTML page,
the file host : port /webapp / directory /welcome . html is returned to the client.

If a web container receives a valid partial request, the web container examines the
welcome file list and appends to the partial request each welcome file in the order
specified and checks whether a static resource or servlet in the WAR is mapped to that
request URL. The web container then sends the request to the first resource that
matches in the WAR.

If no welcome file is specified, the GlassFish Server will use a file named index.html
as the default welcome file. If there is no welcome file and no file named index.html,
the GlassFish Server returns a directory listing.

You specify welcome files in the web.xml file. By convention, you specify the welcome
file for a JavaServer Faces application as faces/file-name.xhtml. The welcome file
specification for the hellol example looks like this:

<welcome-file-list>
<welcome-file>faces/index.xhtml</welcome-file>
</welcome-file-list>

A specified welcome file must not have a leading or trailing slash (/).

The hello2 example does not specify a welcome file, because the URL request is
mapped to the GreetingServlet web component through the URL pattern /greeting.

6.5.3 Mapping Errors to Error Screens

When an error occurs during execution of a web application, you can have the
application display a specific error screen according to the type of error. In particular,
you can specify a mapping between the status code returned in an HTTP response or a
Java programming language exception returned by any web component and any type
of error screen.

You can have multiple error-page elements in your deployment descriptor. Each
element identifies a different error that causes an error page to open. This error page
can be the same for any number of error-page elements.

6.5.3.1 To Set Up Error Mapping Using NetBeans IDE

These steps apply generally to web applications, but do not apply specifically to the
examples in this chapter.

1. Open the project.

2. Expand the project's node in the Projects tab.

3. Expand the Web Pages node and then the WEB-INF node.
4. Double-click web.xml.

If the project does not have a web.xml file, follow the steps in To Create a web.xml
File Using NetBeans IDE.

5. Click Pages at the top of the editor window.
6. Expand the Error Pages node.

Getting Started with Web Applications 6-13

Configuring Web Applications

7. Click Add.

8. In the Add Error Page dialog box, click Browse to locate the page that you want to
act as the error page.

9. Specify either an error code or an exception type:

s To specify an error code, in the Error Code field, enter the HTTP status code
that will cause the error page to be opened, or leave the field blank to include
all error codes.

= To specify an exception type, in the Exception Type field, enter the exception
that will cause the error page to load. To specify all throwable errors and
exceptions, enter java.lang.Throwable.

10. Click OK.

6.5.4 Declaring Resource References

If your web component uses such objects as enterprise beans, data sources, or web
services, you use Java EE annotations to inject these resources into your application.
Annotations eliminate a lot of the boilerplate lookup code and configuration elements
that previous versions of Java EE required.

Although resource injection using annotations can be more convenient for the
developer, there are some restrictions on using it in web applications. First, you can
inject resources only into container-managed objects, since a container must have
control over the creation of a component so that it can perform the injection into a
component. As a result, you cannot inject resources into such objects as simple
JavaBeans components. However, managed beans are managed by the container;
therefore, they can accept resource injections.

Components that can accept resource injections are listed in Table 6-1.

This section explains how to use a couple of the annotations supported by a web
container to inject resources. Chapter 36, "Running the Persistence Examples", explains
how web applications use annotations supported by the Java Persistence APIL.

Chapter 45, "Getting Started Securing Web Applications", explains how to use
annotations to specify information about securing web applications. See Chapter 49,
"Resource Adapters and Contracts", for more information on resources.

Table 6-1 Web Components That Accept Resource Injections

Component Interface/Class

Servlets javax.servlet.Servlet

Servlet filters javax.servlet.ServletFilter

Event listeners javax.servlet.ServletContextListener

javax.servlet.ServletContextAttributeListener
javax.servlet.ServletRequestListener
javax.servlet.ServletRequestAttributeListener
javax.servlet.http.HttpSessionListener
javax.servlet.http.HttpSessionAttributelListener

javax.servlet.http.HttpSessionBindingListener

Managed beans Plain Old Java Objects

6-14 The Java EE 7 Tutorial

Further Information about Web Applications

6.5.4.1 Declaring a Reference to a Resource

The @Resource annotation is used to declare a reference to a resource, such as a data
source, an enterprise bean, or an environment entry.

The @Resource annotation is specified on a class, a method, or a field. The container is
responsible for injecting references to resources declared by the @Resource annotation
and mapping it to the proper JNDI resources.

In the following example, the @Resource annotation is used to inject a data source into
a component that needs to make a connection to the data source, as is done when
using JDBC technology to access a relational database:

@Resource javax.sqgl.DataSource catalogDS;

public getProductsByCategory() {
// get a connection and execute the query
Connection conn = catalogDS.getConnection();

}

The container injects this data source prior to the component's being made available to
the application. The data source JNDI mapping is inferred from the field name
catalogDs and the type, javax.sqgl.DataSource.

If you have multiple resources that you need to inject into one component, you need to
use the @Resources annotation to contain them, as shown by the following example:

@Resources ({
@Resource (name="myDB" type=javax.sql.DataSource.class),
@Resource (name="myMQ" type=javax.jms.ConnectionFactory.class)
1)

The web application examples in this tutorial use the Java Persistence API to access
relational databases. This API does not require you to explicitly create a connection to
a data source. Therefore, the examples do not use the @Resource annotation to inject a
data source. However, this API supports the @PersistenceUnit and
@PersistenceContext annotations for injecting EntityManagerFactory and
EntityManager instances, respectively. Chapter 36, "Running the Persistence
Examples" describes these annotations and the use of the Java Persistence API in web
applications.

6.5.4.2 Declaring a Reference to a Web Service

The @WebServiceRef annotation provides a reference to a web service. The following
example shows uses the @WebServiceRef annotation to declare a reference to a web
service. WebServiceRef uses the wsdlLocation element to specify the URI of the
deployed service's WSDL file:

import javax.xml.ws.WebServiceRef;

public class ResponseServlet extends HTTPServlet {
@WebServiceRef (wsdlLocation=

"http://localhost:8080/helloservice/hello?wsdl")
static HelloService service;

6.6 Further Information about Web Applications
For more information on web applications, see

= JavaServer Faces 2.2 specification:

Getting Started with Web Applications 6-15

Further Information about Web Applications

http://jcp.org/en/jsr/detail?id=344
= JavaServer Faces technology web site:

http://www.oracle.com/technetwork/java/javaee/javaserverfaces
-139869.html

= Java Servlet 3.1 specification:
http://jcp.org/en/jsr/detail?id=340
= Java Servlet web site:

http://www.oracle.com/technetwork/java/index-jsp-135475.html

6-16 The Java EE 7 Tutorial

7

JavaServer Faces Technology

JavaServer Faces technology is a server-side component framework for building Java
technology-based web applications.

JavaServer Faces technology consists of the following:

= An API for representing components and managing their state; handling events,
server-side validation, and data conversion; defining page navigation; supporting
internationalization and accessibility; and providing extensibility for all these
features

» Tag libraries for adding components to web pages and for connecting components
to server-side objects

JavaServer Faces technology provides a well-defined programming model and various
tag libraries. The tag libraries contain tag handlers that implement the component
tags. These features significantly ease the burden of building and maintaining web
applications with server-side user interfaces (Uls). With minimal effort, you can
complete the following tasks.

n Create a web page.

s Drop components onto a web page by adding component tags.

= Bind components on a page to server-side data.

= Wire component-generated events to server-side application code.

= Save and restore application state beyond the life of server requests.
= Reuse and extend components through customization.

This chapter provides an overview of JavaServer Faces technology. After explaining
what a JavaServer Faces application is and reviewing some of the primary benefits of
using JavaServer Faces technology, this chapter describes the process of creating a
simple JavaServer Faces application. This chapter also introduces the JavaServer Faces
lifecycle by describing the example JavaServer Faces application progressing through
the lifecycle stages.

The following topics are addressed here:

= WhatIs a JavaServer Faces Application?
= JavaServer Faces Technology Benefits

= A Simple JavaServer Faces Application
» User Interface Component Model

= Navigation Model

= The Lifecycle of a JavaServer Faces Application

JavaServer Faces Technology 7-1

What Is a JavaServer Faces Application?

s Further Information about JavaServer Faces Technology

7.1 What Is a JavaServer Faces Application?

The functionality provided by a JavaServer Faces application is similar to that of any
other Java web application. A typical JavaServer Faces application includes the
following parts:

= A set of web pages in which components are laid out
= A setof tags to add components to the web page

= A set of managed beans, which are lightweight container-managed objects
(POJOs). In a JavaServer Faces application, managed beans serve as backing beans,
which define properties and functions for Ul components on a page.

= A web deployment descriptor (web.xml file)

= Optionally, one or more application configuration resource files, such as a
faces-config.xml file, which can be used to define page navigation rules and
configure beans and other custom objects, such as custom components

= Optionally, a set of custom objects, which can include custom components,
validators, converters, or listeners, created by the application developer

= Optionally, a set of custom tags for representing custom objects on the page

Figure 7-1 shows the interaction between client and server in a typical JavaServer
Faces application. In response to a client request, a web page is rendered by the web
container that implements JavaServer Faces technology.

Figure 7-1 Responding to a Client Request for a JavaServer Faces Page

; = Web Container
= Access page [
HTTP Request L 7} Q myfacelet.xhtm|
Browser Y @ o
1" Generates

/ Component
Tree
Renders HTML

myView
HTTP Response

The web page, myfacelet.xhtmnl, is built using JavaServer Faces component tags.
Component tags are used to add components to the view (represented by myView in the
diagram), which is the server-side representation of the page. In addition to
components, the web page can also reference objects, such as the following:

= Any event listeners, validators, and converters that are registered on the
components

s The JavaBeans components that capture the data and process the
application-specific functionality of the components

On request from the client, the view is rendered as a response. Rendering is the
process whereby, based on the server-side view, the web container generates output,
such as HTML or XHTML, that can be read by the client, such as a browser.

7-2 The Java EE 7 Tutorial

A Simple JavaServer Faces Application

7.2 JavaServer Faces Technology Benefits

One of the greatest advantages of JavaServer Faces technology is that it offers a clean
separation between behavior and presentation for web applications. A JavaServer
Faces application can map HTTP requests to component-specific event handling and
manage components as stateful objects on the server. JavaServer Faces technology
allows you to build web applications that implement the finer-grained separation of
behavior and presentation that is traditionally offered by client-side UI architectures.

The separation of logic from presentation also allows each member of a web
application development team to focus on a single piece of the development process
and provides a simple programming model to link the pieces. For example, page
authors with no programming expertise can use JavaServer Faces technology tags in a
web page to link to server-side objects without writing any scripts.

Another important goal of JavaServer Faces technology is to leverage familiar
component and web-tier concepts without limiting you to a particular scripting
technology or markup language. JavaServer Faces technology APIs are layered directly
on top of the Servlet API, as shown in Figure 7-2.

Figure 7-2 Java Web Application Technologies

JavaServer Faces JavaServer Pages
Standard Tag Library

JavaServer Pages

Java Servlet

This layering of APIs enables several important application use cases, such as using
different presentation technologies, creating your own custom components directly
from the component classes, and generating output for various client devices.

Facelets technology, available as part of JavaServer Faces technology, is the preferred
presentation technology for building JavaServer Faces technology-based web
applications. For more information on Facelets technology features, see Chapter 8,
"Introduction to Facelets".

Facelets technology offers several advantages.

= Code can be reused and extended for components through the templating and
composite component features.

= You can use annotations to automatically register the managed bean as a resource
available for JavaServer Faces applications. In addition, implicit navigation rules
allow developers to quickly configure page navigation (see Navigation Model for
details). These features reduce the manual configuration process for applications.

= Most important, JavaServer Faces technology provides a rich architecture for
managing component state, processing component data, validating user input,
and handling events.

7.3 A Simple JavaServer Faces Application

JavaServer Faces technology provides an easy and user-friendly process for creating
web applications. Developing a simple JavaServer Faces application typically requires
the following tasks, which have already been described in A Web Module That Uses
JavaServer Faces Technology: The hellol Example:

JavaServer Faces Technology 7-3

A Simple JavaServer Faces Application

s Creating web pages using component tags
= Developing managed beans
s Mapping the FacesServlet instance

The hellol example includes a managed bean and two Facelets web pages. When
accessed by a client, the first web page asks the user for his or her name, and the
second page responds by providing a greeting.

For details on Facelets technology, see Chapter 8, "Introduction to Facelets". For details
on using EL expressions, see Chapter 9, "Expression Language". For details on the
JavaServer Faces programming model and building web pages using JavaServer Faces
technology, see Chapter 10, "Using JavaServer Faces Technology in Web Pages".

Every web application has a lifecycle. Common tasks, such as handling incoming
requests, decoding parameters, modifying and saving state, and rendering web pages
to the browser, are all performed during a web application lifecycle. Some web
application frameworks hide the details of the lifecycle from you, whereas others
require you to manage them manually.

By default, JavaServer Faces automatically handles most of the lifecycle actions for
you. However, it also exposes the various stages of the request lifecycle, so that you
can modify or perform different actions if your application requirements warrant it.

The lifecycle of a JavaServer Faces application starts and ends with the following
activity: The client makes a request for the web page, and the server responds with the
page. The lifecycle consists of two main phases: execute and render.

During the execute phase, several actions can take place:

s The application view is built or restored.

= The request parameter values are applied.

s Conversions and validations are performed for component values.
= Managed beans are updated with component values.

= Application logic is invoked.

For a first (initial) request, only the view is built. For subsequent (postback) requests,
some or all of the other actions can take place.

In the render phase, the requested view is rendered as a response to the client.
Rendering is typically the process of generating output, such as HTML or XHTML,
that can be read by the client, usually a browser.

The following short description of the example JavaServer Faces application passing
through its lifecycle summarizes the activity that takes place behind the scenes.

The hellol example application goes through the following stages when it is deployed
on the GlassFish Server.

1. When the hellol application is built and deployed on the GlassFish Server, the
application is in an uninitiated state.

2. When a client makes an initial request for the index.xhtml web page, the hellol
Facelets application is compiled.

3. The compiled Facelets application is executed, and a new component tree is
constructed for the hellol application and is placed in a FacesContext.

4. The component tree is populated with the component and the managed bean
property associated with it, represented by the EL expression hello.name.

7-4 The Java EE 7 Tutorial

User Interface Component Model

A new view is built, based on the component tree.
The view is rendered to the requesting client as a response.

The component tree is destroyed automatically.

©® N o o

On subsequent (postback) requests, the component tree is rebuilt, and the saved
state is applied.

For full details on the lifecycle, see The Lifecycle of a JavaServer Faces Application.

7.4 User Interface Component Model

In addition to the lifecycle description, an overview of JavaServer Faces architecture
provides better understanding of the technology.

JavaServer Faces components are the building blocks of a JavaServer Faces view. A
component can be a user interface (UI) component or a non-UI component.

JavaServer Faces Ul components are configurable, reusable elements that compose the
user interfaces of JavaServer Faces applications. A component can be simple, such as a
button, or can be compound, such as a table, composed of multiple components.

JavaServer Faces technology provides a rich, flexible component architecture that
includes the following:

s Asetof javax.faces.component.UIComponent classes for specifying the state and
behavior of Ul components

= Arendering model that defines how to render the components in various ways

= A conversion model that defines how to register data converters onto a component
= Anevent and listener model that defines how to handle component events

= A validation model that defines how to register validators onto a component

This section briefly describes each of these pieces of the component architecture.

7.4.1 User Interface Component Classes

JavaServer Faces technology provides a set of Ul component classes and associated
behavioral interfaces that specify all the UI component functionality, such as holding
component state, maintaining a reference to objects, and driving event handling and
rendering for a set of standard components.

The component classes are completely extensible, allowing component writers to
create their own custom components. See Chapter 15, "Creating Custom UI
Components and Other Custom Objects" for more information.

The abstract base class for all components is javax. faces.component . UIComponent.
JavaServer Faces Ul component classes extend the UIComponentBase class (a subclass
of UIComponent), which defines the default state and behavior of a component. The
following set of component classes is included with JavaServer Faces technology:

= UIColumn: Represents a single column of data in a UIData component.
= UICommand: Represents a control that fires actions when activated.

= UIData: Represents a data binding to a collection of data represented by a
javax.faces.model .DataModel instance.

JavaServer Faces Technology 7-5

User Interface Component Model

UIForm: Represents an input form to be presented to the user. Its child components
represent (among other things) the input fields to be included when the form is
submitted. This component is analogous to the form tag in HTML.

UIGraphic: Displays an image.

UIInput: Takes data input from a user. This class is a subclass of UIOutput.
UIMessage: Displays a localized error message.

UIMessages: Displays a set of localized error messages.

UIOutcomeTarget: Displays a link in the form of a link or a button.
UIOutput: Displays data output on a page.

UIPanel: Manages the layout of its child components.

UIParameter: Represents substitution parameters.

UISelectBoolean: Allows a user to set a boolean value on a control by selecting or
deselecting it. This class is a subclass of the UIInput class.

UISelectItem: Represents a single item in a set of items.
UISelectItems: Represents an entire set of items.

UISelectMany: Allows a user to select multiple items from a group of items. This
class is a subclass of the UIInput class.

UISelectOne: Allows a user to select one item from a group of items. This class is a
subclass of the UIInput class.

UIViewParameter: Represents the query parameters in a request. This class is a
subclass of the UIInput class.

UIViewRoot: Represents the root of the component tree.

In addition to extending UIComponentBase, the component classes also implement one
or more behavioral interfaces, each of which defines certain behavior for a set of
components whose classes implement the interface.

These behavioral interfaces, all defined in the javax.faces.component package unless
otherwise stated, are as follows:

ActionSource: Indicates that the component can fire an action event. This interface
is intended for use with components based on JavaServer Faces technology 1.1_01
and earlier versions. This interface is deprecated in JavaServer Faces 2.

ActionSource2: Extends ActionSource, and therefore provides the same
functionality. However, it allows components to use the Expression Language (EL)
when they are referencing methods that handle action events.

EditableValueHolder: Extends ValueHolder and specifies additional features for
editable components, such as validation and emitting value-change events.

NamingContainer: Mandates that each component rooted at this component have a
unique ID.

StateHolder: Denotes that a component has state that must be saved between
requests.

ValueHolder: Indicates that the component maintains a local value as well as the
option of accessing data in the model tier.

7-6 The Java EE 7 Tutorial

User Interface Component Model

m Jjavax.faces.event.SystemEventListenerHolder: Maintains a list of
javax.faces.event.SystemEventListener instances for each type of
javax.faces.event.SystemEvent defined by that class.

= Jjavax.faces.component.behavior.ClientBehaviorHolder: Adds the ability to
attach javax.faces.component.behavior.ClientBehavior instances such as a
reusable script.

UICommand implements ActionSource2 and StateHolder. UIOutput and component
classes that extend UIOutput implement StateHolder and ValueHolder. UIInput and
component classes that extend UIInput implement EditableValueHolder,
StateHolder, and ValueHolder. UIComponentBase implements StateHolder.

Only component writers will need to use the component classes and behavioral
interfaces directly. Page authors and application developers will use a standard
component by including a tag that represents it on a page. Most of the components can
be rendered in different ways on a page. For example, a UICommand component can be
rendered as a button or a link.

The next section explains how the rendering model works and how page authors can
choose to render the components by selecting the appropriate tags.

7.4.2 Component Rendering Model

The JavaServer Faces component architecture is designed such that the functionality of
the components is defined by the component classes, whereas the component
rendering can be defined by a separate renderer class. This design has several benefits,
including the following:

s Component writers can define the behavior of a component once but create
multiple renderers, each of which defines a different way to render the component
to the same client or to different clients.

s Page authors and application developers can change the appearance of a
component on the page by selecting the tag that represents the appropriate
combination of component and renderer.

A render kit defines how component classes map to component tags that are
appropriate for a particular client. The JavaServer Faces implementation includes a
standard HTML render kit for rendering to an HTML client.

The render kit defines a set of javax. faces.render.Renderer classes for each
component that it supports. Each Renderer class defines a different way to render the
particular component to the output defined by the render kit. For example, a
UISelectOne component has three different renderers. One of them renders the
component as a group of options. Another renders the component as a combo box. The
third one renders the component as a list box. Similarly, a UICommand component can
be rendered as a button or a link, using the h: commandButton or h: commandLink tag.
The command part of each tag corresponds to the UICommand class, specifying the
functionality, which is to fire an action. The Button or Link part of each tag
corresponds to a separate Renderer class that defines how the component appears on
the page.

Each custom tag defined in the standard HTML render kit is composed of the
component functionality (defined in the UIComponent class) and the rendering
attributes (defined by the Renderer class).

The section Adding Components to a Page Using HTML Tag Library Tags lists all
supported component tags and illustrates how to use the tags in an example.

JavaServer Faces Technology 7-7

User Interface Component Model

The JavaServer Faces implementation provides a custom tag library for rendering
components in HTML.

7.4.3 Conversion Model

A JavaServer Faces application can optionally associate a component with server-side
object data. This object is a JavaBeans component, such as a managed bean. An
application gets and sets the object data for a component by calling the appropriate
object properties for that component.

When a component is bound to an object, the application has two views of the
component's data:

s The model view, in which data is represented as data types, such as int or long.

s The presentation view, in which data is represented in a manner that can be read
or modified by the user. For example, a java.util.Date might be represented as a
text string in the format mm/dd/yy or as a set of three text strings.

The JavaServer Faces implementation automatically converts component data between
these two views when the bean property associated with the component is of one of
the types supported by the component's data. For example, if a UISelectBoolean
component is associated with a bean property of type java.lang.Boolean, the
JavaServer Faces implementation will automatically convert the component's data
from String to Boolean. In addition, some component data must be bound to
properties of a particular type. For example, a UISelectBoolean component must be
bound to a property of type boolean or java.lang.Boolean.

Sometimes you might want to convert a component's data to a type other than a
standard type, or you might want to convert the format of the data. To facilitate this,
JavaServer Faces technology allows you to register a javax. faces.convert.Converter
implementation on UIOutput components and components whose classes subclass
UIOutput. If you register the Converter implementation on a component, the
Converter implementation converts the component's data between the two views.

You can either use the standard converters supplied with the JavaServer Faces
implementation or create your own custom converter. Custom converter creation is
covered in Chapter 15, "Creating Custom Ul Components and Other Custom Objects".

7.4.4 Event and Listener Model

The JavaServer Faces event and listener model is similar to the JavaBeans event model
in that it has strongly typed event classes and listener interfaces that an application can
use to handle events generated by components.

The JavaServer Faces specification defines three types of events: application events,
system events, and data-model events.

Application events are tied to a particular application and are generated by a
UIComponent. They represent the standard events available in previous versions of
JavaServer Faces technology.

An event object identifies the component that generated the event and stores
information about the event. To be notified of an event, an application must provide an
implementation of the listener class and must register it on the component that
generates the event. When the user activates a component, such as by clicking a
button, an event is fired. This causes the JavaServer Faces implementation to invoke
the listener method that processes the event.

7-8 The Java EE 7 Tutorial

User Interface Component Model

JavaServer Faces supports two kinds of application events: action events and
value-change events.

An action event (class javax.faces.event.ActionEvent) occurs when the user
activates a component that implements ActionSource. These components include
buttons and links.

A value-change event (class javax. faces.event.ValueChangeEvent) occurs when the
user changes the value of a component represented by UIInput or one of its subclasses.
An example is selecting a check box, an action that results in the component's value
changing to true. The component types that can generate these types of events are the
UIInput, UISelectOne, UISelectMany, and UISelectBoolean components.
Value-change events are fired only if no validation errors are detected.

Depending on the value of the immediate property (see The immediate Attribute) of
the component emitting the event, action events can be processed during the invoke
application phase or the apply request values phase, and value-change events can be
processed during the process validations phase or the apply request values phase.

System events are generated by an Object rather than a UIComponent. They are
generated during the execution of an application at predefined times. They are
applicable to the entire application rather than to a specific component.

A data-model event occurs when a new row of a UIData component is selected.

There are two ways to cause your application to react to action events or value-change
events that are emitted by a standard component:

= Implement an event listener class to handle the event and register the listener on
the component by nesting either an f:valueChangeListener tag or an
f:actionListener tag inside the component tag.

= Implement a method of a managed bean to handle the event and refer to the
method with a method expression from the appropriate attribute of the
component's tag.

See Implementing an Event Listener for information on how to implement an event
listener. See Registering Listeners on Components for information on how to register
the listener on a component.

See Writing a Method to Handle an Action Event and Writing a Method to Handle a
Value-Change Event for information on how to implement managed bean methods
that handle these events.

See Referencing a Managed Bean Method for information on how to refer to the
managed bean method from the component tag.

When emitting events from custom components, you must implement the appropriate
event class and manually queue the event on the component in addition to
implementing an event listener class or a managed bean method that handles the
event. Handling Events for Custom Components explains how to do this.

7.4.5 Validation Model

JavaServer Faces technology supports a mechanism for validating the local data of
editable components (such as text fields). This validation occurs before the
corresponding model data is updated to match the local value.

Like the conversion model, the validation model defines a set of standard classes for
performing common data validation checks. The JavaServer Faces core tag library also
defines a set of tags that correspond to the standard

JavaServer Faces Technology 7-9

Navigation Model

javax.faces.validator.Validator implementations. See Using the Standard
Validators for a list of all the standard validation classes and corresponding tags.

Most of the tags have a set of attributes for configuring the validator's properties, such
as the minimum and maximum allowable values for the component's data. The page
author registers the validator on a component by nesting the validator's tag within the
component's tag.

In addition to validators that are registered on the component, you can declare a
default validator which is registered on all UIInput components in the application. For
more information on default validators, see Using Default Validators.

The validation model also allows you to create your own custom validator and
corresponding tag to perform custom validation. The validation model provides two
ways to implement custom validation:

s Implement a Validator interface that performs the validation.

s Implement a managed bean method that performs the validation.
If you are implementing a Validator interface, you must also:

= Register the Validator implementation with the application.

s Create a custom tag or use an f:validator tag to register the validator on the
component.

In the previously described standard validation model, the validator is defined for
each input component on a page. The Bean Validation model allows the validator to be
applied to all fields in a page. See Using Bean Validation and Chapter 51, "Bean
Validation: Advanced Topics" for more information on B ean Validation.

7.5 Navigation Model

The JavaServer Faces navigation model makes it easy to define page navigation and to
handle any additional processing that is needed to choose the sequence in which pages
are loaded.

In JavaServer Faces technology, navigation is a set of rules for choosing the next page

or view to be displayed after an application action, such as when a button or link is
clicked.

Navigation can be implicit or user-defined. Implicit navigation comes into play when
user-defined navigation rules are not configured in the application configuration
resource files.

When you add a component such as a commandButton to a Facelets page, and assign
another page as the value for its action property, the default navigation handler will
try to match a suitable page within the application implicitly. In the following
example, the default navigation handler will try to locate a page named
response.xhtml within the application and navigate to it:

<h:commandButton value="submit" action="response">

User-defined navigation rules are declared in zero or more application configuration
resource files, such as faces-config.xml, by using a set of XML elements. The default
structure of a navigation rule is as follows:

<navigation-rule>
<description></description
<from-view-id></from-view-id>
<navigation-case>

7-10 The Java EE 7 Tutorial

Navigation Model

<from-action></from-action>
<from-outcome></from-outcome>
<if></if>
<to-view-id></to-view-id>
</navigation-case>
</navigation-rule>

User-defined navigation is handled as follows:
= Define the rules in the application configuration resource file.

= Refer to an outcome String from the button or link component's action attribute.
This outcome String is used by the JavaServer Faces implementation to select the
navigation rule.

Here is an example navigation rule:

<navigation-rule>
<from-view-id>/greeting.xhtml</from-view-id>
<navigation-case>
<from-outcome>success</from-outcome>
<to-view-id>/response.xhtml</to-view-id>
</navigation-case>
</navigation-rule>

This rule states that when a command component (such as an h: commandButton or an
h:commandLink) on greeting.xhtml is activated, the application will navigate from the
greeting.xhtml page to the response.xhtml page if the outcome referenced by the
button component's tag is success. Here is an h: commandButton tag from
greeting.xhtml that would specify a logical outcome of success:

<h:commandButton id="submit" value="Submit" action="success"/>

As the example demonstrates, each navigation-rule element defines how to get from
one page (specified in the from-view-1id element) to the other pages of the application.
The navigation-rule elements can contain any number of navigation-case elements,
each of which defines the page to open next (defined by to-view-id) based on a
logical outcome (defined by from-outcome) .

In more complicated applications, the logical outcome can also come from the return
value of an action method in a managed bean. This method performs some processing
to determine the outcome. For example, the method can check whether the password
the user entered on the page matches the one on file. If it does, the method might
return success; otherwise, it might return failure. An outcome of failure might
result in the logon page being reloaded. An outcome of success might cause the page
displaying the user's credit card activity to open. If you want the outcome to be
returned by a method on a bean, you must refer to the method using a method
expression, with the action attribute, as shown by this example:

<h:commandButton id="submit" value="Submit"
action="#{cashierBean.submit}" />

When the user clicks the button represented by this tag, the corresponding component
generates an action event. This event is handled by the default
javax.faces.event.ActionListener instance, which calls the action method
referenced by the component that triggered the event. The action method returns a
logical outcome to the action listener.

The listener passes the logical outcome and a reference to the action method that
produced the outcome to the default javax.faces.application.NavigationHandler.
The NavigationHandler selects the page to display next by matching the outcome or

JavaServer Faces Technology 7-11

Navigation Model

the action method reference against the navigation rules in the application
configuration resource file by the following process:

1. The NavigationHandler selects the navigation rule that matches the page
currently displayed.

2. It matches the outcome or the action method reference that it received from the
default javax. faces.event.ActionListener with those defined by the navigation
cases.

3. It tries to match both the method reference and the outcome against the same
navigation case.

4, If the previous step fails, the navigation handler attempts to match the outcome.

5. Finally, the navigation handler attempts to match the action method reference if
the previous two attempts failed.

6. If nonavigation case is matched, it displays the same view again.

When the NavigationHandler achieves a match, the render response phase begins.
During this phase, the page selected by the NavigationHandler will be rendered.

The Duke's Tutoring case study example application (to be provided in the next release
of this Tutorial) uses navigation rules in the business methods that handle creating,
editing, and deleting the users of the application. For example, the form for creating a
student has the following h: commandButton tag:

<h:commandButton id="submit"
action="#{adminBean.createStudent (studentManager.newStudent) } "
value="#{bundle['action.submit']}"/>

The action event calls the dukestutoring.ejb.AdminBean.createStudent method:

public String createStudent (Student student) {
em.persist (student) ;
return "createdStudent";

}

The return value of createdStudent has a corresponding navigation case in the
faces-config.xml configuration file:

<navigation-rule>
<from-view-id>/admin/student/createStudent.xhtml</from-view-id>
<navigation-case>
<from-outcome>createdStudent</from-outcome>
<to-view-id>/admin/index.xhtml</to-view-id>
</navigation-case>
</navigation-rule>

After the student is created, the user is returned to the Administration index page.

For more information on how to define navigation rules, see Configuring Navigation
Rules.

For more information on how to implement action methods to handle navigation, see
Writing a Method to Handle an Action Event.

For more information on how to reference outcomes or action methods from
component tags, see Referencing a Method That Performs Navigation.

7-12 The Java EE 7 Tutorial

The Lifecycle of a JavaServer Faces Application

7.6 The Lifecycle of a JavaServer Faces Application

The lifecycle of an application refers to the various stages of processing of that
application, from its initiation to its conclusion. All applications have lifecycles.
During a web application lifecycle, common tasks such as the following are
performed:

» Handling incoming requests

= Decoding parameters

» Modifying and saving state

= Rendering web pages to the browser

The JavaServer Faces web application framework manages lifecycle phases
automatically for simple applications or allows you to manage them manually for
more complex applications as required.

JavaServer Faces applications that use advanced features may require interaction with
the lifecycle at certain phases. For example, Ajax applications use partial processing
features of the lifecycle. A clearer understanding of the lifecycle phases is key to
creating well-designed components.

A simplified view of the JavaServer faces lifecycle, consisting of the two main phases
of a JavaServer Faces web application, is introduced in A Simple JavaServer Faces
Application. This section examines the JavaServer Faces lifecycle in more detail.

7.6.1 Overview of the JavaServer Faces Lifecycle

The lifecycle of a JavaServer Faces application begins when the client makes an HTTP
request for a page and ends when the server responds with the page, translated to
HTML.

The lifecycle can be divided into two main phases, execute and render. The execute
phase is further divided into subphases to support the sophisticated component tree.
This structure requires that component data be converted and validated, component
events be handled, and component data be propagated to beans in an orderly fashion.

A JavaServer Faces page is represented by a tree of components, called a view. During
the lifecycle, the JavaServer Faces implementation must build the view while
considering the state saved from a previous submission of the page. When the client
requests a page, the JavaServer Faces implementation performs several tasks, such as
validating the data input of components in the view and converting input data to
types specified on the server side.

The JavaServer Faces implementation performs all these tasks as a series of steps in the
JavaServer Faces request-response lifecycle. Figure 7-3 illustrates these steps.

JavaServer Faces Technology 7-13

The Lifecycle of a JavaServer Faces Application

Figure 7-3 JavaServer Faces Standard Request-Response Lifecycle

Faces
Request

l

Restore
View

Apply
Requests

—
Render Response

Response Process Complete

Events ——>

——

Process
Validations

Response
Process Complete

Events

Validation/
— Conversion Errors/
Render Response

Update
Model
Values

Response
Process Complete
Events

——

Invoke
Application

Conversion Errors/

Render Response Response
Process Complete
Events

_—

L | Render
Response

—

Faces
Response

A

The request-response lifecycle handles two kinds of requests: initial requests and
postbacks. An initial request occurs when a user makes a request for a page for the
first time. A postback request occurs when a user submits the form contained on a
page that was previously loaded into the browser as a result of executing an initial
request.

When the lifecycle handles an initial request, it executes only the Restore View and
Render Response phases, because there is no user input or action to process.
Conversely, when the lifecycle handles a postback, it executes all of the phases.

Usually, the first request for a JavaServer Faces page comes in from a client, as a result
of clicking a link or button component on a JavaServer Faces page. To render a
response that is another JavaServer Faces page, the application creates a new view and

7-14 The Java EE 7 Tutorial

The Lifecycle of a JavaServer Faces Application

stores it in the javax.faces. context.FacesContext instance, which represents all of
the information associated with processing an incoming request and creating a
response. The application then acquires object references needed by the view and calls
the FacesContext.renderResponse method, which forces immediate rendering of the
view by skipping to the Render Response Phase of the lifecycle, as is shown by the
arrows labelled Render Response in the diagram.

Sometimes, an application might need to redirect to a different web application
resource, such as a web service, or generate a response that does not contain
JavaServer Faces components. In these situations, the developer must skip the Render
Response phase by calling the FacesContext . responseComplete method. This
situation is also shown in the diagram, with the arrows labelled Response Complete.

The most common situation is that a JavaServer Faces component submits a request
for another JavaServer Faces page. In this case, the JavaServer Faces implementation
handles the request and automatically goes through the phases in the lifecycle to
perform any necessary conversions, validations, and model updates, and to generate
the response.

There is one exception to the lifecycle described in this section. When a component's
immediate attribute is set to true, the validation, conversion, and events associated
with these components are processed during the Apply Request Values Phase rather
than in a later phase.

The details of the lifecycle explained in the following sections are primarily intended
for developers who need to know information such as when validations, conversions,
and events are usually handled and ways to change how and when they are handled.
For more information on each of the lifecycle phases, download the latest JavaServer
Faces Specification documentation from
http://jcp.org/en/jsr/detail?id=344.

The JavaServer Faces application lifecycle execute phase contains the following
sub-phases:

= Restore View Phase

= Apply Request Values Phase
» Process Validations Phase

= Update Model Values Phase
s Invoke Application Phase

= Render Response Phase

7.6.2 Restore View Phase

When a request for a JavaServer Faces page is made, usually by an action such as
when a link or a button component is clicked, the JavaServer Faces implementation
begins the Restore View phase.

During this phase, the JavaServer Faces implementation builds the view of the page,
wires event handlers and validators to components in the view, and saves the view in
the FacesContext instance, which contains all the information needed to process a
single request. All the application's components, event handlers, converters, and
validators have access to the FacesContext instance.

If the request for the page is an initial request, the JavaServer Faces implementation
creates an empty view during this phase and the lifecycle advances to the Render
Response phase, during which the empty view is populated with the components
referenced by the tags in the page.

JavaServer Faces Technology 7-15

The Lifecycle of a JavaServer Faces Application

If the request for the page is a postback, a view corresponding to this page already
exists in the FacesContext instance. During this phase, the JavaServer Faces
implementation restores the view by using the state information saved on the client or
the server.

7.6.3 Apply Request Values Phase

After the component tree is restored during a postback request, each component in the
tree extracts its new value from the request parameters by using its decode (
processDecodes ()) method. The value is then stored locally on each component.

If any decode methods or event listeners have called the renderResponse method on
the current FacesContext instance, the JavaServer Faces implementation skips to the
Render Response phase.

If any events have been queued during this phase, the JavaServer Faces
implementation broadcasts the events to interested listeners.

If some components on the page have their immediate attributes (see The immediate
Attribute) set to true, then the validations, conversions, and events associated with
these components will be processed during this phase. If any conversion fails, an error
message associated with the component is generated and queued on FacesContext.
This message will be displayed during the Render Response phase, along with any
validation errors resulting from the Process Validations phase.

At this point, if the application needs to redirect to a different web application resource
or generate a response that does not contain any JavaServer Faces components, it can
call the FacesContext.responseComplete method.

At the end of this phase, the components are set to their new values, and messages and
events have been queued.

If the current request is identified as a partial request, the partial context is retrieved
from the FacesContext, and the partial processing method is applied.

7.6.4 Process Validations Phase

During this phase, the JavaServer Faces implementation processes all validators
registered on the components in the tree, by using its validate (processvValidators)
method. It examines the component attributes that specify the rules for the validation
and compares these rules to the local value stored for the component. The JavaServer
Faces implementation also completes conversions for input components that do not
have the immediate attribute set to true.

If the local value is invalid, or if any conversion fails, the JavaServer Faces
implementation adds an error message to the FacesContext instance, and the lifecycle
advances directly to the Render Response phase so that the page is rendered again
with the error messages displayed. If there were conversion errors from the Apply
Request Values phase, the messages for these errors are also displayed.

If any validate methods or event listeners have called the renderResponse method on
the current FacesContext, the JavaServer Faces implementation skips to the Render
Response phase.

At this point, if the application needs to redirect to a different web application resource
or generate a response that does not contain any JavaServer Faces components, it can
call the FacesContext.responseComplete method.

If events have been queued during this phase, the JavaServer Faces implementation
broadcasts them to interested listeners.

7-16 The Java EE 7 Tutorial

The Lifecycle of a JavaServer Faces Application

If the current request is identified as a partial request, the partial context is retrieved
from the Faces Context, and the partial processing method is applied.

7.6.5 Update Model Values Phase

After the JavaServer Faces implementation determines that the data is valid, it
traverses the component tree and sets the corresponding server-side object properties
to the components' local values. The JavaServer Faces implementation updates only
the bean properties pointed at by an input component's value attribute. If the local
data cannot be converted to the types specified by the bean properties, the lifecycle
advances directly to the Render Response phase so that the page is re-rendered with
errors displayed. This is similar to what happens with validation errors.

If any updateModels methods or any listeners have called the renderResponse method
on the current FacesContext instance, the JavaServer Faces implementation skips to
the Render Response phase.

At this point, if the application needs to redirect to a different web application resource
or generate a response that does not contain any JavaServer Faces components, it can
call the FacesContext.responseComplete method.

If any events have been queued during this phase, the JavaServer Faces
implementation broadcasts them to interested listeners.

If the current request is identified as a partial request, the partial context is retrieved
from the FacesContext, and the partial processing method is applied.

7.6.6 Invoke Application Phase

During this phase, the JavaServer Faces implementation handles any application-level
events, such as submitting a form or linking to another page.

At this point, if the application needs to redirect to a different web application resource
or generate a response that does not contain any JavaServer Faces components, it can
call the FacesContext.responseComplete method.

If the view being processed was reconstructed from state information from a previous
request and if a component has fired an event, these events are broadcast to interested
listeners.

Finally, the JavaServer Faces implementation transfers control to the Render Response
phase.

7.6.7 Render Response Phase

During this phase, JavaServer Faces builds the view and delegates authority to the
appropriate resource for rendering the pages.

If this is an initial request, the components that are represented on the page will be
added to the component tree. If this is not an initial request, the components are
already added to the tree, so they need not be added again.

If the request is a postback and errors were encountered during the Apply Request
Values phase, Process Validations phase, or Update Model Values phase, the original
page is rendered again during this phase. If the pages contain h:mssage or h:messages
tags, any queued error messages are displayed on the page.

After the content of the view is rendered, the state of the response is saved so that
subsequent requests can access it. The saved state is available to the Restore View
phase.

JavaServer Faces Technology 7-17

Further Information about JavaServer Faces Technology

7.7 Further Information about JavaServer Faces Technology
For more information on JavaServer Faces technology, see
= JavaServer Faces 2.2 specification:
http://jcp.org/en/jsr/detail?id=344
= JavaServer Faces project web site:

https://javaserverfaces.java.net/

7-18 The Java EE 7 Tutorial

8

Introduction to Facelets

The term Facelets refers to the view declaration language for JavaServer Faces
technology. Facelets is a part of the JavaServer Faces specification and also the
preferred presentation technology for building JavaServer Faces technology-based
applications. JavaServer Pages (JSP) technology, previously used as the presentation
technology for JavaServer Faces, does not support all the new features available in
JavaServer Faces in the Java EE 7 platform. JSP technology is considered to be a
deprecated presentation technology for JavaServer Faces.

The following topics are addressed here:

= What Is Facelets?

» The Lifecycle of a Facelets Application

= Developing a Simple Facelets Application
= Using Facelets Templates

s Composite Components

= Web Resources

= Relocatable Resources

= Resource Library Contracts

s HTMLS Friendly Markup

8.1 What Is Facelets?

Facelets is a powerful but lightweight page declaration language that is used to build
JavaServer Faces views using HTML style templates and to build component trees.
Facelets features include the following:

= Use of XHTML for creating web pages

= Support for Facelets tag libraries in addition to JavaServer Faces and JSTL tag
libraries

= Support for the Expression Language (EL)

= Templating for components and pages

Advantages of Facelets for large-scale development projects include the following:
= Support for code reuse through templating and composite components

= Functional extensibility of components and other server-side objects through
customization

Introduction to Facelets 8-1

What Is Facelets?

= Faster compilation time

s Compile-time EL validation

= High-performance rendering

In short, the use of Facelets reduces the time and effort that needs to be spent on
development and deployment.

Facelets views are usually created as XHTML pages. JavaServer Faces
implementations support XHTML pages created in conformance with the XHTML
Transitional Document Type Definition (DTD), as listed at
http://www.w3.org/TR/xhtmll/#a_dtd_XHTML-1.0-Transitional. By
convention, web pages built with XHTML have an .xhtml extension.

JavaServer Faces technology supports various tag libraries to add components to a
web page. To support the JavaServer Faces tag library mechanism, Facelets uses XML
namespace declarations. Table 8-1 lists the tag libraries supported by Facelets.

Table 8-1 Tag Libraries Supported by Facelets
Prefi
Tag Library URI X Example Contents
JavaServer http://xmlns.jcp.org/jsf/facelets wui: uil:component Tags for
Faces [. insert templatin
Facelets Tag gL g
Library
JavaServer http://xmlns.jcp.org/jsf/html h: h:head JavaServer
Faces h:bod Faces
HTML Tag oy componen
Library h:outputText t tags for
. all
h:inputText UTCompone
nt objects
JavaServer http://xmlns.jcp.org/jsf/core f: f:actionListener Tags for
Faces Core £.attribute JavaServer
Tag Library ’ Faces
custom
actions
that are
independe
nt of any
particular
render kit
Pass-throug http://xmlns.jcp.org/jst p: p:type Tags to
h Elements support
Tag Library HTML5
friendly
markup
Pass-throug http://xmlns.jcp.org/jsf/passthro jsf: jsf:id Tags to
h Attributes ugh support
Tag Library HTML5
friendly
markup
JSTL Core http://xmlns.jcp.org/jsp/jstl/cor c: c:forEach JSTL 1.2
Tag Library e o catch Core Tags
JSTL http://xmlns.jcp.org/jsp/jstl/ fn: fn:toUpperCase JSTL 1.2
Functions linebreakfunctions Functions
. fn:toLowerCase
Tag Library Tags

8-2 The Java EE 7 Tutorial

Developing a Simple Facelets Application

In addition, Facelets supports tags for composite components, for which you can
declare custom prefixes. For more information on composite components, see
Composite Components.

Facelets provides two namespaces to support HTMLS5 friendly markup. For details, see
HTMLS5 Friendly Markup.

Based on the JavaServer Faces support for Expression Language (EL) syntax, Facelets
uses EL expressions to reference properties and methods of managed beans. EL
expressions can be used to bind component objects or values to methods or properties
of managed beans that are used as backing beans. For more information on using EL
expressions, see Using the EL to Reference Managed Beans.

8.2 The Lifecycle of a Facelets Application

The JavaServer Faces specification defines the lifecycle of a JavaServer Faces
application. For more information on this lifecycle, see The Lifecycle of a JavaServer
Faces Application. The following steps describe that process as applied to a
Facelets-based application.

1. When a client, such as a browser, makes a new request to a page that is created
using Facelets, a new component tree or javax.faces.component.UIViewRoot is
created and placed in the FacesContext.

2. The UIViewRoot is applied to the Facelets, and the view is populated with
components for rendering.

3. The newly built view is rendered back as a response to the client.

4. On rendering, the state of this view is stored for the next request. The state of
input components and form data is stored.

5. The client may interact with the view and request another view or change from the
JavaServer Faces application. At this time the saved view is restored from the
stored state.

6. The restored view is once again passed through the JavaServer Faces lifecycle,
which eventually will either generate a new view or re-render the current view if
there were no validation problems and no action was triggered.

7. If the same view is requested, the stored view is rendered once again.
8. If a new view is requested, then the process described in Step2 is continued.

9. The new view is then rendered back as a response to the client.

8.3 Developing a Simple Facelets Application

This section describes the general steps involved in developing a JavaServer Faces
application. The following tasks are usually required:

= Developing the managed beans

» Creating the pages using the component tags
= Defining page navigation

= Mapping the FacesServlet instance

» Adding managed bean declarations

Introduction to Facelets 8-3

Developing a Simple Facelets Application

8.3.1 Creating a Facelets Application

The example used in this tutorial is the guessnumber-jsf application. The application
presents you with a page that asks you to guess a number between 0 and 10, validates
your input against a random number, and responds with another page that informs
you whether you guessed the number correctly or incorrectly.

8.3.1.1 Developing a Managed Bean

In a typical JavaServer Faces application, each page of the application connects to a
managed bean that serves as a backing bean. The backing bean defines the methods
and properties that are associated with the components. In this example, both pages
use the same backing bean.

The following managed bean class, UserNumberBean. java, generates a random
number from 0 to 10:

package javaeetutorial.guessnumber;

import java.io.Serializable;

import java.util.Random;

import javax.enterprise.context.SessionScoped;
import javax.inject.Named;

@Named
@SessionScoped
public class UserNumberBean implements Serializable {

private static final long serialVersionUID = 5443351151396868724L;
Integer randomInt = null;

Integer userNumber = null;

String response = null;

private long maximum=10;

private long minimum=0;

public UserNumberBean() {
Random randomGR = new Random() ;
randomInt = new Integer (randomGR.nextInt (10));
// Print number to server log
System.out.println("Duke's number: " + randomInt);

public void setUserNumber (Integer user_number) {
userNumber = user_number;

public Integer getUserNumber () {
return userNumber;

public String getResponse() {

if ((userNumber == null)
|| (userNumber.compareTo(randomInt) != 0)) {
return "Sorry, " + userNumber + " is incorrect.";
} else {

return "Yay! You got it!";

public long getMaximum() {
return (this.maximum);

8-4 The Java EE 7 Tutorial

Developing a Simple Facelets Application

public void setMaximum(long maximum) {
this.maximum = maximum;

public long getMinimum() {
return (this.minimum);

public void setMinimum(long minimum) {
this.minimum = minimum;

}

Note the use of the @Named annotation, which makes the managed bean accessible
through the EL. The @SessionScoped annotation registers the bean scope as session to
enable you to make multiple guesses as you run the application.

8.3.1.2 Creating Facelets Views

To create a page or view, you add components to the pages, wire the components to
backing bean values and properties, and register converters, validators, or listeners on
the components.

For the example application, XHTML web pages serve as the front end. The first page
of the example application is a page called greeting.xhtml. A closer look at various
sections of this web page provides more information.

The first section of the web page declares the content type for the page, which is
XHTML:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">

The next section specifies the language of the XHTML page, then declares the XML
namespace for the tag libraries that are used in the web page:

<html lang="en"
xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://xmlns.jcp.org/jsf/html"
xmlns:f="http://xmlns.jcp.org/jsf/core">

The next section uses various tags to insert components into the web page:

<h:head>
<h:outputStylesheet library="css" name="default.css"/>
<title>Guess Number Facelets Application</title>

</h:head>
<h:body>
<h:form>

<h:graphicImage value="#{resourcel['images:wave.med.gif']}"
alt="Duke waving his hand"/>
<h2>
Hi, my name is Duke. I am thinking of a number from
#{userNumberBean.minimum} to #{userNumberBean.maximum} .
Can you guess it?
</h2>
<p><h:inputText
id="userNo"
title="Type a number from 0 to 10:"

Introduction to Facelets 8-5

Developing a Simple Facelets Application

value="#{userNumberBean.userNumber} ">
<f:validateLongRange
minimum="#{userNumberBean.minimum}"
maximum="#{userNumberBean.maximum}" />
</h:inputText>
<h:commandButton id="submit" value="Submit"
action="response"/>
</p>
<h:message showSummary="true" showDetail="false"
style="color: #d20005;
font-family: 'New Century Schoolbook', serif;
font-style: oblique;
text-decoration: overline"
id="errorsl"
for="userNo"/>
</h:form>
</h:body>

Note the use of the following tags:
= Facelets HTML tags (those beginning with h:) to add components
s The Facelets core tag f:validateLongRange to validate the user input

An h:inputText tag accepts user input and sets the value of the managed bean
property userNumber through the EL expression # {userNumberBean.userNumber}. The
input value is validated for value range by the JavaServer Faces standard validator tag
f:validateLongRange.

The image file, wave.med.gif, is added to the page as a resource; so is the style sheet.
For more details about the resources facility, see Web Resources.

An h:commandButton tag with the ID submit starts validation of the input data when a
user clicks the button. Using implicit navigation, the tag redirects the client to another
page, response. xhtml, which shows the response to your input. The page specifies
only response, which by default causes the server to look for response.xhtml.

You can now create the second page, response.xhtml, with the following content:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html lang="en"
xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://xmlns.jcp.org/jsf/html">

<h:head>
<h:outputStylesheet library="css" name="default.css"/>
<title>Guess Number Facelets Application</title>

</h:head>
<h:body>
<h:form>

<h:graphicImage value="#{resourcel'images:wave.med.gif']}"
alt="Duke waving his hand"/>
<h2>
<h:outputText id="result"
value="#{userNumberBean.response}"/>

</h2>
<h:commandButton id="back" value="Back" action="greeting"/>

</h:form>

</h:body>
</html>

8-6 The Java EE 7 Tutorial

Developing a Simple Facelets Application

This page also uses implicit navigation, setting the action attribute for the Back
button to send the user to the greeting.xhtml page.

8.3.2 Configuring the Application

Configuring a JavaServer Faces application involves mapping the Faces Servlet in the
web deployment descriptor file, such as a web.xml file, and possibly adding managed
bean declarations, navigation rules, and resource bundle declarations to the
application configuration resource file, faces-config.xml.

If you are using NetBeans IDE, a web deployment descriptor file is automatically
created for you. In such an IDE-created web . xml file, change the default greeting page,
which is index.xhtml, to greeting.xhtml. Here is an example web.xml file, showing
this change in bold.

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="3.1" xmlns="http://xmlns.jcp.org/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd">
<context-param>
<param-name>javax.faces.PROJECT_STAGE</param-name>
<param-value>Development</param-value>
</context-param>
<servlet>
<servlet-name>Faces Servlet</servlet-name>
<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
<load-on-startup>1</load-on-startup>
</servlet>
<servlet-mapping>
<servlet-name>Faces Servlet</servlet-name>
<url-pattern>/faces/*</url-pattern>
</servlet-mapping>
<gsession-config>
<session-timeout>
30
</session-timeout>
</session-config>
<welcome-file-list>
<welcome-file>faces/greeting.xhtml</welcome-file>
</welcome-file-list>
</web-app>

Note the use of the context parameter PROJECT_STAGE. This parameter identifies the
status of a JavaServer Faces application in the software lifecycle.

The stage of an application can affect the behavior of the application. For example, if
the project stage is defined as Development, debugging information is automatically
generated for the user. If not defined by the user, the default project stage is
Production.

8.3.3 Running the guessnumber-jsf Facelets Example

You can use either NetBeans IDE or Maven to build, package, deploy, and run the
guessnumber-jsf example. The source code for this example is available in the
tut-install /examples/web/jsf/guessnumber-jsf/ directory.

Introduction to Facelets 8-7

Using Facelets Templates

8.3.3.1 To Build, Package, and Deploy the guessnumber-jsf Example Using
NetBeans IDE

1.
2

From the File menu, select Open Project.
In the Open Project dialog box, navigate to:

tut-install/examples/web/jst

Select the guessnumber-jsf folder.
Click Open Project.
In the Projects tab, right-click the guessnumber-jsf project and select Build.

This option builds the example application and deploys it to your GlassFish Server
instance.

8.3.3.2 To Build, Package, and Deploy the guessnumber-jsf Example Using Maven

1.

In a terminal window, go to:

tut-install/examples/web/jsf/guessnumber-jsf/

Enter the following command:
mvn install
This command builds and packages the application into a WAR file,

guessnumber-jsf.war, that is located in the target directory. It then deploys it to
the server.

8.3.3.3 To Run the guessnumber-jsf Example

1.
2.

Open a web browser.
Enter the following URL in your web browser:

http://localhost:8080/guessnumber

In the field, enter a number from 0 to 10 and click Submit.
Another page appears, reporting whether your guess is correct or incorrect.
If you guessed incorrectly, click Back to return to the main page.

You can continue to guess until you get the correct answer, or you can look in the
server log, where the UserNumberBean constructor displays it.

8.4 Using Facelets Templates

JavaServer Faces technology provides the tools to implement user interfaces that are
easy to extend and reuse. Templating is a useful Facelets feature that allows you to
create a page that will act as the base, or template , for the other pages in an
application. By using templates, you can reuse code and avoid recreating similarly
constructed pages. Templating also helps in maintaining a standard look and feel in an
application with a large number of pages.

Table 8-2 lists Facelets tags that are used for templating and their respective
functionality.

8-8 The Java EE 7 Tutorial

Using Facelets Templates

Table 8-2 Facelets Templating Tags

Tag Function

ui:component Defines a component that is created and added to the component tree.

ui:composition Defines a page composition that optionally uses a template. Content
outside of this tag is ignored.

ui:debug Defines a debug component that is created and added to the component
tree.

ui:decorate Similar to the composition tag but does not disregard content outside this
tag.

ui:define Defines content that is inserted into a page by a template.

ui:fragment Similar to the component tag but does not disregard content outside this
tag.

ui:include Encapsulate and reuse content for multiple pages.

ui:insert Inserts content into a template.

ui:param Used to pass parameters to an included file.

ui:repeat Used as an alternative for loop tags, such as c: forEach or h:dataTable.

ui:remove Removes content from a page.

For more information on Facelets templating tags, see the documentation at
http://docs.oracle.com/javaee/7/javaserverfaces/2.2/vdldocs/face
lets/.

The Facelets tag library includes the main templating tag ui:insert. A template page
that is created with this tag allows you to define a default structure for a page. A
template page is used as a template for other pages, usually referred to as client pages.

Here is an example of a template saved as template.xhtml:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
xmlns:h="http://xmlns.jcp.org/jsf/html">

<h:head>
<meta http-equiv="Content-Type"
content="text/html; charset=UTF-8" />
<h:outputStylesheet library="css" name="default.css"/>
<h:outputStylesheet library="css" name="cssLayout.css"/>
<title>Facelets Template</title>
</h:head>

<h:body>
<div id="top" class="top">
<ui:insert name="top">Top Section</ui:insert>

</div>
<div>
<div id="left">

<ui:insert name="left">Left Section</ui:insert>
</div>
<div id="content" class="left_content">

<ui:insert name="content">Main Content</ui:insert>
</div>
</div>

Introduction to Facelets 8-9

Composite Components

</h:body>
</html>

The example page defines an XHTML page that is divided into three sections: a top
section, a left section, and a main section. The sections have style sheets associated
with them. The same structure can be reused for the other pages of the application.

The client page invokes the template by using the ui:composition tag. In the
following example, a client page named templateclient.xhtml invokes the template
page named template.xhtml from the preceding example. A client page allows
content to be inserted with the help of the ui:define tag.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
xmlns:h="http://xmlns.jcp.org/jsf/html">

<h:body>
<ui:composition template="./template.xhtml">
<ui:define name="top">
Welcome to Template Client Page
</ui:define>

<ui:define name="left">
<h:outputLabel value="You are in the Left Section"/>
</ui:define>

<ui:define name="content">
<h:graphicImage value="#{resourcel'images:wave.med.gif']}"/>
<h:outputText value="You are in the Main Content Section"/>
</ui:define>
</ui:composition>
</h:body>
</html>

You can use NetBeans IDE to create Facelets template and client pages. For more
information on creating these pages, see
https://netbeans.org/kb/docs/web/jsf20-intro.html.

8.5 Composite Components

JavaServer Faces technology offers the concept of composite components with
Facelets. A composite component is a special type of template that acts as a
component.

Any component is essentially a piece of reusable code that behaves in a particular way.
For example, an input component accepts user input. A component can also have
validators, converters, and listeners attached to it to perform certain defined actions.

A composite component consists of a collection of markup tags and other existing
components. This reusable, user-created component has a customized, defined
functionality and can have validators, converters, and listeners attached to it like any
other component.

With Facelets, any XHTML page that contains markup tags and other components can
be converted into a composite component. Using the resources facility, the composite
component can be stored in a library that is available to the application from the
defined resources location.

8-10 The Java EE 7 Tutorial

Composite Components

Table 8-3 lists the most commonly used composite tags and their functions.

Table 8-3 Composite Component Tags

Tag

Function

composite:

interface

Declares the usage contract for a composite component.
The composite component can be used as a single
component whose feature set is the union of the features
declared in the usage contract.

composite:

implementation

Defines the implementation of the composite component. If
a composite:interface element appears, there must be a
corresponding composite:implementation.

composite:

attribute

Declares an attribute that may be given to an instance of the
composite component in which this tag is declared.

composite:

insertChildren

Any child components or template text within the
composite component tag in the using page will be
reparented into the composite component at the point
indicated by this tag's placement within the
composite:implementation section.

composite:

valueHolder

Declares that the composite component whose contract is
declared by the composite:interface in which this
element is nested exposes an implementation of
ValueHolder suitable for use as the target of attached
objects in the using page.

composite:

r

editableValueHolde

Declares that the composite component whose contract is
declared by the composite:interface in which this
element is nested exposes an implementation of
EditableValueHolder suitable for use as the target of
attached objects in the using page.

composite:

actionSource

Declares that the composite component whose contract is
declared by the composite:interface in which this
element is nested exposes an implementation of
ActionSource?2 suitable for use as the target of attached
objects in the using page.

For more information and a complete list of Facelets composite tags, see the
documentation at
http://docs.oracle.com/javaee/7/javaserverfaces/2.2/docs/vdldocs
/facelets/.

The following example shows a composite component that accepts an email address as

input:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:composite="http://xmlns.jcp.org/jsf/composite"
xmlns:h="http://xmlns.jcp.org/jsf/html">

<h:head>

<title>This content will not be displayed</title>
</h:head>
<h:body>

<composite:interface>

</composite:interface>

<composite:attribute name="value" required="false"/>

<composite:implementation>

Introduction to Facelets 8-11

Web Resources

<h:outputLabel value="Email id: "></h:outputLabel>
<h:inputText value="#{cc.attrs.value}"></h:inputText>
</composite:implementation>
</h:body>
</html>

Note the use of cc.attrs.value when defining the value of the inputText component.
The word cc in JavaServer Faces is a reserved word for composite components. The
#{cc.attrs.attribute-name} expression is used to access the attributes defined for the
composite component's interface, which in this case happens to be value.

The preceding example content is stored as a file named email.xhtml in a folder
named resources/emcomp, under the application web root directory. This directory is
considered a library by JavaServer Faces, and a component can be accessed from such
a library. For more information on resources, see Web Resources.

The web page that uses this composite component is generally called a using page.
The using page includes a reference to the composite component, in the xml
namespace declarations:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0org/TR/xhtml1/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://xmlns.jcp.org/jsf/html"
xmlns:em="http://xmlns.jcp.org/jsf/composite/emcomp">

<h:head>
<title>Using a sample composite component</title>
</h:head>

<body>
<h:form>
<em:email value="Enter your email id" />
</h:form>
</body>
</html>

The local composite component library is defined in the xmlns namespace with the
declaration xmlns:em="http://xmlns.jcp.org/jsf/composite/emcomp". The
component itself is accessed through the em:email tag. The preceding example content
can be stored as a web page named emuserpage.xhtml under the web root directory.
When compiled and deployed on a server, it can be accessed with the following URL:

http://localhost:8080/application-name/faces/emuserpage.xhtml

8.6 Web Resources

Web resources are any software artifacts that the web application requires for proper
rendering, including images, script files, and any user-created component libraries.
Resources must be collected in a standard location, which can be one of the following.

= A resource packaged in the web application root must be in a subdirectory of a
resources directory at the web application root: resources/resource-identifier.

= A resource packaged in the web application's classpath must be in a subdirectory
of the META-INF/resources directory within a web application:
META-INF/resources/resource-identifier. You can use this file structure to package
resources in a JAR file bundled in the web application.

8-12 The Java EE 7 Tutorial

Resource Library Contracts

The JavaServer Faces runtime will look for the resources in the preceding listed
locations, in that order.

Resource identifiers are unique strings that conform to the following format (all on one
line):

[locale-prefix/] [library-name/] [library-version/]resource-namel/resource-version]
Elements of the resource identifier in brackets ([]) are optional, indicating that only a
resource-name, which is usually a file name, is a required element. For example, the

most common way to specify a style sheet, image, or script is to use the library and
name attributes, as in the following tag from the guessnumber-jsf example:

<h:outputStylesheet library="css" name="default.css"/>
This tag specifies that the default.css style sheet is in the directory
web/resources/css.

You can also specify the location of an image using the following syntax, also from the
guessnumber-jsf example:

<h:graphicImage value="#{resourcel['images:wave.med.gif']}"/>
This tag specifies that the image named wave.med.gif is in the directory
web/resources/images.

Resources can be considered as a library location. Any artifact, such as a composite
component or a template that is stored in the resources directory, becomes accessible
to the other application components, which can use it to create a resource instance.

8.7 Relocatable Resources

You can place a resource tag in one part of a page and specify that it be rendered in
another part of the page. To do this, you use the target attribute of a tag that specifies
a resource. Acceptable values for this attribute are as follows:

m "head" renders the resource in the head element.
m "body" renders the resource in the body element.
s "form" renders the resource in the form element.

For example, the following h:outputScript tag is placed within an h: form element,
but it renders the JavaScript in the head element:

<h: form>
<h:outputScript name="myscript.js" library="mylibrary" target="head"/>
</h:form>

The h:outputStylesheet tag also supports resource relocation, in a similar way.

Relocatable resources are essential for composite components that use stylesheets and
can also be useful for composite components that use JavaScript. See The
compositecomponentlogin Example Application for an example.

8.8 Resource Library Contracts

Resource library contracts allow you to define a different look and feel for different
parts of one or more applications, instead of either having to use the same look and
feel for all or having to specify a different look on a page-by-page basis.

Introduction to Facelets 8-13

Resource Library Contracts

To do this, you create a contracts section of your web application. Within the
contracts section, you can specify any number of named areas, each of which is called
a contract. Within each contract you can specify resources such as template files,
stylesheets, JavaScript files, and images.

For example, you could specify two contracts named c1 and c¢2, each of which uses a
template and other files:

src/main/webapp
WEB-INF/
contracts
cl
template.xhtml
style.css
myImg.gif
myJS.js
c2
template.xhtml
style2.css
img2.gif
JS2.3js

index.xhtml

One part of the application can use c1, while another can use c2.

Another way to use contracts is to specify a single contract that contains multiple
templates:

src/main/webapp
contracts
myContract
templatel.xhtml
template2.xhtml
style.css
img.png
img2.png

You can package a resource library contract in a JAR file for reuse in different
applications. If you do so, the contracts must be located under META-INF/contracts.
You can then place the JAR file in the WEB-INF/1ib directory of an application. This
means that the application would be organized as follows:

src/main/webapp/
WEB-INF/lib/myContract.jar

You can specify the contract usage within an application's faces-config.xml file,
under the resource-library-contracts element. You need to use this element only if
your application uses more than one contract, however.

8.8.1 The hello1-ric Example Application

The hellol-rlc example modifies the simple hellol example from A Web Module
That Uses JavaServer Faces Technology: The hellol Example to use two resource
library contracts. Each of the two pages in the application uses a different contract.

The managed bean for hellol-rlc, Hello. java, is identical to the one for hellol
(except that it replaces the @Named and @RequestScoped annotations with @Model).

8-14 The Java EE 7 Tutorial

Resource Library Contracts

8.8.1.1 Configuring the hello1-rlc Example

The faces-config.xml file for the hellol-rlc example contains the following
elements:

<resource-library-contracts>
<contract-mapping>
<url-pattern>/reply/*</url-pattern>
<contracts>reply</contracts>
</contract-mapping>
<contract-mapping>
<url-pattern>*</url-pattern>
<contracts>hello</contracts>
</contract-mapping>
</resource-library-contracts>

The contract-mapping elements within the resource-library-contracts element
map each contract to a different set of pages within the application. One contract,
named reply, is used for all pages under the reply area of the application (/reply/*).
The other contract, hello, is used for all other pages in the application (*).

The application is organized as follows:

hellol-rlc
pom. xml
src/main/java/javaeetutorial/hellolrlc/Hello.java
src/main/webapp
WEB-INF
faces-config.xml
web.xml
contracts
hello
default.css
duke.handsOnHips.gif
template.xhtml
reply
default.css
duke. thumbsup.gif
template.xhtml
reply
response.xhtml
greeting.xhtml

The web. xml file specifies the welcome-file as faces/greeting.xhtml. This Facelets
page, since it is not located under src/main/webapp/reply, uses the hello contract,
while src/main/webapp/reply/response.xhtml uses the reply contract.

8.8.1.2 The Facelets Pages for the hello1-rlc Example

The greeting.xhtml and response.xhtml pages have identical code calling in their
templates:

<ui:composition template="/template.xhtml">
The template.xhtml files in the hello and reply contracts differ only in two respects:

the placeholder text for the title element ("Hello Template" and "Reply Template")
and the graphic that each specifies.

The default.css stylesheets in the two contracts differ in only one respect: the
background color specified for the body element.

Introduction to Facelets 8-15

HTML5 Friendly Markup

8.8.1.3 To Build, Package, and Deploy the hello1-ric Example Using NetBeans IDE

1. From the File menu, choose Open Project.
2. In the Open Project dialog box, navigate to:

tut-install/examples/web/jsf/hellol-rlc

3. Select the hellol-rlc folder.
4. Click Open Project.
5. In the Projects tab, right-click the hellol-rlc project and select Build.

This option builds the example application and deploys it to your GlassFish Server
instance.

8.8.1.4 To Build, Package, and Deploy the hello1-ric Example Using Maven and the
asadmin Command

1. In a terminal window, go to:

tut-install/examples/web/jsf/hellol-rlc/

2. Enter the following command:

mvn install

This command builds and packages the application into a WAR file,
hellol-rlc.war, thatis located in the target directory. It then deploys it to your
GlassFish Server instance.

8.8.1.5 To Run the hello1-ric Example

1. Enter the following URL in your web browser:

http://localhost:8080/hellol-rlc

2. The greeting.xhtml page looks just like the one from hellol except for its
background color and graphic.

3. In the text field, enter your name and click Submit.

4. The response page also looks just like the one from hellol except for its
background color and graphic.

The page displays the name you submitted. Click Back to return to the
greeting.xhtml page.

8.9 HTMLS5 Friendly Markup

When you want to produce user interface features for which HTML does not have its
own elements, you can create a custom JavaServer Faces component and insert it in
your Facelets page. This mechanism can cause a simple element to create complex web
code. However, creating such a component is a significant task (see Chapter 15,
"Creating Custom UI Components and Other Custom Objects").

HTMLS offers new elements and attributes that can make it unnecessary to write your
own components. It also provides many new capabilities for existing components.
JavaServer Faces technology supports HTML5 not by introducing new Ul components
that imitate HTMLS5 ones, but by allowing you to use HTML5 markup directly. It also
allows you to use JavaServer Faces attributes within HTMLS5 elements. JavaServer
Faces technology support for HTMLS5 falls into two categories:

8-16 The Java EE 7 Tutorial

HTML5 Friendly Markup

s Pass-through elements
= Pass-through attributes

The effect of the HTMLS5 friendly markup feature is to offer the Facelets page author
almost complete control over the rendered page output, rather than having to pass this
control off to component authors. You can mix and match JavaServer Faces and
HTML5 components and elements as you see fit.

8.9.1 Using Pass-through Elements

Pass-through elements allow you to use HTMLS5 tags and attributes but to treat them
as equivalent to JavaServer Faces components, associated with a server-side
UIComponent instance.

To make a non-JavaServer Faces element a pass-through element, specify at least one
of its attributes using the http://xmlns.jcp.org/jsf namespace. For example, the
following code declares the namespace with the short name jsf:

<html ... xmlns:jsf="http://xmlns.jcp.org/jsf"

<input type="email" jsf:id="email" name="email"
value="#{reservationBean.email}" required="required"/>

Here, the jsf prefix is placed on the id attribute so that the HTML5 input tag's
attributes are treated as part of the Facelets page. This means that, for example, you
can use EL expressions to retrieve managed bean properties.

Table 8—4 shows how pass-through elements are rendered as Facelets tags. The JSF
implementation uses the element name and the identifying attribute to determine the
corresponding Facelets tag that will be used in the server-side processing. The
browser, however, interprets the markup that the page author has written.

Table 8-4 How Facelets Renders HTML5 Elements
HTMLS5 Element Name

Identifying Attribute Facelets Tag

a jsf:action h:commandLink

a jsf:actionListener h:commandLink

a jsf:value h:outputLink

a jsf:outcome h:1link

body h:body

button h:commandButton
button jsf:outcome h:button

form h:form

head h:head

img h:graphicImage
input type="button" h:commandButton
input type="checkbox" h:selectBooleanCheckbox
input type="color" h:inputText
input type="date" h:inputText
input type="datetime" h:inputText
input type="datetime-local" h:inputText

Introduction to Facelets 8-17

HTML5 Friendly Markup

Table 8—4 (Cont.) How Facelets Renders HTML5 Elements

HTML5 Element Name Identifying Attribute Facelets Tag

input type="email" h:inputText

input type="month" h:inputText

input type="number" h:inputText

input type="range" h:inputText

input type="search" h:inputText

input type="time" h:inputText

input type="url" h:inputText

input type="week" h:inputText

input type="file" h:inputFile

input type="hidden" h:inputHidden
input type="password" h:inputSecret
input type="reset" h:commandButton
input type="submit" h:commandButton
input type="*" h:inputText

label h:outputLabel

link h:outputStylesheet
script h:outputScript
select multiple="*" h:selectManyListbox
select h:selectOneListbox
textarea h:inputTextArea

8.9.2 Using Pass-through Attributes

Pass-through attributes are the converse of pass-through elements. They allow you to
pass non-JavaServer Faces attributes through to the browser without interpretation. If
you specify a pass-through attribute in a JavaServer Faces UIComponent, the attribute
name and value are passed straight through to the browser without being interpreted
by JavaServer Faces components or renderers. There are several ways to specify
pass-through attributes:

= Use the JavaServer Faces namespace for pass-through attributes to prefix the
attribute names within a JavaServer Faces component. For example, the following
code declares the namespace with the short name p, then passes the type, min, max,
required, and title attributes through to the HTML5 input component:

<html ... xmlns:p="http://xmlns.jcp.org/jsf/passthrough"

<h:form prependId="false">

<h:inputText id="nights" p:type="number" value="#{bean.nights}"
p:min="1" p:max="30" p:required="required"
p:title="Enter a number between 1 and 30 inclusive.">

This will cause the following markup to be rendered (assuming that bean.nights
has a default value set to 1):

8-18 The Java EE 7 Tutorial

HTML5 Friendly Markup

<input id="nights" type="number" value="1" min="1" max="30"
required="required"
title="Enter a number between 1 and 30 inclusive.">

» To pass a single attribute, nest the f:passThroughAttribute tag within a
component tag . For example:

<h:inputText value="#{user.email}">
<f:passThroughAttribute name="type" value="email" />
</h:inputText>

This code would be rendered similarly to the following:

<input value="me@me.com" type="email" />

= To pass a group of attributes, nest the f:passThroughAttributes tag within a
component tag, specifying an EL value that must evaluate to a Map<String,
Object>. For example:

<h:inputText value="#{bean.nights">
<f:passThroughAttributes value="#{bean.nameValuePairs}" />
</h:inputText>

If the bean used the following Map declaration and initialized the map in the
constructor as follows, the markup would be similar to the output of the code that
uses the pass-through attribute namespace.

private Map<String, Object> nameValuePairs;

public Bean() {
this.nameValuePairs = new HashMap<>();
this.nameValuePairs.put("type", "number");
this.nameValuePairs.put ("min", "1");
this.nameValuePairs.put ("max", "30");
this.nameValuePairs.put ("required", "required");
this.nameValuePairs.put("title",

"Enter a number between 1 and 4 inclusive.");

8.9.3 The reservation Example Application

The reservation example application provides a set of HTML5 input elements of
various types to simulate purchasing tickets for a theatrical event. It consists of two
Facelets pages, reservation.xhtml and confirmation.xhtml, and a backing bean,
ReservationBean.java. The pages use both pass-through attributes and pass-through
elements.

8.9.3.1 The Facelets Pages for the reservation Application

The first important feature of the Facelets pages for the reservation application is the
DOCTYPE header. Most Facelets pages in JavaServer Faces applications refer to the
XHTML DTD. The facelets pages for this application begin simply with the following
DOCTYPE header, which indicates an HTML5 page:

<!DOCTYPE html>

The namespace declarations in the html element of the reservation.xhtml page
specify both the jsf and the passthrough namespaces:

<html lang="en"
xmlns="http://www.w3.0rg/1999/xhtml"

Introduction to Facelets 8-19

HTML5 Friendly Markup

xmlns:f="http://xmlns.jcp.org/jsf/core"
xmlns:h="http://xmlns.jcp.org/jsf/html"
xmlns:p="http://xmlns.jcp.org/jsf/passthrough"
xmlns:jsf="http://xmlns.jcp.org/jst">

Next, an empty h:head tag followed by an h:outputStylesheet tag within the h:body
tag illustrates the use of a relocatable resource (as described in Relocatable Resources):

<h:head>
</h:head>
<h:body>
<h:outputStylesheet name="css/stylesheet.css" target="head"/>

The reservation.xhtml page uses pass-through elements for most of the form fields
on the page. This allows it to use some HTML5-specific input element types, such as
date and email. For example, the following element renders both a date format and a
calendar from which you can choose a date. The jsf prefix on the id attribute makes
the element a pass-through one:

<input type="date" jsf:id="date" name="date"
value="#{reservationBean.date}" required="required"
title="Enter or choose a date."/>

The field for the number of tickets, however, uses the h:passThroughAttributes tag to
pass a Map defined in the managed bean. It also recalculates the total in response to a
change in the field:

<h:inputText id="tickets" value="#{reservationBean.tickets}">
<f:passThroughAttributes value="#{reservationBean.ticketAttrs}"/>
<f:ajax event="change" render="total"
listener="#{reservationBean.calculateTotal}"/>
</h:inputText>

The field for the price specifies the number type as a pass-through attribute of the
h:inputText element, offering a range of four ticket prices. Here, the p prefix on the
HTMLS attributes passes them through to the browser uninterpreted by the JavaServer
Faces input component:

<h:inputText id="price" p:type="number"
value="#{reservationBean.price}"
p:min="80" p:max="120"
p:step="20" p:required="required"
p:title="Enter a price: 80, 100, 120, or 140.">
<f:ajax event="change" render="total"
listener="#{reservationBean.calculateTotal}"/>
</h:inputText>

The output of the calculateTotal method that is specified as the listener for the Ajax
event is rendered in the output element whose id and name value is total. See
Chapter 13, "Using Ajax with JavaServer Faces Technology", for more information.

The second Facelets page, confirmation.xhtml, uses a pass-through output element
to display the values entered by the user and provides a Facelets h: commandButton tag
to allow the user to return to the reservation.xhtml page.

8.9.3.2 The Managed Bean for the reservation Application

The session-scoped managed bean for the reservation application,
ReservationBean.java, contains properties for all the elements on the Facelets pages.
It also contains two methods, calculateTotal and clear, that act as listeners for Ajax
events on the reservation.xhtml page.

8-20 The Java EE 7 Tutorial

HTML5 Friendly Markup

8.9.3.3 To Build, Package, and Deploy the reservation Example Using NetBeans
IDE

1. From the File menu, choose Open Project.
2. In the Open Project dialog box, navigate to:

tut-install/examples/web/jsf/reservation

3. Select the reservation folder.
4. Click Open Project.
5. In the Projects tab, right-click the reservation project and select Build.

This option builds the example application and deploys it to your GlassFish Server
instance.

8.9.3.4 To Build, Package, and Deploy the reservation Example Using Maven and
the asadmin Command
1. Ina terminal window, go to:

tut-install/examples/web/jsf/reservation/

2. Enter the following command:
mvn install
This command builds and packages the application into a WAR file,

reservation.war, thatis located in the target directory. It then deploys it to your
GlassFish Server instance.

8.9.3.5 To Run the reservation Example

At the time of the publication of this tutorial, the browser that most fully implements
HTMLS is Google Chrome, and it is recommended that you use it to run this example.
Other browsers are catching up, however, and may work equally well by the time you
read this.

1. Enter the following URL in your web browser:

http://localhost:8080/reservation

2. Enter information in the fields of the reservation.xhtml page.

The Performance Date field has a date field with up and down arrows that allow
you to increment and decrement the month, day, and year, as well as a larger
down arrow that brings up a date editor in calendar form.

The Number of Tickets and Ticket Price fields also have up and down arrows
that allow you to increment and decrement the values within the allowed range
and steps. The Estimated Total changes when you change either of these two
fields.

Email addresses and dates are checked for format, but not for validity (you can
make a reservation for a past date, for instance).

3. Click Make Reservation to complete the reservation, or Clear to restore the fields
to their default values.

4. If you click Make Reservation, the confirmation.xhtml page appears, displaying
the submitted values.

Click Back to return to the reservation.xhtml page.

Introduction to Facelets 8-21

HTML5 Friendly Markup

8-22 The Java EE 7 Tutorial

9

Expression Language

This chapter introduces the Expression Language (also referred to as the EL), which
provides an important mechanism for enabling the presentation layer (web pages) to
communicate with the application logic (managed beans). The EL is used by both
JavaServer Faces technology and JavaServer Pages (JSP) technology. The EL represents
a union of the expression languages offered by JavaServer Faces technology and JSP
technology.

The following topics are addressed here:

s Overview of the EL

» Immediate and Deferred Evaluation Syntax
= Value and Method Expressions

= Literal Expressions

s Operators

s Reserved Words

= Examples of EL Expressions

9.1 Overview of the EL

The EL allows page authors to use simple expressions to dynamically access data from
JavaBeans components. For example, the test attribute of the following conditional
tag is supplied with an EL expression that compares 0 with the number of items in the
session-scoped bean named cart.

<c:1f test="${sessionScope.cart.numberOfItems> 0}">

</c:if>

JavaServer Faces technology uses the EL for the following functions:
s Deferred and immediate evaluation of expressions

= The ability to set as well as get data

= The ability to invoke methods

See Using the EL to Reference Managed Beans for more information on how to use the
EL in JavaServer Faces applications.

To summarize, the EL provides a way to use simple expressions to perform the
following tasks:

Expression Language 9-1

Immediate and Deferred Evaluation Syntax

= Dynamically read application data stored in JavaBeans components, various data
structures, and implicit objects

s Dynamically write data, such as user input into forms, to JavaBeans components
= Invoke arbitrary static and public methods
= Dynamically perform arithmetic operations

The EL is also used to specify the following kinds of expressions that a custom tag
attribute will accept:

s Immediate evaluation expressions or deferred evaluation expressions. An
immediate evaluation expression is evaluated at once by the underlying
technology, such as JavaServer Faces. A deferred evaluation expression can be
evaluated later by the underlying technology using the EL.

= Value expression or method expression. A value expression references data,
whereas a method expression invokes a method.

= Rvalue expression or lvalue expression. An rvalue expression can only read a
value, whereas an Ivalue expression can both read and write that value to an
external object.

Finally, the EL provides a pluggable API for resolving expressions so custom resolvers
that can handle expressions not already supported by the EL can be implemented.

9.2 Immediate and Deferred Evaluation Syntax

The EL supports both immediate and deferred evaluation of expressions. Immediate
evaluation means that the expression is evaluated and the result returned as soon as
the page is first rendered. Deferred evaluation means that the technology using the
expression language can use its own machinery to evaluate the expression sometime
later during the page's lifecycle, whenever it is appropriate to do so.

Those expressions that are evaluated immediately use the ${} syntax. Expressions
whose evaluation is deferred use the #{} syntax.

Because of its multiphase lifecycle, JavaServer Faces technology uses mostly deferred
evaluation expressions. During the lifecycle, component events are handled, data is
validated, and other tasks are performed in a particular order. Therefore, a JavaServer
Faces implementation must defer evaluation of expressions until the appropriate point
in the lifecycle.

Other technologies using the EL might have different reasons for using deferred
expressions.

9.2.1 Immediate Evaluation

All expressions using the ${} syntax are evaluated immediately. These expressions can
be used only as the value of a tag attribute that can accept runtime expressions.

The following example shows a tag whose value attribute references an immediate
evaluation expression that updates the quantity of books retrieved from the backing
bean named catalog:

<h:outputText value="${catalog.bookQuantity}" />

The JavaServer Faces implementation evaluates the expression
${catalog.bookQuantity}, converts it, and passes the returned value to the tag
handler. The value is updated on the page.

9-2 The Java EE 7 Tutorial

Value and Method Expressions

Immediate evaluation expressions are always read-only value expressions. The
preceding example expression cannot set the book quantity, but instead can only get
the quantity from the catalog bean.

9.2.2 Deferred Evaluation

Deferred evaluation expressions take the form #{expr} and can be evaluated at other
phases of a page lifecycle as defined by whatever technology is using the expression.
In the case of JavaServer Faces technology, its controller can evaluate the expression at
different phases of the lifecycle, depending on how the expression is being used in the
page.

The following example shows a JavaServer Faces h: inputText tag, which represents a
field component into which a user enters a value. The h: inputText tag's value

attribute references a deferred evaluation expression that points to the name property
of the customer bean:

<h:inputText id="name" value="#{customer.name}" />
For an initial request of the page containing this tag, the JavaServer Faces
implementation evaluates the #{customer.name} expression during the

render-response phase of the lifecycle. During this phase, the expression merely
accesses the value of name from the customer bean, as is done in immediate evaluation.

For a postback request, the JavaServer Faces implementation evaluates the expression
at different phases of the lifecycle, during which the value is retrieved from the
request, validated, and propagated to the customer bean.

As shown in this example, deferred evaluation expressions can be
= Value expressions that can be used to both read and write data
s Method expressions

Value expressions (both immediate and deferred) and method expressions are
explained in the next section.

9.3 Value and Method Expressions

The EL defines two kinds of expressions: value expressions and method expressions.
Value expressions can either yield a value or set a value. Method expressions reference
methods that can be invoked and can return a value.

9.3.1 Value Expressions

Value expressions can be further categorized into rvalue and lvalue expressions.
Rvalue expressions can read data but cannot write it. Lvalue expressions can both read
and write data.

All expressions that are evaluated immediately use the ${} delimiters and are always
rvalue expressions. Expressions whose evaluation can be deferred use the #{}
delimiters and can act as both rvalue and lvalue expressions. Consider the following
two value expressions:

${customer.name}
#{customer.name}
The former uses immediate evaluation syntax, whereas the latter uses deferred

evaluation syntax. The first expression accesses the name property, gets its value, adds

Expression Language 9-3

Value and Method Expressions

the value to the response, and gets rendered on the page. The same can happen with
the second expression. However, the tag handler can defer the evaluation of this
expression to a later time in the page lifecycle, if the technology using this tag allows.

In the case of JavaServer Faces technology, the latter tag's expression is evaluated
immediately during an initial request for the page. In this case, this expression acts as
an rvalue expression. During a postback request, this expression can be used to set the
value of the name property with user input. In this case, the expression acts as an lvalue
expression.

9.3.1.1 Referencing Objects Using Value Expressions

Both rvalue and Ivalue expressions can refer to the following objects and their
properties or attributes:

= JavaBeans components

s Collections

= Java SE enumerated types

= Implicit objects

To refer to these objects, you write an expression using a variable that is the name of
the object. The following expression references a managed bean called customer:

${customer}

The web container evaluates the variable that appears in an expression by looking up
its value according to the behavior of PageContext.findAttribute (String), where
the String argument is the name of the variable. For example, when evaluating the
expression ${customer}, the container will look for customer in the page, request,
session, and application scopes and will return its value. If customer is not found, a
null value is returned.

You can use a custom EL resolver to alter the way variables are resolved. For instance,
you can provide an EL resolver that intercepts objects with the name customer, so that
${customer} returns a value in the EL resolver instead.

To reference an enum constant with an expression, use a String literal. For example,
consider this Enum class:

public enum Suit {hearts, spades, diamonds, clubs}

To refer to the Suit constant Suit.hearts with an expression, use the String literal
"hearts". Depending on the context, the String literal is converted to the enum
constant automatically. For example, in the following expression in which mySuit is an
instance of Suit, "hearts" is first converted to Suit.hearts before it is compared to
the instance:

S{mySuit == "hearts"}

9.3.1.2 Referring to Object Properties Using Value Expressions
To refer to properties of a bean or an enum instance, items of a collection, or attributes
of an implicit object, you use the . or [] notation.

To reference the name property of the customer bean, use either the expression
${customer.name} or the expression ${customer["name"]}. The part inside the
brackets is a String literal that is the name of the property to reference.

You can use double or single quotes for the String literal. You can also combine the []
and . notations, as shown here:

9-4 The Java EE 7 Tutorial

Value and Method Expressions

${customer.address|["street"]}

Properties of an enum constant can also be referenced in this way. However, as with
JavaBeans component properties, the properties of an Enum class must follow
JavaBeans component conventions. This means that a property must at least have an
accessor method called getProperty, where Property is the name of the property that
can be referenced by an expression.

For example, consider an Enum class that encapsulates the names of the planets of our
galaxy and includes a method to get the mass of a planet. You can use the following
expression to reference the method getMass of the Enum class Planet:

${myPlanet .mass}

If you are accessing an item in an array or list, you must use either a literal value that
can be converted to int or the [] notation with an int and without quotes. The
following examples could resolve to the same item in a list or array, assuming that
socks can be converted to int:

m S${customer.orders[1]}
s S${customer.orders.socks}

In contrast, an item in a Map can be accessed using a string literal key; no coercion is
required:

${customer.orders["socks"]}

An rvalue expression also refers directly to values that are not objects, such as the
result of arithmetic operations and literal values, as shown by these examples:

s S${"literal"}

s S{customer.age + 20}

s S${true}

w 5{57}

The EL defines the following literals:
s Boolean: true and false

= Integer: asin Java

= Floating-point: as in Java

s String: with single and double quotes; " is escaped as \", ' is escaped as \ ', and \
is escaped as \\

s Null: null

You can also write expressions that perform operations on an enum constant. For
example, consider the following Enum class:

public enum Suit {club, diamond, heart, spade}

After declaring an enum constant called mySuit, you can write the following expression
to test whether mySuit is spade:

${mySuit == "spade"}

When it resolves this expression, the EL resolving mechanism will invoke the value0f
method of the Enum class with the Suit class and the spade type, as shown here:

mySuit.valueOf (Suit.class, "spade"}

Expression Language 9-5

Value and Method Expressions

9.3.1.3 Where Value Expressions Can Be Used

Value expressions using the ${} delimiters can be used in
» Static text
= Any standard or custom tag attribute that can accept an expression

The value of an expression in static text is computed and inserted into the current
output. Here is an example of an expression embedded in static text:

<some:tag>
some text ${expr} some text
</some:tag>

If the static text appears in a tag body, note that an expression will not be evaluated if
the body is declared to be tagdependent.

Lvalue expressions can be used only in tag attributes that can accept lvalue
expressions.

A tag attribute value using either an rvalue or lvalue expression can be set in the
following ways:

= With a single expression construct:

<some:tag value="${expr}"/>
<another:tag value="#{expr}"/>

These expressions are evaluated, and the result is converted to the attribute's
expected type.

= With one or more expressions separated or surrounded by text:

<some:tag value="some${expr}${expr}text${expr}"/>
<another:tag value="some#{expr}#{expr}text#{expr}"/>

These kinds of expression, called composite expressions, are evaluated from left
to right. Each expression embedded in the composite expression is converted to a
String and then concatenated with any intervening text. The resulting String is
then converted to the attribute's expected type.

= With text only:

<some:tag value="sometext"/>

This expression is called a literal expression. In this case, the attribute's String
value is converted to the attribute's expected type. Literal value expressions have
special syntax rules. See Literal Expressions for more information. When a tag
attribute has an enum type, the expression that the attribute uses must be a literal
expression. For example, the tag attribute can use the expression "hearts" to mean
Suit.hearts. The literal is converted to Suit, and the attribute gets the value
Suit.hearts.

All expressions used to set attribute values are evaluated in the context of an expected
type. If the result of the expression evaluation does not match the expected type
exactly, a type conversion will be performed. For example, the expression ${1.2E4}
provided as the value of an attribute of type float will result in the following
conversion:

Float.valueOf ("1.2E4") .floatValue ()

9-6 The Java EE 7 Tutorial

Value and Method Expressions

See Section 1.23 of the JavaServer Pages 3.0 Expression Language specification
(available from http://jcp.org//en/jsr/detail?id=341) for the complete
type conversion rules.

9.3.2 Method Expressions

Another feature of the EL is its support of deferred method expressions. A method
expression is used to invoke an arbitrary public method of a bean, which can return a
result.

In JavaServer Faces technology, a component tag represents a component on a page.
The component tag uses method expressions to invoke methods that perform some
processing for the component. These methods are necessary for handling events that
the components generate and for validating component data, as shown in this
example:

<h:form>
<h:inputText
id="name"
value="#{customer.name}"
validator="#{customer.validateName}" />
<h:commandButton

id="submit"
action="#{customer.submit}" />
</h:form>

The h:inputText tag displays as a field. The validator attribute of this h: inputText
tag references a method, called validateName, in the bean, called customer.

Because a method can be invoked during different phases of the lifecycle, method
expressions must always use the deferred evaluation syntax.

Like lvalue expressions, method expressions can use the . and the [] operators. For
example, #{object.method} is equivalent to #{object ["method"]}. The literal inside
the [] is converted to String and is used to find the name of the method that matches
it. Once the method is found, it is invoked, or information about the method is
returned.

Method expressions can be used only in tag attributes and only in the following ways:

= With a single expression construct, where bean refers to a JavaBeans component
and method refers to a method of the JavaBeans component:

<some:tag value="#{bean.method}"/>
The expression is evaluated to a method expression, which is passed to the tag

handler. The method represented by the method expression can then be invoked
later.

s With text only:
<some:tag value="sometext"/>
Method expressions support literals primarily to support action attributes in
JavaServer Faces technology. When the method referenced by this method

expression is invoked, the method returns the String literal, which is then
converted to the expected return type, as defined in the tag's tag library descriptor.

Expression Language 9-7

Literal Expressions

9.3.2.1 Parameterized Method Calls

The EL offers support for parameterized method calls. Method calls can use
parameters without having to use static EL functions.

Both the . and [] operators can be used for invoking method calls with parameters, as
shown in the following expression syntax:

» expr-alexpr-b] (parameters)
» expr-a.identifier-b (parameters)

In the first expression syntax, expr-a is evaluated to represent a bean object. The
expression expr-b is evaluated and cast to a string that represents a method in the bean
represented by expr-a. In the second expression syntax, expr-a is evaluated to represent
a bean object, and identifier-b is a string that represents a method in the bean object.
The parameters in parentheses are the arguments for the method invocation.
Parameters can be zero or more values or expressions, separated by commas.

Parameters are supported for both value expressions and method expressions. In the
following example, which is a modified tag from the guessnumber application, a
random number is provided as an argument rather than from user input to the method
call:

<h:inputText value="#{userNumberBean.userNumber ('5"')}">

The preceding example uses a value expression.

Consider the following example of a JavaServer Faces component tag that uses a
method expression:

<h:commandButton action="#{trader.buy}" value="buy"/>

The EL expression trader.buy calls the trader bean's buy method. You can modify the
tag to pass on a parameter. Here is the revised tag where a parameter is passed:

<h:commandButton action="#{trader.buy('SOMESTOCK')}" value="buy"/>

In the preceding example, you are passing the string ' SOMESTOCK' (a stock symbol) as
a parameter to the buy method.

9.4 Literal Expressions

A literal expression is evaluated to the text of the expression, which is of type String.
A literal expression does not use the ${} or #{} delimiters.

If you have a literal expression that includes the reserved ${} or #{} syntax, you need
to escape these characters as follows:

= By creating a composite expression as shown here:

${"'${ "' YexprA}
#{"#{"' }exprB}

The resulting values would then be the strings $ {exprA} and #{exprB}.

= By using the escape characters \$ and \# to escape what would otherwise be
treated as an eval-expression:

\${exprA}

\#{exprB}

9-8 The Java EE 7 Tutorial

Operators

The resulting values would again be the strings $ {exprA} and #{exprB}.

When a literal expression is evaluated, it can be converted to another type. Table 9-1
shows examples of various literal expressions and their expected types and resulting
values.

Table 9-1 Literal Expressions

Expression Expected Type Result

Hi String Hi

true Boolean Boolean.TRUE
42 int 42

Literal expressions can be evaluated immediately or deferred and can be either value
or method expressions. At what point a literal expression is evaluated depends on
where it is being used. If the tag attribute that uses the literal expression is defined to
accept a deferred value expression, when referencing a value, the literal expression is
evaluated at a point in the lifecycle that is determined by other factors, such as where
the expression is being used and to what it is referring.

In the case of a method expression, the method that is referenced is invoked and
returns the specified String literal. For example, the h:commandButton tag of the
guessnumber application uses a literal method expression as a logical outcome to tell
the JavaServer Faces navigation system which page to display next.

9.5 Operators

In addition to the . and [] operators discussed in Value and Method Expressions, the
EL provides the following operators, which can be used in rvalue expressions only:

s Arithmetic: +, - (binary), *, / and div, % and mod, - (unary)
» Logical: and, &%, or, | |, not, !

= Relational: ==, eq, !=, ne, <, 1t, >, gt, <=, ge, >=, le. Comparisons can be made
against other values or against Boolean, string, integer, or floating-point literals.

Empty: The empty operator is a prefix operation that can be used to determine
whether a value is null or empty.

= Conditional: A ? B : C. Evaluate B or C, depending on the result of the evaluation
of A.

The precedence of operators highest to lowest, left to right is as follows:
=[]
= () (used to change the precedence of operators)

- (unary) not ! empty

m * / div % mod

s+ - (binary)

m <> <=>= 1t gt le ge
m == != eqg ne

m && and

= || or

Expression Language 9-9

Reserved Words

9.6 Reserved Words

The following words are reserved for the EL and should not be used as identifiers:

and
or
not
eq
ne

1t

gt

le

ge
true
false
null
instanceof
empty
div
mod

9.7 Examples of EL Expressions

Table 9-2 contains example EL expressions and the result of evaluating them.

Table 9-2 Example Expressions

EL Expression Result
S{1> (4/2)} false
${4.0>= 3} true
${100.0 == 100} true
${(10*10) ne 100} false
${'a' < 'b'} true
${'hip' gt 'hit'} false
${4> 3} true
${1.2E4 + 1.4} 12001.4
${3 div 4) 0.75
${10 mod 4} 2

${!empty param.Add}

False if the request parameter named Add is
null or an empty string.

${pageContext.request.contextPath}

The context path.

${sessionScope.cart.numberOfItems}

The value of the numberOfItems property of the
session-scoped attribute named cart.

${param['mycom.productId']}

The value of the request parameter named
mycom.productId.

${header["host"]}

The host.

9-10 The Java EE 7 Tutorial

Examples of EL Expressions

Table 9-2 (Cont.) Example Expressions

EL Expression Result

${departments [deptName] } The value of the entry named deptName in the
departments map.

${requestScope['javax.servlet.forward. The value of the request-scoped attribute named
servlet_path']} javax.servlet.forward.servlet_path.

#{customer.1Name} Gets the value of the property 1Name from the
customer bean during an initial request. Sets the
value of 1Name during a postback.

#{customer.calcTotal} The return value of the method calcTotal of the
customer bean.

Expression Language 9-11

Examples of EL Expressions

9-12 The Java EE 7 Tutorial

10

Using JavaServer Faces Technology in Web
Pages

Web pages (Facelets pages, in most cases) represent the presentation layer for web
applications. The process of creating web pages for a JavaServer Faces application
includes using component tags to add components to the page and wire them to
backing beans, validators, listeners, converters, and other server-side objects that are
associated with the page.

This chapter explains how to create web pages using various types of component and
core tags. In the next chapter, you will learn about adding converters, validators, and
listeners to component tags to provide additional functionality to components.

Many of the examples in this chapter are taken from Chapter 55, "Duke's Bookstore
Case Study Example."

The following topics are addressed here:

ms Setting Up a Page

» Adding Components to a Page Using HTML Tag Library Tags
s Using Core Tags

10.1 Setting Up a Page
A typical JavaServer Faces web page includes the following elements:
= A set of namespace declarations that declare the JavaServer Faces tag libraries
= Optionally, the HTML head (h:head) and body (h:body) tags
= A form tag (h: form) that represents the user input components

To add the JavaServer Faces components to your web page, you need to provide the
page access to the two standard tag libraries: the JavaServer Faces HTML render kit
tag library and the JavaServer Faces core tag library. The JavaServer Faces standard
HTML tag library defines tags that represent common HTML user interface
components. This library is linked to the HTML render kit at
http://docs.oracle.com/javaee/7/javaserverfaces/2.2/renderkitdoc
s/. The JavaServer Faces core tag library defines tags that perform core actions and are
independent of a particular render kit.

For a complete list of JavaServer Faces Facelets tags and their attributes, refer to the
documentation at
http://docs.oracle.com/javaee/7/javaserverfaces/2.2/vdldocs/face
lets/.

Using JavaServer Faces Technology in Web Pages 10-1

Adding Components to a Page Using HTML Tag Library Tags

To use any of the JavaServer Faces tags, you need to include appropriate directives at
the top of each page specifying the tag libraries.

For Facelets applications, the XML namespace directives uniquely identify the tag
library URI and the tag prefix.

For example, when you create a Facelets XHTML page, include namespace directives
as follows:

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://xmlns.jcp.org/jsf/html"
xmlns: f="http://xmlns.jcp.org/jsf/core">

The XML namespace URI identifies the tag library location, and the prefix value is
used to distinguish the tags belonging to that specific tag library. You can also use
other prefixes instead of the standard h or f. However, when including the tag in the
page, you must use the prefix that you have chosen for the tag library. For example, in
the following web page, the form tag must be referenced using the h prefix because the
preceding tag library directive uses the h prefix to distinguish the tags defined in
HTML tag library:

<h:form ...>

The sections Adding Components to a Page Using HTML Tag Library Tags and Using
Core Tags describe how to use the component tags from the JavaServer Faces standard
HTML tag library and the core tags from the JavaServer Faces core tag library.

10.2 Adding Components to a Page Using HTML Tag Library Tags

The tags defined by the JavaServer Faces standard HTML tag library represent HTML
form components and other basic HTML elements. These components display data or
accept data from the user. This data is collected as part of a form and is submitted to
the server, usually when the user clicks a button. This section explains how to use each
of the component tags shown in Table 10-1.

Table 10-1 The Component Tags

Tag Functions Rendered as Appearance

h:column Represents a column of A column of datain A column in a
data in a data component an HTML table table

h:commandButton Submits a form to the An HTML <input A button
application type=type> element,

where the type value
can be "submit",
"reset", or "image"

h:commandLink Links to another pageor An HTML <a href> Alink
location on a page element
h:dataTable Represents a data An HTML <table> A table that can
wrapper element be updated
dynamically
h:form Represents an input form An HTML <form> No appearance
(inner tags of the form element

receive the data that will
be submitted with the
form)

h:graphicImage Displays an image An HTML An image
element

10-2 The Java EE 7 Tutorial

Adding Components to a Page Using HTML Tag Library Tags

Table 10-1 (Cont.) The Component Tags

Tag Functions Rendered as Appearance

h:inputFile Allows a user to uploada An HTML <input A field with a
file type="file"> Browse... button

element

h:inputHidden Allows a page author to ~ An HTML <input No appearance
include a hidden variable type="hidden">
in a page element

h:inputSecret Allows a user to inputa ~ An HTML <input A field, which

string without the actual
string appearing in the
field

type="password">
element

displays a row of
characters instead
of the actual
string entered

h:inputText Allows a user to inputa ~ An HTML <input A field

string type="text">
element

h:inputTextarea Allows a user toentera An HTML A multi-row field
multiline string <textarea> element

h:message Displays a localized An HTML tag A text string
message if styles are used

h:messages Displays localized A set of HTML A text string
messages tags if styles

are used

h:outputFormat Displays a formatted Plain text Plain text
message

h:outputLabel Displays a nested An HTML <label> Plain text
component as a label for ~ element
a specified input field

h:outputLink Links to another page or = An HTML <a> A link
location on a page element
without generating an
action event

h:outputText Displays a line of text Plain text Plain text

h:panelGrid Displays a table An HTML <table> A table

element with <tr>
and <td> elements

h:panelGroup

Groups a set of
components under one
parent

A HTML <div> or
 element

A row in a table

h:selectBooleanCheck Allows a user to change An HTML <input A check box
box the value of a Boolean type="checkbox">
choice element.
h:selectManyCheckbox Displays a set of check A set of HTML A group of check
boxes from which the <input> elements of boxes
user can select multiple type checkbox
values
h:selectManyListbox Allows a user to select An HTML <select> A box
multiple items from a set element
of items, all displayed at
once
h:selectManyMenu Allows a user to select An HTML <select> A menu
multiple items from a set element

of items

Using JavaServer Faces Technology in Web Pages 10-3

Adding Components to a Page Using HTML Tag Library Tags

Table 10-1 (Cont.) The Component Tags

Tag Functions Rendered as Appearance
h:selectOneListbox Allows a user to select An HTML <select> A box
one item from a set of element
items, all displayed at
once
h:selectOneMenu Allows a user to select An HTML <select> A menu
one item from a set of element
items
h:selectOneRadio Allows a user to select An HTML <input A group of
one item from a set of type="radio"> options
items element

The tags correspond to components in the javax. faces.component package. The
components are discussed in more detail in Chapter 12, "Developing with JavaServer
Faces Technology."

The next section explains the important attributes that are common to most
component tags. For each of the components discussed in the following sections,
Writing Bean Properties explains how to write a bean property bound to a particular
component or its value.

For reference information about the tags and their attributes, see the API
documentation for the Facelets tag library at
http://docs.oracle.com/javaee/7/javaserverfaces/2.2/vdldocs/face
lets/.

10.2.1 Common Component Tag Attributes
Most of the component tags support the attributes shown in Table 10-2.

Table 10-2 Common Component Tag Attributes

Attribute Description

binding Identifies a bean property and binds the component instance to it.

id Uniquely identifies the component.

immediate If set to true, indicates that any events, validation, and conversion associated
with the component should happen when request parameter values are
applied,

rendered Specifies a condition under which the component should be rendered. If the
condition is not satisfied, the component is not rendered.

style Specifies a Cascading Style Sheet (CSS) style for the tag.

styleClass Specifies a CSS class that contains definitions of the styles.

value Specifies the value of the component, in the form of a value expression.

All the tag attributes except 1d can accept expressions, as defined by the EL, described
in Expression Language.

An attribute such as rendered or value can be set on the page and then modified in
the backing bean for the page.

10-4 The Java EE 7 Tutorial

Adding Components to a Page Using HTML Tag Library Tags

10.2.1.1 The id Attribute

The id attribute is not usually required for a component tag but is used when another
component or a server-side class must refer to the component. If you don't include an
id attribute, the JavaServer Faces implementation automatically generates a
component ID. Unlike most other JavaServer Faces tag attributes, the id attribute takes
expressions using only the evaluation syntax described in Immediate Evaluation,
which uses the ${} delimiters. For more information on expression syntax, see Value
Expressions.

10.2.1.2 The immediate Attribute

Input components and command components (those that implement the
ActionSource interface, such as buttons and links) can set the immediate attribute to
true to force events, validations, and conversions to be processed when request
parameter values are applied.

You need to carefully consider how the combination of an input component's
immediate value and a command component's immediate value determines what
happens when the command component is activated.

Suppose that you have a page with a button and a field for entering the quantity of a
book in a shopping cart. If the immediate attributes of both the button and the field are
set to true, the new value entered in the field will be available for any processing
associated with the event that is generated when the button is clicked. The event
associated with the button as well as the events, validation, and conversion associated
with the field are all handled when request parameter values are applied.

If the button's immediate attribute is set to true but the field's immediate attribute is
set to false, the event associated with the button is processed without updating the
field's local value to the model layer. The reason is that any events, conversion, and

validation associated with the field occur after request parameter values are applied.

The bookshowcart .xhtml page of the Duke's Bookstore case study has examples of
components using the immediate attribute to control which component's data is
updated when certain buttons are clicked. The quantity field for each book does not
set the immediate attribute, so the value is false (the default).

<h:inputText id="quantity"
size="4"
value="#{item.quantity}"
title="#{bundle.ItemQuantity}">
<f:validateLongRange minimum="1"/>
</h:inputText>

The immediate attribute of the Continue Shopping hyperlink is set to true, while the
immediate attribute of the Update Quantities hyperlink is set to false:

<h:commandLink id="continue"
action="bookcatalog"
immediate="true">
<h:outputText value="#{bundle.ContinueShopping}"/>
</h:commandLink>

<h:commandLink id="update"
action="#{showcart.update}"
immediate="false">
<h:outputText value="#{bundle.UpdateQuantities}"/>
</h:commandLink>

Using JavaServer Faces Technology in Web Pages 10-5

Adding Components to a Page Using HTML Tag Library Tags

If you click the Continue Shopping hyperlink, none of the changes entered into the
quantity input fields will be processed. If you click the Update Quantities hyperlink,
the values in the quantity fields will be updated in the shopping cart.

10.2.1.3 The rendered Attribute

A component tag uses a Boolean EL expression along with the rendered attribute to
determine whether the component will be rendered. For example, the commandLink
component in the following section of a page is not rendered if the cart contains no
items:

<h:commandLink id="check"

rendered="#{cart.numberOfItems > 0}">
<h:outputText
value="#{bundle.CartCheck}"/>
</h:commandLink>

Unlike nearly every other JavaServer Faces tag attribute, the rendered attribute is
restricted to using rvalue expressions. As explained in Value and Method Expressions,
these rvalue expressions can only read data; they cannot write the data back to the
data source. Therefore, expressions used with rendered attributes can use the
arithmetic operators and literals that rvalue expressions can use but Ivalue expressions
cannot use. For example, the expression in the preceding example uses the > operator.

Note: In this example and others, bundle refers to a
java.util.ResourceBundle file that contains locale-specific strings
to be displayed. Resource bundles are discussed in Chapter 20,
"Internationalizing and Localizing Web Applications".

10.2.1.4 The style and styleClass Attributes

The style and styleClass attributes allow you to specify CSS styles for the rendered
output of your tags. Displaying Error Messages with the h:message and h:messages
Tags describes an example of using the style attribute to specify styles directly in the
attribute. A component tag can instead refer to a CSS class.

The following example shows the use of a dataTable tag that references the style class
list-background:

<h:dataTable id="items"

styleClass="1list-background"
value="#{cart.items}"
var="book">

The style sheet that defines this class is stylesheet.css, which will be included in the
application. For more information on defining styles, see Cascading Style Sheets
Specification at http: / /www.w3 .org/Style/CSS/.

10.2.1.5 The value and binding Attributes

A tag representing an output component uses the value and binding attributes to bind
its component's value or instance, respectively, to a data object. The value attribute is
used more commonly than the binding attribute, and examples appear throughout
this chapter. For more information on these attributes, see Creating a Managed Bean,
Writing Properties Bound to Component Values, and Writing Properties Bound to
Component Instances.

10-6 The Java EE 7 Tutorial

Adding Components to a Page Using HTML Tag Library Tags

10.2.2 Adding HTML Head and Body Tags

The HTML head (h:head) and body (h:body) tags add HTML page structure to
JavaServer Faces web pages.

s The h:head tag represents the head element of an HTML page
s The h:body tag represents the body element of an HTML page

The following is an example of an XHTML page using the usual head and body
markup tags:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0org/TR/xhtml1/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Add a title</title>
</head>
<body>
Add Content
</body>
</html>

The following is an example of an XHTML page using h:head and h:body tags:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0org/TR/xhtml1/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://xmlns.jcp.org/jsf/html">
<h:head>
Add a title
</h:head>
<h:body>
Add Content
</h:body>
</html>

Both of the preceding example code segments render the same HTML elements. The
head and body tags are useful mainly for resource relocation. For more information on

resource relocation, see Resource Relocation Using h:outputScript and
h:outputStylesheet Tags.

10.2.3 Adding a Form Component

Anh: form tag represents an input form, which includes child components that can
contain data that is either presented to the user or submitted with the form.

Figure 10-1 shows a typical login form in which a user enters a user name and
password, then submits the form by clicking the Login button.

Figure 10-1 A Typical Form

User Name: IDuke
Password: I *hkkkkhkkk

Login

Using JavaServer Faces Technology in Web Pages 10-7

Adding Components to a Page Using HTML Tag Library Tags

The h: form tag represents the form on the page and encloses all the components that
display or collect data from the user, as shown here:

<h:form>
. other JavaServer Faces tags and other content...
</h:form>

The h: form tag can also include HTML markup to lay out the components on the
page. Note that the h: form tag itself does not perform any layout; its purpose is to
collect data and to declare attributes that can be used by other components in the form.

A page can include multiple h: form tags, but only the values from the form submitted
by the user will be included in the postback request.

10.2.4 Using Text Components

Text components allow users to view and edit text in web applications. The basic types
of text components are as follows:

» Label, which displays read-only text

= Field, which allows users to enter text (on one or more lines), often to be submitted
as part of a form

= Password field, which is a type of field that displays a set of characters, such as
asterisks, instead of the password text that the user enters

Figure 10-2 shows examples of these text components.

Figure 10-2 Example Text Components

Label User Name: I Duke Text Field

Password: | sx#xxsxsxx Password Field

Comments: | A user can enter text across Text Area
multiple lines.

Text components can be categorized as either input or output. A JavaServer Faces
output component, such as a label, is rendered as read-only text. A JavaServer Faces
input component, such as a field, is rendered as editable text.

The input and output components can each be rendered in various ways to display
more specialized text.

Table 10-3 lists the tags that represent the input components.

Table 10-3 Input Tags

Tag Function

h:inputHidden Allows a page author to include a hidden variable in a page

h:inputSecret The standard password field: accepts one line of text with no spaces
and displays it as a set of asterisks as it is entered

h:inputText The standard field: accepts a one-line text string

h:inputTextarea The standard multi-line field: accepts multiple lines of text

10-8 The Java EE 7 Tutorial

Adding Components to a Page Using HTML Tag Library Tags

The input tags support the tag attributes shown in Table 104 in addition to those
described in Common Component Tag Attributes. Note that this table does not include
all the attributes supported by the input tags but just those that are used most often.
For the complete list of attributes, refer to the documentation at
http://docs.oracle.com/javaee/7/javaserverfaces/2.2/vdldocs/face
lets/.

Table 10-4 Input Tag Attributes

Attribute Description

converter Identifies a converter that will be used to convert the component's
local data. See Using the Standard Converters for more information on
how to use this attribute.

converterMessage Specifies an error message to display when the converter registered on
the component fails.

dir Specifies the direction of the text displayed by this component.
Acceptable values are 1tr, meaning left-to-right, and rt1, meaning
right-to-left.

label Specifies a name that can be used to identify this component in error
messages.
lang Specifies the code for the language used in the rendered markup, such

as en or pt-BR.

required Takes a boolean value that indicates whether the user must enter a
value in this component.

requiredMessage Specifies an error message to display when the user does not enter a
value into the component.

validator Identifies a method expression pointing to a managed bean method
that performs validation on the component's data. See Referencing a
Method That Performs Validation for an example of using the
f:validator tag.

validatorMessage Specifies an error message to display when the validator registered on
the component fails to validate the component's local value.

valueChangeListener Identifies a method expression that points to a managed bean method
that handles the event of entering a value in this component. See
Referencing a Method That Handles a Value-Change Event for an
example of using valueChangeListener.

Table 10-5 lists the tags that represent the output components.

Table 10-5 Output Tags

Tag Function

h:outputFormat Displays a formatted message

h:outputLabel The standard read-only label: displays a component as a label for a
specified input field

h:outputLink Displays an <a href> tag that links to another page without generating

an action event

h:outputText Displays a one-line text string

The output tags support the converter tag attribute in addition to those listed in
Common Component Tag Attributes.

Using JavaServer Faces Technology in Web Pages 10-9

Adding Components to a Page Using HTML Tag Library Tags

The rest of this section explains how to use some of the tags listed in Table 10-3 and
Output Tags. The other tags are written in a similar way.

10.2.4.1 Rendering a Field with the h:inputText Tag

The h:inputText tag is used to display a field. A similar tag, the h: outputText tag,
displays a read-only, single-line string. This section shows you how to use the
h:inputText tag. The h:outputText tag is written in a similar way.

Here is an example of an h: inputText tag:

<h:inputText id="name"
label="Customer Name"
size="30"
value="#{cashierBean.name}"
required="true"
requiredMessage="#{bundle.ReqgCustomerName} ">
<f:valueChangeListener
type="dukesbookstore.listeners.NameChanged" />
</h:inputText>

The label attribute specifies a user-friendly name that will be used in the substitution
parameters of error messages displayed for this component.

The value attribute refers to the name property of a managed bean named
CashierBean. This property holds the data for the name component. After the user
submits the form, the value of the name property in CashierBean will be set to the text
entered in the field corresponding to this tag.

The required attribute causes the page to reload, displaying errors, if the user does not
enter a value in the name field. The JavaServer Faces implementation checks whether
the value of the component is null or is an empty string.

If your component must have a non-null value or a String value at least one character
in length, you should add a required attribute to your tag and set its value to true. If
your tag has a required attribute that is set to true and the value is null or a
zero-length string, no other validators that are registered on the tag are called. If your
tag does not have a required attribute set to true, other validators that are registered
on the tag are called, but those validators must handle the possibility of a null or
zero-length string. See Validating Null and Empty Strings for more information.

10.2.4.2 Rendering a Password Field with the h:inputSecret Tag

The h:inputSecret tag renders an <input type="password"> HTML tag. When the
user types a string into this field, a row of asterisks is displayed instead of the text
entered by the user. Here is an example:

<h:inputSecret redisplay="false"

value="#{loginBean.password}" />

In this example, the redisplay attribute is set to false. This will prevent the password
from being displayed in a query string or in the source file of the resulting HTML

page.

10.2.4.3 Rendering a Label with the h:outputLabel Tag

The h:outputLabel tag is used to attach a label to a specified input field for the
purpose of making it accessible. The following page uses an h:outputLabel tag to
render the label of a check box:

<h:selectBooleanCheckbox id="fanClub"

10-10 The Java EE 7 Tutorial

Adding Components to a Page Using HTML Tag Library Tags

rendered="false"

binding="#{cashierBean.specialOffer}" />
<h:outputLabel for="fanClub"

rendered="false"
binding="#{cashierBean.specialOfferText}">
<h:outputText id="fanClubLabel"
value="#{bundle.DukeFanClub}" />

</h:outputLabel>

The h:selectBooleanCheckbox tag and the h:outputLabel tag have rendered
attributes that are set to false on the page but are set to true in the CashierBean under
certain circumstances. The for attribute of the h:outputLabel tag maps to the id of the
input field to which the label is attached. The h:outputText tag nested inside the
h:outputLabel tag represents the label component. The value attribute on the
h:outputText tag indicates the text that is displayed next to the input field.

Instead of using an h: outputText tag for the text displayed as a label, you can simply
use the h:outputLabel tag's value attribute. The following code snippet shows what
the previous code snippet would look like if it used the value attribute of the
h:outputLabel tag to specify the text of the label:

<h:selectBooleanCheckbox id="fanClub"
rendered="false"
binding="#{cashierBean.specialOffer}" />
<h:outputLabel for="fanClub"
rendered="false"
binding="#{cashierBean.specialOfferText}"
value="#{bundle.DukeFanClub}" />
</h:outputLabel>

10.2.4.4 Rendering a Link with the h:outputLink Tag

The h:outputLink tag is used to render a link that, when clicked, loads another page
but does not generate an action event. You should use this tag instead of the
h:commandLink tag if you always want the URL specified by the h:outputLink tag's
value attribute to open and do not want any processing to be performed when the
user clicks the link. Here is an example:

<h:outputLink value="javadocs">
Documentation for this demo
</h:outputLink>

The text in the body of the h:outputLink tag identifies the text that the user clicks to
get to the next page.

10.2.4.5 Displaying a Formatted Message with the h:outputFormat Tag

The h:outputFormat tag allows display of concatenated messages as a MessageFormat
pattern, as described in the API documentation for java.text.MessageFormat. Here is
an example of an h:outputFormat tag:

<h:outputFormat value="Hello, {0}!">
<f:param value="#{hello.name}"/>
</h:outputFormat>

The value attribute specifies the MessageFormat pattern. The f:param tag specifies the
substitution parameters for the message. The value of the parameter replaces the {0}

Using JavaServer Faces Technology in Web Pages 10-11

Adding Components to a Page Using HTML Tag Library Tags

in the sentence. If the value of "#{hello.name}" is "Bill", the message displayed in the
page is as follows:

Hello, Bill!

An h:outputFormat tag can include more than one f:param tag for those messages
that have more than one parameter that must be concatenated into the message. If you
have more than one parameter for one message, make sure that you put the f:param
tags in the proper order so that the data is inserted in the correct place in the message.
Here is the preceding example modified with an additional parameter:

<h:outputFormat value="Hello, {0}! You are visitor number {1} to the page.">
<f:param value="#{hello.name}" />
<f:param value="#{bean.numvVisitor}"/>

</h:outputFormat>

The value of {1} is replaced by the second parameter. The parameter is an EL
expression, bean.numVisitor, where the property numvisitor of the managed bean
bean keeps track of visitors to the page. This is an example of a
value-expression-enabled tag attribute accepting an EL expression. The message
displayed in the page is now as follows:

Hello, Bill! You are visitor number 10 to the page.

10.2.5 Using Command Component Tags for Performing Actions and Navigation

In JavaServer Faces applications, the button and link component tags are used to
perform actions, such as submitting a form, and for navigating to another page. These
tags are called command component tags because they perform an action when
activated.

The h: commandButton tag is rendered as a button. The h: commandLink tag is rendered
as a link.

In addition to the tag attributes listed in Common Component Tag Attributes, the
h:commandButton and h:commandLink tags can use the following attributes:

= action, which is either a logical outcome String or a method expression pointing
to a bean method that returns a logical outcome String. In either case, the logical
outcome String is used to determine what page to access when the command
component tag is activated.

= actionListener, which is a method expression pointing to a bean method that
processes an action event fired by the command component tag.

See Referencing a Method That Performs Navigation for more information on using
the action attribute. See Referencing a Method That Handles an Action Event for
details on using the actionListener attribute.

10.2.5.1 Rendering a Button with the h:commandButton Tag

If you are using an h: commandButton component tag, the data from the current page is
processed when a user clicks the button, and the next page is opened. Here is an
example of the h: commandButton tag:

<h:commandButton value="Submit"
action="#{cashierBean.submit}"/>

Clicking the button will cause the submit method of CashierBean to be invoked
because the action attribute references this method. The submit method performs
some processing and returns a logical outcome.

10-12 The Java EE 7 Tutorial

Adding Components to a Page Using HTML Tag Library Tags

The value attribute of the example h: commandButton tag references the button's label.
For information on how to use the action attribute, see Referencing a Method That
Performs Navigation.

10.2.5.2 Rendering a Link with the h:commandLink Tag

The h: commandLink tag represents an HIML link and is rendered as an HTML <a>
element.

A h:commandLink tag must include a nested h:outputText tag, which represents the
text that the user clicks to generate the event. Here is an example:

<h:commandLink id="Duke" action="bookstore">
<f:actionListener
type="dukesbookstore.listeners.LinkBookChangeListener" />
<h:outputText value="#{bundle.Book201}"/>
/h:commandLink>

This tag will render HTML that looks something like the following:

<a 1d="_1idtl6:Duke" href="#"
onclick="mojarra.jsfcljs(document.getElementById('j_idtl6'),
{'j_idtl16:Duke':'j_idtl6:Duke'},"'");
return false;">My Early Years: Growing Up on Star7, by Duke

Note: The h:commandLink tag will render JavaScript scripting
language. If you use this tag, make sure that your browser is
enabled for JavaScript technology.

10.2.6 Adding Graphics and Images with the h:graphicilmage Tag

In a JavaServer Faces application, use the h:graphicImage tag to render an image on a
page:

<h:graphicImage id="mapImage" url="/resources/images/book_all.jpg"/>

In this example, the url attribute specifies the path to the image. The URL of the
example tag begins with a slash (/), which adds the relative context path of the web
application to the beginning of the path to the image.

Alternatively, you can use the facility described in Web Resources to point to the image
location. Here are two examples:

<h:graphicImage id="mapImage"
name="book_all.jpg"
library="images"
alt="#{bundle.ChooseBook}"
usemap="#bookMap" />

<h:graphicImage value="#{resourcel['images:wave.med.gif']}"/>

You can use similar syntax to refer to an image in a style sheet. The following syntax in
a style sheet specifies that the image is to be found at
resources/img/top-background. jpg:

header {
position: relative;
height: 150px;
background: #fff url (#{resource['img:top-background.jpg']l}) repeat-x;

Using JavaServer Faces Technology in Web Pages 10-13

Adding Components to a Page Using HTML Tag Library Tags

10.2.7 Laying Out Components with the h:panelGrid and h:panelGroup Tags

In a JavaServer Faces application, you use a panel as a layout container for a set of
other components. A panel is rendered as an HTML table. Table 10-6 lists the tags
used to create panels.

Table 10-6 Panel Component Tags

Tag Attributes Function

h:panelGrid columns,columnClasses, footerClass, Displays a table
headerClass, panelClass, rowClasses,
role

h:panelGroup layout Groups a set of components

under one parent

The h:panelGrid tag is used to represent an entire table. The h:panelGroup tag is used
to represent rows in a table. Other tags are used to represent individual cells in the
rows.

The columns attribute defines how to group the data in the table and therefore is
required if you want your table to have more than one column. The h:panelGrid tag
also has a set of optional attributes that specify CSS classes: columnClasses,
footerClass, headerClass, panelClass, and rowClasses. The role attribute can have
the value "presentation" to indicate that the purpose of the table is to format the
display rather than to show data.

If the headerClass attribute value is specified, the h:panelGrid tag must have a
header as its first child. Similarly, if a footerClass attribute value is specified, the
h:panelGrid tag must have a footer as its last child.

Here is an example:

<h:panelGrid columns="2"

headerClass="list-header"
styleClass="1ist-background"
rowClasses="list-row-even, list-row-odd"
summary="#{bundle.CustomerInfo}"
title="#{bundle.Checkout}"
role="presentation">

<f:facet name="header">

<h:outputText value="#{bundle.Checkout}"/>
</f:facet>

<h:outputLabel for="name" value="#{bundle.Name}" />
<h:inputText id="name" size="30"
value="#{cashierBean.name}"
required="true"
requiredMessage="#{bundle.ReqCustomerName} ">
<f:valueChangelListener
type="dukesbookstore.listeners.NameChanged" />
</h:inputText>
<h:message styleClass="error-message" for="name"/>

<h:outputLabel for="ccno" value="#{bundle.CCNumber}"/>
<h:inputText id="ccno"
size="19"
converterMessage="#{bundle.CreditMessage}"
required="true"
requiredMessage="#{bundle.ReqCreditCard}">
<f:converter converterId="ccno"/>

10-14 The Java EE 7 Tutorial

Adding Components to a Page Using HTML Tag Library Tags

<f:validateRegex

pattern="\d{16} |\d{4} \d{4} \d{4} \d{4}|\d{4}-\d{4}-\d{4}1-\a{4r" />
</h:inputText>
<h:message styleClass="error-message" for="ccno"/>

</h:panelGrid>

The preceding h:panelGrid tag is rendered as a table that contains components in
which a customer inputs personal information. This h:panelGrid tag uses style sheet
classes to format the table. The following code shows the 1ist-header definition:

.list-header {
background-color: #ffffff;
color: #000000;
text-align: center;

}

Because the h:panelGrid tag specifies a headerClass, the h:panelGrid tag must
contain a header. The example h:panelGrid tag uses an f: facet tag for the header.
Facets can have only one child, so an h:panelGroup tag is needed if you want to group
more than one component within an £: facet. The example h:panelGrid tag has only
one cell of data, so an h:panelGroup tag is not needed. (For more information about
facets, see Using Data-Bound Table Components.

The h:panelGroup tag has an attribute, layout, in addition to those listed in Common
Component Tag Attributes. If the layout attribute has the value block, an HTML div
element is rendered to enclose the row; otherwise, an HTML span element is rendered
to enclose the row. If you are specifying styles for the h:panelGroup tag, you should
set the layout attribute to block in order for the styles to be applied to the components
within the h:panelGroup tag. You should do this because styles, such as those that set
width and height, are not applied to inline elements, which is how content enclosed by
the span element is defined.

An h:panelGroup tag can also be used to encapsulate a nested tree of components so
that the tree of components appears as a single component to the parent component.

Data, represented by the nested tags, is grouped into rows according to the value of
the columns attribute of the h:panelGrid tag. The columns attribute in the example is
set to 2, and therefore the table will have two columns. The column in which each
component is displayed is determined by the order in which the component is listed
on the page modulo 2. So, if a component is the fifth one in the list of components, that
component will be in the 5 modulo 2 column, or column 1.

10.2.8 Displaying Components for Selecting One Value

Another commonly used component is one that allows a user to select one value,
whether it is the only value available or one of a set of choices. The most common tags
for this kind of component are as follows:

= Anh:selectBooleanCheckbox tag, displayed as a check box, which represents a
Boolean state

= Anh:selectOneRadio tag, displayed as a set of options
= Anh:selectOneMenu tag, displayed as a scrollable list
= Anh:selectOneListbox tag, displayed as an unscrollable list

Figure 10-3 shows examples of these components.

Using JavaServer Faces Technology in Web Pages 10-15

Adding Components to a Page Using HTML Tag Library Tags

Figure 10-3 Example Components for Selecting One Item

Genre: O Fiction Language: | Chinese A Format: | Hardcover
o Dutch Paperback
Radio @ Non-fiction English Large-print
Buttons O Reference French Cassette
) German DVD
O Biography Spanish lllustrated
Swahili v

Availability: In print

‘ List Box
Check Box Drop-Down Menu

10.2.8.1 Displaying a Check Box Using the h:selectBooleanCheckbox Tag

The h:selectBooleanCheckbox tag is the only tag that JavaServer Faces technology
provides for representing a Boolean state.

Here is an example that shows how to use the h:selectBooleanCheckbox tag:

<h:selectBooleanCheckbox id="fanClub"
rendered="false"
binding="#{cashierBean.specialOffer}" />
<h:outputLabel for="fanClub"
rendered="false"
binding="#{cashierBean.specialOfferText}"
value="#{bundle.DukeFanClub}" />

The h:selectBooleanCheckbox tag and the h:outputLabel tag have rendered
attributes that are set to false on the page but are set to true in the CashierBean under
certain circumstances. When the h: selectBooleanCheckbox tag is rendered, it displays
a check box to allow users to indicate whether they want to join the Duke Fan Club.
When the h:outputLabel tag is rendered, it displays the label for the check box. The
label text is represented by the value attribute.

10.2.8.2 Displaying a Menu Using the h:selectOneMenu Tag

A component that allows the user to select one value from a set of values can be
rendered as a box or a set of options. This section describes the h:selectOneMenu tag.
The h:selectOneRadio and h:selectOneListbox tags are used in a similar way. The
h:selectOneListbox tag is similar to the h:selectOneMenu tag except that
h:selectOneListbox defines a size attribute that determines how many of the items
are displayed at once.

The h:selectOneMenu tag represents a component that contains a list of items from
which a user can select one item. This menu component is sometimes known as a
drop-down list or a combo box. The following code snippet shows how the
h:selectOneMenu tag is used to allow the user to select a shipping method:

<h:selectOneMenu id="shippingOption"
required="true"
value="#{cashierBean.shippingOption}">
<f:selectItem itemvValue="2"
itemLabel="#{bundle.QuickShip}"/>
<f:selectItem itemValue="5"
itemLabel="#{bundle.NormalShip}"/>
<f:selectItem itemValue="7"
itemLabel="#{bundle.SaverShip}"/>
</h:selectOneMenu>

10-16 The Java EE 7 Tutorial

Adding Components to a Page Using HTML Tag Library Tags

The value attribute of the h: selectOneMenu tag maps to the property that holds the
currently selected item's value. In this case, the value is set by the backing bean. You
are not required to provide a value for the currently selected item. If you don't provide
a value, the browser determines which one is selected.

Like the h:selectOneRadio tag, the h:selectOneMenu tag must contain either an
f:selectItems tag or a set of f:selectItem tags for representing the items in the list.
Using the f:selectltem and f:selectltems Tags describes these tags.

10.2.9 Displaying Components for Selecting Multiple Values

In some cases, you need to allow your users to select multiple values rather than just
one value from a list of choices. You can do this using one of the following component
tags:

= Anh:selectManyCheckbox tag, displayed as a set of check boxes
= Anh:selectManyMenu tag, displayed as a menu
= Anh:selectManyListbox tag, displayed as a box

Figure 10—4 shows examples of these components.

Figure 10-4 Example Components for Selecting Multiple Values

Genre: Fiction Language: | Chinese A Format: | Hardcover
o Dutch Paperback
Check Non-fiction English Large-print
Boxes I:l Reference French Cassette
) German DVD
|:| Biography Spanish lllustrated
Swalhili v
List Box

Drop-Down Menu

These tags allow the user to select zero or more values from a set of values. This
section explains the h:selectManyCheckbox tag. The h:selectManyListbox and
h:selectManyMenu tags are used in a similar way.

Unlike a menu, a list displays a subset of items in a box; a menu displays only one
item at a time when the user is not selecting the menu. The size attribute of the
h:selectManyListbox tag determines the number of items displayed at one time. The
box includes a scroll bar for scrolling through any remaining items in the list.

The h:selectManyCheckbox tag renders a group of check boxes, with each check box
representing one value that can be selected:

<h:selectManyCheckbox id="newslettercheckbox"
layout="pageDirection"
value="#{cashierBean.newsletters}">
<f:selectItems value="#{cashierBean.newsletterItems}"/>
</h:selectManyCheckbox>

The value attribute of the h: selectManyCheckbox tag identifies the newsletters
property of the CashierBean managed bean. This property holds the values of the
currently selected items from the set of check boxes. You are not required to provide a
value for the currently selected items. If you don't provide a value, the first item in the
list is selected by default. In the CashierBean managed bean, this value is instantiated
to 0, so no items are selected by default.

Using JavaServer Faces Technology in Web Pages 10-17

Adding Components to a Page Using HTML Tag Library Tags

The layout attribute indicates how the set of check boxes is arranged on the page.
Because layout is set to pageDirection, the check boxes are arranged vertically. The
default is 1ineDirection, which aligns the check boxes horizontally.

The h:selectManyCheckbox tag must also contain a tag or set of tags representing the
set of check boxes. To represent a set of items, you use the f:selectItems tag. To
represent each item individually, you use the f:selectItemtag. The following section
explains these tags in more detail.

10.2.10 Using the f:selectltem and f:selectltems Tags

The f:selectItemand f:selectItems tags represent components that can be nested
inside a component that allows you to select one or multiple items. An f:selectItem
tag contains the value, label, and description of a single item. An f:selectItens tag
contains the values, labels, and descriptions of the entire list of items.

You can use either a set of £:selectItemtags or a single f:selectItems tag within
your component tag.

The advantages of using the f:selectItems tag are as follows.

= Items can be represented by using different data structures, including Array, Map,
and Collection. The value of the f:selectItems tag can represent even a generic
collection of POJOs.

= Different lists can be concatenated into a single component, and the lists can be
grouped within the component.

= Values can be generated dynamically at runtime.

The advantages of using f:selectItem are as follows:

s Items in the list can be defined from the page.

s Less code is needed in the backing bean for the f:selectItem properties.

The rest of this section shows you how to use the f:selectItems and f:selectItem
tags.

10.2.10.1 Using the f:selectltems Tag

The following example from Displaying Components for Selecting Multiple Values
shows how to use the h:selectManyCheckbox tag:

<h:selectManyCheckbox id="newslettercheckbox"
layout="pageDirection"
value="#{cashierBean.newsletters}">
<f:selectItems value="#{cashierBean.newsletterItems}"/>
</h:selectManyCheckbox>

The value attribute of the f:selectItems tag is bound to the managed bean property
cashierBean.newsletterItems. The individual SelectItem objects are created
programmatically in the managed bean.

See UlSelectltems Properties for information on how to write a managed bean
property for one of these tags.

10.2.10.2 Using the f:selectltem Tag

The f:selectItem tag represents a single item in a list of items. Here is the example
from Displaying a Menu Using the h:selectOneMenu Tag once again:

<h:selectOneMenu id="shippingOption"

10-18 The Java EE 7 Tutorial

Adding Components to a Page Using HTML Tag Library Tags

required="true"
value="#{cashierBean.shippingOption}">
<f:selectItem itemvValue="2"
itemLabel="#{bundle.QuickShip}"/>
<f:selectItem itemvValue="5"
itemLabel="#{bundle.NormalShip}"/>
<f:selectItem itemValue="7"
itemLabel="#{bundle.SaverShip}"/>
</h:selectOneMenu>

The itemValue attribute represents the value for the f:selectItemtag. The itemLabel
attribute represents the String that appears in the list component on the page.

The itemvalue and itemLabel attributes are value-binding-enabled, meaning that they
can use value-binding expressions to refer to values in external objects. These
attributes can also define literal values, as shown in the example h:selectOneMenu tag.

10.2.11 Displaying the Results from Selection Components

If you display components that allow a user to select values, you may also want to
display the result of the selection.

For example, you might want to thank a user who selected the checkbox to join the
Duke Fan Club, as described in Displaying a Check Box Using the
h:selectBooleanCheckbox Tag. Because the checkbox is bound to the specialOffer
property of CashierBean, a UISelectBoolean value, you can call the isSelected
method of the property to determine whether to render a thank-you message:

<h:outputText value="#{bundle.DukeFanClubThanks}"
rendered="#{cashierBean.specialOffer.isSelected()}"/>

Similarly, you might want to acknowledge that a user subscribed to newsletters using
the h: selectManyCheckbox tag, as described in Displaying Components for Selecting
Multiple Values. To do so, you can retrieve the value of the newsletters property, the
String array that holds the selected items:

<h:outputText value="#{bundle.NewsletterThanks}"
rendered="#{!empty cashierBean.newsletters}"/>

<ui:repeat value="#{cashierBean.newsletters}" var="nli">
<h:outputText value="#{nli}" />
</ui:repeat>

An introductory thank-you message is displayed only if the newsletters array is not
empty. Then a ui:repeat tag, a simple way to show values in a loop, displays the
contents of the selected items in an itemized list. (This tag is listed in Table 8-2.)

10.2.12 Using Data-Bound Table Components

Data-bound table components display relational data in a tabular format. In a
JavaServer Faces application, the h:dataTable component tag supports binding to a
collection of data objects and displays the data as an HTML table. The h: column tag
represents a column of data within the table, iterating over each record in the data
source, which is displayed as a row. Here is an example:

<h:dataTable id="items"
captionClass="list-caption
columnClasses="1list-column-center, list-column-left,
list-column-right, list-column-center"

Using JavaServer Faces Technology in Web Pages 10-19

Adding Components to a Page Using HTML Tag Library Tags

footerClass="list-footer"
headerClass="list-header"
rowClasses="list-row-even, list-row-odd"
styleClass="1ist-background"
summary="#{bundle.ShoppingCart}"
value="#{cart.items}"
border="1"
var="item">
<h:column>
<f:facet name="header">
<h:outputText value="#{bundle.ItemQuantity}" />
</f:facet>
<h:inputText id="quantity"
size="4"
value="#{item.quantity}"
title="#{bundle.ItemQuantity}">
<f:validateLongRange minimum="1"/>
</h:inputText>
<h:message for="quantity"/>
</h:column>
<h:column>
<f:facet name="header">
<h:outputText value="#{bundle.ItemTitle}"/>
</f:facet>
<h:commandLink action="#{showcart.details}">
<h:outputText value="#{item.item.title}"/>
</h:commandLink>
</h:column>

<f:facet name="footer"
<h:panelGroup>
<h:outputText value="#{bundle.Subtotal}"/>
<h:outputText value="#{cart.total}" />
<f:convertNumber currencySymbol="S$" type="currency" />
</h:outputText>
</h:panelGroup>
</f:facet>
<f:facet name="caption">
<h:outputText value="#{bundle.Caption}"/>
</f:facet>
</h:dataTable>

The example h:dataTable tag displays the books in the shopping cart, as well as the
quantity of each book in the shopping cart, the prices, and a set of buttons the user can
click to remove books from the shopping cart.

The h:column tags represent columns of data in a data component. While the data
component is iterating over the rows of data, it processes the column component
associated with each h:column tag for each row in the table.

The h:dataTable tag shown in the preceding code example iterates through the list of
books (cart.items) in the shopping cart and displays their titles, authors, and prices.
Each time the h:dataTable tag iterates through the list of books, it renders one cell in
each column.

The h:dataTable and h:column tags use facets to represent parts of the table that are
not repeated or updated. These parts include headers, footers, and captions.

In the preceding example, h: column tags include f: facet tags for representing column
headers or footers. The h:column tag allows you to control the styles of these headers
and footers by supporting the headerClass and footerClass attributes. These

10-20 The Java EE 7 Tutorial

Adding Components to a Page Using HTML Tag Library Tags

attributes accept space-separated lists of CSS classes, which will be applied to the
header and footer cells of the corresponding column in the rendered table.

Facets can have only one child, so an h:panelGroup tag is needed if you want to group
more than one component within an f: facet. Because the facet tag representing the
footer includes more than one tag, the h:panelGroup tag is needed to group those tags.
Finally, this h:dataTable tag includes an f: facet tag with its name attribute set to
caption, causing a table caption to be rendered above the table.

This table is a classic use case for a data component because the number of books
might not be known to the application developer or the page author when that
application is developed. The data component can dynamically adjust the number of
rows of the table to accommodate the underlying data.

The value attribute of an h:dataTable tag references the data to be included in the
table. This data can take the form of any of the following:

= A list of beans

= Anarray of beans

= A single bean

s A javax.faces.model.DataModel object

= A java.sgl.ResultSet object

= A javax.servlet.jsp.jstl.sqgl.Result object
= A javax.sql.RowSet object

All data sources for data components have a DataModel wrapper. Unless you explicitly
construct a DataModel wrapper, the JavaServer Faces implementation will create one
around data of any of the other acceptable types. See Writing Bean Properties for more
information on how to write properties for use with a data component.

The var attribute specifies a name that is used by the components within the
h:dataTable tag as an alias to the data referenced in the value attribute of
h:dataTable.

In the example h:dataTable tag, the value attribute points to a list of books. The var
attribute points to a single book in that list. As the h:dataTable tag iterates through
the list, each reference to item points to the current book in the list.

The h:dataTable tag also has the ability to display only a subset of the underlying
data. This feature is not shown in the preceding example. To display a subset of the
data, you use the optional first and rows attributes.

The first attribute specifies the first row to be displayed. The rows attribute specifies
the number of rows, starting with the first row, to be displayed. For example, if you
wanted to display records 2 through 10 of the underlying data, you would set first to
2 and rows to 9. When you display a subset of the data in your pages, you might want
to consider including a link or button that causes subsequent rows to display when
clicked. By default, both first and rows are set to zero, and this causes all the rows of
the underlying data to display.

Table 10-7 shows the optional attributes for the h:dataTable tag.

Table 10-7 Optional Attributes for the h:dataTable Tag

Attribute Defines Styles for
captionClass Table caption
columnClasses All the columns

Using JavaServer Faces Technology in Web Pages 10-21

Adding Components to a Page Using HTML Tag Library Tags

Table 10-7 (Cont.) Optional Attributes for the h:dataTable Tag

Attribute Defines Styles for
footerClass Footer
headerClass Header
rowClasses Rows

styleClass The entire table

Each of the attributes in Table 10-7 can specify more than one style. If columnClasses
or rowClasses specifies more than one style, the styles are applied to the columns or
rows in the order that the styles are listed in the attribute. For example, if
columnClasses specifies styles 1ist-column-center and list-column-right and if the
table has two columns, the first column will have style 1ist-column-center, and the
second column will have style 1ist-column-right.

If the style attribute specifies more styles than there are columns or rows, the
remaining styles will be assigned to columns or rows starting from the first column or
row. Similarly, if the style attribute specifies fewer styles than there are columns or
rows, the remaining columns or rows will be assigned styles starting from the first
style.

10.2.13 Displaying Error Messages with the h:message and h:messages Tags

The h:message and h:messages tags are used to display error messages when
conversion or validation fails. The h:message tag displays error messages related to a
specific input component, whereas the h:messages tag displays the error messages for
the entire page.

Here is an example h:message tag from the guessnumber application:

<p>
<h:inputText id="userNo"
title="Type a number from 0 to 10:"
value="#{userNumberBean.userNumber}">
<f:validateLongRange minimum="#{userNumberBean.minimum}"
maximum="#{userNumberBean.maximum}" />
</h:inputText>
<h:commandButton id="submit" value="Submit"
action="response"/>
</p>
<h:message showSummary="true" showDetail="false"
style="color: #d20005;
font-family: 'New Century Schoolbook', serif;
font-style: oblique;
text-decoration: overline"
id="errorsl"
for="userNo"/>

The for attribute refers to the ID of the component that generated the error message.
The error message is displayed at the same location that the h:message tag appears in
the page. In this case, the error message will appear after the Submit button.

The style attribute allows you to specify the style of the text of the message. In the
example in this section, the text will be a shade of red, New Century Schoolbook, serif
font family, and oblique style, and a line will appear over the text. The message and
messages tags support many other attributes for defining styles. For more information
on these attributes, refer to the documentation at

10-22 The Java EE 7 Tutorial

Adding Components to a Page Using HTML Tag Library Tags

http://docs.oracle.com/javaee/7/javaserverfaces/2.2/vdldocs/face
lets/.

Another attribute supported by the h:messages tag is the layout attribute. Its default
value is 1ist, which indicates that the messages are displayed in a bullet list using the
HTML ul and 11 elements. If you set the attribute value to table, the messages will be
rendered in a table using the HTML table element.

The preceding example shows a standard validator that is registered on the input
component. The message tag displays the error message that is associated with this
validator when the validator cannot validate the input component's value. In general,
when you register a converter or validator on a component, you are queueing the error
messages associated with the converter or validator on the component. The h:message
and h:messages tags display the appropriate error messages that are queued on the
component when the validators or converters registered on that component fail to
convert or validate the component's value.

Standard error messages are provided with standard converters and standard
validators. An application architect can override these standard messages and supply
error messages for custom converters and validators by registering custom error
messages with the application.

10.2.14 Creating Bookmarkable URLs with the h:button and h:link Tags

The ability to create bookmarkable URLSs refers to the ability to generate links based on
a specified navigation outcome and on component parameters.

In HTTP, most browsers by default send GET requests for URL retrieval and POST
requests for data processing. The GET requests can have query parameters and can be
cached, which is not advised for POST requests, which send data to servers for
processing. The other JavaServer Faces tags capable of generating links use either
simple GET requests, as in the case of h:outputLink, or POST requests, as in the case
of h:commandLink or h:commandButton tags. GET requests with query parameters
provide finer granularity to URL strings. These URLs are created with one or more
name=value parameters appended to the simple URL after a ? character and separated
by either &; or & strings.

To create a bookmarkable URL, use an h:1ink or h:button tag. Both of these tags can
generate a link based on the outcome attribute of the component. For example:

<h:1link outcome="somepage" value="Message" />
The h:1ink tag will generate a URL link that points to the somepage . xhtml file on the

same server. The following sample HTML is generated from the preceding tag,
assuming that the application name is simplebookmark:

Message
This is a simple GET request that cannot pass any data from page to page. To create

more complex GET requests and utilize the complete functionality of the h:1ink tag,
use view parameters.

10.2.15 Using View Parameters to Configure Bookmarkable URLs

To pass a parameter from one page to another, use the includeViewParanms attribute in
your h:1link tag and, in addition, use an £ : param tag to specify the name and value to
be passed. Here the h:1ink tag specifies the outcome page as personal.xhtml and
provides a parameter named Result whose value is a managed bean property:

<h:body>

Using JavaServer Faces Technology in Web Pages 10-23

Adding Components to a Page Using HTML Tag Library Tags

<h:form>
<h:graphicImage url="#{resource['images:duke.waving.gif']}"
alt="Duke waving his hand"/>
<h2>Hello, #{hello.name}!</h2>
<p>I've made your
<h:1link outcome="personal" value="personal greeting page!"
includeViewParams="true">
<f:param name="Result" value="#{hello.name}"/>
</h:1link>
</p>
<h:commandButton id="back" value="Back" action="index" />
</h:form>
</h:body>

If the includeViewParams attribute is set on the component, the view parameters are
added to the hyperlink. Therefore, the resulting URL will look something like this if
the value of hello.name is Timmy:

http://localhost:8080/bookmarks/faces/personal .xhtml?Resul t=Timmy
On the outcome page, specify the core tags f:metadata and f:viewparam as the source

of parameters for configuring the URLs. View parameters are declared as part of
f:metadata for a page, as shown in the following example:

<f:metadata>
<f:viewParam name="Result" value="#{hello.name}"/>
</f:metadata>
This allows you to specify the bean property value on the page:
<h:outputText value="Howdy, #{hello.name}!" />
As a view parameter, the name also appears in the page's URL. If you edit the URL,
you change the output on the page.

Because the URL can be the result of various parameter values, the order of the URL
creation has been predefined. The order in which the various parameter values are
read is as follows:

1. Component
2. Navigation-case parameters

3. View parameters

10.2.16 The bookmarks Example Application

The bookmarks example application modifies the hellol application described in A
Web Module That Uses JavaServer Faces Technology: The hellol Example to use a
bookmarkable URL that uses view parameters.

Like hellol, the application includes the Hello.java managed bean, an index.xhtml

page, and a response.xhtml page. In addition, it includes a personal.xhtml page, to

which a bookmarkable URL and view parameters are passed from the response . xhtml
page, as described in Using View Parameters to Configure Bookmarkable URLs.

You can use either NetBeans IDE or Maven to build, package, deploy, and run the
bookmarks example. The source code for this example is available in the
tut-install/examples/web/jsf/bookmarks/ directory.

10-24 The Java EE 7 Tutorial

Adding Components to a Page Using HTML Tag Library Tags

10.2.16.1 To Build, Package, and Deploy the bookmarks Example Using NetBeans
IDE

1. From the File menu, choose Open Project.
2. In the Open Project dialog box, navigate to:

tut-install/examples/web/jst

3. Select the bookmarks folder.
4. Click Open Project.
5. In the Projects tab, right-click the bookmarks project and select Build.

This option builds the example application and deploys it to your GlassFish Server
instance.

10.2.16.2 To Build, Package, and Deploy the bookmarks Example Using Maven and
the asadmin Command
1. Ina terminal window, go to:

tut-install/examples/web/jsf/bookmarks/

2. Enter the following command:
mvn install
This command builds and packages the application into a WAR file,

bookmarks .war, that is located in the target directory. It then deploys it to your
GlassFish Server instance.

10.2.16.3 To Run the bookmarks Example

1. Enter the following URL in your web browser:

http://localhost:8080/bookmarks

2. In the text field, enter a name and click Submit.

3. On the response page, move your mouse over the "personal greeting page" link to
view the URL with the view parameter, then click the link.

The personal.xhtml page opens, displaying a greeting to the name you typed.
4. In the URL field, modify the Result parameter value and press Return.
The name in the greeting changes to what you typed.

10.2.17 Resource Relocation Using h:outputScript and h:outputStylesheet Tags

Resource relocation refers to the ability of a JavaServer Faces application to specify the
location where a resource can be rendered. Resource relocation can be defined with the
following HTML tags:

s h:outputScript
m h:outputStylesheet

These tags have name and target attributes, which can be used to define the render
location. For a complete list of attributes for these tags, see the documentation at
http://docs.oracle.com/javaee/7/javaserverfaces/2.2/vdldocs/face
lets/.

Using JavaServer Faces Technology in Web Pages 10-25

Adding Components to a Page Using HTML Tag Library Tags

For the h:outputScript tag, the name and target attributes define where the output of
a resource may appear. Here is an example:

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://xmlns.jcp.org/jsf/html">
<h:head id="head">
<title>Resource Relocation</title>
</h:head>
<h:body id="body">
<h:form id="form">
<h:outputScript name="hello.js"/>
<h:outputStylesheet name="hello.css"/>
</h:form>
</h:body>
</html>

Since the target attribute is not defined in the tags, the style sheet hello.css is
rendered in the head element of the page, and the hello. js script is rendered in the
body of the page.

Here is the HTML generated by the preceding code:

<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Resource Relocation</title>
<link type="text/css" rel="stylesheet"
href="/context-root/faces/javax.faces.resource/hello.css"/>
</head>
<body>
<form id="form" name="form" method="post"
action="..." enctype="...">
<script type="text/javascript"
src="/context-root/faces/javax.faces.resource/hello.js">
</script>
</form>
</body>
</html>

If you set the target attribute for the h:outputScript tag, the incoming GET request
provides the location parameter. Here is an example:

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://xmlns.jcp.org/jsf/html">
<h:head id="head">
<title>Resource Relocation</title>
</h:head>
<h:body id="body">
<h:form id="form">
<h:outputScript name="hello.js" target="#{param.location}"/>
<h:outputStylesheet name="hello.css"/>
</h:form>
</h:body>
</html>

In this case, if the incoming request does not provide a location parameter, the default
locations will still apply: The style sheet is rendered in the head, and the script is
rendered inline. However, if the incoming request specifies the location parameter as
the head, both the style sheet and the script will be rendered in the head element.

The HTML generated by the preceding code is as follows:

<html xmlns="http://www.w3.0rg/1999/xhtml">

10-26 The Java EE 7 Tutorial

Using Core Tags

<head>
<title>Resource Relocation</title>
<link type="text/css" rel="stylesheet"
href="/context-root/faces/javax.faces.resource/hello.css"/>
<script type="text/javascript"
src="/context-root/faces/javax.faces.resource/hello.js">

</script>
</head>
<body>
<form id="form" name="form" method="post"
action="..." enctype="...">
</form>
</body>

</html>
Similarly, if the incoming request provides the location parameter as the body, the
script will be rendered in the body element.

The preceding section describes simple uses for resource relocation. That feature can
add even more functionality for the components and pages. A page author does not
have to know the location of a resource or its placement.

By using a @ResourceDependency annotation for the components, component authors
can define the resources for the component, such as a style sheet and script. This
allows the page authors freedom from defining resource locations.

10.3 Using Core Tags

The tags included in the JavaServer Faces core tag library are used to perform core
actions that are not performed by HTML tags.

Table 10-8 lists the event handling core tags.

Table 10-8 Event Handling Core Tags

Tag Function
f:actionListener Adds an action listener to a parent component
f:phaseListener Adds a PhaseListener to a page

f:setPropertyActionListener Registers a special action listener whose sole purpose is to
push a value into a managed bean when a form is
submitted

f:valueChangeListener Adds a value-change listener to a parent component

Table 10-9 lists the data conversion core tags.

Table 10-9 Data Conversion Core Tags

Tag Function

f:converter Adds an arbitrary converter to the parent component
f:convertDateTime Adds a DateTimeConverter instance to the parent component
f:convertNumber Adds a NumberConverter instance to the parent component

Table 10-10 lists the facet core tags.

Using JavaServer Faces Technology in Web Pages 10-27

Using Core Tags

Table 10-10 Facet Core Tags

Tag Function

f:facet Adds a nested component that has a special relationship to its
enclosing tag

f:metadata Registers a facet on a parent component

Table 10-11 lists the core tags that represent items in a list.

Table 10-11 Core Tags that Represent Items in a List

Tag Function
f:selectItem Represents one item in a list of items
f:selectItems Represents a set of items

Table 10-12 lists the validator core tags.

Table 10-12 Validator Core Tags

Tag Function

f:validateDoubleRange Adds a DoubleRangeValidator to a component

f:validateLength Adds a Lengthvalidator to a component
f:validateLongRange Adds a LongRangeValidator to a component

f:validator Adds a custom validator to a component

f:validateRegEx Adds a RegExValidator to a component

f:validateBean Delegates the validation of a local value to a Beanvalidator
f:validateRequired Enforces the presence of a value in a component

Table 10-13 lists the core tags that fall into other categories.

Table 10-13 Miscellaneous Core Tags

Tag Category Tag Function

Attribute configuration ~ f:attribute Adds configurable attributes to a parent
component

Localization f:loadBundle Specifies a ResourceBundle that is exposed as a
Map

Parameter substitution f:param Substitutes parameters into a MessageFormat
instance and adds query string name-value pairs
toa URL

Ajax f:ajax Associates an Ajax action with a single
component or a group of components based on
placement

Event f:event Allows installing a

ComponentSystemEventListener on a component

These tags, which are used in conjunction with component tags, are explained in other
sections of this tutorial. Table 10-14 lists the sections that explain how to use specific
core tags.

10-28 The Java EE 7 Tutorial

Using Core Tags

Table 10-14 Where the Core Tags Are Explained

Tags

Where Explained

Event handling tags

Registering Listeners on Components

Data conversion tags

Using the Standard Converters

f:facet

Using Data-Bound Table Components and Laying Out Components
with the h:panelGrid and h:panelGroup Tags

f:loadBundle

Setting the Resource Bundle

f:metadata

Using View Parameters to Configure Bookmarkable URLs

f:param

Displaying a Formatted Message with the h:outputFormat Tag

f:selectItemand
f:selectItems

Using the f:selectltem and f:selectItems Tags

Validator tags

Using the Standard Validators

f:ajax

Chapter 13, "Using Ajax with JavaServer Faces Technology"

Using JavaServer Faces Technology in Web Pages 10-29

Using Core Tags

10-30 The Java EE 7 Tutorial

11

Using Converters, Listeners, and Validators

The previous chapter described components and explained how to add them to a web
page. This chapter provides information on adding more functionality to the
components through converters, listeners, and validators.

= Converters are used to convert data that is received from the input components.

» Listeners are used to listen to the events happening in the page and perform
actions as defined.

= Validators are used to validate the data that is received from the input
components.

The following topics are addressed here:
= Using the Standard Converters

= Registering Listeners on Components
= Using the Standard Validators

= Referencing a Managed Bean Method

11.1 Using the Standard Converters

The JavaServer Faces implementation provides a set of Converter implementations
that you can use to convert component data. For more information on the conceptual
details of the conversion model, see Conversion Model. The standard Converter
implementations, located in the javax. faces.convert package, are as follows:

m BigDecimalConverter
s BigIntegerConverter
m BooleanConverter

n ByteConverter

m CharacterConverter
m DateTimeConverter

m DoubleConverter

s EnumConverter

m FloatConverter

n IntegerConverter

n LongConverter

Using Converters, Listeners, and Validators 11-1

Using the Standard Converters

s NumberConverter
n ShortConverter

A standard error message is associated with each of these converters. If you have
registered one of these converters onto a component on your page, and the converter is
not able to convert the component's value, the converter's error message will display
on the page. For example, the following error message appears if
BigIntegerConverter fails to convert a value:

{0} must be a number consisting of one or more digits

In this case, the {0} substitution parameter will be replaced with the name of the input
component on which the converter is registered.

Two of the standard converters (DateTimeConverter and NumberConverter) have their
own tags, which allow you to configure the format of the component data using the
tag attributes. For more information about using DateTimeConverter, see Using
DateTimeConverter. For more information about using NumberConverter, see Using
NumberConverter. The following section explains how to convert a component's
value, including how to register other standard converters with a component.

11.1.1 Converting a Component's Value

To use a particular converter to convert a component's value, you need to register the
converter onto the component. You can register any of the standard converters in one
of the following ways:

= Nest one of the standard converter tags inside the component's tag. These tags are
f:convertDateTime and f:convertNumber, which are described in Using
DateTimeConverter and Using NumberConverter, respectively.

= Bind the value of the component to a managed bean property of the same type as
the converter.

= Refer to the converter from the component tag's converter attribute.

= Nestan f:converter tag inside of the component tag, and use either the
f:converter tag's converterId attribute or its binding attribute to refer to the
converter.

As an example of the second technique, if you want a component's data to be
converted to an Integer, you can simply bind the component's value to a managed
bean property. Here is an example:

Integer age = 0;
public Integer getAge(){ return age;}
public void setAge(Integer age) {this.age = age;}

If the component is not bound to a bean property, you can use the third technique by
using the converter attribute directly on the component tag:

<h:inputText converter="javax.faces.convert.IntegerConverter" />

This example shows the converter attribute referring to the fully qualified class name
of the converter. The converter attribute can also take the ID of the component.

The data from the h: inputText tag in the this example will be converted to a
java.lang.Integer value. The Integer type is a supported type of NumberConverter.
If you don't need to specify any formatting instructions using the f: convertNumber tag
attributes, and if one of the standard converters will suffice, you can simply reference
that converter by using the component tag's converter attribute.

11-2 The Java EE 7 Tutorial

Using the Standard Converters

Finally, you can nest an f: converter tag within the component tag and use either the
converter tag's converterId attribute or its binding attribute to reference the
converter.

The converterId attribute must reference the converter's ID. Here is an example:

<h:inputText value="#{loginBean.age}" />
<f:converter converterId="Integer" />
</h:inputText>

Instead of using the converterId attribute, the f:converter tag can use the binding
attribute. The binding attribute must resolve to a bean property that accepts and
returns an appropriate Converter instance.

11.1.2 Using DateTimeConverter

You can convert a component's data to a java.util.Date by nesting the
convertDateTime tag inside the component tag. The convertDateTime tag has several
attributes that allow you to specify the format and type of the data. Table 11-1 lists the
attributes.

Here is a simple example of a convertDateTime tag:

<h:outputText value="#{cashier.shipDate}">
<f:convertDateTime type="date" dateStyle="full" />
</h:outputText>

When binding the DateTimeConverter to a component, ensure that the managed bean
property to which the component is bound is of type java.util.Date. In the
preceding example, cashier.shipDate must be of type java.util.Date.

The example tag can display the following output:

Saturday, September 25, 2011

You can also display the same date and time by using the following tag where the date
format is specified:

<h:outputText value="#{cashier.shipDate}">
<f:convertDateTime pattern="EEEEEEEE, MMM dd, yyyy" />
</h:outputText>

If you want to display the example date in Spanish, you can use the locale attribute:

<h:outputText value="#{cashier.shipDate}">
<f:convertDateTime dateStyle="full"
locale="es"
timeStyle="long" type="both" />
</h:outputText>

This tag would display the following output:

jueves 27 de octubre de 2011 15:07:04 GMT

Refer to the "Customizing Formats" lesson of the Java Tutorial at
http://docs.oracle.com/javase/tutorial/il8n/format/simpleDateFor

mat .html for more information on how to format the output using the pattern
attribute of the convertDateTime tag.

Using Converters, Listeners, and Validators 11-3

Using the Standard Converters

Table 11-1 Attributes for the f:convertDateTime Tag

Attribute Type Description
binding DateTimeConverter Used to bind a converter to a managed bean property.
dateStyle String Defines the format, as specified by java.text.DateFormat,

of a date or the date part of a date string. Applied only if
type is date or both and if pattern is not defined. Valid
values: default, short, medium, long, and full. If no value
is specified, default is used.

for String Used with composite components. Refers to one of the
objects within the composite component inside which this
tag is nested.

locale String or Locale Locale whose predefined styles for dates and times are
used during formatting or parsing. If not specified, the
Locale returned by FacesContext.getLocale will be used.

pattern String Custom formatting pattern that determines how the
date/time string should be formatted and parsed. If this
attribute is specified, dateStyle, timeStyle, and type
attributes are ignored.

timeStyle String Defines the format, as specified by java.text.DateFormat,
of a time or the time part of a date string. Applied only if
type is time and pattern is not defined. Valid values:
default, short, medium, long, and full. If no value is
specified, default is used.

timeZone Stringor TimeZone Time zone in which to interpret any time information in the
date string.

type String Specifies whether the string value will contain a date, a
time, or both. Valid values are date, time, or both. If no
value is specified, date is used.

11.1.3 Using NumberConverter

You can convert a component's data to a java.lang.Number by nesting the
convertNumber tag inside the component tag. The convertNumber tag has several
attributes that allow you to specify the format and type of the data. Table 11-2 lists the
attributes.

The following example uses a convertNumber tag to display the total prices of the
contents of a shopping cart:

<h:outputText value="#{cart.total}">
<f:convertNumber currencySymbol="S$" type="currency"/>
</h:outputText>

When binding the NumberConverter to a component, ensure that the managed bean
property to which the component is bound is of a primitive type or has a type of
java.lang.Number. In the preceding example, cart.total is of type double.

Here is an example of a number that this tag can display:

$934

This result can also be displayed by using the following tag, where the currency
pattern is specified:

<h:outputText id="cartTotal"
value="#{cart.Total}">
<f:convertNumber pattern="S####" />
</h:outputText>

11-4 The Java EE 7 Tutorial

Registering Listeners on Components

See the "Customizing Formats" lesson of the Java Tutorial at
http://docs.oracle.com/javase/tutorial/il8n/format/decimalFormat
.html for more information on how to format the output by using the pattern
attribute of the convertNumber tag.

Table 11-2 Attributes for the f:convertNumber Tag

Attribute Type Description

binding NumberConverter Used to bind a converter to a managed bean
property.

currencyCode String ISO 4217 currency code, used only when formatting
currencies.

currencySymbol String Currency symbol, applied only when formatting
currencies.

for String Used with composite components. Refers to one of
the objects within the composite component inside
which this tag is nested.

groupingUsed Boolean Specifies whether formatted output contains
grouping separators.

integerOnly Boolean Specifies whether only the integer part of the value
will be parsed.

locale String or Locale Locale whose number styles are used to format or
parse data.

maxFractionDigit int Maximum number of digits formatted in the

s fractional part of the output.

maxIntegerDigits int Maximum number of digits formatted in the integer
part of the output.

minFractionDigit int Minimum number of digits formatted in the

s fractional part of the output.

minIntegerDigits int Minimum number of digits formatted in the integer

part of the output.

pattern String Custom formatting pattern that determines how the
number string is formatted and parsed.

type String Specifies whether the string value is parsed and
formatted as a number, currency, or percentage. If
not specified, number is used.

11.2 Registering Listeners on Components

An application developer can implement listeners as classes or as managed bean
methods. If a listener is a managed bean method, the page author references the
method from either the component's valueChangeListener attribute or its
actionListener attribute. If the listener is a class, the page author can reference the
listener from either an f:valueChangeListener tag or an f:actionListener tag and
nest the tag inside the component tag to register the listener on the component.

Referencing a Method That Handles an Action Event and Referencing a Method That
Handles a Value-Change Event explain how a page author uses the
valueChangeListener and actionListener attributes to reference managed bean
methods that handle events.

Using Converters, Listeners, and Validators 11-5

Registering Listeners on Components

This section explains how to register a NameChanged value-change listener and a
BookChange action listener implementation on components. The Duke's Bookstore case
study includes both of these listeners.

11.2.1 Registering a Value-Change Listener on a Component

A page author can register a ValueChangeListener implementation on a component
that implements EditableValueHolder by nesting an f:valueChangeListener tag
within the component's tag on the page. The f:valueChangeListener tag supports the
attributes shown in Table 11-3, one of which must be used.

Table 11-3 Attributes for the f:valueChangelListener Tag

Attribute Description

type References the fully qualified class name of a ValueChangeListener
implementation. Can accept a literal or a value expression.

binding References an object that implements ValueChangeListener. Can accept
only a value expression, which must point to a managed bean property
that accepts and returns a ValueChangeListener implementation.

The following example shows a value-change listener registered on a component:

<h:inputText id="name"
size="30"
value="#{cashier.name}"
required="true"
requiredMessage="#{bundle.RegCustomerName} ">
<f:valueChangelListener
type="dukesbookstore.listeners.NameChanged" />
</h:inputText>

In the example, the core tag type attribute specifies the custom NameChanged listener as
the ValueChangeListener implementation registered on the name component.

After this component tag is processed and local values have been validated, its
corresponding component instance will queue the ValueChangeEvent associated with
the specified ValueChangeListener to the component.

The binding attribute is used to bind a ValueChangeListener implementation to a
managed bean property. This attribute works in a similar way to the binding attribute
supported by the standard converter tags. See Binding Component Values and
Instances to Managed Bean Properties for more information.

11.2.2 Registering an Action Listener on a Component

A page author can register an ActionListener implementation on a command
component by nesting an f:actionListener tag within the component's tag on the
page. Similarly to the f:valueChangeListener tag, the f:actionListener tag supports
both the type and binding attributes. One of these attributes must be used to reference
the action listener.

Here is an example of an h: commandLink tag that references an ActionListener
implementation:

<h:commandLink id="Duke" action="bookstore">
<f:actionListener
type="dukesbookstore.listeners.LinkBookChangeListener" />
<h:outputText value="#{bundle.Book201}"/>
</h:commandLink>

11-6 The Java EE 7 Tutorial

Registering Listeners on Components

The type attribute of the f:actionListener tag specifies the fully qualified class name
of the ActionListener implementation. Similarly to the f:valueChangeListener tag,
the f:actionListener tag also supports the binding attribute. See Binding Converters,
Listeners, and Validators to Managed Bean Properties for more information about
binding listeners to managed bean properties.

In addition to the actionListener tag that allows you register a custom listener onto a
component, the core tag library includes the f:setPropertyActionListener tag. You
use this tag to register a special action listener onto the ActionSource instance
associated with a component. When the component is activated, the listener will store
the object referenced by the tag's value attribute into the object referenced by the tag's
target attribute.

The bookcatalog.xhtml page of the Duke's Bookstore application uses
f:setPropertyActionListener with two components: the h: commandLink component
used to link to the bookdetails.xhtml page and the h: commandButton component
used to add a book to the cart:

<h:dataTable id="books"
value="#{bookRequestBean.books}"
var="book"
headerClass="list-header"
styleClass="1ist-background"
rowClasses="list-row-even, list-row-odd"
border="1"
summary="#{bundle.BookCatalog}" >

<h:column>
<f:facet name="header">
<h:outputText value="#{bundle.ItemTitle}"/>
</f:facet>
<h:commandLink action="#{catalog.details}"
value="#{book.title}">
<f:setPropertyActionListener target="#{requestScope.book}"
value="4#{book}"/>
</h:commandLink>
</h:column>

<h:column>
<f:facet name="header">
<h:outputText value="#{bundle.CartAdd}"/>
</f:facet>
<h:commandButton id="add"
action="#{catalog.add}"
value="#{bundle.CartAdd}">
<f:setPropertyActionListener target="#{requestScope.book}"
value="4#{book}"/>
</h:commandButton>
</h:column>

The h:commandLink and h:commandButton tags are within an h:dataTable tag, which

iterates over the list of books. The var attribute refers to a single book in the list of
books.

The object referenced by the var attribute of an h:dataTable tag is in page scope.
However, in this case, you need to put this object into request scope so that when the
user activates the commandLink component to go to bookdetails.xhtml or activates the
commandButton component to go to bookcatalog.xhtml, the book data is available to
those pages. Therefore, the £:setPropertyActionListener tag is used to set the

Using Converters, Listeners, and Validators 11-7

Using the Standard Validators

current book object into request scope when the commandLink or commandButton
component is activated.

In the preceding example, the f:setPropertyActionListener tag's value attribute
references the book object. The f:setPropertyActionListener tag's target attribute
references the value expression requestScope.book, which is where the book object
referenced by the value attribute is stored when the commandLink or the

commandBut ton component is activated.

11.3 Using the Standard Validators

JavaServer Faces technology provides a set of standard classes and associated tags that
page authors and application developers can use to validate a component's data.

Table 114 lists all the standard validator classes and the tags that allow you to use the
validators from the page.

Table 11-4 The Validator Classes

Validator Class Tag Function
BeanValidator validateBean Registers a bean validator for the
component.

DoubleRangeValidator validateDoubleRange Checks whether the local value of a
component is within a certain range. The
value must be floating-point or convertible
to floating-point.

LengthValidator validateLength Checks whether the length of a
component's local value is within a certain
range. The value must be a
java.lang.String.

LongRangeValidator validateLongRange Checks whether the local value of a
component is within a certain range. The
value must be any numeric type or String
that can be converted to a 1long.

RegexValidator validateRegEx Checks whether the local value of a
component is a match against a regular
expression from the java.util.regex
package.

Requiredvalidator validateRequired Ensures that the local value is not empty on
an EditableValueHolder component.

All these validator classes implement the Validator interface. Component writers and
application developers can also implement this interface to define their own set of
constraints for a component's value.

Similar to the standard converters, each of these validators has one or more standard
error messages associated with it. If you have registered one of these validators onto a
component on your page, and the validator is unable to validate the component's
value, the validator's error message will display on the page. For example, the error
message that displays when the component's value exceeds the maximum value
allowed by LongRangeValidator is as follows:

{1}: Validation Error: Value is greater than allowable maximum of "{0}"
In this case, the {1} substitution parameter is replaced by the component's label or id,

and the {0} substitution parameter is replaced with the maximum value allowed by
the validator.

11-8 The Java EE 7 Tutorial

Using the Standard Validators

See Displaying Error Messages with the h:message and h:messages Tags for
information on how to display validation error messages on the page when validation
fails.

Instead of using the standard validators, you can use Bean Validation to validate data.
See Using Bean Validation for more information.

11.3.1 Validating a Component's Value

To validate a component's value using a particular validator, you need to register that
validator on the component. You can do this in one of the following ways:

= Nest the validator's corresponding tag (shown in Table 11-4) inside the
component's tag. Using LongRangeValidator explains how to use the
validateLongRange tag. You can use the other standard tags in the same way.

= Refer to a method that performs the validation from the component tag's
validator attribute.

= Nest a validator tag inside the component tag, and use either the validator tag's
validatorId attribute or its binding attribute to refer to the validator.

See Referencing a Method That Performs Validation for more information on using the
validator attribute.

The validatorId attribute works similarly to the converterId attribute of the
converter tag, as described in Converting a Component's Value.

Keep in mind that validation can be performed only on components that implement
EditableValueHolder, because these components accept values that can be validated.

11.3.2 Using LongRangeValidator

The following example shows how to use the validateLongRange validator on an
input component named quantity:

<h:inputText id="quantity" size="4" value="#{item.quantity}">
<f:validateLongRange minimum="1"/>

</h:inputText>

<h:message for="quantity"/>

This tag requires the user to enter a number that is at least 1. The validateLongRange
tag also has a maximum attribute, which sets a maximum value for the input.

The attributes of all the standard validator tags accept EL value expressions. This
means that the attributes can reference managed bean properties rather than specify
literal values. For example, the validateLongRange tag in the preceding example can
reference managed bean properties called minimum and maximum to get the minimum
and maximum values acceptable to the validator implementation, as shown in this
snippet from the guessnumber example:

<h:inputText id="userNo"
title="Type a number from 0 to 10:"
value="#{userNumberBean.userNumber} ">
<f:validateLongRange minimum="#{userNumberBean.minimum}"
maximum="#{userNumberBean.maximum}" />
</h:inputText>

Using Converters, Listeners, and Validators 11-9

Referencing a Managed Bean Method

11.4 Referencing a Managed Bean Method

A component tag has a set of attributes for referencing managed bean methods that
can perform certain functions for the component associated with the tag. These
attributes are summarized in Table 11-5.

Table 11-5 Component Tag Attributes That Reference Managed Bean Methods

Attribute Function

action Refers to a managed bean method that performs navigation
processing for the component and returns a logical outcome String

actionListener Refers to a managed bean method that handles action events

validator Refers to a managed bean method that performs validation on the

component's value

valueChangeListener Refers to a managed bean method that handles value-change events

Only components that implement ActionSource can use the action and
actionListener attributes. Only components that implement EditableValueHolder
can use the validator or valueChangeListener attributes.

The component tag refers to a managed bean method using a method expression as a
value of one of the attributes. The method referenced by an attribute must follow a
particular signature, which is defined by the tag attribute's definition in the
documentation at
http://docs.oracle.com/javaee/7/javaserverfaces/2.2/vdldocs/face
lets/. For example, the definition of the validator attribute of the inputText tag is
the following:

void validate(javax.faces.context.FacesContext,
javax.faces.component.UIComponent, java.lang.Object)

The following sections give examples of how to use the attributes.

11.4.1 Referencing a Method That Performs Navigation

If your page includes a component, such as a button or a link, that causes the
application to navigate to another page when the component is activated, the tag
corresponding to this component must include an action attribute. This attribute does
one of the following;:

» Specifies a logical outcome String that tells the application which page to access
next

= References a managed bean method that performs some processing and returns a
logical outcome String

The following example shows how to reference a navigation method:

<h:commandButton value="#{bundle.Submit}"
action="#{cashier.submit}" />

See Writing a Method to Handle Navigation for information on how to write such a
method.

11-10 The Java EE 7 Tutorial

Referencing a Managed Bean Method

11.4.2 Referencing a Method That Handles an Action Event

If a component on your page generates an action event, and if that event is handled by
a managed bean method, you refer to the method by using the component's
actionListener attribute.

The following example shows how such a method could be referenced:

<h:commandLink id="Duke" action="bookstore"
actionListener="#{actionBean.chooseBookFromLink}">

The actionListener attribute of this component tag references the
chooseBookFromLink method using a method expression. The chooseBookFromLink
method handles the event when the user clicks the link rendered by this component.
See Writing a Method to Handle an Action Event for information on how to write such
a method.

11.4.3 Referencing a Method That Performs Validation

If the input of one of the components on your page is validated by a managed bean
method, refer to the method from the component's tag by using the validator
attribute.

The following simplified example from The guessnumber-cdi CDI Example shows
how to reference a method that performs validation on inputGuess, an input
component:

<h:inputText id="inputGuess"
value="#{userNumberBean.userNumber}"
required="true" size="3"
disabled="#{userNumberBean.number eqg userNumberBean.userNumber ...}"
validator="#{userNumberBean.validateNumberRange} ">
</h:inputText>

The managed bean method validateNumberRange verifies that the input value is
within the valid range, which changes each time another guess is made. See Writing a
Method to Perform Validation for information on how to write such a method.

11.4.4 Referencing a Method That Handles a Value-Change Event

If you want a component on your page to generate a value-change event and you want
that event to be handled by a managed bean method instead of a
ValueChangeListener implementation, you refer to the method by using the
component's valueChangeListener attribute:

<h:inputText id="name"
size="30"
value="#{cashier.name}"
required="true"
valueChangeListener="#{cashier.processValueChange}" />
</h:inputText>

The valueChangeListener attribute of this component tag references the
processValueChange method of CashierBean by using a method expression. The
processValueChange method handles the event of a user entering a name in the input
field rendered by this component.

Writing a Method to Handle a Value-Change Event describes how to implement a
method that handles a ValueChangeEvent.

Using Converters, Listeners, and Validators 11-11

Referencing a Managed Bean Method

11-12 The Java EE 7 Tutorial

12

Developing with JavaServer Faces
Technology

This chapter provides an overview of managed beans and explains how to write
methods and properties of managed beans that are used by a JavaServer Faces
application. This chapter also introduces the Bean Validation feature.

Chapter 10, "Using JavaServer Faces Technology in Web Pages" and Chapter 11, "Using
Converters, Listeners, and Validators" show how to add components to a page and
connect them to server-side objects by using component tags and core tags, as well as
how to provide additional functionality to the components through converters,
listeners, and validators. Developing a JavaServer Faces application also involves the
task of programming the server-side objects: managed beans, converters, event
handlers, and validators.

The following topics are addressed here:

= Managed Beans in JavaServer Faces Technology
s Writing Bean Properties

= Writing Managed Bean Methods

s Using Bean Validation

12.1 Managed Beans in JavaServer Faces Technology

A typical JavaServer Faces application includes one or more managed beans, each of
which can be associated with the components used in a particular page. This section
introduces the basic concepts of creating, configuring, and using managed beans in an
application.

12.1.1 Creating a Managed Bean

A managed bean is created with a constructor with no arguments, a set of properties,
and a set of methods that perform functions for a component. Each of the managed
bean properties can be bound to one of the following:

= A component value

= A component instance
= A converter instance

= A listener instance

s A validator instance

Developing with JavaServer Faces Technology 12-1

Managed Beans in JavaServer Faces Technology

The most common functions that managed bean methods perform include the
following:

= Validating a component's data
= Handling an event fired by a component

= Performing processing to determine the next page to which the application must
navigate

As with all JavaBeans components, a property consists of a private data field and a set
of accessor methods, as shown by this code:

private Integer userNumber = null;

public void setUserNumber (Integer user_number) {
userNumber = user_ number;

}

public Integer getUserNumber () {
return userNumber;

}

When bound to a component's value, a bean property can be any of the basic primitive
and numeric types or any Java object type for which the application has access to an
appropriate converter. For example, a property can be of type java.util.Date if the
application has access to a converter that can convert the Date type to a String and
back again. See Writing Bean Properties for information on which types are accepted
by which component tags.

When a bean property is bound to a component instance, the property's type must be
the same as the component object. For example, if a

javax.faces.component .UISelectBoolean component is bound to the property, the
property must accept and return a UISelectBoolean object. Likewise, if the property is
bound to a converter, validator, or listener instance, the property must be of the
appropriate converter, validator, or listener type.

For more information on writing beans and their properties, see Writing Bean
Properties.

12.1.2 Using the EL to Reference Managed Beans

To bind component values and objects to managed bean properties or to reference
managed bean methods from component tags, page authors use the Expression
Language syntax. As explained in Overview of the EL, the following are some of the
features that the EL offers:

» Deferred evaluation of expressions
= The ability to use a value expression to both read and write data
= Method expressions

Deferred evaluation of expressions is important because the JavaServer Faces lifecycle
is split into several phases in which component event handling, data conversion and
validation, and data propagation to external objects are all performed in an orderly
fashion. The implementation must be able to delay the evaluation of expressions until
the proper phase of the lifecycle has been reached. Therefore, the implementation's tag
attributes always use deferred-evaluation syntax, which is distinguished by the #{}
delimiter.

12-2 The Java EE 7 Tutorial

Writing Bean Properties

To store data in external objects, almost all JavaServer Faces tag attributes use lvalue
expressions, which are expressions that allow both getting and setting data on external
objects.

Finally, some component tag attributes accept method expressions that reference
methods that handle component events or validate or convert component data.

To illustrate a JavaServer Faces tag using the EL, the following tag references a method
that validates user input:

<h:inputText id="inputGuess"
value="#{userNumberBean.userNumber}"
required="true" size="3"
disabled="#{userNumberBean.number eq userNumberBean.userNumber}"
validator="#{userNumberBean.validateNumberRange}">
</h:inputText>

This tag binds the inputGuess component's value to the UserNumberBean . userNumber
managed bean property by using an lvalue expression. The tag uses a method
expression to refer to the UserNumberBean.validateNumberRange method, which
performs validation of the component's local value. The local value is whatever the
user types into the field corresponding to this tag. This method is invoked when the
expression is evaluated.

Nearly all JavaServer Faces tag attributes accept value expressions. In addition to
referencing bean properties, value expressions can reference lists, maps, arrays,
implicit objects, and resource bundles.

Another use of value expressions is to bind a component instance to a managed bean
property. A page author does this by referencing the property from the binding
attribute:

<h:outputLabel for="fanClub"
rendered="false"
binding="#{cashier.specialOfferText}">
<h:outputText id="fanClubLabel"
value="#{bundle.DukeFanClub}"/>
</h:outputLabel>

In addition to using expressions with the standard component tags, you can configure
your custom component properties to accept expressions by creating
javax.el.ValueExpression or javax.el.MethodExpression instances for them.

For information on the EL, see Chapter 9, "Expression Language".

For information on referencing managed bean methods from component tags, see
Referencing a Managed Bean Method.

12.2 Writing Bean Properties

As explained in Managed Beans in JavaServer Faces Technology, a managed bean
property can be bound to one of the following items:

= A component value

= A component instance

= A converter implementation
= A listener implementation

= A validator implementation

Developing with JavaServer Faces Technology 12-3

Writing Bean Properties

These properties follow the conventions of JavaBeans components (also called beans).
For more information on JavaBeans components, see the JavaBeans Tutorial at
http://docs.oracle.com/javase/tutorial/javabeans/index.html.

The component's tag binds the component's value to a managed bean property by
using its value attribute and binds the component's instance to a managed bean
property by using its binding attribute. Likewise, all the converter, listener, and
validator tags use their binding attributes to bind their associated implementations to
managed bean properties. See Binding Component Values and Instances to Managed
Bean Properties and Binding Converters, Listeners, and Validators to Managed Bean
Properties for more information.

To bind a component's value to a managed bean property, the type of the property
must match the type of the component's value to which it is bound. For example, if a
managed bean property is bound to a UISelectBoolean component's value, the
property should accept and return a boolean value or a Boolean wrapper Object
instance.

To bind a component instance to a managed bean property, the property must match
the type of component. For example, if a managed bean property is bound to a
UISelectBoolean instance, the property should accept and return a UISelectBoolean
value.

Similarly, to bind a converter, listener, or validator implementation to a managed bean
property, the property must accept and return the same type of converter, listener, or
validator object. For example, if you are using the convertDateTime tag to bind a
javax.faces.convert.DateTimeConverter to a property, that property must accept
and return a DateTimeConverter instance.

The rest of this section explains how to write properties that can be bound to
component values, to component instances for the component objects described in
Adding Components to a Page Using HTML Tag Library Tags, and to converter,
listener, and validator implementations.

12.2.1 Writing Properties Bound to Component Values

To write a managed bean property that is bound to a component's value, you must
match the property type to the component's value.

Table 12-1 lists the javax. faces.component classes and the acceptable types of their
values.

Table 12-1 Acceptable Types of Component Values

Component Class Acceptable Types of Component Values

UIInput, UIOutput, Any of the basic primitive and numeric types or any Java
UISelectItem, UISelectOne programming language object type for which an appropriate
javax.faces.convert.Converter implementation is available

UIData array of beans, List of beans, single bean, java.sgl.ResultSet,
javax.servlet.jsp.jstl.sqgl.Result, javax.sgl.RowSet

UISelectBoolean boolean or Boolean

UISelectItems java.lang.String, Collection, Array, Map

UISelectMany array or List, though elements of the array or List can be any

of the standard types

12-4 The Java EE 7 Tutorial

Writing Bean Properties

When they bind components to properties by using the value attributes of the
component tags, page authors need to ensure that the corresponding properties match
the types of the components' values.

12.2.1.1 Ulinput and UlOutput Properties

The UIInput and UIOutput component classes are represented by the component tags
that begin with h: input and h:output, respectively (for example, h: inputText and
h:outputText).

In the following example, an h: inputText tag binds the name component to the name
property of a managed bean called CashierBean.

<h:inputText id="name"
size="30"
value="#{cashier.name}"
>

</h:inputText>

The following code snippet from the managed bean CashierBean shows the bean
property type bound by the preceding component tag:

protected String name = null;

public void setName (String name) {
this.name = name;

}
public String getName () {
return this.name;

}

As described in Using the Standard Converters, to convert the value of an input or
output component, you can either apply a converter or create the bean property bound
to the component with the matching type. Here is the example tag, from Using
DateTimeConverter, that displays the date when items will be shipped.

<h:outputText value="#{cashier.shipDate}">
<f:convertDateTime type="date" dateStyle="full" />
</h:outputText>

The bean property represented by this tag must have a type of java.util.Date. The
following code snippet shows the shipDate property, from the managed bean
CashierBean, that is bound by the tag's value in the preceding example:

private Date shipDate;

public Date getShipDate() {
return this.shipDate;

}

public void setShipDate(Date shipDate) {
this.shipDate = shipDate;

}

12.2.1.2 UlData Properties

The UIData component class is represented by the h:dataTable component tag.

UIData components must be bound to one of the managed bean property types listed
in Table 12-1. Data components are discussed in Using Data-Bound Table
Components. Here is part of the start tag of dataTable from that section:

<h:dataTable id="items"

Developing with JavaServer Faces Technology 12-5

Writing Bean Properties

value="#{cart.items}"
var="item">

The value expression points to the items property of a shopping cart bean named
cart. The cart bean maintains a map of ShoppingCartItembeans.

The getItems method from the cart bean populates a List with ShoppingCartItem
instances that are saved in the items map when the customer adds books to the cart, as
shown in the following code segment:

public synchronized List<ShoppingCartItem> getItems() {
List<ShoppingCartItem> results = new ArrayList<ShoppingCartItem>();
results.addAll (this.items.values());
return results;

}

All the components contained in the UIData component are bound to the properties of
the cart bean that is bound to the entire UIData component. For example, here is the
h:outputText tag that displays the book title in the table:

<h:commandLink action="#{showcart.details}">
<h:outputText value="#{item.item.title}"/>
</h:commandLink>

The title is actually a link to the bookdetails.xhtml page. The h:outputText tag uses
the value expression #{item.item.title} to bind its UIOutput component to the
title property of the Book entity. The first item in the expression is the
ShoppingCartIteminstance that the h:dataTable tag is referencing while rendering
the current row. The second item in expression refers to the item property of
ShoppingCartItem which returns an Object (in this case, a Book. The title part of the
expression refers to the title property of Book. The value of the UIOutput component
corresponding to this tag is bound to the title property of the Book entity:

private String title;

public String getTitle() {
return title;

}

public void setTitle(String title) {
this.title = title;
}

12.2.1.3 UlSelectBoolean Properties

The UISelectBoolean component class is represented by the component tag
h:selectBooleanCheckbox.

Managed bean properties that hold a UISelectBoolean component's data must be of
boolean or Boolean type. The example selectBooleanCheckbox tag from the section
Displaying Components for Selecting One Value binds a component to a property. The
following example shows a tag that binds a component value to a boolean property:

<h:selectBooleanCheckbox title="#{bundle.receiveEmails}"
value="#{custFormBean.receiveEmails}">

</h:selectBooleanCheckbox>

<h:outputText value="#{bundle.receiveEmails}">

12-6 The Java EE 7 Tutorial

Writing Bean Properties

Here is an example property that can be bound to the component represented by the
example tag:

private boolean receiveEmails = false;

public void setReceiveEmails (boolean receiveEmails) {
this.receiveEmails = receiveEmails;

}

public boolean getReceiveEmails() {
return receiveEmails;

}

12.2.1.4 UlSelectMany Properties

The UISelectMany component class is represented by the component tags that begin
with h:selectMany (for example, h: selectManyRadio and h:selectManyListbox).

Because a UISelectMany component allows a user to select one or more items from a
list of items, this component must map to a bean property of type List or array. This
bean property represents the set of currently selected items from the list of available
items.

The following example of the selectManyCheckbox tag comes fromDisplaying
Components for Selecting Multiple Values:

<h:selectManyCheckbox id="newslettercheckbox"
layout="pageDirection"
value="#{cashier.newsletters}">
<f:selectItems value="#{cashier.newsletterItems}"/>
</h:selectManyCheckbox>

Here is the bean property that maps to the value of the selectManyCheckbox tag from
the preceding example:

private String newsletters[] = new String[0];

public void setNewsletters(String newsletters[]) {
this.newsletters = newsletters;

}

public String[] getNewsletters() {
return this.newsletters;

}

The UISelectItemand UISelectItems components are used to represent all the values
in a UISelectMany component. See UlSelectltem Properties and UlSelectltems
Properties for information on writing the bean properties for the UISelectItemand
UISelectItems components.

12.2.1.5 UlSelectOne Properties

The UISelectOne component class is represented by the component tags that begin
with h:selectOne (for example, h: selectOneRadio and h:selectOneListbox).

UISelectOne properties accept the same types as UIInput and UIOutput properties,
because a UISelectOne component represents the single selected item from a set of
items. This item can be any of the primitive types and anything else for which you can
apply a converter.

Here is an example of the h:selectOneMenu tag from Displaying a Menu Using the
h:selectOneMenu Tag:

<h:selectOneMenu id="shippingOption"

Developing with JavaServer Faces Technology 12-7

Writing Bean Properties

required="true"
value="#{cashier.shippingOption}">
<f:selectItem itemvValue="2"
itemLabel="#{bundle.QuickShip}"/>
<f:selectItem itemvValue="5"
itemLabel="#{bundle.NormalShip}"/>
<f:selectItem itemValue="7"
itemLabel="#{bundle.SaverShip}"/>
</h:selectOneMenu>

Here is the bean property corresponding to this tag:

private String shippingOption = "2";

public void setShippingOption(String shippingOption) {
this.shippingOption = shippingOption;

}

public String getShippingOption() {
return this.shippingOption;

}

Note that shippingOption represents the currently selected item from the list of items
in the UISelectOne component.

The UISelectItemand UISelectItems components are used to represent all the values
in a UISelectOne component. This is explained in the section Displaying a Menu
Using the h:selectOneMenu Tag.

For information on how to write the managed bean properties for the UISelectItem
and UISelectItems components, see UlSelectltem Properties and UlSelectltems
Properties.

12.2.1.6 UlSelectltem Properties

A UISelectItem component represents a single value in a set of values in a
UISelectMany or a UISelectOne component. A UISelectItem component must be
bound to a managed bean property of type javax.faces.model.SelectItem. A
SelectItem object is composed of an Object representing the value, along with two
Strings representing the label and description of the UISelectItem object.

The example selectOneMenu tag from UlSelectOne Properties contains selectItem
tags that set the values of the list of items in the page. Here is an example of a bean
property that can set the values for this list in the bean:

SelectItem itemOne = null;

SelectItem getItemOne() {
return itemOne;

}

void setItemOne(SelectItem item) {
itemOne = item;

12.2.1.7 UlSelectltems Properties

UISelectItems components are children of UISelectMany and UISelectOne
components. Each UISelectItems component is composed of a set of either
UISelectItem instances or any collection of objects, such as an array, a list, or even
PQOJOs.

12-8 The Java EE 7 Tutorial

Writing Bean Properties

The following code snippet from CashierBean shows how to write the properties for
selectItems tags containing SelectItem instances.

private String[] newsletters = new String[0];

private static SelectItem[] newsletterItems = {
new SelectItem("Duke's Quarterly"),
new SelectItem("Innovator's Almanac"),
new SelectItem("Duke's Diet and Exercise Journal"),
new SelectItem("Random Ramblings")
i

public void setNewsletters(String[] newsletters) {
this.newsletters = newsletters;

}

public String[] getNewsletters() ({
return this.newsletters;

}

public SelectItem[] getNewsletterItems() {
return newsletterItems;

}

Here, the newsletters property represents the SelectItems object, while the
newsletterItems property represents a static array of SelectItem objects. The
SelectItem class has several constructors; in this example, the first argument is an
Object representing the value of the item, while the second argument is a String
representing the label that appears in the UISelectMany component on the page.

12.2.2 Writing Properties Bound to Component Instances

A property bound to a component instance returns and accepts a component instance
rather than a component value. The following components bind a component instance
to a managed bean property:

<h:selectBooleanCheckbox id="fanClub"
rendered="false"
binding="#{cashier.specialOffer}" />
<h:outputLabel for="fanClub"
rendered="false"
binding="#{cashier.specialOfferText}"
value="#{bundle.DukeFanClub}" />
</h:outputLabel>

The selectBooleanCheckbox tag renders a check box and binds the fanClub
UISelectBoolean component to the specialOffer property of CashierBean. The
outputLabel tag binds the value of the value attribute, which represents the check
box's label, to the specialOfferText property of CashierBean. If the user orders more
than $100 worth of books and clicks the Submit button, the submit method of
CashierBean sets both components' rendered properties to true, causing the check
box and label to display when the page is rerendered.

Because the components corresponding to the example tags are bound to the managed
bean properties, these properties must match the components' types. This means that
the specialOfferText property must be of type UIOutput, and the specialOffer
property must be of type UISelectBoolean:

UIOutput specialOfferText = null;

Developing with JavaServer Faces Technology 12-9

Writing Bean Properties

public UIOutput getSpecialOfferText() {
return this.specialOfferText;

}
public void setSpecialOfferText (UIOutput specialOfferText) ({
this.specialOfferText = specialOfferText;

UISelectBoolean specialOffer = null;

public UISelectBoolean getSpecialOffer() {
return this.specialOffer;

}

public void setSpecialOffer (UISelectBoolean specialOffer) ({
this.specialOffer = specialOffer;

}

For more general information on component binding, see Managed Beans in
JavaServer Faces Technology.

For information on how to reference a managed bean method that performs
navigation when a button is clicked, see Referencing a Method That Performs
Navigation.

For more information on writing managed bean methods that handle navigation, see
Writing a Method to Handle Navigation.

12.2.3 Writing Properties Bound to Converters, Listeners, or Validators

All the standard converter, listener, and validator tags included with JavaServer Faces
technology support binding attributes that allow you to bind converter, listener, or
validator implementations to managed bean properties.

The following example shows a standard convertDateTime tag using a value
expression with its binding attribute to bind the
javax.faces.convert.DateTimeConverter instance to the convertDate property of
LoginBean:

<h:inputText value="#{LoginBean.birthDate}">
<f:convertDateTime binding="#{LoginBean.convertDate}" />
</h:inputText>

The convertDate property must therefore accept and return a DateTimeConverter
object, as shown here:

private DateTimeConverter convertDate;
public DateTimeConverter getConvertDate() {

return convertDate;

}

public void setConvertDate (DateTimeConverter convertDate) {
convertDate.setPattern("EEEEEEEE, MMM dd, yyyy");
this.convertDate = convertDate;

}

Because the converter is bound to a managed bean property, the managed bean
property can modify the attributes of the converter or add new functionality to it. In
the case of the preceding example, the property sets the date pattern that the converter
uses to parse the user's input into a Date object.

The managed bean properties that are bound to validator or listener implementations
are written in the same way and have the same general purpose.

12-10 The Java EE 7 Tutorial

Writing Managed Bean Methods

12.3 Writing Managed Bean Methods

Methods of a managed bean can perform several application-specific functions for
components on the page. These functions include

= Performing processing associated with navigation
= Handling action events

s Performing validation on the component's value

» Handling value-change events

By using a managed bean to perform these functions, you eliminate the need to
implement the javax.faces.validator.Validator interface to handle the validation
or one of the listener interfaces to handle events. Also, by using a managed bean
instead of a Validator implementation to perform validation, you eliminate the need
to create a custom tag for the validator implementation.

In general, it is good practice to include these methods in the same managed bean that
defines the properties for the components referencing these methods. The reason for
doing so is that the methods might need to access the component's data to determine
how to handle the event or to perform the validation associated with the component.

The following sections explain how to write various types of managed bean methods.

12.3.1 Writing a Method to Handle Navigation

An action method, a managed bean method that handles navigation processing, must
be a public method that takes no parameters and returns an Object, which is the
logical outcome that the navigation system uses to determine the page to display next.
This method is referenced using the component tag's action attribute.

The following action method is from the managed bean CashierBean, which is
invoked when a user clicks the Submit button on the page. If the user has ordered
more than $100 worth of books, this method sets the rendered properties of the
fanClub and specialOffer components to true, causing them to be displayed on the
page the next time that page is rendered.

After setting the components' rendered properties to true, this method returns the
logical outcome null. This causes the JavaServer Faces implementation to rerender the
page without creating a new view of the page, retaining the customer's input. If this
method were to return purchase, which is the logical outcome to use to advance to a
payment page, the page would rerender without retaining the customer's input. In this
case, you want to rerender the page without clearing the data.

If the user does not purchase more than $100 worth of books, or if the thankYou
component has already been rendered, the method returns bookreceipt. The
JavaServer Faces implementation loads the bookreceipt.xhtml page after this method
returns:

public String submit () {

if ((cart().getTotal()> 100.00) && !specialOffer.isRendered()) {
specialOfferText.setRendered (true);
specialOffer.setRendered (true) ;
return null;

} else if (specialOffer.isRendered() && !thankYou.isRendered()) {
thankYou.setRendered(true) ;
return null;

} else {

Developing with JavaServer Faces Technology 12-11

Writing Managed Bean Methods

cart.clear();
return ("bookreceipt");

}

Typically, an action method will return a String outcome, as shown in the previous
example. Alternatively, you can define an Enum class that encapsulates all possible
outcome strings and then make an action method return an enum constant, which
represents a particular String outcome defined by the Enum class.

The following example uses an Enum class to encapsulate all logical outcomes:

public enum Navigation ({
main, accountHist, accountList, atm, atmAck, transferFunds,
transferAck, error

}

When it returns an outcome, an action method uses the dot notation to reference the
outcome from the Enum class:

public Object submit () {

return Navigation.accountHist;

}

The section Referencing a Method That Performs Navigation explains how a
component tag references this method. The section Writing Properties Bound to
Component Instances explains how to write the bean properties to which the
components are bound.

12.3.2 Writing a Method to Handle an Action Event

A managed bean method that handles an action event must be a public method that
accepts an action event and returns void. This method is referenced using the
component tag's actionListener attribute. Only components that implement
javax.faces.component.ActionSource can refer to this method.

In the following example, a method from a managed bean named ActionBean
processes the event of a user clicking one of the links on the page:

public void chooseBookFromLink (ActionEvent event) {
String current = event.getComponent ().getId();
FacesContext context = FacesContext.getCurrentInstance();
String bookId = books.get (current);
context.getExternalContext () .getSessionMap () .put ("bookId", bookId);
}

This method gets the component that generated the event from the event object; then it
gets the component's ID, which is a code for the book. The method matches the code
against a HashMap object that contains the book codes and corresponding book ID
values. Finally, the method sets the book ID by using the selected value from the
HashMap object.

Referencing a Method That Handles an Action Event explains how a component tag
references this method.

12.3.3 Writing a Method to Perform Validation

Instead of implementing the javax.faces.validator.Validator interface to perform
validation for a component, you can include a method in a managed bean to take care

12-12 The Java EE 7 Tutorial

Writing Managed Bean Methods

of validating input for the component. A managed bean method that performs
validation must accept a javax. faces.context.FacesContext, the component whose
data must be validated, and the data to be validated, just as the validate method of
the validator interface does. A component refers to the managed bean method by
using its validator attribute. Only values of UIInput components or values of
components that extend UIInput can be validated.

Here is an example of a managed bean method that validates user input, from The
guessnumber-cdi CDI Example:

public void validateNumberRange (FacesContext context,
UIComponent toValidate,
Object value) ({
if (remainingGuesses <= 0) {
FacesMessage message = new FacesMessage("No guesses left!");
context.addMessage (toValidate.getClientId(context), message);
((UIInput) toValidate).setValid(false);

return;
}
int input = (Integer) value;
if (input < minimum || input> maximum) {

((UIInput) tovalidate).setValid(false);

FacesMessage message = new FacesMessage("Invalid guess");
context.addMessage (toValidate.getClientId(context), message);

}

The validateNumberRange method performs two different validations:

» If the user has run out of guesses, the method sets the valid property of the
UIInput component to false. Then it queues a message onto the FacesContext
instance, associating the message with the component ID, and returns.

» If the user has some remaining guesses, the method then retrieves the local value
of the component. If the input value is outside the allowable range, the method
again sets the valid property of the UIInput component to false, queues a
different message on the FacesContext instance, and returns.

See Referencing a Method That Performs Validation for information on how a
component tag references this method.

12.3.4 Writing a Method to Handle a Value-Change Event

A managed bean that handles a value-change event must use a public method that
accepts a value-change event and returns void. This method is referenced using the
component's valueChangeListener attribute. This section explains how to write a
managed bean method to replace the javax. faces.event.ValueChangeListener
implementation.

The following example tag comes from Registering a Value-Change Listener on a
Component, where the h: inputText tag with the id of name has a
ValueChangeListener instance registered on it. This ValueChangeListener instance
handles the event of entering a value in the field corresponding to the component.
When the user enters a value, a value-change event is generated, and the
processValueChange (ValueChangeEvent) method of the ValueChangeListener class is
invoked:

<h:inputText id="name"

Developing with JavaServer Faces Technology 12-13

Using Bean Validation

size="30"
value="#{cashier.name}"
required="true"
requiredMessage="#{bundle.RegqCustomerName} ">
<f:valueChangeListener
type="dukesbookstore.listeners.NameChanged" />
</h:inputText>

Instead of implementing ValueChangeListener, you can write a managed bean
method to handle this event. To do this, you move the

processValueChange (ValueChangeEvent) method from the valueChangeListener
class, called NameChanged, to your managed bean.

Here is the managed bean method that processes the event of entering a value in the
name field on the page:

public void processValueChange (ValueChangeEvent event)
throws AbortProcessingException {
if (null != event.getNewValue()) {
FacesContext.getCurrentInstance() .getExternalContext ().
getSessionMap () .put ("name", event.getNewValue());

}

To make this method handle the ValueChangeEvent generated by an input component,
reference this method from the component tag's valueChangeListener attribute. See
Referencing a Method That Handles a Value-Change Event for more information.

12.4 Using Bean Validation

Validating input received from the user to maintain data integrity is an important part
of application logic. Validation of data can take place at different layers in even the
simplest of applications, as shown in Developing a Simple Facelets Application. The
guessnumber example application validates the user input (in the h: inputText tag) for
numerical data at the presentation layer and for a valid range of numbers at the
business layer.

JavaBeans Validation (Bean Validation) is a new validation model available as part of
Java EE 7 platform. The Bean Validation model is supported by constraints in the form
of annotations placed on a field, method, or class of a JavaBeans component, such as a
managed bean.

Constraints can be built in or user defined. User-defined constraints are called custom
constraints. Several built-in constraints are available in the
javax.validation.constraints package. Table 12-2 lists all the built-in constraints.

Table 12-2 Built-In Bean Validation Constraints

Constraint Description Example
@AssertFalse The value of the field or @AssertFalse

property must be false. boolean isUnsupported;
@AssertTrue The value of the field or @AssertTrue

property must be true. boolean isActive;

12-14 The Java EE 7 Tutorial

Using Bean Validation

Table 12-2 (Cont.) Built-In Bean Validation Constraints

Constraint Description Example

@DecimalMax The value of the field or @DecimalMax("30.00")
property must be a BigDecimal discount;
decimal value lower than
or equal to the number in
the value element.

@DecimalMin The value of the field or @DecimalMin("5.00")
property must be a BigDecimal discount;
decimal value greater than
or equal to the number in
the value element.

@Digits The value of the field or @Digits(integer=6, fraction=2)
property must be a BigDecimal price;
number within a specified
range. The integer
element specifies the
maximum integral digits
for the number, and the
fraction element specifies
the maximum fractional
digits for the number.

@Future The value of the field or @Future
property must be a datein Date eventDate;
the future.

@Max The value of the field or @Max (10)
property must be an int quantity;

integer value lower than or
equal to the number in the
value element.

@Min The value of the field or @Min (5)
property must be an int quantity;
integer value greater than
or equal to the number in
the value element.

@NotNull The value of the field or @NotNull
property must notbe null. String username;

@Null The value of the field or @Null
property must be null. String unusedString;
@Past The value of the field or @Past
property must be a datein Date birthday;
the past.
@Pattern The value of the field or @Pattern(regexp="\\ (\\A{3}\\)\\d{3}-\\d{4}"
property must match the)

regular expression defined gtring phoneNumber;
in the regexp element.

Developing with JavaServer Faces Technology 12-15

Using Bean Validation

Table 12-2 (Cont.) Built-In Bean Validation Constraints

Constraint Description Example

@Size The size of the field or @Size(min=2, max=240)
property is evaluated and String briefMessage;
must match the specified
boundaries. If the field or
property is a String, the
size of the string is
evaluated. If the field or
property is a Collection,
the size of the Collection
is evaluated. If the field or
property is a Map, the size
of the Map is evaluated. If
the field or property is an
array, the size of the array
is evaluated. Use one of
the optional max or min
elements to specify the
boundaries.

In the following example, a constraint is placed on a field using the built-in @NotNull
constraint:

public class Name {
@NotNull
private String firstname;

@NotNull
private String lastname;

}

You can also place more than one constraint on a single JavaBeans component object.
For example, you can place an additional constraint for size of field on the firstname
and the lastname fields:

public class Name {
@NotNull
@Size(min=1, max=16)
private String firstname;

@NotNull
@Size(min=1, max=16)
private String lastname;

}

The following example shows a method with a user-defined constraint that checks for
a predefined email address pattern such as a corporate email account:

@vValidEmail
public String getEmailAddress() {
return emailAddress;

}

For a built-in constraint, a default implementation is available. A user-defined or
custom constraint needs a validation implementation. In the above example, the
@validEmail custom constraint needs an implementation class.

Any validation failures are gracefully handled and can be displayed by the
h:messages tag.

12-16 The Java EE 7 Tutorial

Using Bean Validation

Any managed bean that contains Bean Validation annotations automatically gets
validation constraints placed on the fields on a JavaServer Faces application's web

pages.
See Validating Persistent Fields and Properties for more information on using
validation constraints.

12.4.1 Validating Null and Empty Strings

The Java programming language distinguishes between null and empty strings. An
empty string is a string instance of zero length, whereas a null string has no value at
all.

An empty string is represented as "". It is a character sequence of zero characters. A
null string is represented by null. It can be described as the absence of a string
instance.

Managed bean elements represented as a JavaServer Faces text component such as
inputText are initialized with the value of the empty string by the JavaServer Faces
implementation. Validating these strings can be an issue when user input for such
fields is not required. Consider the following example, where the string testString is
a bean variable that will be set using input entered by the user. In this case, the user
input for the field is not required.

if (testString==null) {
doSomething () ;

} else {
doAnotherThing () ;

}

By default, the doAnotherThing method is called even when the user enters no data,
because the testString element has been initialized with the value of an empty string.

In order for the Bean Validation model to work as intended, you must set the context
parameter javax.faces.INTERPRET_EMPTY_ STRING_SUBMITTED_VALUES_AS_NULL to
true in the web deployment descriptor file, web . xm1:

<context-param>
<param-name>
javax.faces.INTERPRET EMPTY_STRING_SUBMITTED_VALUES_AS_NULL
</param-name>
<param-value>true</param-value>
</context-param>

This parameter enables the JavaServer Faces implementation to treat empty strings as
null.

Suppose, on the other hand, that you have a @NotNull constraint on an element,
meaning that input is required. In this case, an empty string will pass this validation
constraint. However, if you set the context parameter javax.faces.INTERPRET EMPTY_
STRING_SUBMITTED_VALUES_AS_NULL to true, the value of the managed bean attribute is
passed to the Bean Validation runtime as a null value, causing the @NotNull constraint
to fail.

Developing with JavaServer Faces Technology 12-17

Using Bean Validation

12-18 The Java EE 7 Tutorial

13

Using Ajax with JavaServer Faces
Technology

Ajax is an acronym for Asynchronous JavaScript and XML, a group of web
technologies that enable creation of dynamic and highly responsive web applications.
Using Ajax, web applications can retrieve content from the server without interfering
with the display on the client. In the Java EE 7 platform, JavaServer Faces technology
provides built-in support for Ajax.

Early web applications were created mostly as static web pages. When a static web
page is updated by a client, the entire page has to reload to reflect the update. In effect,
every update needs a page reload to reflect the change. Repetitive page reloads can
result in excessive network access and can impact application performance.
Technologies such as Ajax were created to overcome these deficiencies.

This chapter describes using Ajax functionality in JavaServer Faces web applications.
The following topics are addressed here:

s Overview of Ajax

= Using Ajax Functionality with JavaServer Faces Technology
= Using Ajax with Facelets

= Sending an Ajax Request

= Monitoring Events on the Client

= Handling Errors

= Receiving an Ajax Response

s Partial Processing and Partial Rendering

= Ajax Request Lifecycle

s Grouping of Components

s Loading JavaScript as a Resource

s The ajaxguessnumber Example Application

s Further Information about Ajax in JavaServer Faces Technology

13.1 Overview of Ajax

Ajax refers to JavaScript and XML, technologies that are widely used for creating
dynamic and asynchronous web content. While Ajax is not limited to JavaScript and
XML technologies, more often than not they are used together by web applications.

Using Ajax with JavaServer Faces Technology 13-1

Using Ajax Functionality with JavaServer Faces Technology

The focus of this tutorial is on using JavaScript based Ajax functionality in JavaServer
Faces web applications.

JavaScript is a dynamic scripting language for web applications. It allows users to add
enhanced functionality to user interfaces and allows web pages to interact with clients
asynchronously. JavaScript runs mainly on the client side (as in a browser) and thereby
reduces server access by clients.

When a JavaScript function sends an asynchronous request from the client to the
server, the server sends back a response that is used to update the page's Document
Object Model (DOM). This response is often in the format of an XML document. The
term Ajax refers to this interaction between the client and server.

The server response need not be in XML only; it can also be in other formats, such as
JSON (http://www.json.org/). This tutorial does not focus on the response
formats.

Ajax enables asynchronous and partial updating of web applications. Such
functionality allows for highly responsive web pages that are rendered in near real
time. Ajax-based web applications can access server and process information and can
also retrieve data without interfering with the display and rendering of the current
web page on a client (such as a browser).

Some of the advantages of using Ajax are as follows:

= Form data validation in real time, eliminating the need to submit the form for
verification

= Enhanced functionality for web pages, such as user name and password prompts

= Partial update of the web content, avoiding complete page reloads

13.2 Using Ajax Functionality with JavaServer Faces Technology

Ajax functionality can be added to a JavaServer Faces application in one of the
following ways:

= Adding the required JavaScript code to an application
= Using the built-in Ajax resource library

In earlier releases of the Java EE platform, JavaServer Faces applications provided Ajax
functionality by adding the necessary JavaScript to the web page. In the Java EE 7
platform, standard Ajax support is provided by a built-in JavaScript resource library.

With the support of this JavaScript resource library, JavaServer Faces standard Ul
components, such as buttons, labels, or text fields, can be enabled for Ajax
functionality. You can also load this resource library and use its methods directly from
within the managed bean code. The next sections of the tutorial describe the use of the
built-in Ajax resource library.

In addition, because the JavaServer Faces technology component model can be
extended, custom components can be created with Ajax functionality.

An Ajax version of the guessnumber application, ajaxguessnumber, is available in the
example repository. See The ajaxguessnumber Example Application for more
information.

The Ajax specific £:ajax tag and its attributes are explained in the next sections.

13-2 The Java EE 7 Tutorial

Using Ajax with Facelets

13.3 Using Ajax with Facelets

As mentioned in the previous section, JavaServer Faces technology supports Ajax by
using a built-in JavaScript resource library that is provided as part of the JavaServer
Faces core libraries. This built-in Ajax resource can be used in JavaServer Faces web
applications in one of the following ways:

= By using the f:ajax tag along with another standard component in a Facelets
application. This method adds Ajax functionality to any UI component without
additional coding and configuration.

= By using the JavaScript API method jsf.ajax.request () directly within the
Facelets application. This method provides direct access to Ajax methods, and
allows customized control of component behavior.

13.3.1 Using the f:ajax Tag

The f:ajax tag is a JavaServer Faces core tag that provides Ajax functionality to any
regular Ul component when used in conjunction with that component. In the
following example, Ajax behavior is added to an input component by including the
f:ajax core tag:

<h:inputText value="#{bean.message}">
<f:ajax />
</h:inputText>

In this example, although Ajax is enabled, the other attributes of the f:ajax tag are not
defined. If an event is not defined, the default action for the component is performed.
For the inputText component, when no event attribute is specified, the default event
is valueChange. Table 13-1 lists the attributes of the £:ajax tag and their default
actions.

Table 13—-1 Attributes of the f:ajax Tag

Name Type Description
disabled javax.el.ValueExpression A Boolean value that identifies the tag status. A
that evaluates to a Boolean value of true indicates that the Ajax behavior

should not be rendered. A value of false
indicates that the Ajax behavior should be
rendered. The default value is false.

event javax.el.ValueExpression A string that identifies the type of event to
that evaluates to a String which the Ajax action will apply. If specified, it

must be one of the events supported by the
component. If not specified, the default event
(the event that triggers the Ajax request) is
determined for the component. The default
event is action for
javax.faces.component.ActionSource
components and valueChange for
javax.faces.component.EditablevValueHolder

components.
execute javax.el.ValueExpression A Collection that identifies a list of
that evaluates to an Object components to be executed on the server. If a

literal is specified, it must be a space-delimited
String of component identifiers and /or one of
the keywords. If a ValueExpression is specified,
it must refer to a property that returns a
Collection of String objects. If not specified,
the default value is @this.

Using Ajax with JavaServer Faces Technology 13-3

Sending an Ajax Request

Table 13-1 (Cont.) Attributes of the f:ajax Tag

Name Type Description
immediate javax.el.ValueExpression A Boolean value that indicates whether inputs
that evaluates to a Boolean are to be processed early in the lifecycle. If true,

behavior events generated from this behavior
are broadcast during the Apply Request Values
phase. Otherwise, the events will be broadcast
during the Invoke Applications phase.

listener javax.el.MethodExpression The name of the listener method that is called
when a
javax.faces.event.AjaxBehaviorEvent has
been broadcast for the listener.

onevent javax.el.ValueExpression The name of the JavaScript function that
that evaluates to a String handles Ul events.

onerror javax.el.ValueExpression The name of the JavaScript function that
that evaluates to a String handles errors.

render javax.el.ValueExpression A Collection that identifies a list of
that evaluates to an Object components to be rendered on the client. If a

literal is specified, it must be a space-delimited
String of component identifiers and/or one of
the keywords. If a ValueExpression is specified,
it must refer to a property that returns a
Collection of String objects. If not specified,
the default value is @none.

The keywords listed in Table 13-2 can be used with the execute and render attributes
of the f:ajax tag.

Table 13-2 Execute and Render Keywords

Keyword Description

@all All component identifiers
@form The form that encloses the component
@none No component identifiers
@this The element that triggered the request

Note that when you use the f:ajax tag in a Facelets page, the JavaScript resource
library is loaded implicitly. This resource library can also be loaded explicitly as
described in Loading JavaScript as a Resource.

13.4 Sending an Ajax Request

To activate Ajax functionality, the web application must create an Ajax request and
send it to the server. The server then processes the request.

The application uses the attributes of the f:ajax tag listed in Table 13-1 to create the
Ajax request. The following sections explain the process of creating and sending an
Ajax request using some of these attributes.

Note: Behind the scenes, the jsf.ajax.request () method of the
JavaScript resource library collects the data provided by the f:ajax
tag and posts the request to the JavaServer Faces lifecycle.

13-4 The Java EE 7 Tutorial

Sending an Ajax Request

13.4.1 Using the event Attribute

The event attribute defines the event that triggers the Ajax action. Some of the possible
values for this attribute are click, keyup, mouseover, focus, and blur.

If not specified, a default event based on the parent component will be applied. The
default event is action for javax. faces.component .ActionSource components such
as a commandButton, and valueChange for
javax.faces.component.EditableValueHolder components such as inputText. In the
following example, an Ajax tag is associated with the button component, and the event
that triggers the Ajax action is a mouse click:

<h:commandButton id="submit" value="Submit">
<f:ajax event="click" />
</h:commandButton>
<h:outputText id="result" value="#{userNumberBean.response}" />

Note: You may have noticed that the listed events are very similar
to JavaScript events. In fact, they are based on JavaScript events,
but do not have the on prefix.

For a command button, the default event is c1ick, so that you do not actually need to
specify event="click" to obtain the desired behavior.

13.4.2 Using the execute Attribute

The execute attribute defines the component or components to be executed on the
server. The component is identified by its id attribute. You can specify more than one
executable component. If more than one component is to be executed, specify a
space-delimited list of components.

When a component is executed, it participates in all phases of the request processing
lifecycle except the Render Response phase.

The execute attribute can also be a keyword, such as @all, @none, @this, or @form. The
default value is @this, which refers to the component within which the f:ajax tag is
nested.

The following code specifies that the h: inputText component with the id value of
userNo should be executed when the button is clicked:

<h:inputText id="userNo"
title="Type a number from 0 to 10:"
value="#{userNumberBean.userNumber}">

</h:inputText>

<h:commandButton id="submit" value="Submit">
<f:ajax event="click" execute="userNo" />

</h:commandButton>

13.4.3 Using the immediate Attribute

The immediate attribute indicates whether user inputs are to be processed early in the
application lifecycle or later. If the attribute is set to true, events generated from this
component are broadcast during the Apply Request Values phase. Otherwise, the
events will be broadcast during the Invoke Applications phase.

If not defined, the default value of this attribute is false.

Using Ajax with JavaServer Faces Technology 13-5

Monitoring Events on the Client

13.4.4 Using the listener Attribute

The listener attribute refers to a method expression that is executed on the server
side in response to an Ajax action on the client. The listener's
javax.faces.event.AjaxBehaviorListener.processAjaxBehavior method is called
once during the Invoke Application phase of the lifecycle. In the following code from
the reservation example application (see The reservation Example Application), a
listener attribute is defined by an f:ajax tag, which refers to a method from the
bean.

<f:ajax event="change" render="total"
listener="#{reservationBean.calculateTotal}"/>

The calculateTotal method of ReservationBean recalculates the total cost of tickets
whenever either the price or the number of tickets ordered changes and displays it in
the output component named total.

13.5 Monitoring Events on the Client

The ongoing Ajax requests can be monitored by using the onevent attribute of the
f:ajax tag. The value of this attribute is the name of a JavaScript function. JavaServer
Faces calls the onevent function at each stage of the processing of an Ajax request:
begin, complete, and success.

When calling the JavaScript function assigned to the onevent property, JavaServer
Faces passes a data object to it. The data object contains the properties listed in
Table 13-3.

Table 13-3 Properties of the onEvent Data Object

Property Description

responseXML The response to the Ajax call in XML format

responseText The response to the Ajax call in text format

responseCode The response to the Ajax call in numeric code

source The source of the current Ajax event: the DOM element

status The status of the current Ajax call: begin, complete, or success
type The type of the Ajax call: event

By using the status property of the data object, you can identify the current status of
the Ajax request and monitor its progress. In the following example,
monitormyajaxevent is a JavaScript function that monitors the Ajax request sent by the
event:

<f:ajax event="click" render="errormessage" onevent="monitormyajaxevent"/>

13.6 Handling Errors

JavaServer Faces handles Ajax errors through use of the onerror attribute of the
f:ajax tag. The value of this attribute is the name of a JavaScript function.

When there is an error in processing a Ajax request, JavaServer Faces calls the defined
onerror JavaScript function and passes a data object to it. The data object contains all
the properties available for the onevent attribute, and in addition, the following
properties:

s description

13-6 The Java EE 7 Tutorial

Receiving an Ajax Response

s errorName
n errorMessage
The type is error. The status property of the data object contains one of the valid

error values listed in Table 13—4.

Table 13-4 Valid Error Values for the Data Object status Property

Values Description
emptyResponse No Ajax response from server.
httpError One of the valid HTTP errors: request.status==null or

request.status==undefined or request.status < 200 or
request.status>= 300

malformedXML The Ajax response is not well formed.

serverError The Ajax response contains an error element.

In the following example, any errors that occurred in processing the Ajax request are
handled by the handlemyajaxerror JavaScript function:

<f:ajax event="click" render="test" onerror="handlemyajaxerror"/>

13.7 Receiving an Ajax Response

After the application sends an Ajax request, it is processed on the server side, and a
response is sent back to the client. As described earlier, Ajax allows for partial
updating of web pages. To enable such partial updating, JavaServer Faces technology
allows for partial processing of the view. The handling of the response is defined by
the render attribute of the f:ajax tag.

Similar to the execute attribute, the render attribute defines which sections of the
page will be updated. The value of a render attribute can be one or more component
id values, one of the keywords @this, @all, @none, and @form, or an EL expression. In
the following example, the render attribute simply identifies an output component to
be displayed when the Ajax action has successfully completed.

<h:commandButton id="submit" value="Submit">

<f:ajax execute="userNo" render="result" />
</h:commandButton>
<h:outputText id="result" value="#{userNumberBean.response}" />

However, more often than not, the render attribute is likely to be associated with an
event attribute. In the following example, an output component is displayed when the
button component is clicked.

<h:commandButton id="submit" value="Submit">

<f:ajax event="click" execute="userNo" render="result"/>
</h:commandButton>
<h:outputText id="result" value="#{userNumberBean.response}"/>

Note: Behind the scenes, once again the jsf.ajax.request()
method handles the response. It registers a response-handling
callback when the original request is created. When the response is
sent back to the client, the callback is invoked. This callback
automatically updates the client-side DOM to reflect the rendered
response.

Using Ajax with JavaServer Faces Technology 13-7

Partial Processing and Partial Rendering

13.8 Partial Processing and Partial Rendering

The JavaServer Faces lifecycle spans all of the execute and render processes of an
application. It is also possible to process and render only parts of an application, such
as a single component. For example, the JavaServer Faces Ajax framework can
generate requests containing information on which particular component may be
processed and which particular component may be rendered back to the client.

Once such a partial request enters the JavaServer Faces lifecycle, the information is
identified and processed by a javax.faces.context.PartialViewContext object. The
JavaServer Faces lifecycle is still aware of such Ajax requests and modifies the
component tree accordingly.

The execute and render attributes of the f:ajax tag are used to identify which
components may be executed and rendered. For more information on these attributes,
see Chapter 13, "Using Ajax with JavaServer Faces Technology".

13.9 Ajax Request Lifecycle

An Ajax request varies from other typical JavaServer Faces requests, and its processing
is also handled differently by the JavaServer Faces lifecycle.

As described in Partial Processing and Partial Rendering, when an Ajax request is
received, the state associated with that request is captured by the
javax.faces.context.PartialViewContext. This object provides access to
information such as which components are targeted for processing/rendering. The
processPartial method of PartialViewContext uses this information to perform
partial component tree processing and rendering.

The execute attribute of the f:ajax tag identifies which segments of the server side
component tree should be processed. Because components can be uniquely identified
in the JavaServer Faces component tree, it is easy to identify and process a single
component, a few components, or a whole tree. This is made possible by the
visitTree method of the UIComponent class. The identified components then run
through the JavaServer Faces request lifecycle phases.

Similar to the execute attribute, the render attribute identifies which segments of the
JavaServer Faces component tree need to be rendered during the render response
phase.

During the render response phase, the render attribute is examined. The identified
components are found and asked to render themselves and their children. The
components are then packaged up and sent back to the client as a response.

13.10 Grouping of Components

The previous sections describe how to associate a single Ul component with Ajax
functionality. You can also associate Ajax with more than one component at a time by
grouping them together on a page. The following example shows how a number of
components can be grouped by using the f:ajax tag.

<f:ajax>
<h: form>
<h:inputText id="inputl"/>
<h:commandButton id="Submit"/>
</h:form>
</f:ajax>

13-8 The Java EE 7 Tutorial

Loading JavaScript as a Resource

In the example, neither component is associated with any Ajax event or render
attributes yet. Therefore, no action will take place in case of user input. You can
associate the above components with an event and a render attribute as follows:

<f:ajax event="click" render="@all">
<h: form>
<h:inputText id="inputl" value="#{user.name}"/>
<h:commandButton id="Submit"/>
</h:form>
</f:ajax>

In the updated example, when the user clicks either component, the updated results
will be displayed for all components. You can further fine tune the Ajax action by
adding specific events to each of the components, in which case Ajax functionality
becomes cumulative. Consider the following example:

<f:ajax event="click" render="@all">
<h:commandButton id="Submit">
<f:ajax event="mouseover"/>
</h:commandButton>
</f:ajax>

Now the button component will fire an Ajax action in case of a mouseover event as
well as a mouse click event.

13.11 Loading JavaScript as a Resource

The JavaScript resource file bundled with JavaServer Faces technology is named
jsf.Js and is available in the javax. faces library. This resource library supports Ajax
functionality in JavaServer Faces applications.

If you use the f:ajax tag on a page, the jsf. js resource is automatically delivered to
the client. It is not necessary to use the h:outputScript tag to specify this resource.
You may want to use the h:outputScript tag to specify other JavaScript libraries.

In order to use a JavaScript resource directly with a UIComponent, you must explicitly
load the resource in either of the following ways:

» By using the h:outputScript tag directly in a Facelets page

» By using the javax.faces.application.ResourceDependency annotation on a
UIComponent Java class

13.11.1 Using JavaScript APl in a Facelets Application

To use the bundled JavaScript resource API directly in a web application, such as a
Facelets page, you need to first identify the default JavaScript resource for the page
with the help of the h:outputScript tag. For example, consider the following section
of a Facelets page:

<h:form>
<h:outputScript name="jsf.js" library="javax.faces" target="head"/>
</h:form>

Specifying the target as head causes the script resource to be rendered within the head
element on the HTML page.

Using Ajax with JavaServer Faces Technology 13-9

The ajaxguessnumber Example Application

In the next step, identify the component to which you would like to attach the Ajax
functionality. Add the Ajax functionality to the component by using the JavaScript
APL For example, consider the following:

<h:form>
<h:outputScript name="jsf.js" library="javax.faces" target="head">
<h:inputText id="inputname" value="#{userBean.name}"/>
<h:outputText id="outputname" value="#{userBean.name}"/>
<h:commandButton id="submit" value="Submit"
onclick="jsf.ajax.request(this, event,
{execute: 'inputname', render: 'outputname'});
return false;" />
</h:form>

The jsf.ajax.request method takes up to three parameters that specify source, event,
and options. The source parameter identifies the DOM element that triggered the Ajax
request, typically this. The optional event parameter identifies the DOM event that
triggered this request. The optional options parameter contains a set of name/value
pairs from Table 13-5.

Table 13-5 Possible Values for the Options Parameter

Name Value

execute A space-delimited list of client identifiers or one of the keywords listed in
Table 13-2. The identifiers reference the components that will be processed during
the execute phase of the lifecycle.

render A space-delimited list of client identifiers or one of the keywords listed in
Table 13-2. The identifiers reference the components that will be processed during
the render phase of the lifecycle.

onevent A string that is the name of the JavaScript function to call when an event occurs.
onerror A string that is the name of the JavaScript function to call when an error occurs.
params An object that may include additional parameters to include in the request.

If no identifier is specified, the default assumed keyword for the execute attribute is
@this, and for the render attribute it is @none.

You can also place the JavaScript method in a file and include it as a resource.

13.11.2 Using the @ResourceDependency Annotation in a Bean Class

Use the javax. faces.application.ResourceDependency annotation to cause the bean
class to load the default jsf. js library.

To load the Ajax resource from the server side, use the jsf.ajax.request method
within the bean class. This method is usually used when creating a custom component
or a custom renderer for a component.

The following example shows how the resource is loaded in a bean class:

@ResourceDependency (name="jsf.js" library="javax.faces" target="head")

13.12 The ajaxguessnumber Example Application

To demonstrate the advantages of using Ajax, revisit the guessnumber example from
Chapter 8, "Introduction to Facelets". If you modify this example to use Ajax, the
response need not be displayed in the response.xhtml page. Instead, an asynchronous
call is made to the bean on the server side, and the response is displayed in the

13-10 The Java EE 7 Tutorial

The ajaxguessnumber Example Application

originating page by executing just the input component rather than by form
submission.

The source code for this application is in the
tut-install /examples/web/jsf/ajaxguessnumber/ directory.

13.12.1 The ajaxguessnumber Source Files

The changes to the guessnumber application occur in 2 source files.

13.12.1.1 The ajaxgreeting.xhtml| Facelets Page

The Facelets page for ajaxguessnumber, ajaxgreeting.xhtml, is almost the same as
the greeting.xhtml page for the guessnumber application:

<h:head>
<h:outputStylesheet library="css" name="default.css"/>
<title>Ajax Guess Number Facelets Application</title>
</h:head>
<h:body>
<h:form id="AjaxGuess">
<h:graphicImage value="#{resourcel['images:wave.med.gif']}"
alt="Duke waving his hand"/>
<h2>
Hi, my name is Duke. I am thinking of a number from
#{dukesNumberBean.minimum} to #{dukesNumberBean.maximum} .
Can you guess it?
</h2>
<p>
<h:inputText
id="userNo"
title="Type a number from 0 to 10:"
value="#{userNumberBean.userNumber} ">
<f:validateLongRange
minimum="#{dukesNumberBean.minimum}"
maximum="#{dukesNumberBean.maximum}" />
</h:inputText>

<h:commandButton id="submit" value="Submit" >
<f:ajax execute="userNo" render="outputGroup" />
</h:commandButton>
</p>
<p>
<h:panelGroup layout="block" id="outputGroup">
<h:outputText id="result" style="color:blue"
value="+#{userNumberBean.response}"
rendered="#{!facesContext.validationFailed}"/>
<h:message id="errorsl"
showSummary="true"
showDetail="false"
style="color: #d20005;
font-family: 'New Century Schoolbook', serif;
font-style: oblique;
text-decoration: overline"
for="userNo"/>
</h:panelGroup>
</p>
</h:form>
</h:body>

Using Ajax with JavaServer Faces Technology 13-11

The ajaxguessnumber Example Application

The most important change is in the h: commandButton tag. The action attribute is
removed from the tag, and f:ajax tag is added.

The f:ajax tag specifies that when the button is clicked, the h: inputText component
with the 1d value userNo is executed. The components within the outputGroup panel
group are then rendered. If a validation error occurs, the managed bean is not
executed, the validation error message is displayed in the message pane. Otherwise,
the result of the guess is rendered in the result component.

13.12.1.2 The UserNumberBean Backing Bean

A small change is also made in the UserNumberBean code so that the output component
does not display any message for the default (null) value of the property response.
Here is the modified bean code:

public String getResponse() {
if ((userNumber != null) && (userNumber.compareTo (randomInt) == 0)) {
return "Yay! You got it!";

}

if (userNumber == null) {
return null;
} else {
return "Sorry, " + userNumber + " is incorrect.";

}

13.12.1.3 The DukesNumberBean CDI Bean

The DukesNumberBean session-scoped CDI bean stores the range of guessable numbers
and the randomly chosen number from that range. It is injected into UserNumberBean
with the CDI @Inject annotation so the value of the random number can be compared
to the number the user submitted.

13.12.2 Running the ajaxguessnumber Example

You can use either NetBeans IDE or Maven to build, package, deploy, and run the
ajaxguessnumber application.

13.12.2.1 To Build, Package, and Deploy the ajaxguessnumber Example Using
NetBeans IDE

This procedure builds the application and deploys it to the GlassFish Server.
1. From the File menu, select Open Project.
2. In the Open Project dialog box, navigate to:

tut-install/examples/web/jst

3. Select the ajaxguessnumber folder.
4. Click Open Project.
5. In the Projects tab, right-click the ajaxguessnumber project and select Run.

This command builds and deploys the project.
13.12.2.2 To Build, Package, and Deploy the ajaxguessnumber Example Using

Maven
1. Ina terminal window, go to:

13-12 The Java EE 7 Tutorial

Further Information about Ajax in JavaServer Faces Technology

tut-install/examples/web/jsf/ajaxguessnumber/

Enter the following command:
mvn install
This command builds and packages the application into a WAR file,

ajaxguessnumber.war, located in the target directory. It then deploys the
application.

13.12.2.3 To Run the ajaxguessnumber Example

1.

In a web browser, enter the following URL:

http://localhost:8080/ajaxguessnumber

Enter a value in the field and click Submit.

If the value is in the range 0 to 10, a message states whether the guess is correct or
incorrect. If the value is outside that range, or if the value is not a number, an error
message appears in red.

13.13 Further Information about Ajax in JavaServer Faces Technology

For more information on Ajax in JavaServer Faces Technology, see

JavaServer Faces project web site:
https://javaserverfaces.java.net/
JavaServer Faces JavaScript Library APIs:

http://docs.oracle.com/javaee/7/javaserverfaces/2.2/jsdocs/sy
mbols/jsf.ajax.html

Using Ajax with JavaServer Faces Technology 13-13

Further Information about Ajax in JavaServer Faces Technology

13-14 The Java EE 7 Tutorial

14

Composite Components: Advanced Topics
and Example

This chapter describes the advanced features of composite components in JavaServer
Faces technology.

A composite component is a special type of JavaServer Faces template that acts as a
component. If you are new to composite components, see Composite Components
before you proceed with this chapter.

The following topics are addressed here:

= Attributes of a Composite Component

s Invoking a Managed Bean

= Validating Composite Component Values

s The compositecomponentlogin Example Application

14.1 Attributes of a Composite Component

You define an attribute of a composite component by using the composite:attribute
tag. Table 14-1 lists the commonly used attributes of this tag.

Table 14-1 Commonly Used Attributes of the composite:attribute Tag

Attribute Description

name Specifies the name of the composite component attribute to be used in
the using page. Alternatively, the name attribute can specify standard
event handlers such as action, actionListener, and managed bean.

default Specifies the default value of the composite component attribute.
required Specifies whether it is mandatory to provide a value for the attribute.
method-signature Specifies a subclass of java.lang.Object as the type of the composite

component's attribute. The method-signature element declares that
the composite component attribute is a method expression. The type
attribute and the method-signature attribute are mutually exclusive.
If you specify both, method-signature is ignored. The default type of
an attribute is java.lang.0Object.

Note: Method expressions are similar to value expressions, but rather
than supporting the dynamic retrieval and setting of properties,
method expressions support the invocation of a method of an
arbitrary object, passing a specified set of parameters and returning
the result from the called method (if any).

Composite Components: Advanced Topics and Example 14-1

Invoking a Managed Bean

Table 14-1 (Cont.) Commonly Used Attributes of the composite:attribute Tag

Attribute Description

type Specifies a fully qualified class name as the type of the attribute. The
type attribute and the method-signature attribute are mutually
exclusive. If you specify both, method-signature is ignored. The
default type of an attribute is java. lang.Object.

The following code snippet defines a composite component attribute and assigns it a
default value:

<composite:attribute name="username" default="admin"/>

The following code snippet uses the method-signature element:

<composite:attribute name="myaction"
method-signature="java.lang.String action()"/>

The following code snippet uses the type element:

<composite:attribute name="dateofjoining" type="java.util.Date"/>

14.2 Invoking a Managed Bean

To enable a composite component to handle server-side data, you can invoke a
managed bean in one of the following ways:

= Pass the reference of the managed bean to the composite component.
= Directly use the properties of the managed bean.

The example application described in The compositecomponentlogin Example
Application shows how to use a managed bean with a composite component by
passing the reference of the managed bean to the component.

14.3 Validating Composite Component Values

JavaServer Faces provides the following tags for validating values of input
components. These tags can be used with the composite:valueHolder or the
composite:editablevValueHolder tag.

Table 14-2 lists commonly used validator tags.

Table 14-2 Validator Tags

Tag Name Description

f:validateBean Delegates the validation of the local value to the Bean Validation
APL

f:validateRegex Uses the pattern attribute to validate the wrapping component. The

entire pattern is matched against the String value of the component.
If it matches, it is valid.

f:validateRequired Enforces the presence of a value. Has the same effect as setting the
required element of a composite component's attribute to true.

14.4 The compositecomponentlogin Example Application

The compositecomponentlogin application creates a composite component that
accepts a user name and a password. The component interacts with a managed bean.

14-2 The Java EE 7 Tutorial

The compositecomponentlogin Example Application

The component stores the user name and password in the managed bean, retrieves the
values from the bean, and displays these values on the Login page.

The compositecomponentlogin application has a composite component file, a using
page, and a managed bean.

The source code for this application is in the
tut-install /examples/web/jsf/compositecomponentlogin/ directory.

14.4.1 The Composite Component File

The composite component file is an XHTML file,
/web/resources/ezcomp/LoginPanel .xhtml. It has a composite:interface section
that declares the labels for the user name, password, and login button. It also declares
a managed bean, which defines properties for the user name and password.

<composite:interface>
<composite:attribute name="namePrompt" default="User Name: "/>
<composite:attribute name="passwordPrompt" default="Password: "/>

<composite:attribute name="loginButtonText" default="Log In"/>
<composite:attribute name="loginAction"
method-signature="java.lang.String action()"/>
<composite:attribute name="myLoginBean"/>
<composite:editableValueHolder name="vals" targets="form:name"/>
<composite:editableValueHolder name="passwordval"
targets="form:password" />
</composite:interface>

The composite component implementation accepts input values for the user name and
password properties of the managed bean. The h:outputStylesheet tag specifies the
stylesheet as a relocatable resource.

<composite:implementation>
<h:form id="form">
<h:outputStylesheet library="css" name="default.css"
target="head"/>
<h:panelGrid columns="2" role="presentation">
<h:outputLabel for="name"
value="#{cc.attrs.namePrompt}" />
<h:inputText id="name"
value="#{cc.attrs.myLoginBean.name}"
required="true"/>
<h:outputLabel for="password"
value="#{cc.attrs.passwordPrompt}"/>
<h:inputSecret id="password"
value="#{cc.attrs.myLoginBean.password}"
required="true"/>
</h:panelGrid>

<p>
<h:commandButton id="loginButton"
value="#{cc.attrs.loginButtonText}"
action="#{cc.attrs.loginAction}"/>
</p>
</h:form>

</composite:implementation>

Composite Components: Advanced Topics and Example 14-3

The compositecomponentlogin Example Application

14.4.2 The Using Page

The using page in this example application, web/index.xhtml, is an XHTML file that
invokes the login composite component file along with the managed bean. It validates
the user's input.

<div id="compositecomponent">
<ez:LoginPanel myLoginBean="#{myLoginBean}"
loginAction="#{myLoginBean.login}">
<f:validateLength maximum="10" minimum="4" for="vals" />
<f:validateRegex pattern="((?=.*\d) (?=.*[a-z]) (?=.*[A-Z]).{4,10})"
for="passwordval"/>
</ez:LoginPanel>
</div>

The f:validateLength tag requires the user name to have from 4 to 10 characters.

The f:validateRegex tag requires the password to have from 4 to 10 characters and to
contain at least one digit, one lowercase letter, and one uppercase letter.

14.4.3 The Managed Bean

The managed bean, MyLoginBean. java, defines a method called login, which retrieves
the values of the user name and password.

@Model

public class MyLoginBean implements Serializable {
private static final long serialVersionUID = 1L;
private String name;
private String password;

public MyLoginBean() {
}

public myloginBean (String name, String password) {
this.name = name;
this.password = password;

public String getPassword() ({
return password;

public void setPassword(String newValue) {
password = newValue;

public String getName() {
return name;

public void setName (String newValue) {
name = newValue;

public String login() {

if (getName().equals("javaee")) {
String msg = "Success. Your user name is " + getName ()
+ ", and your password is " + getPassword();

FacesMessage facesMsg = new FacesMessage(msg, msg);
FacesContext.getCurrentInstance() .addMessage (null, facesMsg);

14-4 The Java EE 7 Tutorial

The compositecomponentlogin Example Application

return "index";
} else {

String msg = "Failure. Your user name is " + getName()

+ ", and your password is " + getPassword();
FacesMessage facesMsg =

new FacesMessage (FacesMessage.SEVERITY_ERROR, msg, msg);
FacesContext.getCurrentInstance() .addMessage (null, facesMsg);
return "index";

14.4.4 Running the compositecomponentlogin Example

You can use either NetBeans IDE or Maven to build, package, deploy, and run the
compositecomponentlogin example.

14.4.4.1 To Build, Package, and Deploy the compositecomponentiogin Example
Using NetBeans IDE

1.
2.

From the File menu, select Open Project.
In the Open Project dialog box, navigate to:

tut-install/examples/web/jsf

Select the compositecomponentlogin folder.
Click Open Project.
In the Projects tab, right-click compositecomponentlogin and select Build.

This command builds and deploys the application.

14.4.4.2 To Build, Package, and Deploy the compositecomponentiogin Example
Using Maven

1.

In a terminal window, go to:

tut-install/examples/web/jsf/compositecomponentlogin

Enter the following command to build and deploy the application:

mvn install

14.4.4.3 To Run the compositecomponentiogin Example

1.

In a web browser, enter the following URL:

http://localhost:8080/compositecomponentlogin

In the Login Component page, enter values in the User Name and Password
fields, then click Log In.

Because of the way the login method is coded, the login succeeds only if the user
name is javaee.

Because of the f:validateLength tag, if the user name has fewer than 4 characters
or more than 10 characters, a validation error message appears.

Because of the f:validateRegex tag, if the password has fewer than 4 characters
or more than 10 characters or does not contain at least one digit, one lowercase

Composite Components: Advanced Topics and Example 14-5

The compositecomponentlogin Example Application

letter, and one uppercase letter, a "Regex Pattern not matched" error message
appears.

14-6 The Java EE 7 Tutorial

15

Creating Custom Ul Components and Other
Custom Objects

JavaServer Faces technology offers a basic set of standard, reusable Ul components
that enable quick and easy construction of user interfaces for web applications. These
components mostly map one-to-one to the elements in HTML 4. But often an
application requires a component that has additional functionality or requires a
completely new component. JavaServer Faces technology allows extension of standard
components to enhance their functionality or to create custom components. A rich
ecosystem of third party component libraries is built on this extension capability, but it
is beyond the scope of this tutorial to examine them. A web search for "JSF Component
Libraries" is a good starting point to learn more about this important aspect of using
JavaServer Faces technology.

In addition to extending the functionality of standard components, a component
writer might want to give a page author the ability to change the appearance of the
component on the page or to alter listener behavior. Alternatively, the component
writer might want to render a component to a different kind of client device type, such
as a smartphone or a tablet instead of a desktop computer. Enabled by the flexible
JavaServer Faces architecture, a component writer can separate the definition of the
component behavior from its appearance by delegating the rendering of the
component to a separate renderer. In this way, a component writer can define the
behavior of a custom component once but create multiple renderers, each of which
defines a different way to render the component to a particular kind of client device.

A javax.faces.component.UIComponent is a Java class that is responsible for
representing a self-contained piece of the user interface during the request processing
lifecycle. It is intended to represent the meaning of the component; the visual
representation of the component is the responsibility of the
javax.faces.render.Renderer. There can be multiple instances of the same
UIComponent class in any given JavaServer Faces view, just as there can be multiple
instances of any Java class in any given Java program.

JavaServer Faces technology provides the ability to create custom components by
extending the UIComponent class, the base class for all standard UI components. A
custom component can be used anywhere an ordinary component can be used, such as
within a composite component. A UIComponent is identified by two names:
component-family specifies the purpose of the component (input or output, for
instance), while component-type indicates the specific purpose of a component, such
as a text input field or a command button.

A Renderer is a helper to the UIComponent that deals with how that specific
UIComponent class should appear in a specific kind of client device. Renderers are
identified by two names: render-kit-id and renderer-type. A render kit is just a
bucket into which a particular group of renderers is placed, and the render-kit-id

Creating Custom Ul Components and Other Custom Objects 15-1

Determining Whether You Need a Custom Component or Renderer

identifies the group. Most JavaServer Faces component libraries provide their own
render kits.

A javax.faces.view. facelets.Tag object is a helper to the UIComponent and
Renderer that allows the page author to include an instance of a UIComponent in a
JavaServer Faces view. A tag represents a specific combination of component-type and
renderer-type.

See Component, Renderer, and Tag Combinations for information on how
components, renderers, and tags interact.

This chapter uses the image map component from the Duke's Bookstore case study
example to explain how you can create simple custom components, custom renderers,
and associated custom tags, and take care of all the other details associated with using
the components and renderers in an application. See Chapter 55, "Duke's Bookstore
Case Study Example" for more information about this example.

The chapter also describes how to create other custom objects: custom converters,
custom listeners, and custom validators. It also describes how to bind component
values and instances to data objects and how to bind custom objects to managed bean
properties.

The following topics are addressed here:

s Determining Whether You Need a Custom Component or Renderer
= Understanding the Image Map Example

= Steps for Creating a Custom Component

s Creating Custom Component Classes

= Delegating Rendering to a Renderer

= Implementing an Event Listener

= Handling Events for Custom Components

s Defining the Custom Component Tag in a Tag Library Descriptor

= Using a Custom Component

s Creating and Using a Custom Converter

s Creating and Using a Custom Validator

= Binding Component Values and Instances to Managed Bean Properties

= Binding Converters, Listeners, and Validators to Managed Bean Properties

15.1 Determining Whether You Need a Custom Component or Renderer

The JavaServer Faces implementation supports a very basic set of components and
associated renderers. This section helps you to decide whether you can use standard
components and renderers in your application or need a custom component or custom
renderer.

15.1.1 When to Use a Custom Component

A component class defines the state and behavior of a Ul component. This behavior
includes converting the value of a component to the appropriate markup, queuing
events on components, performing validation, and any other behavior related to how
the component interacts with the browser and the request processing lifecycle.

15-2 The Java EE 7 Tutorial

Determining Whether You Need a Custom Component or Renderer

You need to create a custom component in the following situations:

You need to add new behavior to a standard component, such as generating an
additional type of event (for example, notifying another part of the page that
something changed in this component as a result of user interaction).

You need to take a different action in the request processing of the value of a
component from what is available in any of the existing standard components.

You want to take advantage of an HTML capability offered by your target browser,
but none of the standard JavaServer Faces components take advantage of the
capability in the way you want, if at all. The current release does not contain
standard components for complex HTML components, such as frames; however,
because of the extensibility of the component architecture, you can use JavaServer
Faces technology to create components like these. The Duke's Bookstore case study
creates custom components that correspond to the HTML map and area tags.

You need to render to a non-HTML client that requires extra components not
supported by HTML. Eventually, the standard HTML render kit will provide
support for all standard HTML components. However, if you are rendering to a
different client, such as a phone, you might need to create custom components to
represent the controls uniquely supported by the client. For example, some
component architectures for wireless clients include support for tickers and
progress bars, which are not available on an HTML client. In this case, you might
also need a custom renderer along with the component; or you might need only a
custom renderer.

You do not need to create a custom component in these cases:

You need to aggregate components to create a new component that has its own
unique behavior. In this situation, you can use a composite component to combine
existing standard components. For more information on composite components,
see Composite Components and Chapter 14, "Composite Components: Advanced
Topics and Example".

You simply need to manipulate data on the component or add application-specific
functionality to it. In this situation, you should create a managed bean for this
purpose and bind it to the standard component rather than create a custom
component. See Managed Beans in JavaServer Faces Technology for more
information on managed beans.

You need to convert a component's data to a type not supported by its renderer.
See Using the Standard Converters for more information about converting a
component's data.

You need to perform validation on the component data. Standard validators and
custom validators can be added to a component by using the validator tags from
the page. See Using the Standard Validators and Creating and Using a Custom
Validator for more information about validating a component's data.

You need to register event listeners on components. You can either register event
listeners on components using the f:valueChangeListener and f:actionListener
tags, or you can point at an event-processing method on a managed bean using the
component's actionListener or valueChangeListener attributes. See
Implementing an Event Listener and Writing Managed Bean Methods for more
information.

Creating Custom Ul Components and Other Custom Objects 15-3

Determining Whether You Need a Custom Component or Renderer

15.1.2 When to Use a Custom Renderer

A renderer, which generates the markup to display a component on a web page,
allows you to separate the semantics of a component from its appearance. By keeping
this separation, you can support different kinds of client devices with the same kind of
authoring experience. You can think of a renderer as a "client adapter.” It produces
output suitable for consumption and display by the client, and accepts input from the
client when the user interacts with that component.

If you are creating a custom component, you need to ensure, among other things, that
your component class performs these operations that are central to rendering the
component:

s Decoding: Converting the incoming request parameters to the local value of the
component

= Encoding: Converting the current local value of the component into the
corresponding markup that represents it in the response

The JavaServer Faces specification supports two programming models for handling
encoding and decoding:

s Direct implementation: The component class itself implements the decoding and
encoding.

s Delegated implementation: The component class delegates the implementation of
encoding and decoding to a separate renderer.

By delegating the operations to the renderer, you have the option of associating your
custom component with different renderers so that you can render the component on
different clients. If you don't plan to render a particular component on different clients,
it may be simpler to let the component class handle the rendering. However, a
separate renderer enables you to preserve the separation of semantics from
appearance. The Duke's Bookstore application separates the renderers from the
components, although it renders only to HTML 4 web browsers.

If you aren't sure whether you will need the flexibility offered by separate renderers
but you want to use the simpler direct-implementation approach, you can actually use
both models. Your component class can include some default rendering code, but it
can delegate rendering to a renderer if there is one.

15.1.3 Component, Renderer, and Tag Combinations

When you create a custom component, you can create a custom renderer to go with it.
To associate the component with the renderer and to reference the component from the
page, you will also need a custom tag.

Although you need to write the custom component and renderer, there is no need to
write code for a custom tag (called a tag handler). If you specify the component and
renderer combination, Facelets creates the tag handler automatically.

In rare situations, you might use a custom renderer with a standard component rather
than a custom component. Or you might use a custom tag without a renderer or a
component. This section gives examples of these situations and summarizes what's
required for a custom component, renderer, and tag.

You would use a custom renderer without a custom component if you wanted to add
some client-side validation on a standard component. You would implement the
validation code with a client-side scripting language, such as JavaScript, and then
render the JavaScript with the custom renderer. In this situation, you need a custom

15-4 The Java EE 7 Tutorial

Understanding the Image Map Example

tag to go with the renderer so that its tag handler can register the renderer on the
standard component.

Custom components as well as custom renderers need custom tags associated with
them. However, you can have a custom tag without a custom renderer or custom
component. For example, suppose that you need to create a custom validator that
requires extra attributes on the validator tag. In this case, the custom tag corresponds
to a custom validator and not to a custom component or custom renderer. In any case,
you still need to associate the custom tag with a server-side object.

Table 15-1 summarizes what you must or can associate with a custom component,
custom renderer, or custom tag.

Table 15-1 Requirements for Custom Components, Custom Renderers, and Custom

Tags

Custom ltem Must Have Can Have

Custom Custom tag Custom renderer or standard

component renderer

Custom renderer Custom tag Custom component or standard
component

Custom Some server-side object, like a Custom component or standard

JavaServer Faces component, a custom renderer, or component associated with a custom

tag custom validator renderer

15.2 Understanding the Image Map Example

Duke's Bookstore includes a custom image map component on the index.xhtml page.
This image map displays a selection of six book titles. When the user clicks one of the
book titles in the image map, the application goes to a page that displays the title of
the selected book as well as information about a featured book. The page allows the
user to add either book (or none) to the shopping cart.

15.2.1 Why Use JavaServer Faces Technology to Implement an Image Map?

JavaServer Faces technology is an ideal framework to use for implementing this kind
of image map because it can perform the work that must be done on the server
without requiring you to create a server-side image map.

In general, client-side image maps are preferred over server-side image maps for
several reasons. One reason is that the client-side image map allows the browser to
provide immediate feedback when a user positions the mouse over a hotspot. Another
reason is that client-side image maps perform better because they don't require
round-trips to the server. However, in some situations, your image map might need to
access the server to retrieve data or to change the appearance of non-form controls,
tasks that a client-side image map cannot do.

Because the image map custom component uses JavaServer Faces technology, it has
the best of both styles of image maps: It can handle the parts of the application that
need to be performed on the server, while allowing the other parts of the application to
be performed on the client side.

15.2.2 Understanding the Rendered HTML

Here is an abbreviated version of the form part of the HTML page that the application
needs to render:

<form id="j_1idtl13" name="j_idt13" method="post"

Creating Custom Ul Components and Other Custom Objects 15-5

Understanding the Image Map Example

action="/dukesbookstore/faces/index.xhtml" ...>

<img id="j_idtl13:mapImage"
src="/dukesbookstore/faces/javax.faces.resource/book_all.jpg?ln=images"
alt="Choose a Book from our Catalog"
usemap="4#bookMap" />

<map name="bookMap">
<area alt="Duke"

/>

coords="67,23,212,268"

shape="rect"

onmouseout="document.forms[0] ['j_idtl13:mapImage'].src="'resources/images/book_all.jpg'"
onmouseover="document. forms[0] ['j_idtl13:mapImage'].src="'resources/images/book_201.jpg""
onclick="document.forms[0] ['bookMap_current'].value='Duke'; document.forms[0].submit ()"

<input type="hidden" name="bookMap_current">

</map>

</form>

The img tag associates an image (book_all.jpg) with the image map referenced in the
usemap attribute value.

The map tag specifies the image map and contains a set of area tags.

Each area tag specifies a region of the image map. The onmouseover, onmouseout, and
onclick attributes define which JavaScript code is executed when these events occur.
When the user moves the mouse over a region, the onmouseover function associated
with the region displays the map with that region highlighted. When the user moves
the mouse out of a region, the onmouseout function re-displays the original image. If
the user clicks on a region, the onclick function sets the value of the input tag to the
ID of the selected area and submits the page.

The input tag represents a hidden control that stores the value of the currently
selected area between client-server exchanges so that the server-side component
classes can retrieve the value.

The server-side objects retrieve the value of bookMap_current and set the locale in the
javax.faces.context.FacesContext instance according to the region that was
selected.

15.2.3 Understanding the Facelets Page

Here is an abbreviated form of the Facelets page that the image map component uses
to generate the HTML page shown in the preceding section. It uses custom
bookstore:map and bookstore:area tags to represent the custom components:

<h:form>

<h:graphicImage id="mapImage"
name="book_all.jpg"
library="images"
alt="#{bundle.ChooseBook}"
usemap="4#bookMap" />
<bookstore:map id="bookMap"
current="mapl"
immediate="true"
action="bookstore">
<f:actionListener
type="dukesbookstore.listeners.MapBookChangeListener" />

15-6 The Java EE 7 Tutorial

Understanding the Image Map Example

<bookstore:area id="mapl" value="#{Book201}"
onmouseover="resources/images/book_201.jpg"
onmouseout="resources/images/book_all.jpg"
targetImage="mapImage" />

<bookstore:area id="map2" value="#{Book202}"
onmouseover="resources/images/book_202.jpg"
onmouseout="resources/images/book_all.jpg"
targetImage="mapImage" />

</bookstore:map>
</h:form>

The alt attribute of the h:graphicImage tag maps to the localized string "Choose a
Book from our Catalog".

The f:actionListener tag within the bookstore:map tag points to a listener class for
an action event. The processAction method of the listener places the book ID for the
selected map area into the session map. The way this event is handled is explained
more in Handling Events for Custom Components.

The action attribute of the bookstore:map tag specifies a logical outcome String,
"bookstore", which by implicit navigation rules sends the application to the page
bookstore.xhtml. For more information on navigation, see the section Configuring
Navigation Rules.

The immediate attribute of the bookstore :map tag is set to true, which indicates that
the default javax.faces.event.ActionListener implementation should execute
during the Apply Request Values phase of the request-processing lifecycle, instead of
waiting for the Invoke Application phase. Because the request resulting from clicking
the map does not require any validation, data conversion, or server-side object
updates, it makes sense to skip directly to the Invoke Application phase.

The current attribute of the bookstore:map tag is set to the default area, which is mapl
(the book My Early Years: Growing Up on Star7, by Duke).

Notice that the bookstore:area tags do not contain any of the JavaScript, coordinate,
or shape data that is displayed on the HTML page. The JavaScript is generated by the
dukesbookstore.renderers.AreaRenderer class. The onmouseover and onmouseout
attribute values indicate the image to be loaded when these events occur. How the
JavaScript is generated is explained more in Performing Encoding.

The coordinate, shape, and alternate text data are obtained through the value
attribute, whose value refers to an attribute in application scope. The value of this
attribute is a bean, which stores the coords, shape, and alt data. How these beans are
stored in the application scope is explained more in the next section.

15.2.4 Configuring Model Data

In a JavaServer Faces application, data such as the coordinates of a hotspot of an image
map is retrieved from the value attribute through a bean. However, the shape and
coordinates of a hotspot should be defined together because the coordinates are
interpreted differently depending on what shape the hotspot is. Because a
component's value can be bound only to one property, the value attribute cannot refer
to both the shape and the coordinates.

To solve this problem, the application encapsulates all of this information in a set of
ImageArea objects. These objects are initialized into application scope by the managed
bean creation facility (see Managed Beans in JavaServer Faces Technology). Here is

Creating Custom Ul Components and Other Custom Objects 15-7

Understanding the Image Map Example

part of the managed bean declaration for the ImageArea bean corresponding to the
South America hotspot:

<managed-bean eager="true">

<managed-bean-name>Book201</managed-bean-name>
<managed-bean-class>dukesbookstore.model . ImageArea</managed-bean-class>
<managed-bean-scope>application</managed-bean-scope>

<managed-property>

<property-name>shape</property-name>
<value>rect</value>
</managed-property>
<managed-property>

<property-name>alt</property-name>
<value>Duke</value>
</managed-property>
<managed-property>

<property-name>coords</property-name>
<value>67,23,212,268</value>
</managed-property>
</managed-bean>

For more information on initializing managed beans with the managed bean creation
facility, see the section Application Configuration Resource File.

The value attributes of the bookstore:area tags refer to the beans in the application
scope, as shown in this bookstore:area tag from index.xhtml:

<bookstore:area id="mapl" value="#{Book201}"
onmouseover="resources/images/book_201.jpg"
onmouseout="resources/images/book_all.jpg"
targetImage="mapImage" />

To reference the ImageArea model object bean values from the component class, you
implement a getValue method in the component class. This method calls

super .getValue. The superclass of

tut-install /examples/case-studies/dukes-bookstore/src/java/dukesbookstore/com
ponents/AreaComponent . java, UIOutput, has a getValue method that does the work
of finding the ImageArea object associated with AreaComponent. The AreaRenderer
class, which needs to render the alt, shape, and coords values from the ImageArea
object, calls the getValue method of AreaComponent to retrieve the ImageArea object.

ImageArea iarea = (ImageArea) area.getValue();

ImageArea is a simple bean, so you can access the shape, coordinates, and alternative
text values by calling the appropriate accessor methods of ImageArea. Creating the
Renderer Class explains how to do this in the AreaRenderer class.

15.2.5 Summary of the Image Map Application Classes

Table 15-2 summarizes all the classes needed to implement the image map
component.

15-8 The Java EE 7 Tutorial

Creating Custom Component Classes

Table 15-2 Image Map Classes

Class Function

AreaSelectedEvent The javax.faces.event.ActionEvent indicating that an AreaComponent
from the MapComponent has been selected.

AreaComponent The class that defines AreaComponent, which corresponds to the
bookstore:area custom tag.

MapComponent The class that defines MapComponent, which corresponds to the
bookstore:map custom tag.

AreaRenderer This javax.faces.render.Renderer performs the delegated rendering for
AreaComponent.

ImageArea The bean that stores the shape and coordinates of the hotspots.

MapBookChangeListener The action listener for the MapComponent.

The Duke's Bookstore source directory, called bookstore-dir, is

tut-install | examples/case-studies/dukes-bookstore/src/java/dukesbookstore/.
The event and listener classes are located in bookstore-dir/1isteners/. The component
classes are located in bookstore-dir/components/. The renderer classes are located in
bookstore-dir/renderers/. ImageArea is located in bookstore-dir /model/.

15.3 Steps for Creating a Custom Component
You can apply the following steps while developing your own custom component.
1. Create a custom component class that does the following:

a. Overrides the getFamily method to return the component family, which is
used to look up renderers that can render the component.

b. Includes the rendering code or delegates it to a renderer (explained in Step 2).
c. Enables component attributes to accept expressions.

d. Queues an event on the component if the component generates events.

e. Saves and restores the component state.

2. Delegate rendering to a renderer if your component does not handle the
rendering. To do this:

a. Create a custom renderer class by extending javax.faces.render.Renderer.
b. Register the renderer to a render kit.

3. Register the component.

4. Create an event handler if your component generates events.

5. Create a tag library descriptor (TLD) that defines the custom tag.

See Registering a Custom Component and Registering a Custom Renderer with a
Render Kit for information on registering the custom component and the renderer. The
section Using a Custom Component discusses how to use the custom component in a
JavaServer Faces page.

15.4 Creating Custom Component Classes

As explained in When to Use a Custom Component, a component class defines the
state and behavior of a Ul component. The state information includes the component's

Creating Custom Ul Components and Other Custom Objects 15-9

Creating Custom Component Classes

type, identifier, and local value. The behavior defined by the component class includes
the following:

s Decoding (converting the request parameter to the component's local value)
= Encoding (converting the local value into the corresponding markup)

= Saving the state of the component

= Updating the bean value with the local value

» Processing validation on the local value

= Queueing events

The javax.faces.component.UIComponentBase class defines the default behavior of a
component class. All the classes representing the standard components extend from
UIComponentBase. These classes add their own behavior definitions, as your custom
component class will do.

Your custom component class must either extend UIComponentBase directly or extend
a class representing one of the standard components. These classes are located in the
javax.faces.component package and their names begin with UT.

If your custom component serves the same purpose as a standard component, you
should extend that standard component rather than directly extend UIComponentBase.
For example, suppose you want to create an editable menu component. It makes sense
to have this component extend UISelectOne rather than UIComponentBase because you
can reuse the behavior already defined in UISelectOne. The only new functionality
you need to define is to make the menu editable.

Whether you decide to have your component extend UIComponentBase or a standard
component, you might also want your component to implement one or more of these
behavioral interfaces defined in the javax. faces.component package:

» ActionSource: Indicates that the component can fire a
javax.faces.event.ActionEvent.

m ActionSource2: Extends ActionSource and allows component properties
referencing methods that handle action events to use method expressions as
defined by the EL.

» EditableValueHolder: Extends ValueHolder and specifies additional features for
editable components, such as validation and emitting value-change events.

= NamingContainer: Mandates that each component rooted at this component have a
unique ID.

m StateHolder: Denotes that a component has state that must be saved between
requests.

» ValueHolder: Indicates that the component maintains a local value as well as the
option of accessing data in the model tier.

If your component extends UIComponentBase, it automatically implements only
StateHolder. Because all components directly or indirectly extend UIComponentBase,
they all implement StateHolder. Any component that implements StateHolder also
implements the StateHelper interface, which extends StateHolder and defines a
Map-like contract that makes it easy for components to save and restore a partial view
state.

If your component extends one of the other standard components, it might also
implement other behavioral interfaces in addition to StateHolder. If your component
extends UICommand, it automatically implements ActionSource2. If your component

15-10 The Java EE 7 Tutorial

Creating Custom Component Classes

extends UIOutput or one of the component classes that extend UIOutput, it
automatically implements ValueHolder. If your component extends UIInput, it
automatically implements EditableValueHolder and ValueHolder. See the JavaServer
Faces API documentation to find out what the other component classes implement.

You can also make your component explicitly implement a behavioral interface that it
doesn't already by virtue of extending a particular standard component. For example,
if you have a component that extends UIInput and you want it to fire action events,
you must make it explicitly implement ActionSource2 because a UIInput component
doesn't automatically implement this interface.

The Duke's Bookstore image map example has two component classes: AreaComponent
and MapComponent. The MapComponent class extends UICommand and therefore
implements ActionSource2, which means it can fire action events when a user clicks
on the map. The AreaComponent class extends the standard component UIOutput. The
@FacesComponent annotation registers the components with the JavaServer Faces
implementation:

@FacesComponent ("DemoMap")
public class MapComponent extends UICommand {...}

@FacesComponent ("DemoArea")
public class AreaComponent extends UIOutput {...}

The MapComponent class represents the component corresponding to the
bookstore:map tag:

<bookstore:map id="bookMap"
current="mapl"
immediate="true"
action="bookstore">

</bookstore :map>
The AreaComponent class represents the component corresponding to the

bookstore:area tag:

<bookstore:area id="mapl" value="#{Book201}"
onmouseover="resources/images/book_201.jpg"
onmouseout="resources/images/book_all.jpg"
targetImage="mapImage" />

MapComponent has one or more AreaComponent instances as children. Its behavior
consists of the following actions:

= Retrieving the value of the currently selected area

s Defining the properties corresponding to the component's values

= Generating an event when the user clicks on the image map

= Queuing the event

= Saving its state

= Rendering the HTML map tag and the HTML input tag

MapComponent delegates the rendering of the HTML map and input tags to the
MapRenderer class.

AreaComponent is bound to a bean that stores the shape and coordinates of the region
of the image map. You will see how all this data is accessed through the value

Creating Custom Ul Components and Other Custom Objects 15-11

Creating Custom Component Classes

expression in Creating the Renderer Class. The behavior of AreaComponent consists of
the following:

= Retrieving the shape and coordinate data from the bean
= Setting the value of the hidden tag to the id of this component

= Rendering the area tag, including the JavaScript for the onmouseover, onmouseout,
and onclick functions

Although these tasks are actually performed by AreaRenderer, AreaComponent must
delegate the tasks to AreaRenderer. See Delegating Rendering to a Renderer for more
information.

The rest of this section describes the tasks that MapComponent performs as well as the
encoding and decoding that it delegates to MapRenderer. Handling Events for Custom
Components details how MapComponent handles events.

15.4.1 Specifying the Component Family

If your custom component class delegates rendering, it needs to override the
getFamily method of UIComponent to return the identifier of a component family,
which is used to refer to a component or set of components that can be rendered by a
renderer or set of renderers. The component family is used along with the renderer
type to look up renderers that can render the component:

public String getFamily() {
return ("Map");

}

The component family identifier, Map, must match that defined by the
component-family elements included in the component and renderer configurations in
the application configuration resource file. Registering a Custom Renderer with a
Render Kit explains how to define the component family in the renderer configuration.
Registering a Custom Component explains how to define the component family in the
component configuration.

15.4.2 Performing Encoding

During the Render Response phase, the JavaServer Faces implementation processes
the encoding methods of all components and their associated renderers in the view.
The encoding methods convert the current local value of the component into the
corresponding markup that represents it in the response.

The UIComponentBase class defines a set of methods for rendering markup:
encodeBegin, encodeChildren, and encodeEnd. If the component has child
components, you might need to use more than one of these methods to render the
component; otherwise, all rendering should be done in encodeEnd. Alternatively, you
can use the encodeALL method, which encompasses all the methods.

Because MapComponent is a parent component of AreaComponent, the area tags must be
rendered after the beginning map tag and before the ending map tag. To accomplish this,
the MapRenderer class renders the beginning map tag in encodeBegin and the rest of the
map tag in encodeEnd.

The JavaServer Faces implementation automatically invokes the encodeEnd method of
AreaComponent's renderer after it invokes MapRenderer's encodeBegin method and
before it invokes MapRenderer's encodeEnd method. If a component needs to perform
the rendering for its children, it does this in the encodeChildren method.

Here are the encodeBegin and encodeEnd methods of MapRenderer:

15-12 The Java EE 7 Tutorial

Creating Custom Component Classes

@Override
public void encodeBegin(FacesContext context, UIComponent component)
throws IOException {
if ((context == null)|| (component == null)) {
throw new NullPointerException();
}
MapComponent map = (MapComponent) component;
ResponseWriter writer = context.getResponseWriter();
writer.startElement ("map", map);
writer.writeAttribute("name", map.getId(), "id");

@Override
public void encodeEnd(FacesContext context, UIComponent component)
throws IOException {
if ((context == null) || (component == null)){
throw new NullPointerException();
}
MapComponent map = (MapComponent) component;
ResponseWriter writer = context.getResponseWriter();
writer.startElement ("input", map);
writer.writeAttribute("type", "hidden", null);
writer.writeAttribute("name", getName (context,map), "clientId");
writer.endElement ("input") ;
writer.endElement ("map") ;

}

Notice that encodeBegin renders only the beginning map tag. The encodeEnd method
renders the input tag and the ending map tag.

The encoding methods accept a UIComponent argument and a
javax.faces.context.FacesContext argument. The FacesContext instance contains
all the information associated with the current request. The UIComponent argument is
the component that needs to be rendered.

The rest of the method renders the markup to the
javax.faces.context.ResponseWriter instance, which writes out the markup to the
current response. This basically involves passing the HTML tag names and attribute
names to the Responseliriter instance as strings, retrieving the values of the
component attributes, and passing these values to the Responseliriter instance.

The startElement method takes a String (the name of the tag) and the component to
which the tag corresponds (in this case, map). (Passing this information to the
Responseliriter instance helps design-time tools know which portions of the
generated markup are related to which components.)

After calling startElement, you can call writeAttribute to render the tag's attributes.
The writeAttribute method takes the name of the attribute, its value, and the name of
a property or attribute of the containing component corresponding to the attribute.
The last parameter can be null, and it won't be rendered.

The name attribute value of the map tag is retrieved using the getId method of
UIComponent, which returns the component's unique identifier. The name attribute
value of the input tag is retrieved using the getName (FacesContext, UIComponent)
method of MapRenderer.

If you want your component to perform its own rendering but delegate to a renderer if
there is one, include the following lines in the encoding method to check whether there
is a renderer associated with this component:

if (getRendererType() != null) {

Creating Custom Ul Components and Other Custom Objects 15-13

Creating Custom Component Classes

super .encodeEnd (context) ;
return;

}

If there is a renderer available, this method invokes the superclass's encodeEnd
method, which does the work of finding the renderer. The MapComponent class
delegates all rendering to MapRenderer, so it does not need to check for available
renderers.

In some custom component classes that extend standard components, you might need
to implement other methods in addition to encodeEnd. For example, if you need to
retrieve the component's value from the request parameters, you must also implement
the decode method.

15.4.3 Performing Decoding

During the Apply Request Values phase, the JavaServer Faces implementation
processes the decode methods of all components in the tree. The decode method
extracts a component's local value from incoming request parameters and uses a
javax.faces.convert.Converter implementation to convert the value to a type that is
acceptable to the component class.

A custom component class or its renderer must implement the decode method only if
it must retrieve the local value or if it needs to queue events. The component queues
the event by calling queueEvent.

Here is the decode method of MapRenderer:

@Override
public void decode (FacesContext context, UIComponent component) {
if ((context == null) || (component == null)) {

throw new NullPointerException();

}
MapComponent map = (MapComponent) component;
String key = getName (context, map);
String value = (String) context.getExternalContext().
getRequestParameterMap () .get (key) ;
if (value != null)
map.setCurrent (value) ;

}

The decode method first gets the name of the hidden input field by calling
getName (FacesContext, UIComponent). It then uses that name as the key to the
request parameter map to retrieve the current value of the input field. This value
represents the currently selected area. Finally, it sets the value of the MapComponent
class's current attribute to the value of the input field.

15.4.4 Enabling Component Properties to Accept Expressions

Nearly all the attributes of the standard JavaServer Faces tags can accept expressions,
whether they are value expressions or method expressions. It is recommended that
you also enable your component attributes to accept expressions because it gives you
much more flexibility when you write Facelets pages.

To enable the attributes to accept expressions, the component class must implement
getter and setter methods for the component properties. These methods can use the
facilities offered by the StateHelper interface to store and retrieve not only the values
for these properties, but also the state of the components across multiple requests.

15-14 The Java EE 7 Tutorial

Creating Custom Component Classes

15.4.5 Saving

Because MapComponent extends UICommand, the UICommand class already does the work
of getting the ValueExpression and MethodExpression instances associated with each
of the attributes that it supports. Similarly, the UIOutput class that AreaComponent
extends already obtains the ValueExpression instances for its supported attributes.
For both components, the simple getter and setter methods store and retrieve the key
values and state for the attributes, as shown in this code fragment from
AreaComponent:

enum PropertyKeys {
alt, coords, shape, targetImage;

}
public String getAlt() {
return (String) getStateHelper().eval (PropertyKeys.alt, null);

}
public void setAlt(String alt) {
getStateHelper () .put (PropertyKeys.alt, alt);

}

However, if you have a custom component class that extends UIComponentBase, you
will need to implement the methods that get the ValueExpression and
MethodExpression instances associated with those attributes that are enabled to accept
expressions. For example, you could include a method that gets the ValueExpression
instance for the immediate attribute:

public boolean isImmediate() {
if (this.immediateSet) {
return (this.immediate);
}
ValueExpression ve = getValueExpression("immediate");
if (ve != null) {
Boolean value = (Boolean) ve.getValue(
getFacesContext () .getELContext ()) ;
return (value.booleanValue());
} else {
return (this.immediate);
}
}

The properties corresponding to the component attributes that accept method
expressions must accept and return a MethodExpression object. For example, if
MapComponent extended UIComponentBase instead of UICommand, it would need to
provide an action property that returns and accepts a MethodExpression object:

public MethodExpression getAction() {
return (this.action);

}
public void setAction(MethodExpression action) {
this.action = action;

}

and Restoring State

As described in Enabling Component Properties to Accept Expressions, use of the
StateHelper interface facilities allows you to save the component's state at the same
time you set and retrieve property values. The StateHelper implementation allows
partial state saving: it saves only the changes in the state since the initial request, not
the entire state, because the full state can be restored during the Restore View phase.

Creating Custom Ul Components and Other Custom Objects 15-15

Delegating Rendering to a Renderer

Component classes that implement StateHolder may prefer to implement the
saveState (FacesContext) and restoreState (FacesContext, Object) methods to
help the JavaServer Faces implementation save and restore the state of components
across multiple requests.

To save a set of values, you can implement the saveState (FacesContext) method.
This method is called during the Render Response phase, during which the state of the
response is saved for processing on subsequent requests. Here is a hypothetical
method from MapComponent, which has only one attribute, current:

@Override

public Object saveState(FacesContext context) {
Object values[] = new Object[2];
values[0] = super.saveState(context);
values[l] = current;
return (values);

}

This method initializes an array, which will hold the saved state. It next saves all of the
state associated with the component.

A component that implements StateHolder may also provide an implementation for
restoreState (FacesContext, Object), which restores the state of the component to
that saved with the saveState (FacesContext) method. The

restoreState (FacesContext, Object) method is called during the Restore View
phase, during which the JavaServer Faces implementation checks whether there is any
state that was saved during the last Render Response phase and needs to be restored
in preparation for the next postback.

Here is a hypothetical restoreState (FacesContext, Object) method from
MapComponent:

public void restoreState(FacesContext context, Object state) {

Object values[] = (Object[]) state;
super.restoreState (context, values|[0]);
current = (String) values[1];

}

This method takes a FacesContext and an Object instance, representing the array that
is holding the state for the component. This method sets the component's properties to
the values saved in the Object array.

Whether or not you implement these methods in your component class, you can use
the javax.faces.STATE_SAVING_METHOD context parameter to specify in the
deployment descriptor where you want the state to be saved: either client or server.
If state is saved on the client, the state of the entire view is rendered to a hidden field
on the page. By default, the state is saved on the server.

The web applications in the Duke's Forest case study save their view state on the
client.

Saving state on the client uses more bandwidth as well as more client resources, while
saving it on the server uses more server resources. You may also want to save state on
the client if you expect your users to disable cookies.

15.5 Delegating Rendering to a Renderer

Both MapComponent and AreaComponent delegate all of their rendering to a separate
renderer. The section Performing Encoding explains how MapRenderer performs the
encoding for MapComponent. This section explains in detail the process of delegating

15-16 The Java EE 7 Tutorial

Delegating Rendering to a Renderer

rendering to a renderer using AreaRenderer, which performs the rendering for
AreaComponent.

To delegate rendering, you perform these tasks:
s Create the Renderer class.

= Register the renderer with a render kit by using the @FacesRenderer annotation
(or by using the application configuration resource file, as explained in Registering
a Custom Renderer with a Render Kit).

= Identify the renderer type in the FacesRenderer annotation.

15.5.1 Creating the Renderer Class

When delegating rendering to a renderer, you can delegate all encoding and decoding
to the renderer, or you can choose to do part of it in the component class. The
AreaComponent class delegates encoding to the AreaRenderer class.

The renderer class begins with a @FacesRenderer annotation:

@FacesRenderer (componentFamily = "Area",
rendererType = "dukesbookstore.renderers.AreaRenderer")
public class AreaRenderer extends Renderer {

The @FacesRenderer annotation registers the renderer class with the JavaServer Faces
implementation as a renderer class. The annotation identifies the component family as
well as the renderer type.

To perform the rendering for AreaComponent, AreaRenderer must implement an
encodeEnd method. The encodeEnd method of AreaRenderer retrieves the shape,
coordinates, and alternative text values stored in the ImageArea bean that is bound to
AreaComponent. Suppose that the area tag currently being rendered has a value
attribute value of "book203". The following line from encodeEnd gets the value of the
attribute "book203" from the FacesContext instance.

ImageArea ia = (ImageArea)area.getValue();

The attribute value is the ImageArea bean instance, which contains the shape, coords,
and alt values associated with the book203 AreaComponent instance. Configuring
Model Data describes how the application stores these values.

After retrieving the ImageArea object, the method renders the values for shape, coords,
and alt by simply calling the associated accessor methods and passing the returned
values to the Responselriter instance, as shown by these lines of code, which write
out the shape and coordinates:

writer.startElement ("area", area);

writer.writeAttribute("alt", iarea.getAlt(), "alt");
writer.writeAttribute("coords", iarea.getCoords(), "coords");
writer.writeAttribute("shape", iarea.getShape(), "shape");

The encodeEnd method also renders the JavaScript for the onmouseout, onmouseover,
and onclick attributes. The Facelets page need only provide the path to the images
that are to be loaded during an onmouseover or onmouseout action:

<bookstore:area id="map3" value="#{Book203}"
onmouseover="resources/images/book_203.jpg"
onmouseout="resources/images/book_all.jpg"
targetImage="mapImage"/>

Creating Custom Ul Components and Other Custom Objects 15-17

Implementing an Event Listener

The AreaRenderer class takes care of generating the JavaScript for these actions, as
shown in the following code from encodeEnd. The JavaScript that AreaRenderer
generates for the onclick action sets the value of the hidden field to the value of the
current area's component ID and submits the page.

sb = new StringBuffer ("document.forms[0]['").append (targetImageld).
append("'].src="");

sb.append (
getURI (context,
(String) area.getAttributes().get ("onmouseout")));

sb.append("'");

writer.writeAttribute ("onmouseout", sb.toString(), "onmouseout");

sb = new StringBuffer ("document.forms[0]['").append(targetImageld).
append("'].src="");

sb.append (

getURI (context,

(String) area.getAttributes().get ("onmouseover")));
sb.append("'");
writer.writeAttribute ("onmouseover", sb.toString(), "onmouseover");
sb = new StringBuffer("document.forms[0]['");
sb.append (getName (context, area));

sb.append("'].value="");

sb.append (iarea.getAlt());

sb.append("'; document.forms[0].submit()");
writer.writeAttribute("onclick", sb.toString(), "value");

writer.endElement ("area");

By submitting the page, this code causes the JavaServer Faces lifecycle to return back
to the Restore View phase. This phase saves any state information, including the value
of the hidden field, so that a new request component tree is constructed. This value is
retrieved by the decode method of the MapComponent class. This decode method is
called by the JavaServer Faces implementation during the Apply Request Values
phase, which follows the Restore View phase.

In addition to the encodeEnd method, AreaRenderer contains an empty constructor.
This is used to create an instance of AreaRenderer so that it can be added to the render
kit.

The @FacesRenderer annotation registers the renderer class with the JavaServer Faces
implementation as a renderer class. The annotation identifies the component family as
well as the renderer type.

15.5.2 Identifying the Renderer Type

During the Render Response phase, the JavaServer Faces implementation calls the
getRendererType method of the component's tag handler to determine which renderer
to invoke, if there is one.

You identify the type associated with the renderer in the rendererType element of the
@FacesRenderer annotation for AreaRenderer as well as in the renderer-type element
of the tag library descriptor.

15.6 Implementing an Event Listener

The JavaServer Faces technology supports action events and value-change events for
components.

15-18 The Java EE 7 Tutorial

Implementing an Event Listener

Action events occur when the user activates a component that implements
javax.faces.component.ActionSource. These events are represented by the class
javax.faces.event.ActionEvent.

Value-change events occur when the user changes the value of a component that
implements javax.faces.component . EditableValueHolder. These events are
represented by the class javax. faces.event.ValueChangeEvent.

One way to handle events is to implement the appropriate listener classes. Listener
classes that handle the action events in an application must implement the interface
javax.faces.event.ActionListener. Similarly, listeners that handle the value-change
events must implement the interface javax. faces.event.ValueChangeListener.

This section explains how to implement the two listener classes.

To handle events generated by custom components, you must implement an event
listener and an event handler and manually queue the event on the component. See
Handling Events for Custom Components for more information.

Note: You do not need to create an ActionListener
implementation to handle an event that results solely in navigating
to a page and does not perform any other application-specific
processing. See Writing a Method to Handle Navigation for
information on how to manage page navigation.

15.6.1 Implementing Value-Change Listeners

A javax.faces.event.ValueChangeListener implementation must include a
processValueChange (ValueChangeEvent) method. This method processes the
specified value-change event and is invoked by the JavaServer Faces implementation
when the value-change event occurs. The ValueChangeEvent instance stores the old
and the new values of the component that fired the event.

In the Duke's Bookstore case study, the NameChanged listener implementation is
registered on the name UIInput component on the bookcashier.xhtml page. This
listener stores into session scope the name the user entered in the field corresponding
to the name component.

The bookreceipt.xhtml subsequently retrieves the name from the session scope:

<h:outputFormat title="thanks"
value="#{bundle.ThankYouParam} ">
<f:param value="#{sessionScope.name}"/>
</h:outputFormat>

When the bookreceipt.xhtml page is loaded, it displays the name inside the message:

"Thank you, {0}, for purchasing your books from us."

Here is part of the NameChanged listener implementation:
public class NameChanged extends Object implements ValueChangeListener {
@override

public void processValueChange (ValueChangeEvent event)
throws AbortProcessingException {

if (null !'= event.getNewValue()) {

FacesContext.getCurrentInstance() .getExternalContext ().
getSessionMap () .put ("name", event.getNewValue());

Creating Custom Ul Components and Other Custom Objects 15-19

Handling Events for Custom Components

}

When the user enters the name in the field, a value-change event is generated, and the
processValueChange (ValueChangeEvent) method of the NameChanged listener
implementation is invoked. This method first gets the ID of the component that fired
the event from the ValueChangeEvent object, and it puts the value, along with an
attribute name, into the session map of the FacesContext instance.

Registering a Value-Change Listener on a Component explains how to register this
listener onto a component.

15.6.2 Implementing Action Listeners

A javax.faces.event.ActionListener implementation must include a
processAction (ActionEvent) method. The processAction (ActionEvent) method
processes the specified action event. The JavaServer Faces implementation invokes the
processAction (ActionEvent) method when the ActionEvent occurs.

The Duke's Bookstore case study uses two ActionListener implementations,
LinkBookChangeListener and MapBookChangeListener. See Handling Events for
Custom Components for details on MapBookChangeListener.

Registering an Action Listener on a Component explains how to register this listener
onto a component.

15.7 Handling Events for Custom Components

As explained in Implementing an Event Listener, events are automatically queued on
standard components that fire events. A custom component, on the other hand, must
manually queue events from its decode method if it fires events.

Performing Decoding explains how to queue an event on MapComponent using its
decode method. This section explains how to write the class that represents the event
of clicking on the map and how to write the method that processes this event.

As explained in Understanding the Facelets Page, the actionListener attribute of the
bookstore:map tag points to the MapBookChangeListener class. The listener class's
processAction method processes the event of clicking the image map. Here is the
processAction method:

@Override
public void processAction(ActionEvent actionEvent)
throws AbortProcessingException {

AreaSelectedEvent event = (AreaSelectedEvent) actionEvent;

String current = event.getMapComponent () .getCurrent();

FacesContext context = FacesContext.getCurrentInstance();

String bookId = books.get (current);

context.getExternalContext () .getSessionMap () .put ("bookId", bookId);
}

When the JavaServer Faces implementation calls this method, it passes in an
ActionEvent object that represents the event generated by clicking on the image map.
Next, it casts it to an AreaSelectedEvent object (see

tut-install | examples/case-studies/dukes-bookstore/src/java/dukesbookstore/lis
teners/AreaSelectedEvent.java). Then this method gets the MapComponent
associated with the event. It then gets the value of the MapComponent object's current

15-20 The Java EE 7 Tutorial

Defining the Custom Component Tag in a Tag Library Descriptor

attribute, which indicates the currently selected area. The method then uses the value
of the current attribute to get the book's ID value from a HashMap object, which is
constructed elsewhere in the MapBookChangeListener class. Finally the method places
the ID obtained from the HashMap object into the session map for the application.

In addition to the method that processes the event, you need the event class itself. This
class is very simple to write: You have it extend ActionEvent and provide a
constructor that takes the component on which the event is queued and a method that
returns the component. Here is the AreaSelectedEvent class used with the image map:

public class AreaSelectedEvent extends ActionEvent {
public AreaSelectedEvent (MapComponent map) {
super (map) ;
}
public MapComponent getMapComponent () {
return ((MapComponent) getComponent());
}
}

As explained in the section Creating Custom Component Classes, in order for
MapComponent to fire events in the first place, it must implement ActionSource.
Because MapComponent extends UICommand, it also implements ActionSource.

15.8 Defining the Custom Component Tag in a Tag Library Descriptor

To use a custom tag, you declare it in a Tag Library Descriptor (TLD). The TLD file
defines how the custom tag is used in a JavaServer Faces page. The web container uses
the TLD to validate the tag. The set of tags that are part of the HTML render kit are
defined in the HTML_BASIC TLD, available at
http://docs.oracle.com/javaee/7/javaserverfaces/2.2/renderkitdoc
s/.

The TLD file name must end with taglib.xml. In the Duke's Bookstore case study, the
custom tags area and map are defined in the file welb/WEB-INF/bookstore. taglib.xml.

All tag definitions must be nested inside the facelet-taglib element in the TLD. Each
tag is defined by a tag element. Here are the tag definitions for the area and map
components:

<facelet-taglib xmlns="http://xmlns.jcp.org/xml/ns/javaece"
R~
<namespace>http://dukesbookstore</namespace>

<tag>
<tag-name>area</tag-name>
<component>
<component-type>DemoArea</component-type>
<renderer-type>DemoArea</renderer-type>
</component>
</tag>
<tag>
<tag-name>map</tag-name>
<component>
<component -type>DemoMap</component-type>
<renderer-type>DemoMap</renderer-type>
</component>
</tag>

</facelet-taglib>

Creating Custom Ul Components and Other Custom Objects 15-21

Using a Custom Component

The component-type element specifies the name defined in the @FacesComponent
annotation, while the renderer-type element specifies the rendererType defined in
the @FacesRenderer annotation.

The facelet-taglib element must also include a namespace element, which defines
the namespace to be specified in pages that use the custom component. See Using a
Custom Component for information on specifying the namespace in pages.

The TLD file is located in the WEB-INF directory. In addition, an entry is included in the
web deployment descriptor (web.xml) to identify the custom tag library descriptor file
as follows:

<context-param>
<param-name>javax.faces.FACELETS_LIBRARIES</param-name>
<param-value>/WEB-INF/bookstore.taglib.xml</param-value>
</context-param>

15.9 Using a Custom Component

To use a custom component in a page, you add the custom tag associated with the
component to the page.

As explained in Defining the Custom Component Tag in a Tag Library Descriptor, you
must ensure that the TLD that defines any custom tags is packaged in the application
if you intend to use the tags in your pages. TLD files are stored in the WEB-INF/
directory or subdirectory of the WAR file or in the META-INF/ directory or subdirectory
of a tag library packaged in a JAR file.

You also need to include a namespace declaration in the page so that the page has
access to the tags. The custom tags for the Duke's Bookstore case study are defined in
bookstore.taglib.xml. The ui:composition tag on the index.xhtml page declares the
namespace defined in the tag library:

<ui:composition xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
xmlns:h="http://xmlns.jcp.org/jsf/html"
xmlns:f="http://xmlns.jcp.org/jsf/core"
xmlns:bookstore="http://dukesbookstore"
template="./bookstoreTemplate.xhtml">

Finally, to use a custom component in a page, you add the component's tag to the
page.
The Duke's Bookstore case study includes a custom image map component on the

index.xhtml page. This component allows you to select a book by clicking on a region
of the image map:

<h:graphicImage id="mapImage"
name="book_all.jpg"
library="1images
alt="#{bundle.chooseLocale}"
usemap="#bookMap" />
<bookstore:map id="bookMap"
current="mapl"
immediate="true"
action="bookstore">
<f:actionListener
type="dukesbookstore.listeners.MapBookChangeListener" />
<bookstore:area id="mapl" value="#{Book201}"
onmouseover="resources/images/book_201.jpg"

15-22 The Java EE 7 Tutorial

Creating and Using a Custom Converter

onmouseout="resources/images/book_all.jpg"
targetImage="mapImage" />

<bookstore:area id="map6" value="#{Book207}"
onmouseover="resources/images/book_207.jpg"
onmouseout="resources/images//book_all.jpg"
targetImage="mapImage" />
</bookstore :map>

The standard h:graphicImage tag associates an image (book_all.jpg) with an image
map that is referenced in the usemap attribute value.

The custom bookstore :map tag that represents the custom component, MapComponent,
specifies the image map, and contains a set of bookstore:area tags. Each custom
bookstore:area tag represents a custom AreaComponent and specifies a region of the
image map.

On the page, the onmouseover and onmouseout attributes specify the image that is
displayed when the user performs the actions described by the attributes. The custom
renderer also renders an onclick attribute.

In the rendered HTML page, the onmouseover, onmouseout, and onclick attributes
define which JavaScript code is executed when these events occur. When the user
moves the mouse over a region, the onmouseover function associated with the region
displays the map with that region highlighted. When the user moves the mouse out of
a region, the onmouseout function redisplays the original image. When the user clicks a
region, the onclick function sets the value of a hidden input tag to the ID of the
selected area and submits the page.

When the custom renderer renders these attributes in HTML, it also renders the
JavaScript code. The custom renderer also renders the entire onclick attribute rather
than let the page author set it.

The custom renderer that renders the HTML map tag also renders a hidden input
component that holds the current area. The server-side objects retrieve the value of the
hidden input field and set the locale in the FacesContext instance according to which
region was selected.

15.10 Creating and Using a Custom Converter

A JavaServer Faces converter class converts strings to objects and objects to strings as
required. Several standard converters are provided by JavaServer Faces for this
purpose. See Using the Standard Converters for more information on these included
converters.

As explained in Conversion Model, if the standard converters included with
JavaServer Faces cannot perform the data conversion that you need, you can create a
custom converter to perform this specialized conversion. This implementation, at a
minimum, must define how to convert data both ways between the two views of the
data described in Conversion Model.

All custom converters must implement the javax. faces.convert.Converter
interface. This section explains how to implement this interface to perform a custom
data conversion.

The Duke's Bookstore case study uses a custom Converter implementation, located in
tut-install | examples/case-studies/dukes-bookstore/src/java/dukesbookstore/con
verters/CreditCardConverter.java, to convert the data entered in the Credit Card
Number field on the bookcashier.xhtml page. It strips blanks and hyphens from the
text string and formats it so that a blank space separates every four characters.

Creating Custom Ul Components and Other Custom Objects 15-23

Creating and Using a Custom Converter

Another common use case for a custom converter is in a list for a nonstandard object
type. In the Duke's Tutoring case study (to be provided in the next release of this
Tutorial), the Student and Guardian entities require a custom converter so they can be
converted to and from a UISelectItems input component.

15.10.1 Creating a Custom Converter
The CreditCardConverter custom converter class is created as follows:

@FacesConverter ("ccno")
public class CreditCardConverter implements Converter {

}

The @FacesConverter annotation registers the custom converter class as a converter
with the name of ccno with the JavaServer Faces implementation. Alternatively, you
can register the converter with entries in the application configuration resource file, as
shown in Registering a Custom Converter.

To define how the data is converted from the presentation view to the model view, the
Converter implementation must implement the getAsObject (FacesContext,
UIComponent, String) method from the Converter interface. Here is the
implementation of this method from CreditCardConverter:

@Override

public Object getAsObject (FacesContext context,
UIComponent component, String newValue)
throws ConverterException {

String convertedvValue = null;
if (newValue == null) {
return newValue;
}
// Since this is only a String to String conversion,
// this conversion does not throw ConverterException.

convertedvalue = newValue.trim();
if ((convertedvalue.contains("-")) ||
(convertedvalue.contains (" "))) {
char[] input = convertedValue.toCharArray();
StringBuilder builder = new StringBuilder (input.length);
for (int i = 0; 1 < input.length; ++i) {

if (input[i] == '-' || imput[i] == ' ') {
continue;
} else {

builder.append (input[i]);
}
}
convertedValue = builder.toString();

}

return convertedvValue;

}

During the Apply Request Values phase, when the components' decode methods are
processed, the JavaServer Faces implementation looks up the component's local value
in the request and calls the getAsObject method. When calling this method, the
JavaServer Faces implementation passes in the current FacesContext instance, the
component whose data needs conversion, and the local value as a String. The method
then writes the local value to a character array, trims the hyphens and blanks, adds the
rest of the characters to a String, and returns the String.

15-24 The Java EE 7 Tutorial

Creating and Using a Custom Converter

To define how the data is converted from the model view to the presentation view, the
Converter implementation must implement the getAsString (FacesContext,
UIComponent, Object) method from the Converter interface. Here is an
implementation of this method:

@Override

public String getAsString (FacesContext context,
UIComponent component, Object value)
throws ConverterException {

String inputval = null;
if (value == null) {
return null;
}
// value must be of a type that can be cast to a String.
try {
inputVal = (String)value;
} catch (ClassCastException ce) {
FacesMessage errMsg = new FacesMessage (CONVERSION_ERROR_MESSAGE_ID) ;
FacesContext.getCurrentInstance() .addMessage (null, errMsg);
throw new ConverterException (errMsg.getSummary());
}
// insert spaces after every four characters for better
// readability if they are not already present.
char[] input = inputVal.toCharArray();
StringBuilder builder = new StringBuilder (input.length + 3);
for (int i = 0; 1 < input.length; ++i) {
if (((1 %4) ==06&&i!=0) {

if (input[i] != ' ' || input[i] != '-'){
builder.append(" ");
// if there are any "-"'s convert them to blanks.
} else if (input[i] == '-') {

builder.append(" ");

}

builder.append (input[i]);
}
String convertedValue = builder.toString();
return convertedvValue;

During the Render Response phase, in which the components' encode methods are
called, the JavaServer Faces implementation calls the getAsString method in order to
generate the appropriate output. When the JavaServer Faces implementation calls this
method, it passes in the current FacesContext, the UIComponent whose value needs to
be converted, and the bean value to be converted. Because this converter does a
String-to-String conversion, this method can cast the bean value to a String.

If the value cannot be converted to a String, the method throws an exception, passing
an error message from the resource bundle that is registered with the application.
Registering Application Messages explains how to register custom error messages
with the application.

If the value can be converted to a String, the method reads the String to a character
array and loops through the array, adding a space after every four characters.

You can also create a custom converter with a @FacesConverter annotation that
specifies the forClass attribute, as shown in the following example from the Duke's
Tutoring case study:

@FacesConverter (forClass=Guardian.class)

Creating Custom Ul Components and Other Custom Objects 15-25

Creating and Using a Custom Converter

public class GuardianConverter implements Converter { ...

The forClass attribute registers the converter as the default converter for the Guardian
class. Therefore, whenever that class is specified by a value attribute of an input
component, the converter is invoked automatically.

A converter class can be a separate Java POJO class, as in the Duke's Bookstore case
study. If it needs to access objects defined in a managed bean class, however, it can be a
subclass of a JavaServer Faces managed bean, as in the address-book persistence
example, where the converters use an enterprise bean that is injected into the managed
bean class.

15.10.2 Using a Custom Converter

To apply the data conversion performed by a custom converter to a particular
component's value, you must do one of the following;:

= Reference the converter from the component tag's converter attribute.

s Nestan f:converter tag inside the component's tag and reference the custom
converter from one of the £:converter tag's attributes.

If you are using the component tag's converter attribute, this attribute must reference
the Converter implementation's identifier or the fully-qualified class name of the
converter. Creating and Using a Custom Converter explains how to implement a
custom converter.

The identifier for the credit card converter class is ccno, the value specified in the
@FacesConverter annotation:

@FacesConverter ("ccno")
public class CreditCardConverter implements Converter {

Therefore, the CreditCardConverter instance can be registered on the ccno component
as shown in the following example:

<h:inputText id="ccno"
size="19"
converter="ccno"
value="#{cashier.creditCardNumber}"
required="true"
requiredMessage="#{bundle.ReqCreditCard}">

</h:inputText>

By setting the converter attribute of a component's tag to the converter's identifier or
its class name, you cause that component's local value to be automatically converted
according to the rules specified in the Converter implementation.

Instead of referencing the converter from the component tag's converter attribute, you
can reference the converter from an £ : converter tag nested inside the component's
tag. To reference the custom converter using the f:converter tag, you do one of the
following:

= Set the f:converter tag's converterId attribute to the Converter
implementation's identifier defined in the @FacesConverter annotation or in the
application configuration resource file. This method is shown in
bookcashier.xhtml:

<h:inputText id="ccno"
size="19"

15-26 The Java EE 7 Tutorial

Creating and Using a Custom Validator

value="#{cashier.creditCardNumber}"
required="true"
requiredMessage="#{bundle.ReqCreditCard}">
<f:converter converterId="ccno"/>
<f:validateRegex
pattern="\d{16} [\d{4} \d{4} \da{4} \a{4}|\d{4}-\d{4}-\a{4}-\a{4}"/>
</h:inputText>

= Bind the Converter implementation to a managed bean property using the
f:converter tag's binding attribute, as described in Binding Converters, Listeners,
and Validators to Managed Bean Properties.

The JavaServer Faces implementation calls the converter's getAsObject method to
strip spaces and hyphens from the input value. The getAsString method is called
when the bookcashier.xhtml page is redisplayed; this happens if the user orders more
than $100 worth of books.

In the Duke's Tutoring case study (to be provided in a future release of this tutorial),
each converter is registered as the converter for a particular class. The converter is
automatically invoked whenever that class is specified by a value attribute of an input
component. In the following example, the itemvalue attribute (highlighted in bold)
calls the converter for the Guardian class:

<h:selectManyListbox id="selectGuardiansMenu"
value="#{guardianManager.selectedGuardians}"
size="5">
<f:selectItems value="#{guardianManager.allGuardians}"
var="selectedGuardian"
itemLabel="#{selectedGuardian.name}"
itemValue="#{selectedGuardian}" />
</h:selectManyListbox>

15.11 Creating and Using a Custom Validator

If the standard validators or Bean Validation don't perform the validation checking
you need, you can create a custom validator to validate user input. As explained in
Validation Model, there are two ways to implement validation code:

» Implement a managed bean method that performs the validation.

s Provide an implementation of the javax.faces.validator.Validator interface to
perform the validation.

Writing a Method to Perform Validation explains how to implement a managed bean
method to perform validation. The rest of this section explains how to implement the
Validator interface.

If you choose to implement the Validator interface and you want to allow the page
author to configure the validator's attributes from the page, you also must specify a
custom tag for registering the validator on a component.

If you prefer to configure the attributes in the Validator implementation, you can
forgo specifying a custom tag and instead let the page author register the validator on
a component using the f:validator tag, as described in Using a Custom Validator.

You can also create a managed bean property that accepts and returns the Validator
implementation you create, as described in Writing Properties Bound to Converters,
Listeners, or Validators. You can use the f:validator tag's binding attribute to bind

the validator implementation to the managed bean property.

Creating Custom Ul Components and Other Custom Objects 15-27

Creating and Using a Custom Validator

Usually, you will want to display an error message when data fails validation. You
need to store these error messages in a resource bundle.

After creating the resource bundle, you have two ways to make the messages available
to the application. You can queue the error messages onto the FacesContext
programmatically, or you can register the error messages in the application
configuration resource file, as explained in Registering Application Messages.

For example, an e-commerce application might use a general-purpose custom
validator called FormatValidator.java to validate input data against a format pattern
that is specified in the custom validator tag. This validator would be used with a
Credit Card Number field on a Facelets page. Here is the custom validator tag:

<mystore:formatValidator
formatPatterns="9999999999999999]9999 9999 9999 9999|9999-9999-9999-9999"/>

According to this validator, the data entered in the field must be one of the following:
= A 16-digit number with no spaces

= A 16-digit number with a space between every four digits

= A 16-digit number with hyphens between every four digits

The f:validateRegex tag makes a custom validator unnecessary in this situation.
However, the rest of this section describes how this validator would be implemented
and how to specify a custom tag so that the page author could register the validator on
a component.

15.11.1 Implementing the Validator Interface

A Vvalidator implementation must contain a constructor, a set of accessor methods for
any attributes on the tag, and a validate method, which overrides the validate
method of the Validator interface.

The hypothetical Formatvalidator class also defines accessor methods for setting the
formatPatterns attribute, which specifies the acceptable format patterns for input into
the fields. The setter method calls the parseFormatPatterns method, which separates
the components of the pattern string into a string array, formatPatternsList.

public String getFormatPatterns() {
return (this.formatPatterns);

}

public void setFormatPatterns(String formatPatterns) {
this.formatPatterns = formatPatterns;
parseFormatPatterns() ;

}

In addition to defining accessor methods for the attributes, the class overrides the
validate method of the Validator interface. This method validates the input and also
accesses the custom error messages to be displayed when the String is invalid.

The validate method performs the actual validation of the data. It takes the
FacesContext instance, the component whose data needs to be validated, and the
value that needs to be validated. A validator can validate only data of a component
that implements javax. faces.component .EditableValueHolder.

Here is an implementation of the validate method:

@FacesValidator
public class FormatValidator implements Validator, StateHolder {

15-28 The Java EE 7 Tutorial

Creating and Using a Custom Validator

public void validate(FacesContext context, UIComponent component,
Object tovValidate) {

boolean valid = false;
String value = null;
if ((context == null) || (component == null)) {
throw new NullPointerException();
}
if (! (component instanceof UIInput)) {
return;
}
if (null == formatPatternsList || null == toValidate) {
return;
}
value = toValidate.toString();
// validate the value against the list of valid patterns.
Iterator patternIt = formatPatternsList.iterator();
while (patternIt.hasNext()) ({
valid = isFormatvalid(

((String)patternIt.next()), value);
if (valid) {
break;

}
if (!valid) {
FacesMessage errMsg =
new FacesMessage (FORMAT_INVALID_MESSAGE_ID) ;
FacesContext.getCurrentInstance() .addMessage (null, errMsg);
throw new ValidatorException(errMsg) ;

}

The @FacesValidator annotation registers the FormatValidator class as a validator
with the JavaServer Faces implementation. The validate method gets the local value
of the component and converts it to a String. It then iterates over the
formatPatternsList list, which is the list of acceptable patterns that was parsed from
the formatPatterns attribute of the custom validator tag.

While iterating over the list, this method checks the pattern of the component's local
value against the patterns in the list. If the pattern of the local value does not match
any pattern in the list, this method generates an error message. It then creates a
javax.faces.application.FacesMessage and queues it on the FacesContext for
display, using a String that represents the key in the Properties file:

public static final String FORMAT INVALID_MESSAGE_ID =
"FormatInvalid";

Finally, the method passes the message to the constructor of
javax.faces.validator.ValidatorException.

When the error message is displayed, the format pattern will be substituted for the {0}
in the error message, which, in English, is as follows:

Input must match one of the following patterns: {0}

You may wish to save and restore state for your validator, although state saving is not
usually necessary. To do so, you will need to implement the StateHolder interface as
well as the Validator interface. To implement StateHolder, you would need to

Creating Custom Ul Components and Other Custom Objects 15-29

Creating and Using a Custom Validator

implement its four methods: saveState (FacesContext),
restoreState (FacesContext, Object), isTransient, and setTransient (boolean).
See Saving and Restoring State for more information.

15.11.2 Specifying a Custom Tag

If you implemented a Validator interface rather than implementing a managed bean
method that performs the validation, you need to do one of the following:

= Allow the page author to specify the validator implementation to use with the
f:validator tag. In this case, the Validator implementation must define its own
properties. Using a Custom Validator explains how to use the f:validator tag.

= Specify a custom tag that provides attributes for configuring the properties of the
validator from the page.

To create a custom tag, you need to add the tag to the tag library descriptor for the
application, bookstore.taglib.xml.

<tag>
<tag-name>validator</tag-name>
<validator>
<validator-id>formatValidator</validator-id>
<validator-class>
dukesbookstore.validators.FormatValidator
</validator-class>
</validator>
</tag>

The tag-name element defines the name of the tag as it must be used in a Facelets
page. The validator-id element identifies the custom validator. The validator-class
element wires the custom tag to its implementation class.

Using a Custom Validator explains how to use the custom validator tag on the page.

15.11.3 Using a Custom Validator

To register a custom validator on a component, you must do one of the following:

= Nest the validator's custom tag inside the tag of the component whose value you
want to be validated.

= Nest the standard f:validator tag within the tag of the component and reference
the custom Validator implementation from the f:validator tag.

Here is a hypothetical custom formatvalidator tag for the Credit Card Number field,
nested within the h:inputText tag:

<h:inputText id="ccno" size="19"

required="true">

<mystore: formatValidator

formatPatterns="9999999999999999]9999 9999 9999 9999]9999-9999-9999-9999" />
</h:inputText>
<h:message styleClass="validationMessage" for="ccno"/>

This tag validates the input of the ccno field against the patterns defined by the page
author in the formatPatterns attribute.

You can use the same custom validator for any similar component by simply nesting
the custom validator tag within the component tag.

15-30 The Java EE 7 Tutorial

Binding Component Values and Instances to Managed Bean Properties

If the application developer who created the custom validator prefers to configure the
attributes in the Validator implementation rather than allow the page author to
configure the attributes from the page, the developer will not create a custom tag for
use with the validator.

In this case, the page author must nest the f:validator tag inside the tag of the
component whose data needs to be validated. Then the page author needs to do one of
the following:

= Setthe f:validator tag's validatorId attribute to the ID of the validator that is
defined in the application configuration resource file.

= Bind the custom Validator implementation to a managed bean property using the
f:validator tag's binding attribute, as described in Binding Converters, Listeners,
and Validators to Managed Bean Properties.

The following tag registers a hypothetical validator on a component using an
f:validator tag and references the ID of the validator:

<h:inputText id="name" value="#{CustomerBean.name}"
size="10" ...>
<f:validator validatorId="customValidator" />

</h:inputText>

15.12 Binding Component Values and Instances to Managed Bean

Properties

A component tag can wire its data to a managed bean by one of the following
methods:

» Binding its component's value to a bean property
» Binding its component's instance to a bean property

To bind a component's value to a managed bean property, a component tag's value
attribute uses an EL value expression. To bind a component instance to a bean
property, a component tag's binding attribute uses a value expression.

When a component instance is bound to a managed bean property, the property holds
the component's local value. Conversely, when a component's value is bound to a
managed bean property, the property holds the value stored in the managed bean.
This value is updated with the local value during the Update Model Values phase of
the lifecycle. There are advantages to both of these methods.

Binding a component instance to a bean property has these advantages:
s The managed bean can programmatically modify component attributes.

s The managed bean can instantiate components rather than let the page author do
SO.

Binding a component's value to a bean property has these advantages:
» The page author has more control over the component attributes.

s The managed bean has no dependencies on the JavaServer Faces API (such as the
component classes), allowing for greater separation of the presentation layer from
the model layer.

» The JavaServer Faces implementation can perform conversions on the data based
on the type of the bean property without the developer needing to apply a
converter.

Creating Custom Ul Components and Other Custom Objects 15-31

Binding Component Values and Instances to Managed Bean Properties

In most situations, you will bind a component's value rather than its instance to a bean
property. You'll need to use a component binding only when you need to change one
of the component's attributes dynamically. For example, if an application renders a
component only under certain conditions, it can set the component's rendered
property accordingly by accessing the property to which the component is bound.

When referencing the property using the component tag's value attribute, you need to
use the proper syntax. For example, suppose a managed bean called MyBean has this
int property:

= null;
) (...}
(int option){...}

protected int currentOption
public int getCurrentOption (
public void setCurrentOption

The value attribute that references this property must have this value-binding
expression:

#{myBean.currentOption}

In addition to binding a component's value to a bean property, the value attribute can
specify a literal value or can map the component's data to any primitive (such as int),
structure (such as an array), or collection (such as a list), independent of a JavaBeans
component. Table 15-3 lists some example value-binding expressions that you can use
with the value attribute.

Table 15-3 Examples of Value-Binding Expressions

Value Expression

A Boolean cart.numberOfItems> 0

A property initialized from a contex initialization initParam.quantity

parameter

A bean property cashierBean.name
Value in an array books [3]

Value in a collection books["fiction"]
Property of an object in an array of objects books[3].price

The next two sections explain how to use the value attribute to bind a component's
value to a bean property or other data objects, and how to use the binding attribute to
bind a component instance to a bean property.

15.12.1 Binding a Component Value to a Property

To bind a component's value to a managed bean property, you specify the name of the
bean and the property using the value attribute.

This means that the first part of the EL value expression must match the name of the
managed bean up to the first period (.) and the part of the value expression after the
period must match the property of the managed bean.

For example, in the Duke's Bookstore case study, the h:dataTable tag in
bookcatalog.xhtml sets the value of the component to the value of the books property
of the stateless session bean BookRequestBean:

<h:dataTable id="books"
value="#{bookRequestBean.books}"
var="book"
headerClass="list-header"

15-32 The Java EE 7 Tutorial

Binding Component Values and Instances to Managed Bean Properties

styleClass="1list-background"
rowClasses="list-row-even, list-row-odd"
border="1"
summary="#{bundle.BookCatalog}">

The value is obtained by calling the bean's getBooks method.

If you use the application configuration resource file to configure managed beans
instead of defining them in managed bean classes, the name of the bean in the value
expression must match the managed-bean-name element of the managed bean
declaration up to the first period (.) in the expression. Similarly, the part of the value
expression after the period must match the name specified in the corresponding
property-name element in the application configuration resource file.

For example, consider this managed bean configuration, which configures the
ImageArea bean corresponding to the top left book in the image map on the
index.html page of the Duke's Bookstore case study:

<managed-bean eager="true">

<managed-bean-name>Book201</managed-bean-name>
<managed-bean-class>dukesbookstore.model. ImageArea</managed-bean-class>
<managed-bean-scope>application</managed-bean-scope>

<managed-property>

<property-name>shape</property-name>
<value>rect</value>
</managed-property>
<managed-property>

<property-name>alt</property-name>
<value>Duke</value>
</managed-property>

This example configures a bean called Book201, which has several properties, one of
which is called shape.

Although the bookstore:area tags on the index.xhtml page do not bind to an
ImageArea property (they bind to the bean itself), you could refer to the property using
a value expression from the value attribute of the component's tag:

<h:outputText value="#{Book201l.shape}" />

See Configuring Managed Beans for information on how to configure beans in the
application configuration resource file.

15.12.2 Binding a Component Value to an Implicit Object

One external data source that a value attribute can refer to is an implicit object.
The bookreceipt.xhtml page of the Duke's Bookstore case study has a reference to an
implicit object:

<h:outputFormat title="thanks"
value="#{bundle.ThankYouParam} ">
<f:param value="#{sessionScope.name}"/>
</h:outputFormat>

Creating Custom Ul Components and Other Custom Objects 15-33

Binding Component Values and Instances to Managed Bean Properties

This tag gets the name of the customer from the session scope and inserts it into the
parameterized message at the key ThankYouParam from the resource bundle. For
example, if the name of the customer is Gwen Canigetit, this tag will render:

Thank you, Gwen Canigetit, for purchasing your books from us.

Retrieving values from other implicit objects is done in a similar way to the example
shown in this section. Table 154 lists the implicit objects to which a value attribute can
refer. All of the implicit objects, except for the scope objects, are read-only and
therefore should not be used as a value for a UIInput component.

Table 15-4 Implicit Objects

Implicit Object What It Is

applicationScope A Map of the application scope attribute values, keyed by attribute name

cookie A Map of the cookie values for the current request, keyed by cookie name

facesContext The FacesContext instance for the current request

header A Map of HTTP header values for the current request, keyed by header
name

headerValues A Map of String arrays containing all the header values for HTTP headers
in the current request, keyed by header name

initParam A Map of the context initialization parameters for this web application

param A Map of the request parameters for this request, keyed by parameter
name

paramValues A Map of String arrays containing all the parameter values for request
parameters in the current request, keyed by parameter name

requestScope A Map of the request attributes for this request, keyed by attribute name

sessionScope A Map of the session attributes for this request, keyed by attribute name

view The root UIComponent in the current component tree stored in the

FacesRequest for this request

15.12.3 Binding a Component Instance to a Bean Property

A component instance can be bound to a bean property using a value expression with
the binding attribute of the component's tag. You usually bind a component instance
rather than its value to a bean property if the bean must dynamically change the
component's attributes.

Here are two tags from the bookcashier.xhtml page that bind components to bean
properties:

<h:selectBooleanCheckbox id="fanClub"
rendered="false"
binding="#{cashier.specialOffer}" />
<h:outputLabel for="fanClub"
rendered="false"
binding="#{cashier.specialOfferText}">
<h:outputText id="fanClubLabel"
value="#{bundle.DukeFanClub}"/>
</h:outputLabel>

The h:selectBooleanCheckbox tag renders a check box and binds the fanClub
UISelectBoolean component to the specialOffer property of the cashier bean. The
h:outputLabel tag binds the component representing the check box's label to the

15-34 The Java EE 7 Tutorial

Binding Converters, Listeners, and Validators to Managed Bean Properties

specialOfferText property of the cashier bean. If the application's locale is English,
the h:outputLabel tag renders:

I'd like to join the Duke Fan Club, free with my purchase of over $100

The rendered attributes of both tags are set to false, to prevent the check box and its
label from being rendered. If the customer makes a large order and clicks the Submit
button, the submit method of CashierBean sets both components' rendered properties
to true, causing the check box and its label to be rendered.

These tags use component bindings rather than value bindings, because the managed
bean must dynamically set the values of the components' rendered properties.

If the tags were to use value bindings instead of component bindings, the managed
bean would not have direct access to the components, and would therefore require
additional code to access the components from the FacesContext instance to change
the components' rendered properties.

Writing Properties Bound to Component Instances explains how to write the bean
properties bound to the example components.

15.13 Binding Converters, Listeners, and Validators to Managed Bean

Properties

As described in Adding Components to a Page Using HTML Tag Library Tags, a page
author can bind converter, listener, and validator implementations to managed bean
properties using the binding attributes of the tags that are used to register the
implementations on components.

This technique has similar advantages to binding component instances to managed
bean properties, as described in Binding Component Values and Instances to Managed
Bean Properties. In particular, binding a converter, listener, or validator
implementation to a managed bean property yields the following benefits:

s The managed bean can instantiate the implementation instead of allowing the
page author to do so.

s The managed bean can programmatically modify the attributes of the
implementation. In the case of a custom implementation, the only other way to
modify the attributes outside of the implementation class would be to create a
custom tag for it and require the page author to set the attribute values from the

page.
Whether you are binding a converter, listener, or validator to a managed bean
property, the process is the same for any of the implementations:

= Nest the converter, listener, or validator tag within an appropriate component tag.

= Make sure that the managed bean has a property that accepts and returns the
converter, listener, or validator implementation class that you want to bind to the

property.
= Reference the managed bean property using a value expression from the binding
attribute of the converter, listener, or validator tag.

For example, say that you want to bind the standard DateTime converter to a managed
bean property because you want to set the formatting pattern of the user's input in the
managed bean rather than on the Facelets page. First, the page registers the converter
onto the component by nesting the f:convertDateTime tag within the component tag.
Then, the page references the property with the binding attribute of the
f:convertDateTime tag:

Creating Custom Ul Components and Other Custom Objects 15-35

Binding Converters, Listeners, and Validators to Managed Bean Properties

<h:inputText value="#{loginBean.birthDate}">
<f:convertDateTime binding="#{loginBean.convertDate}" />
</h:inputText>

The convertDate property would look something like this:

private DateTimeConverter convertDate;
public DateTimeConverter getConvertDate() {

return convertDate;

}

public void setConvertDate (DateTimeConverter convertDate) {
convertDate.setPattern ("EEEEEEEE, MMM dd, yyyy");
this.convertDate = convertDate;

See Writing Properties Bound to Converters, Listeners, or Validators for more
information on writing managed bean properties for converter, listener, and validator
implementations.

15-36 The Java EE 7 Tutorial

16

Configuring JavaServer Faces Applications

The process of building and deploying simple JavaServer Faces applications is
described in earlier chapters of this tutorial. When you create large and complex
applications, however, various additional configuration tasks are required. These tasks
include the following:

Registering managed beans with the application so that all parts of the application
have access to them

Configuring managed beans and model beans so that they are instantiated with
the proper values when a page makes reference to them

Defining navigation rules for each of the pages in the application so that the
application has a smooth page flow, if non-default navigation is needed

Packaging the application to include all the pages, resources, and other files so that
the application can be deployed on any compliant container

The following topics are addressed here:

Using Annotations to Configure Managed Beans
Application Configuration Resource File

Using Faces Flows

Configuring Managed Beans

Registering Application Messages

Using Default Validators

Registering a Custom Validator

Registering a Custom Converter

Configuring Navigation Rules

Registering a Custom Renderer with a Render Kit
Registering a Custom Component

Basic Requirements of a JavaServer Faces Application

16.1 Using Annotations to Configure Managed Beans

JavaServer Faces support for bean annotations is introduced in Chapter 7, "JavaServer
Faces Technology". Bean annotations can be used for configuring JavaServer Faces
applications.

Configuring JavaServer Faces Applications 16-1

Using Annotations to Configure Managed Beans

The @Named (javax. inject .Named) annotation in a class, along with a scope
annotation, automatically registers that class as a resource with the JavaServer Faces
implementation. Such a registered managed bean does not need managed-bean
configuration entries in the application configuration resource file.

An example of using the @Named annotation in a class is as follows:

@Named
@SessionScoped
public class DukesBday({

}

The above code snippet shows a bean that is managed by the JavaServer Faces
implementation and is available for the length of the session. You do not need to
configure the managed bean instance in the faces-config.xml file. In effect, this is an
alternative to the application configuration resource file approach and reduces the task
of configuring managed beans.

You can also define the scope of the managed bean within the class file, as shown in
the above example. You can annotate beans with any of the scopes listed in the next
section, Using Managed Bean Scopes.

All classes will be scanned for annotations at startup unless the faces-config element
in the faces-config.xml file has the metadata-complete attribute set to true.

Annotations are also available for other artifacts, such as components, converters,
validators, and renderers, to be used in place of application configuration resource file
entries. These are discussed, along with registration of custom listeners, custom
validators, and custom converters, in Chapter 15, "Creating Custom UI Components
and Other Custom Objects".

16.1.1 Using Managed Bean Scopes

You can use annotations to define the scope in which the bean will be stored. You can
specify one of the following scopes for a bean class:

s Application (javax.enterprise.context.ApplicationScoped): Application scope
persists across all users' interactions with a web application.

m Session (javax.enterprise.context.SessionScoped): Session scope persists
across multiple HTTP requests in a web application.

s Flow (javax.faces.flows.FlowScoped): Flow scope persists during a user's
interaction with a specific flow of a web application. See Using Faces Flows for
more information.

s Request (javax.enterprise.context.RequestScoped): Request scope persists
during a single HTTP request in a web application.

s Dependent (javax.enterprise.context.Dependent): Indicates that the bean
depends on some other bean.

You may want to use @Dependent when a managed bean references another managed
bean. The second bean should not be in a scope (@Dependent) if it is supposed to be
created only when it is referenced. If you define a bean as @Dependent, the bean is
instantiated anew each time it is referenced, so it does not get saved in any scope.

If your managed bean is referenced by the binding attribute of a component tag, you
should define the bean with a request scope. If you placed the bean in session or
application scope instead, the bean would need to take precautions to ensure thread

16-2 The Java EE 7 Tutorial

Application Configuration Resource File

safety, because javax.faces.component.UIComponent instances each depend on
running inside of a single thread.

If you are configuring a bean that allows attributes to be associated with the view, you
can use the view scope. The attributes persist until the user has navigated to the next
view.

16.1.1.1 Eager Application-Scoped Beans

Managed beans are lazily instantiated. That is, that they are instantiated when a
request is made from the application.

To force an application-scoped bean to be instantiated and placed in the application
scope as soon as the application is started and before any request is made, the eager
attribute of the managed bean should be set to true as shown in the following
example:

@ManagedBean (eager=true)
@ApplicationScoped

16.2 Application Configuration Resource File

JavaServer Faces technology provides a portable configuration format (as an XML
document) for configuring application resources. One or more XML documents, called
application configuration resource files, may use this format to register and configure
objects and resources, and to define navigation rules for applications. An application
configuration resource file is usually named faces-config.xml.

You need an application configuration resource file in the following cases:

= To specify configuration elements for your application that are not available
through managed bean annotations, such as localized messages and navigation
rules

= To override managed bean annotations when the application is deployed

The application configuration resource file must be valid against the XML schema
located at http: //xmlns.jcp.org/xml/ns/javaee/web-facesconfig 2_
2.xsd.

In addition, each file must include the following information, in the following order:
s The XML version number, usually with an encoding attribute:

<?xml version="1.0" encoding='UTF-8'?>

= A faces-config tag enclosing all the other declarations:

<faces-config version="2.2" xmlns="http://xmlns.jcp.org/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee/web-facesconfig_2_2.xsd">

</faces-config>

You can have more than one application configuration resource file for an application.
The JavaServer Faces implementation finds the configuration file or files by looking for
the following:

= Aresource named /META-INF/faces-config.xml in any of the JAR files in the web
application's /WEB-INF/1lib/ directory and in parent class loaders. If a resource
with this name exists, it is loaded as a configuration resource. This method is

Configuring JavaServer Faces Applications 16-3

Application Configuration Resource File

practical for a packaged library containing some components and renderers. In
addition, any file with a name that ends in faces-config.xml is also considered a
configuration resource and is loaded as such.

= A context initialization parameter, javax. faces.application.CONFIG_FILES, in
your web deployment descriptor file that specifies one or more (comma-delimited)
paths to multiple configuration files for your web application. This method is most
often used for enterprise-scale applications that delegate to separate groups the
responsibility for maintaining the file for each portion of a big application.

= Aresource named faces-config.xml in the /WEB-INF/ directory of your
application. Simple web applications make their configuration files available in
this way.

To access the resources registered with the application, an application developer can
use an instance of the javax.faces.application.Application class, which is
automatically created for each application. The Application instance acts as a
centralized factory for resources that are defined in the XML file.

When an application starts up, the JavaServer Faces implementation creates a single
instance of the Application class and configures it with the information you provided
in the application configuration resource file.

16.2.1 Ordering of Application Configuration Resource Files

Because JavaServer Faces technology allows the use of multiple application
configuration resource files stored in different locations, the order in which they are
loaded by the implementation becomes important in certain situations (for example,
when using application-level objects). This order can be defined through an ordering
element and its subelements in the application configuration resource file itself. The
ordering of application configuration resource files can be absolute or relative.

Absolute ordering is defined by an absolute-ordering element in the file. With
absolute ordering, the user specifies the order in which application configuration
resource files will be loaded. The following example shows an entry for absolute
ordering:

File my-faces-config.xml:

<faces-config>
<name>myJSF</name>
<absolute-ordering>
<name>A</name>
<name>B</name>
<name>C</name>
</absolute-ordering>
</faces-config>

In this example, A, B, and C are different application configuration resource files and
are to be loaded in the listed order.

If there is an absolute-ordering element in the file, only the files listed by the
subelement name are processed. To process any other application configuration
resource files, an others subelement is required. In the absence of the others
subelement, all other unlisted files will be ignored at load time.

Relative ordering is defined by an ordering element and its subelements before and
after. With relative ordering, the order in which application configuration resource
files will be loaded is calculated by considering ordering entries from the different
files. The following example shows some of these considerations. In the following

16-4 The Java EE 7 Tutorial

Using Faces Flows

example, config-A, config-B, and config-C are different application configuration
resource files.

File config-A contains the following elements:

<faces-config>
<name>config-A</name>
<ordering>
<before>
<name>config-B</name>
</before>
</ordering>
</faces-config>

File config-B (not shown here) does not contain any ordering elements.
File config-C contains the following elements:

<faces-config>
<name>config-C</name>
<ordering>
<after>
<name>config-B</name>
</after>
</ordering>
</faces-config>

Based on the before subelement entry, file config-A will be loaded before the
config-B file. Based on the after subelement entry, file config-C will be loaded after
the config-B file.

In addition, a subelement others can also be nested within the before and after
subelements. If the others element is present, the specified file may receive highest or
lowest preference among both listed and unlisted configuration files.

If an ordering element is not present in an application configuration file, then that file
will be loaded after all the files that contain ordering elements.

16.3 Using Faces Flows

The Faces Flows feature of JavaServer Faces technology allows you to create a set of
pages with a scope, FlowScoped, that is greater than request scope but less than session
scope. For example, you might want to create a series of pages for the checkout process
in an online store. You could create a set of self-contained pages that could be
transferred from one store to another as needed.

Faces Flows are somewhat analogous to subroutines in procedural programming, in
the following ways:

= Like a subroutine, a flow has a well defined entry point, list of parameters, and
return value. However, unlike a subroutine, a flow can return multiple values.

= Like a subroutine, a flow has a scope, allowing information to be available only
during the invocation of the flow. Such information is not available outside the
scope of the flow and does not consume any resources once the flow returns.

= Like a subroutine, a flow may call other flows before returning. The invocation of
flows is maintained in a call stack: a new flow causes a push onto the stack and a
return causes a pop.

Configuring JavaServer Faces Applications 16-5

Using Faces Flows

An application can have any number of flows. Each flow includes a set of pages and,
usually, one or more managed beans scoped to that flow. Each flow has a starting
point, called a start node, and an exit point, called a return node.

The data in a flow is scoped to that flow alone, but you can pass data from one flow to
another by specifying parameters and calling the other flow.

Flows can be nested, so that if you call one flow from another and then exit the second
flow, you return to the calling flow rather than to the second flow's return node.

You can configure a flow programmatically, by creating a class annotated
@FlowDefinition, or you can configure a flow by using a configuration file. The
configuration file can be limited to one flow, or you can use the faces-config.xml file
to put all the flows in one place, if you have many flows in an application. The
programmatic configuration places the code closer to the rest of the flow code and
enables you to modularize the flows.

Figure 16-1 shows two flows and illustrates how they interact.

Figure 16-1 Two Faces Flows and their Interactions

Flow A

flow-a
- param1FromFlowB
- param2FromFlowB

Flow_a_Bean ‘
Start

flow-a <—>‘ next_ai <—>‘ next_a2

taskFlow
Returni

callB
- param1FromFlowA
- param2FromFlowA

Flow B
flow-b
- param1FromFlowA
- param2FromFlowA)
taskFlow
Flow_b_Bean ‘ Returni
Start

flow-b <—>| next_b1 <—>‘ next_b2

callA
- param1FromFlowB
- param2FromFlowB

In this figure, Flow A has a start node named flow-a and two additional pages, next_
al and next_a2. From next_a2, a user can either exit the flow using the defined return
node, taskFlowReturnl, or call Flow B, passing two parameters. Flow A also defines
two inbound parameters that it can accept from Flow B. Flow B is identical to Flow A
except for the names of the flow and files. Each flow also has an associated managed
bean; the beans are Flow_a_Bean and Flow_b_Bean.

16-6 The Java EE 7 Tutorial

Using Faces Flows

16.3.1

Packaging Flows in an Application

Typically, you package flows in a web application using a directory structure that
modularizes the flows. In the src/main/webapp directory of a Maven project, for
example, you would place the Facelets files that are outside the flow at the top level as
usual. Then the webapp files for each flow would be in a separate directory, while the
Java files are under src/main/java. For example, the files for the application shown in
Figure 16-1 might look like this:

src/main/webapp/
index.xhtml
return.xhtml
WEB_INF/
beans.xml
web.xml
flow-a/
flow-a.xhtml
next_al.xhtml
next_a2.xhtml
flow-b/
flow-b-flow.xml
next_bl.xhtml
next_b2.xhtml
src/main/java/javaeetutorial/flowexample
FlowA. java
Flow_a_Bean.java
Flow_b_Bean.java

In this example, f1low-a is defined programmatically in FlowA. java, while flow-b is
defined by the configuration file f1ow-b-flow.xml.

16.3.2 The Simplest Possible Flow: The simple-flow Example Application

The simple-flow example application demonstrates the most basic building blocks of
a Faces Flows application and illustrates some of the conventions that make it easy to
get started with iterative development using flows. You may want to start with a
simple example like this one and build upon it.

This example provides an implicit flow definition by including an empty
configuration file. A configuration file that has content, or a class annotated
@FlowDefinition, provides an explicit flow definition.

The file layout of the simple-flow example looks like this:

src/main/webapp

index.xhtml

simple-flow-return.xhtml

WEB_INF/
web.xml

simple-flow
simple-flow-flow.xml
simple-flow.xhtml
simple-flow-page2.xhtml

The simple-flow example has an empty configuration file, which is by convention
named flow-name-f1low.xnl. The flow does not require any configuration for the
following reasons:

» The flow does not call another flow, nor does it pass parameters to another flow.

Configuring JavaServer Faces Applications 16-7

Using Faces Flows

s The flow uses default names for the first page of the flow, flow-name.xhtml, and
the return page, flow-name-return.xhtml.

This example has only four Facelets pages:

= index.xhtml, the start page, which contains almost nothing but a button that
navigates to the first page of the flow:

<p><h:commandButton value="Enter Flow" action="simple-flow"/></p>

= simple-flow.xhtml and simple-flow-page2.xhtml, the two pages of the flow
itself. In the absence of an explicit flow definition, the page whose name is the
same as the name of the flow is assumed to be the start node of the flow. In this
case, the flow is named simple-£flow, so the page named simple-flow.xhtml is

assumed to be the start node of the flow. The start node is the node navigated to
upon entry into the flow. It can be thought of as the home page of the flow.

The simple-flow.xhtml page asks you to enter a flow-scoped value and provides
a button that navigates to the next page of the flow:

<p>Value: <h:inputText id="input" value="#{flowScope.value}" /></p>
<p><h:commandButton value="Next" action="simple-flow-page2" /></p>

The second page, which can have any name, displays the flow-scoped value and
provides a button that navigates to the return page:

<p>Value: #{flowScope.value}</p>
<p><h:commandButton value="Return" action="simple-flow-return" /></p>

= simple-flow-return.xhtml, the return page. The return page, which by
convention is named flow-name-return.xhtml, must be located outside of the flow.
This page displays the flow-scoped value, to show that it has no value outside of
the flow, and provides a link that navigates to the index.xhtml page:

<p>Value (should be empty):
"<h:outputText id="output" value="#{flowScope.value}" />"</p>

<p><h:1link outcome="index" value="Back to Start" /></p>

The Facelets pages use only flow-scoped data, so the example does not need a
managed bean.

16.3.2.1 To Build, Package, and Deploy the simple-flow Example Using NetBeans
IDE

1. From the File menu, choose Open Project.
2, In the Open Project dialog box, navigate to:

tut-install/examples/web/jst

3. Select the simple-flow folder.
4. Click Open Project.
5. In the Projects tab, right-click the simple-flow project and select Run.

This option builds and deploys the example application to your GlassFish Server
instance, then opens it in your default web browser.

16-8 The Java EE 7 Tutorial

Using Faces Flows

16.3.2.2 To Build, Package, and Deploy the simple-flow Example Using Maven and
the asadmin Command
1. Ina terminal window, go to:

tut-install/examples/web/jsf/simple-flow/

2. Enter the following command:
mvn install
This command builds and packages the application into a WAR file,

simple-flow.war, thatis located in the target directory. It then deploys the
application to the server.

16.3.2.3 To Run the simple-flow Example

1. Enter the following URL in your web browser:

http://localhost:8080/simple-flow

On the index.xhtml page, click Enter Flow.
On the first page of the flow, enter any string in the Value field, then click Next.

On the second page of the flow, you can see the value you entered. Click Return.

o ©Dbd

On the return page, an empty pair of quotation marks encloses the inaccessible
value. Click Back to Start to return to the index.xhtml page.

16.3.3 The checkout-module Example Application

The checkout-module example application is considerably more complex than
simple-flow. It shows how you might use the Faces Flows feature to implement a
checkout module for an online store.

Like the hypothetical example in Figure 16-1, the example application contains two
flows, each of which can call the other. Both flows have explicit flow definitions. One
flow, checkoutFlow, is specified programmatically. The other flow, joinFlow, is
specified in a configuration file.

For the checkout-module application, the directory structure is as follows (there is also
a src/main/webapp/resources directory with a stylesheet and an image):

src/main/webapp/
index.xhtml
exithome.xhtml
WEB_INF/
beans.xml
web . xml
checkoutFlow/
checkoutFlow.xhtml
checkoutFlow2.xhtml
checkoutFlow3.xhtml
checkoutFlow4 .xhtml
joinFlow/
joinFlow-flow.xml
joinFlow.xhtml
joinFlow2.xhtml
src/main/java/javaeetutorial/checkoutmodule
CheckoutBean. java
CheckoutFlow. java
CheckoutFlowBean. java

Configuring JavaServer Faces Applications 16-9

Using Faces Flows

JoinFlowBean. java

For the example, index.xhtmnl is the beginning page for the application as well as the
return node for the checkout flow. The exithome.xhtml page is the return node for the
join flow.

The configuration file joinFlow-flow.xml defines the join flow, while the source file
CheckoutFlow. java defines the checkout flow.

The checkout flow contains four Facelets pages, while the join flow contains two.

The managed beans scoped to each flow are CheckoutFlowBean.java and
JoinFlowBean.java, while CheckoutBean. java is the backing bean for the index.html

page.

16.3.3.1 The Facelets Pages for the checkout-module Example

The starting page for the example, index.xhtml, summarizes the contents of a
hypothetical shopping cart. It allows the user to click either of two buttons to enter one
of the two flows:

<p><h:commandButton value="Check Out" action="checkoutFlow"/></p>
<p><h:commandButton value="Join" action="joinFlow"/></p>

This page is also the return node for the checkout flow.

The Facelets page exithome.xhtml is the return node for the join flow. This page has a
button that allows you to return to the index.xhtml page.

The four Facelets pages within the checkout flow, starting with checkoutFlow.xhtml
and ending with checkoutFlow4.xhtml, allow you to proceed to the next page or, in
some cases, to return from the flow. The checkoutFlow.xhtml page allows you to
access parameters passed from the join flow through the flow scope. These appear as
empty quotation marks if you have not called the checkout flow from the join flow.

<p>If you called this flow from the Join flow, you can see these parameters:
"<h:outputText value="#{flowScope.paramlValue}"/>" and
"<h:outputText value="#{flowScope.param2Value}"/>"

</p>

Only checkoutFlow2.xhtml has a button to return to the previous page, but moving
between pages is generally permitted within flows. Here are the buttons for
checkoutFlow2.xhtml:

<p><h:commandButton value="Continue" action="checkoutFlow3"/></p>
<p><h:commandButton value="Go Back" action="checkoutFlow"/></p>
<p><h:commandButton value="Exit Flow" action="returnFromCheckoutFlow"/></p>

The action returnFromCheckoutFlow is defined in the configuration source code file,
CheckoutFlow. java.

The final page of the checkout flow, checkoutFlow4 .xhtml, contains a button that calls
the join flow:

<p><h:commandButton value="Join" action="calljoin"/></p>

<p><h:commandButton value="Exit Flow" action="returnFromCheckoutFlow"/></p>

The calljoin action is also defined in the configuration source code file,
CheckoutFlow. java. This action enters the join flow, passing two parameters from the
checkout flow.

16-10 The Java EE 7 Tutorial

Using Faces Flows

The two pages in the join flow, joinFlow.xhtml and joinFlow2.xhtml, are similar to
those in the checkout flow. The second page has a button to call the checkout flow as
well as one to return from the join flow:

<p><h:commandButton value="Check Out" action="callcheckoutFlow"/></p>
<p><h:commandButton value="Exit Flow" action="returnFromJoinFlow"/></p>

For this flow, the actions callcheckoutFlow and returnFromJoinFlow are defined in
the configuration file joinFlow-flow.xml.

16.3.3.2 Using a Configuration File to Configure a Flow

If you use an application configuration resource file to configure a flow, it must be
named flowName-flow.xml. In this example, the join flow uses a configuration file
named joinFlow-flow.xml. The file is a faces-config file that specifies a
flow-definition element. This element must define the flow name using the id
attribute. Under the flow-definition element there must be a flow-return element
that specifies the return point for the flow. Any inbound parameters are specified with
inbound-parameter elements. If the flow calls another flow, the call-flow element
must use the flow-reference element to name the called flow and may use the
outbound-parameter element to specify any outbound parameters.

The configuration file for the join flow looks like this:

<faces-config version="2.2" xmlns="http://xmlns.jcp.org/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://xmlns.jcp.org/xml/ns/javaee \
http://xmlns.jcp.org/xml/ns/javaee/web-facesconfig 2_2.xsd">

<flow-definition id="joinFlow">
<flow-return id="returnFromJoinFlow">
<from-outcome>#{joinFlowBean.returnValue}</from-outcome>
</flow-return>

<inbound-parameter>
<name>paramlFromCheckoutFlow</name>
<value>#{flowScope.paramlValue}</value>

</inbound-parameter>

<inbound-parameter>
<name>param2FromCheckoutFlow</name>
<value>#{flowScope.param2Value}</value>

</inbound-parameter>

<flow-call id="callcheckoutFlow">
<flow-reference>
<flow-id>checkoutFlow</flow-id>
</flow-reference>
<outbound-parameter>
<name>paramlFromJoinFlow</name>
<value>paraml joinFlow value</value>
</outbound-parameter>
<outbound-parameter>
<name>param2FromJoinFlow</name>
<value>param2 joinFlow value</value>
</outbound-parameter>
</flow-call>
</flow-definition>
</faces-config>

Configuring JavaServer Faces Applications 16-11

Using Faces Flows

The id attribute of the flow-definition element defines the name of the flow as
joinFlow. The value of the id attribute of the flow-return element identifies the name
of the return node, and its value is defined in the from-outcome element as the
returnValue property of the flow-scoped managed bean for the join flow,
JoinFlowBean.

The names and values of the inbound parameters are retrieved from the flow scope in
order (flowScope.paramlValue, flowScope.param2Value), based on the way they were
defined in the checkout flow configuration.

The flow-call element defines how the join flow calls the checkout flow. The id
attribute of the element, callcheckoutFlow, defines the action of calling the flow.
Within the flow-call element, the flow-reference element defines the actual name of
the flow to call, checkoutFlow. The outbound-parameter elements define the
parameters to be passed when checkoutFlow is called. Here they are just arbitrary
strings.

16.3.3.3 Using a Java Class to Configure a Flow

If you use a Java class to configure a flow, it must have the name of the flow. The class
for the checkout flow is called CheckoutFlow. java.

import java.io.Serializable;

import javax.enterprise.inject.Produces;

import javax.faces.flow.Flow;

import javax.faces.flow.builder.FlowBuilder;

import javax.faces.flow.builder.FlowBuilderParameter;
import javax.faces.flow.builder.FlowDefinition;

class CheckoutFlow implements Serializable {
private static final long serialVersionUID = 1L;

@Produces
@FlowDefinition
public Flow defineFlow(@FlowBuilderParameter FlowBuilder flowBuilder) ({

String flowId = "checkoutFlow";
flowBuilder.id("", flowId);
flowBuilder.viewNode (flowId,
"/ o+ flowId + "/" + flowId + ".xhtml").
markAsStartNode () ;

flowBuilder.returnNode ("returnFromCheckoutFlow") .
fromOutcome ("#{checkoutFlowBean.returnvValue}");

flowBuilder. inboundParameter ("paramlFromJoinFlow",
"#{flowScope.paramlValue}") ;

flowBuilder.inboundParameter ("param2FromJoinFlow",
"#{flowScope.param2Value}") ;

flowBuilder.flowCallNode("calljoin").flowReference("", "joinFlow").
outboundParameter ("paramlFromCheckoutFlow",
"#{checkoutFlowBean.name}") .
outboundParameter ("param2FromCheckoutFlow",
"#{checkoutFlowBean.city}");
return flowBuilder.getFlow();

16-12 The Java EE 7 Tutorial

Using Faces Flows

The class performs actions that are almost identical to those performed by the
configuration file joinFlow-flow.xml. It contains a single method, defineFlow, as a
producer method with the @FlowDefinition qualifier that returns a

javax.faces. flow.Flow class. The defineFlow method takes one parameter, a
FlowBuilder with the qualifier @FlowBuilderParameter, which is passed in from the
JavaServer Faces implementation. The method then calls methods from the
javax.faces.flow.Builder.FlowBuilder class to configure the flow.

First, the method defines the flow i1d as checkoutFlow. Then it explicitly defines the
start node for the flow. By default, this is the name of the flow with a . xhtml suffix.

The method then defines the return node similarly to the way the configuration file
does. The returnNode method sets the name of the return node as
returnFromCheckoutFlow, and the chained fromOutcome method specifies its value as
the returnvalue property of the flow-scoped managed bean for the checkout flow,
CheckoutFlowBean.

The inboundParameter method sets the names and values of the inbound parameters
from the join flow, which are retrieved from the flow scope in order
(flowScope.paramlValue, flowScope.param2Value), based on the way they were
defined in the join flow configuration.

The flowCallNode method defines how the checkout flow calls the join flow. The
argument, calljoin, specifies the action of calling the flow. The chained
flowReference method defines the actual name of the flow to call, joinFlow, then calls
outboundParameter methods to define the parameters to be passed when joinFlow is
called. Here they are values from the CheckoutFlowBean managed bean.

Finally, the defineFlow method calls the getFlow method and returns the result.

16.3.3.4 The Flow-Scoped Managed Beans

Each of the two flows has a managed bean that defines properties for the pages within
the flow. For example, the CheckoutFlowBean defines properties whose values are
entered by the user on both the checkoutFlow.xhtml page and the
checkoutFlow3.xhtml page.

Each managed bean has a getReturnvalue method that sets the value of the return
node. For the CheckoutFlowBean, the return node is the index.xhtml page, specified
using implicit navigation:

public String getReturnValue() {
return "index";

}

For the JoinFlowBean, the return node is the exithome.xhtml page.

16.3.3.5 To Build, Package, and Deploy the checkout-module Example Using
NetBeans IDE

1. From the File menu, choose Open Project.
2. In the Open Project dialog box, navigate to:

tut-install/examples/web/jst

3. Select the checkout-module folder.
4. Click Open Project.
5. In the Projects tab, right-click the checkout-module project and select Run.

Configuring JavaServer Faces Applications 16-13

Configuring Managed Beans

This option builds and deploys the example application to your GlassFish Server
instance, then opens it in your default web browser.

16.3.3.6 To Build, Package, and Deploy the checkout-module Example Using Maven
and the asadmin Command
1. In a terminal window, go to:

tut-install/examples/web/jsf/checkout-module/

2. Enter the following command:

mvn install

This command builds and packages the application into a WAR file,
checkout-module.war, that is located in the target directory. It then deploys the
application to the server.

16.3.3.7 To Run the checkout-module Example

1. Enter the following URL in your web browser:

http://localhost:8080/checkout-module

2. The index.xhtml page presents hypothetical results of the shopping expedition.
Click either Check Out or Join to enter one of the two flows.

3. Follow the flow, providing input as needed and choosing whether to continue, go
back, or exit the flow.

In the checkout flow, only one of the input fields is validated (the credit card field
expects 16 digits), so you can enter any values you like. The join flow does not
require you to check any boxes in its checkbox menus.

4. On the last page of a flow, select the option to enter the other flow. This allows you
to view the inbound parameters from the previous flow.

5. Because flows are nested, if you click Exit Flow from a called flow, you will return
to the first page of the calling flow. (You may see a warning, which you can
ignore.) Click Exit Flow on that page to go to the specified return node.

16.4 Configuring Managed Beans

When a page references a managed bean for the first time, the JavaServer Faces
implementation initializes it either based on a @Named annotation and scope annotation
in the bean class or according to its configuration in the application configuration
resource file. For information on using annotations to initialize beans, see Using
Annotations to Configure Managed Beans.

You can use either annotations or the application configuration resource file to
instantiate managed beans that are used in a JavaServer Faces application and to store
them in scope. The managed bean creation facility is configured in the application
configuration resource file using managed-bean XML elements to define each bean.
This file is processed at application startup time. For information on using this facility,
see Using the managed-bean Element.

Managed beans created in the application configuration resource file are JavaServer
Faces managed beans, not CDI managed beans.

With the managed bean creation facility, you can:

16-14 The Java EE 7 Tutorial

Configuring Managed Beans

s Create beans in one centralized file that is available to the entire application, rather
than conditionally instantiate beans throughout the application

s Customize a bean's properties without any additional code

= Customize a bean's property values directly from within the configuration file so
that it is initialized with these values when it is created

= Using value elements, set a property of one managed bean to be the result of
evaluating another value expression

This section shows you how to initialize beans using the managed bean creation
facility. See Writing Bean Properties and Writing Managed Bean Methods for
information on programming managed beans.

16.4.1 Using the managed-bean Element

A managed bean is initiated in the application configuration resource file using a
managed-bean element, which represents an instance of a bean class that must exist in
the application. At runtime, the JavaServer Faces implementation processes the
managed-bean element. If a page references the bean, and if no bean instance exists, the
JavaServer Faces implementation instantiates the bean as specified by the element
configuration.

Here is an example managed bean configuration from the Duke's Bookstore case
study:

<managed-bean eager="true">
<managed-bean-name>Book201</managed-bean-name>
<managed-bean-class>dukesbookstore.model . ImageArea</managed-bean-class>
<managed-bean-scope>application</managed-bean-scope>
<managed-property>
<property-name>shape</property-name>
<value>rect</value>
</managed-property>
<managed-property>
<property-name>alt</property-name>
<value>Duke</value>
</managed-property>
<managed-property>
<property-name>coords</property-name>
<value>67,23,212,268</value>
</managed-property>
</managed-bean>

Using NetBeans IDE, you can add a managed bean declaration by doing the following:

1. After opening your project in NetBeans IDE, expand the project node in the
Projects tab.

2. Expand the Web Pages and WEB-INF nodes of the project node.
3. If thereisno faces-config.xml in the project, create one as follows:
a. From the File menu, select New File.

b. Inthe New File wizard, select the JavaServer Faces category, then select JSF
Faces Configuration and click Next.

¢. On the Name and Location page, change the name and location of the file if
necessary. The default file name is faces-config.xml.

d. Click Finish.

Configuring JavaServer Faces Applications 16-15

Configuring Managed Beans

4. Double-click faces-config.xml if the file is not already open.

5. After faces-config.xml opens in the editor window, select XML from the sub-tab
options.

6. Right-click in the editor window.

7. From the Insert menu, select Managed Bean.

8. Inthe Add Managed Bean dialog box:
a. Enter the display name of the bean in the Bean Name field.
b. Click Browse to locate the bean's class.

9. In the Browse Class dialog box:

a. Start typing the name of the class you are looking for in the Class Name field.
While you are typing, the dialog box will show the matching classes.

b. Select the class from the Matching Classes list.
c. Click OK.

10. In the Add Managed Bean dialog box:
a. Select the bean's scope from the Scope menu.
b. Click Add.

The preceding steps will add the managed-bean element and three elements inside of
that element: a managed-bean-name element, a managed-bean-class element, and a
managed-bean-scope element. You will need to edit the XML of the configuration file
directly to further configure this managed bean.

The managed-bean-name element defines the key under which the bean will be stored
in a scope. For a component's value to map to this bean, the component tag's value
attribute must match the managed-bean-name up to the first period.

The managed-bean-class element defines the fully qualified name of the JavaBeans
component class used to instantiate the bean.

The managed-bean element can contain zero or more managed-property elements, each
corresponding to a property defined in the bean class. These elements are used to
initialize the values of the bean properties. If you don't want a particular property
initialized with a value when the bean is instantiated, do not include a
managed-property definition for it in your application configuration resource file.

If a managed-bean element does not contain other managed-bean elements, it can
contain one map-entries element or list-entries element. The map-entries element
configures a set of beans that are instances of Map. The 1ist-entries element
configures a set of beans that are instances of List.

In the following example, the newsletters managed bean, representing a
UISelectItems component, is configured as an ArrayList that represents a set of
SelectItem objects. Each SelectItem object is in turn configured as a managed bean
with properties:

<managed-bean>
<managed-bean-name>newsletters</managed-bean-name>
<managed-bean-class>java.util.ArrayList</managed-bean-class>
<managed-bean-scope>application</managed-bean-scope>
<list-entries>
<value-class>javax.faces.model.SelectItem</value-class>
<value>#{newsletter0}</value>
<value>#{newsletterl}</value>

16-16 The Java EE 7 Tutorial

Configuring Managed Beans

<value>#{newsletter2}</value>
<value>#{newsletter3}</value>
</list-entries>
</managed-bean>
<managed-bean>
<managed-bean-name>newsletter(</managed-bean-name>
<managed-bean-class>javax.faces.model.SelectItem</managed-bean-class>
<managed-bean-scope>none</managed-bean-scope>
<managed-property>
<property-name>label</property-name>
<value>Duke's Quarterly</value>
</managed-property>
<managed-property>
<property-name>value</property-name>
<value>200</value>
</managed-property>
</managed-bean>

This approach may be useful for quick-and-dirty creation of selection item lists, before
a development team has had time to create such lists from the database. Note that each
of the individual newsletter beans has a managed-bean-scope setting of none, so that
they will not themselves be placed into any scope.

See Initializing Array and List Properties for more information on configuring
collections as beans.

To map to a property defined by a managed-property element, you must ensure that
the part of a component tag's value expression after the period matches the
managed-property element's property-name element. In the earlier example, the
maximum property is initialized with the value 10. The next section, Initializing
Properties Using the managed-property Element, explains in more detail how to use
the managed-property element. See Initializing Managed Bean Properties for an
example of initializing a managed bean property.

16.4.2 Initializing Properties Using the managed-property Element

A managed-property element must contain a property-name element, which must
match the name of the corresponding property in the bean. A managed-property
element must also contain one of a set of elements that defines the value of the
property. This value must be of the same type as that defined for the property in the
corresponding bean. Which element you use to define the value depends on the type
of the property defined in the bean. Table 16-1 lists all the elements that are used to
initialize a value.

Table 16-1 Sub-elements of managed-property Elements That Define Property Values

Element Value It Defines

list-entries Defines the values in a list

map-entries Defines the values of a map

null-value Explicitly sets the property to null

value Defines a single value, such as a String, int, or JavaServer Faces EL
expression

Using the managed-bean Element includes an example of initializing an int property
(a primitive type) using the value subelement. You also use the value subelement to
initialize String and other reference types. The rest of this section describes how to

Configuring JavaServer Faces Applications 16-17

Configuring Managed Beans

use the value subelement and other subelements to initialize properties of Java Enum
types, Map, array, and Collection, as well as initialization parameters.

16.4.2.1 Referencing a Java Enum Type

A managed bean property can also be a Java Enum type (see
http://docs.oracle.com/javase/7/docs/api/java/lang/Enum.html). In
this case, the value element of the managed-property element must be a String that
matches one of the String constants of the Enum. In other words, the String must be
one of the valid values that can be returned if you were to call value0f (Class,
String) on enum, where Class is the Enum class and String is the contents of the value
subelement. For example, suppose the managed bean property is the following:

public enum Suit { Hearts, Spades, Diamonds, Clubs}
public Suit getSuit() { ... return Suit.Hearts; }

Assuming you want to configure this property in the application configuration
resource file, the corresponding managed-property element looks like this:

<managed-property>
<property-name>Suit</property-name>
<value>Hearts</value>
</managed-property>

When the system encounters this property, it iterates over each of the members of the
enum and calls toString () on each member until it finds one that is exactly equal to
the value from the value element.

16.4.2.2 Referencing a Context Initialization Parameter

Another powerful feature of the managed bean creation facility is the ability to
reference implicit objects from a managed bean property.

Suppose you have a page that accepts data from a customer, including the customer's
address. Suppose also that most of your customers live in a particular area code. You
can make the area code component render this area code by saving it in an implicit
object and referencing it when the page is rendered.

You can save the area code as an initial default value in the context initParam implicit
object by adding a context parameter to your web application and setting its value in
the deployment descriptor. For example, to set a context parameter called
defaultAreaCode to 650, add a context-param element to the deployment descriptor,
and give the parameter the name defaultAreaCode and the value 650.

Next, you write a managed-bean declaration that configures a property that references
the parameter:

<managed-bean>
<managed-bean-name>customer</managed-bean-name>

<managed-bean-class>CustomerBean</managed-bean-class>

<managed-bean-scope>request</managed-bean-scope>

<managed-property>
<property-name>areaCode</property-name>

<value>#{initParam.defaultAreaCode}</value>

</managed-property>

</managed-bean>

To access the area code at the time the page is rendered, refer to the property from the
area component tag's value attribute:

16-18 The Java EE 7 Tutorial

Configuring Managed Beans

<h:inputText id=area value="#{customer.areaCode}"

Values are retrieved from other implicit objects in a similar way.

16.4.2.3 Initializing Map Properties

The map-entries element is used to initialize the values of a bean property with a type
of Map if the map-entries element is used within a managed-property element. A
map-entries element contains an optional key-class element, an optional
value-class element, and zero or more map-entry elements.

Each of the map-entry elements must contain a key element and either a null-value or
value element. Here is an example that uses the map-entries element:

<managed-bean>

<managed-property>
<property-name>prices</property-name>
<map-entries>
<map-entry>
<key>My Early Years: Growing Up on *7</key>
<value>30.75</value>
</map-entry>
<map-entry>
<key>Web Servers for Fun and Profit</key>
<value>40.75</value>
</map-entry>
</map-entries>
</managed-property>
</managed-bean>

The map created from this map-entries tag contains two entries. By default, all the
keys and values are converted to String. If you want to specify a different type for the
keys in the map, embed the key-class element just inside the map-entries element:

<map-entries>
<key-class>java.math.BigDecimal</key-class>

</map-entries>

This declaration will convert all the keys into java.math.BigDecimal. Of course, you
must make sure the keys can be converted to the type you specify. The key from the
example in this section cannot be converted to a BigDecimal, because it is a String.

If you want to specify a different type for all the values in the map, include the
value-class element after the key-class element:

<map-entries>
<key-class>int</key-class>
<value-class>java.math.BigDecimal</value-class>

</map-entries>

Note that this tag sets only the type of all the value subelements.

Each map-entry in the preceding example includes a value subelement. The value
subelement defines a single value, which will be converted to the type specified in the
bean.

Instead of using a map-entries element, it is also possible to assign the entire map
using a value element that specifies a map-typed expression.

Configuring JavaServer Faces Applications 16-19

Configuring Managed Beans

16.4.2.4 Initializing Array and List Properties

The list-entries element is used to initialize the values of an array or List property.
Each individual value of the array or List is initialized using a value or null-value
element. Here is an example:

<managed-bean>

<managed-property>
<property-name>books</property-name>
<list-entries>
<value-class>java.lang.String</value-class>
<value>Web Servers for Fun and Profit</value>
<value>#{myBooks.bookId[3]}</value>
<null-value/>
</list-entries>
</managed-property>
</managed-bean>

This example initializes an array or a List. The type of the corresponding property in
the bean determines which data structure is created. The list-entries element
defines the list of values in the array or List. The value element specifies a single
value in the array or List and can reference a property in another bean. The
null-value element will cause the setBooks method to be called with an argument of
null. A null property cannot be specified for a property whose data type is a Java
primitive, such as int or boolean.

16.4.2.5 Initializing Managed Bean Properties

Sometimes you might want to create a bean that also references other managed beans
so you can construct a graph or a tree of beans. For example, suppose you want to
create a bean representing a customer's information, including the mailing address
and street address, each of which is also a bean. The following managed-bean
declarations create a CustomerBean instance that has two AddressBean properties: one
representing the mailing address, and the other representing the street address. This
declaration results in a tree of beans with CustomerBean as its root and the two
AddressBean objects as children.

<managed-bean>
<managed-bean-name>customer</managed-bean-name>
<managed-bean-class>
com.example.mybeans.CustomerBean
</managed-bean-class>
<managed-bean-scope> request </managed-bean-scope>
<managed-property>
<property-name>mailingAddress</property-name>
<value>#{addressBean}</value>
</managed-property>
<managed-property>
<property-name>streetAddress</property-name>
<value>#{addressBean}</value>
</managed-property>
<managed-property>
<property-name>customerType</property-name>
<value>New</value>
</managed-property>
</managed-bean>
<managed-bean>
<managed-bean-name>addressBean</managed-bean-name>
<managed-bean-class>

16-20 The Java EE 7 Tutorial

Registering Application Messages

com.example.mybeans.AddressBean
</managed-bean-class>
<managed-bean-scope> none </managed-bean-scope>
<managed-property>
<property-name>street</property-name>
<null-value/>
<managed-property>

</managed-bean>

The first CustomerBean declaration (with the managed-bean-name of customer) creates
a CustomerBean in request scope. This bean has two properties, mailingAddress and
streetAddress. These properties use the value element to reference a bean named
addressBean.

The second managed bean declaration defines an AddressBean, but does not create it,
because its managed-bean-scope element defines a scope of none. Recall that a scope of
none means that the bean is created only when something else references it. Because
both the mailingAddress and the streetAddress properties reference addressBean
using the value element, two instances of AddressBean are created when
CustomerBean is created.

When you create an object that points to other objects, do not try to point to an object
with a shorter life span, because it might be impossible to recover that scope's
resources when it goes away. A session-scoped object, for example, cannot point to a
request-scoped object. And objects with none scope have no effective life span
managed by the framework, so they can point only to other none-scoped objects.
Table 16-2 outlines all of the allowed connections.

Table 16-2 Allowable Connections Between Scoped Objects
An Object of This

Scope May Point to an Object of This Scope
none none

application none, application

session none, application, session

request none, application, session, request,view
view none, application, session, view

Be sure not to allow cyclical references between objects. For example, neither of the
AddressBean objects in the preceding example should point back to the CustomerBean
object, because CustomerBean already points to the AddressBean objects.

16.4.3 Initializing Maps and Lists

In addition to configuring Map and List properties, you can also configure a Map and a
List directly so that you can reference them from a tag rather than referencing a
property that wraps a Map or a List.

16.5 Registering Application Messages

Application messages can include any strings displayed to the user, as well as custom
error messages (which are displayed by the message and messages tags) for your
custom converters or validators. To make messages available at application startup
time, do one of the following:

Configuring JavaServer Faces Applications 16-21

Registering Application Messages

= Queue an individual message onto the javax. faces.context.FacesContext
instance programmatically, as described in Using FacesMessage to Create a
Message

= Register all the messages with your application using the application
configuration resource file

Here is the section of the faces-config.xml file that registers the messages for the
Duke's Bookstore case study application:

<application>
<resource-bundle>
<base-name>dukesbookstore.web.messages.Messages</base-name>
<var>bundle</var>
</resource-bundle>
<locale-config>
<default-locale>en</default-locale>
<supported-locale>es</supported-locale>
<supported-locale>de</supported-locale>
<supported-locale>fr</supported-locale>
</locale-config>
</application>

This set of elements causes the application to be populated with the messages that are
contained in the specified resource bundle.

The resource-bundle element represents a set of localized messages. It must contain
the fully qualified path to the resource bundle containing the localized messages (in
this case, dukesbookstore.web.messages.Messages). The var element defines the EL
name by which page authors refer to the resource bundle.

The locale-config element lists the default locale and the other supported locales.
The locale-config element enables the system to find the correct locale based on the
browser's language settings.

The supported-locale and default-locale tags accept the lowercase, two-character
codes defined by ISO 639-1 (see
http://www.loc.gov/standards/iso639-2/php/English_list.php). Make
sure your resource bundle actually contains the messages for the locales you specify
with these tags.

To access the localized message, the application developer merely references the key of
the message from the resource bundle.

You can pull localized text into an alt tag for a graphic image, as in the following
example:

<h:graphicImage id="mapImage"
name="book_all.jpg"
library="images"
alt="#{bundle.ChooseBook}"
usemap="#bookMap" />

The alt attribute can accept value expressions. In this case, the alt attribute refers to
localized text that will be included in the alternative text of the image rendered by this

tag.

16-22 The Java EE 7 Tutorial

Registering Application Messages

16.5.1

Using FacesMessage to Create a Message

Instead of registering messages in the application configuration resource file, you can
access the java.util.ResourceBundle directly from managed bean code. The code
snippet below locates an email error message:

String message = "";

message = ExampleBean.loadErrorMessage (context,
ExampleBean.EX_RESOURCE_BUNDLE_NAME,
"EMailError");
context.addMessage (tovalidate.getClientId (context),
new FacesMessage (message)) ;

These lines call the bean's loadErrorMessage method to get the message from the
ResourceBundle. Here is the loadErrorMessage method:

public static String loadErrorMessage (FacesContext context,
String basename, String key) {
if (bundle == null) {
try {
bundle = ResourceBundle.getBundle (basename,
context.getViewRoot () .getLocale()) ;
} catch (Exception e) ({
return null;
}
}
return bundle.getString (key) ;

16.5.2 Referencing Error Messages

A JavaServer Faces page uses the message or messages tags to access error messages,
as explained in Displaying Error Messages with the h:message and h:messages Tags.

The error messages these tags access include:

» The standard error messages that accompany the standard converters and
validators that ship with the API. See Section 2.5.2.4 of the JavaServer Faces
specification for a complete list of standard error messages.

s Custom error messages contained in resource bundles registered with the
application by the application architect using the resource-bundle element in the
configuration file.

When a converter or validator is registered on an input component, the appropriate
error message is automatically queued on the component.

A page author can override the error messages queued on a component by using the
following attributes of the component's tag:

» converterMessage: References the error message to display when the data on the
enclosing component can not be converted by the converter registered on this
component.

= requiredMessage: References the error message to display when no value has been
entered into the enclosing component.

= validatorMessage: References the error message to display when the data on the
enclosing component cannot be validated by the validator registered on this
component.

Configuring JavaServer Faces Applications 16-23

Using Default Validators

All three attributes are enabled to take literal values and value expressions. If an
attribute uses a value expression, this expression references the error message in a
resource bundle. This resource bundle must be made available to the application in
one of the following ways:

= By the application architect using the resource-bundle element in the
configuration file

= By the page author using the f:loadBundle tag

Conversely, the resource-bundle element must be used to make available to the
application those resource bundles containing custom error messages that are queued
on the component as a result of a custom converter or validator being registered on the
component.

The following tags show how to specify the requiredMessage attribute using a value
expression to reference an error message:

<h:inputText id="ccno" size="19"
required="true"
requiredMessage="+#{customMessages.RegMessage} ">

</h:inputText>
<h:message styleClass="error-message" for="ccno"/>

The value expression used by requiredMessage in this example references the error
message with the ReqMessage key in the resource bundle, customMessages.

This message replaces the corresponding message queued on the component and will
display wherever the message or messages tag is placed on the page.

16.6 Using Default Validators

In addition to the validators you declare on the components, you can also specify zero
or more default validators in the application configuration resource file. The default
validator applies to all javax. faces.component.UIInput instances in a view or
component tree and is appended after the local defined validators. Here is an example
of a default validator registered in the application configuration resource file:

<faces-config>
<application>
<default-validators>
<validator-id>javax.faces.Bean</validator-id>
</default-validators>
<application/>
</faces-config>

16.7 Registering a Custom Validator

If the application developer provides an implementation of the
javax.faces.validator.Validator interface to perform validation, you must register
this custom validator either by using the @FacesValidator annotation, as described in
Implementing the Validator Interface, or or by using the validator XML element in
the application configuration resource file:

<validator>
<validator-id>FormatValidator</validator-id>

<validator-class>
myapplication.validators.FormatValidator

16-24 The Java EE 7 Tutorial

Registering a Custom Converter

</validator-class>
<attribute>

<attribute-name>formatPatterns</attribute-name>
<attribute-class>java.lang.String</attribute-class>
</attribute>
</validator>

Attributes specified in a validator tag override any settings in the @FacesValidator
annotation.

The validator-id and validator-class elements are required subelements. The
validator-id element represents the identifier under which the Validator class
should be registered. This ID is used by the tag class corresponding to the custom
validator tag.

The validator-class element represents the fully qualified class name of the
Validator class.

The attribute element identifies an attribute associated with the validator
implementation. It has required attribute-name and attribute-class subelements.
The attribute-name element refers to the name of the attribute as it appears in the
validator tag. The attribute-class element identifies the Java type of the value
associated with the attribute.

Creating and Using a Custom Validator explains how to implement the Validator
interface.

Using a Custom Validator explains how to reference the validator from the page.

16.8 Registering a Custom Converter

As is the case with a custom validator, if the application developer creates a custom
converter, you must register it with the application either by using the
@FacesConverter annotation, as described in Creating a Custom Converter, or by
using the converter XML element in the application configuration resource file. Here
is a hypothetical converter configuration for CreditCardConverter from the Duke's
Bookstore case study:

<converter>
<description>
Converter for credit card numbers that normalizes
the input to a standard format
</description>
<converter-id>CreditCardConverter</converter-id>
<converter-class>
dukesbookstore.converters.CreditCardConverter
</converter-class>
</converter>

Attributes specified in a converter tag override any settings in the @FacesConverter
annotation.

The converter element represents a javax. faces.convert.Converter implementation
and contains required converter-id and converter-class elements.

The converter-id element identifies an ID that is used by the converter attribute of a
UI component tag to apply the converter to the component's data. Using a Custom
Converter includes an example of referencing the custom converter from a component
tag.

Configuring JavaServer Faces Applications 16-25

Configuring Navigation Rules

The converter-class element identifies the Converter implementation.

Creating and Using a Custom Converter explains how to create a custom converter.

16.9 Configuring Navigation Rules

Navigation between different pages of a JavaServer Faces application, such as
choosing the next page to be displayed after a button or link component is clicked, is
defined by a set of rules. Navigation rules can be implicit, or they can be explicitly
defined in the application configuration resource file. For more information on implicit
navigation rules, see Navigation Model.

Each navigation rule specifies how to navigate from one page to another page or set of
pages. The JavaServer Faces implementation chooses the proper navigation rule
according to which page is currently displayed.

After the proper navigation rule is selected, the choice of which page to access next
from the current page depends on two factors:

s The action method invoked when the component was clicked

s The logical outcome referenced by the component's tag or returned from the action
method

The outcome can be anything the developer chooses, but Table 16-3 lists some
outcomes commonly used in web applications.

Table 16-3 Common Outcome Strings

Outcome What It Means

success Everything worked. Go on to the next page.

failure Something is wrong. Go on to an error page.

login The user needs to log in first. Go on to the login page.

no results The search did not find anything. Go to the search page again.

Usually, the action method performs some processing on the form data of the current
page. For example, the method might check whether the user name and password
entered in the form match the user name and password on file. If they match, the
method returns the outcome success. Otherwise, it returns the outcome failure. As
this example demonstrates, both the method used to process the action and the
outcome returned are necessary to determine the correct page to access.

Here is a navigation rule that could be used with the example just described:

<navigation-rule>
<from-view-id>/login.xhtml</from-view-id>
<navigation-case>
<from-action>#{LoginForm.login}</from-action>
<from-outcome>success</from-outcome>
<to-view-id>/storefront.xhtml</to-view-id>
</navigation-case>
<navigation-case>
<from-action>#{LoginForm.logon}</from-action>
<from-outcome>failure</from-outcome>
<to-view-id>/logon.xhtml</to-view-id>
</navigation-case>
</navigation-rule>

16-26 The Java EE 7 Tutorial

Configuring Navigation Rules

This navigation rule defines the possible ways to navigate from login.xhtml. Each
navigation-case element defines one possible navigation path from login.xhtml. The
first navigation-case says that if LoginForm. login returns an outcome of success,
then storefront.xhtml will be accessed. The second navigation-case says that
login.xhtml will be re-rendered if LoginForm.login returns failure.

The configuration of an application's page flow consists of a set of navigation rules.
Each rule is defined by the navigation-rule element in the faces-config.xml file.

Each navigation-rule element corresponds to one component tree identifier defined
by the optional from-view-1id element. This means that each rule defines all the
possible ways to navigate from one particular page in the application. If there is no
from-view-id element, the navigation rules defined in the navigation-rule element
apply to all the pages in the application. The from-view-id element also allows
wildcard matching patterns. For example, this from-view-id element says that the
navigation rule applies to all the pages in the books directory:

<from-view-id>/books/*</from-view-id>

A navigation-rule element can contain zero or more navigation-case elements. The
navigation-case element defines a set of matching criteria. When these criteria are
satisfied, the application will navigate to the page defined by the to-view-id element
contained in the same navigation-case element.

The navigation criteria are defined by optional from-outcome and from-action
elements. The from-outcome element defines a logical outcome, such as success. The
from-action element uses a method expression to refer to an action method that
returns a String, which is the logical outcome. The method performs some logic to
determine the outcome and returns the outcome.

The navigation-case elements are checked against the outcome and the method
expression in this order:

1. Cases specifying both a from-outcome value and a from-action value. Both of
these elements can be used if the action method returns different outcomes
depending on the result of the processing it performs.

2. Cases specifying only a from-outcome value. The from-outcome element must
match either the outcome defined by the action attribute of the
javax.faces.component.UICommand component or the outcome returned by the
method referred to by the UICommand component.

3. Cases specifying only a from-action value. This value must match the action
expression specified by the component tag.

When any of these cases is matched, the component tree defined by the to-view-id
element will be selected for rendering.

16.9.1 To Configure a Navigation Rule

Using NetBeans IDE, you can configure a navigation rule by doing the following:

1. After opening your project in NetBeans IDE, expand the project node in the
Projects tab.

2. Expand the Web Pages and WEB-INF nodes of the project node.
3. Double-click faces-config.xml.

4. After faces-config.xml opens in the editor window, right-click in the editor
window.

Configuring JavaServer Faces Applications 16-27

Registering a Custom Renderer with a Render Kit

5.
6.

From the Insert menu, select Navigation Rule.

In the Add Navigation Rule dialog box:

a.

b.

Enter or browse for the page that represents the starting view for this
navigation rule.

Click Add.

Right-click again in the editor window.

From the Insert menu, select Navigation Case.

In the Add Navigation Case dialog box:

a.

e.

From the From View menu, select the page that represents the starting view
for the navigation rule (from Step 6a).

(optional) In the From Action field, enter the action method invoked when the
component that triggered navigation is activated.

(optional) In the From Outcome field, enter the logical outcome string that the
activated component references from its action attribute.

From the To View menu, select or browse for the page that will be opened if
this navigation case is selected by the navigation system.

Click Add.

Referencing a Method That Performs Navigation explains how to use a component
tag's action attribute to point to an action method. Writing a Method to Handle
Navigation explains how to write an action method.

16.10 Registering a Custom Renderer with a Render Kit

When the application developer creates a custom renderer, as described in Delegating
Rendering to a Renderer, you must register it using the appropriate render kit. Because
the image map application implements an HTML image map, the AreaRenderer and
MapRenderer classes in the Duke's Bookstore case study should be registered using the
HTML render kit.

You register the renderer either by using the @FacesRenderer annotation, as described
in Creating the Renderer Class, or by using the render-kit element of the application
configuration resource file. Here is a hypothetical configuration of AreaRenderer:

<render-kit>
<renderer>

<component-family>Area</component-family>
<renderer-type>DemoArea</renderer-type>
<renderer-class>
dukesbookstore.renderers.AreaRenderer
</renderer-class>
<attribute>
<attribute-name>onmouseout</attribute-name>
<attribute-class>java.lang.String</attribute-class>
</attribute>
<attribute>
<attribute-name>onmouseover</attribute-name>
<attribute-class>java.lang.String</attribute-class>
</attribute>
<attribute>
<attribute-name>styleClass</attribute-name>
<attribute-class>java.lang.String</attribute-class>

16-28 The Java EE 7 Tutorial

Registering a Custom Renderer with a Render Kit

</attribute>
</renderer>

Attributes specified in a renderer tag override any settings in the @FacesRenderer
annotation.

The render-kit element represents a javax.faces.render.RenderKit implementation. If
no render-kit-idis specified, the default HTML render kit is assumed. The renderer
element represents a javax. faces.render.Renderer implementation. By nesting the
renderer element inside the render-kit element, you are registering the renderer with
the RenderKit implementation associated with the render-kit element.

The renderer-class is the fully qualified class name of the Renderer.

The component-family and renderer-type elements are used by a component to find
renderers that can render it. The component-family identifier must match that
returned by the component class's getFamily method. The component family
represents a component or set of components that a particular renderer can render. The
renderer-type must match that returned by the getRendererType method of the tag
handler class.

By using the component family and renderer type to look up renderers for
components, the JavaServer Faces implementation allows a component to be rendered
by multiple renderers and allows a renderer to render multiple components.

Each of the attribute tags specifies a render-dependent attribute and its type. The
attribute element doesn't affect the runtime execution of your application. Rather, it
provides information to tools about the attributes the Renderer supports.

The object responsible for rendering a component (be it the component itself or a
renderer to which the component delegates the rendering) can use facets to aid in the
rendering process. These facets allow the custom component developer to control
some aspects of rendering the component. Consider this custom component tag
example:

<d:dataScroller>
<f:facet name="header">
<h:panelGroup>
<h:outputText value="Account Id"/>
<h:outputText value="Customer Name"/>
<h:outputText value="Total Sales"/>
</h:panelGroup>
</f:facet>
<f:facet name="next">
<h:panelGroup>
<h:outputText value="Next"/>
<h:graphicImage url="/images/arrow-right.gif" />
</h:panelGroup>
</f:facet>

</d:dataScroller>

The dataScroller component tag includes a component that will render the header
and a component that will render the Next button. If the renderer associated with this
component renders the facets, you can include the following facet elements in the
renderer element:

<facet>
<description>This facet renders as the header of the table. It should be
a panelGroup with the same number of columns as the data

Configuring JavaServer Faces Applications 16-29

Registering a Custom Component

</description>
<display-name>header</display-name>
<facet-name>header</facet-name>
</facet>
<facet>
<description>This facet renders as the content of the "next" button in
the scroller. It should be a panelGroup that includes an outputText
tag that has the text "Next" and a right arrow icon.
</description>
<display-name>Next</display-name>
<facet-name>next</facet-name>
</facet>

If a component that supports facets provides its own rendering and you want to
include facet elements in the application configuration resource file, you need to put
them in the component's configuration rather than the renderer's configuration.

16.11 Registering a Custom Component

In addition to registering custom renderers (as explained in the preceding section), you
also must register the custom components that are usually associated with the custom
renderers. You use either a @FacesComponent annotation, as described in Creating
Custom Component Classes, or the component element of the application
configuration resource file.

Here is a hypothetical component element from the application configuration resource
file that registers AreaComponent:

<component>
<component-type>DemoArea</component-type>
<component-class>
dukesbookstore.components.AreaComponent
</component-class>
<property>
<property-name>alt</property-name>
<property-class>java.lang.String</property-class>
</property>
<property>
<property-name>coords</property-name>
<property-class>java.lang.String</property-class>
</property>
<property>
<property-name>shape</property-name>
<property-class>java.lang.String</property-class>
</property>
</component>

Attributes specified in a component tag override any settings in the @FacesComponent
annotation.

The component-type element indicates the name under which the component should
be registered. Other objects referring to this component use this name. For example,
the component-type element in the configuration for AreaComponent defines a value of
DemoArea, which matches the value returned by the AreaTag class's getComponentType
method.

The component-class element indicates the fully qualified class name of the
component. The property elements specify the component properties and their types.

16-30 The Java EE 7 Tutorial

Basic Requirements of a JavaServer Faces Application

If the custom component can include facets, you can configure the facets in the
component configuration using facet elements, which are allowed after the
component-class elements. See Registering a Custom Renderer with a Render Kit for
further details on configuring facets.

16.12 Basic Requirements of a JavaServer Faces Application

In addition to configuring your application, you must satisfy other requirements of
JavaServer Faces applications, including properly packaging all the necessary files and
providing a deployment descriptor. This section describes how to perform these
administrative tasks.

JavaServer Faces applications can be packaged in a WAR file, which must conform to
specific requirements to execute across different containers. At a minimum, a WAR file
for a JavaServer Faces application may contain the following:

= A web application deployment descriptor, called web.xml, to configure resources
required by a web application (required)

= A specific set of JAR files containing essential classes (optional)

= A set of application classes, JavaServer Faces pages, and other required resources,
such as image files

A WAR file may also contain:
= An application configuration resource file, which configures application resources
= A setof tag library descriptor files

For example, a Java Server Faces web application WAR file using Facelets typically has
the following directory structure:

SPROJECT_DIR
[Web Pages]
+- /[xhtml or html documents]
+- /resources
+- /WEB-INF
+- /web.xml
+- /beans.xml (optional)
+- /classes (optional)
+- /1lib (optional)
+- /faces-config.xml (optional)
+- /*.taglib.xml (optional)
+- /glassfish-web.xml (optional)

The web.xm1 file (or web deployment descriptor), the set of JAR files, and the set of
application files must be contained in the WEB-INF directory of the WAR file.

16.12.1 Configuring an Application with a Web Deployment Descriptor

Web applications are commonly configured using elements contained in the web
application deployment descriptor, web.xml. The deployment descriptor for a
JavaServer Faces application must specify certain configurations, including the
following:

» The servlet used to process JavaServer Faces requests
s The servlet mapping for the processing servlet

s The path to the configuration resource file, if it exists and is not located in a default
location

Configuring JavaServer Faces Applications 16-31

Basic Requirements of a JavaServer Faces Application

The deployment descriptor can also include other, optional configurations, such as:
= Specifying where component state is saved

= Encrypting state saved on the client

s Compressing state saved on the client

= Restricting access to pages containing JavaServer Faces tags

s Turning on XML validation

= Specifying the Project Stage

= Verifying custom objects

This section gives more details on these configurations. Where appropriate, it also
describes how you can make these configurations using NetBeans IDE.

16.12.1.1 Identifying the Servlet for Lifecycle Processing

A requirement of a JavaServer Faces application is that all requests to the application
that reference previously saved JavaServer Faces components must go through
javax.faces.webapp.FacesServlet. A FacesServlet instance manages the request
processing lifecycle for web applications and initializes the resources required by
JavaServer Faces technology.

Before a JavaServer Faces application can launch its first web page, the web container
must invoke the FacesServlet instance in order for the application lifecycle process to
start. See The Lifecycle of a JavaServer Faces Application for more information.

The following example shows the default configuration of the FacesServlet:

<servlet>
<servlet-name>FacesServlet</servlet-name>
<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
</servlet>

You provide a mapping configuration entry to make sure the FacesServlet instance is
invoked. The mapping to FacesServlet can be a prefix mapping, such as /faces/*, or
an extension mapping, such as *.xhtnl. The mapping is used to identify a page as
having JavaServer Faces content. Because of this, the URL to the first page of the
application must include the URL pattern mapping.

The following elements, commonly used in the tutorial examples, specify a prefix
mapping:
<servlet-mapping>

<servlet-name>FacesServlet</servlet-name>

<url-pattern>/faces/*</url-pattern>
</servlet-mapping>

<welcome-file-list>
<welcome-file>faces/greeting.xhtml</welcome-file>
</welcome-file-list>

The following elements, also commonly used in the tutorial examples, specify an
extension mapping:

<servlet-mapping>
<servlet-name>Faces Servlet</servlet-name>
<url-pattern>*.xhtml</url-pattern>
</servlet-mapping>

16-32 The Java EE 7 Tutorial

Basic Requirements of a JavaServer Faces Application

<welcome-file-list>
<welcome-file>index.xhtml</welcome-file>
</welcome-file-list>

When you use this mechanism, users access the application as shown in the following
example:

http://localhost:8080/guessNumber

In the case of extension mapping, if a request comes to the server for a page with an
.xhtml extension, the container will send the request to the FacesServlet instance,

which will expect a corresponding page of the same name containing the content to
exist.

If you are using NetBeans IDE to create your application, a web deployment
descriptor is automatically created for you with default configurations. If you created
your application without an IDE, you can create a web deployment descriptor.

16.12.1.2 To Specify a Path to an Application Configuration Resource File

As explained in Application Configuration Resource File, an application can have
multiple application configuration resource files. If these files are not located in the
directories that the implementation searches by default or the files are not named
faces-config.xml, you need to specify paths to these files.

To specify these paths using NetBeans IDE, do the following;:

1. Expand the node of your project in the Projects tab.

2. Expand the Web Pages and WEB-INF nodes that are under the project node.
3. Double-click web.xml.
4

After the web.xml file appears in the editor, click General at the top of the editor
window.

@

Expand the Context Parameters node.

6. Click Add.

7. Inthe Add Context Parameter dialog box:
a. Enter javax.faces.CONFIG_FILES in the Param Name field.
b. Enter the path to your configuration file in the Param Value field.
c. Click OK.

8. Repeat steps 1 through 7 for each configuration file.

16.12.1.3 To Specify Where State Is Saved

For all the components in a web application, you can specify in your deployment
descriptor where you want the state to be saved, on either client or server. You do this
by setting a context parameter in your deployment descriptor. By default, state is
saved on the server, so you need to specify this context parameter only if you want to
save state on the client. See Saving and Restoring State for information on the
advantages and disadvantages of each location.

To specify where state is saved using NetBeans IDE, do the following;:

1. Expand the node of your project in the Projects tab.

2. Expand the Web Pages and WEB-INF nodes under the project node.
3. Double-click web.xml.

Configuring JavaServer Faces Applications 16-33

Basic Requirements of a JavaServer Faces Application

4, After the web.xml file appears in the editor window, click General at the top of the
editor window.

5. Expand the Context Parameters node.

6. Click Add.

7. Inthe Add Context Parameter dialog box:
a. Enter javax.faces.STATE_SAVING_METHOD in the Param Name field.
b. Enter client or server in the Param Value field.
c. Click OK.

If state is saved on the client, the state of the entire view is rendered to a hidden field
on the page. The JavaServer Faces implementation saves the state on the server by
default. Duke's Forest saves its state on the client.

16.12.2 Configuring Project Stage

Project Stage is a context parameter identifying the status of a JavaServer Faces
application in the software lifecycle. The stage of an application can affect the behavior
of the application. For example, error messages can be displayed during the
Development stage but suppressed during the Production stage.

The possible Project Stage values are as follows:
s Development

m UnitTest

n SystemTest

s Production

Project Stage is configured through a context parameter in the web deployment
descriptor file. Here is an example:

<context-param>
<param-name>javax.faces.PROJECT_ STAGE</param-name>
<param-value>Development</param-value>
</context-param>

If no Project Stage is defined, the default stage is Development. You can also add
custom stages according to your requirements.

16.12.3 Including the Classes, Pages, and Other Resources

When packaging web applications using the included build scripts, you'll notice that
the scripts package resources in the following ways:

= All web pages are placed at the top level of the WAR file.

s The faces-config.xml file and the web.xml file are packaged in the WEB-INF
directory.

= All packages are stored in the WEB-INF/classes/ directory.
= All application JAR files are packaged in the WEB-INF/1ib/ directory.

= All resource files are either under the root of the web application /resources
directory, or in the web application's classpath,
META-INF/resources/resourceldentifier directory. For more information on
resources, see Web Resources.

16-34 The Java EE 7 Tutorial

Basic Requirements of a JavaServer Faces Application

When packaging your own applications, you can use NetBeans IDE or you can use
XML files such as those created for Maven. You can modify the XML files to fit your
situation. However, you can continue to package your WAR files by using the
directory structure described in this section, because this technique complies with the
commonly accepted practice for packaging web applications.

Configuring JavaServer Faces Applications 16-35

Basic Requirements of a JavaServer Faces Application

16-36 The Java EE 7 Tutorial

17

Java Servlet Technology

Java Servlet technology provides dynamic, user-oriented content in web applications
using a request-response programming model.

The following topics are addressed here:

What Is a Servlet?

Servlet Lifecycle

Sharing Information

Creating and Initializing a Servlet
Writing Service Methods

Filtering Requests and Responses
Invoking Other Web Resources
Accessing the Web Context
Maintaining Client State

Finalizing a Servlet

Uploading Files with Java Servlet Technology
Asynchronous Processing
Non-Blocking I/0

Protocol Upgrade Processing

The mood Example Application

The fileupload Example Application
The dukeetf Example Application

Further Information about Java Servlet Technology

17.1 What Is a Servlet?

A servlet is a Java programming language class used to extend the capabilities of
servers that host applications accessed by means of a request-response programming
model. Although servlets can respond to any type of request, they are commonly used
to extend the applications hosted by web servers. For such applications, Java Servlet
technology defines HTTP-specific servlet classes.

The javax.servlet and javax.servlet.http packages provide interfaces and classes
for writing servlets. All servlets must implement the Servlet interface, which defines

Java Servlet Technology 17-1

Servlet Lifecycle

lifecycle methods. When implementing a generic service, you can use or extend the
GenericServlet class provided with the Java Servlet APL. The HttpServlet class
provides methods, such as doGet and doPost, for handling HTTP-specific services.

17.2 Serviet Lifecycle

The lifecycle of a servlet is controlled by the container in which the servlet has been
deployed. When a request is mapped to a servlet, the container performs the following
steps.

1. If an instance of the servlet does not exist, the web container
a. Loads the servlet class.
b. Creates an instance of the servlet class.

c. Initializes the servlet instance by calling the init method. Initialization is
covered in Creating and Initializing a Servlet.

2. Invokes the service method, passing request and response objects. Service
methods are discussed in Writing Service Methods.

If it needs to remove the servlet, the container finalizes the servlet by calling the
servlet's destroy method. For more information, see Finalizing a Servlet.

17.2.1 Handling Servlet Lifecycle Events

You can monitor and react to events in a servlet's lifecycle by defining listener objects
whose methods get invoked when lifecycle events occur. To use these listener objects,
you must define and specify the listener class.

17.2.1.1 Defining the Listener Class

You define a listener class as an implementation of a listener interface. Table 17-1 lists
the events that can be monitored and the corresponding interface that must be
implemented. When a listener method is invoked, it is passed an event that contains
information appropriate to the event. For example, the methods in the
HttpSessionListener interface are passed an HttpSessionEvent, which contains an
HttpSession.

Table 17-1 Serviet Lifecycle Events

Object Event Listener Interface and Event Class

Web context Initialization and javax.servlet.ServletContextListener and
destruction ServletContextEvent

Web context Attribute added, javax.servlet.ServletContextAttributeListener
removed, or and ServletContextAttributeEvent
replaced

Session Creation, javax.servlet.http.HttpSessionListener,
invalidation, javax.servlet.http.HttpSessionActivationListen
activation, er, and HttpSessionEvent
passivation, and
timeout

Session Attribute added, javax.servlet.http.HttpSessionAttributeListene
removed, or r and HttpSessionBindingEvent
replaced

17-2 The Java EE 7 Tutorial

Sharing Information

Table 17-1 (Cont.) Servlet Lifecycle Events

Object Event Listener Interface and Event Class

Request A servlet request javax.servlet.ServletRequestListener and
has started being ~ ServletRequestEvent
processed by web

components

Request Attribute added, javax.servlet.ServletRequestAttributeListener
removed, or and ServletRequestAttributeEvent
replaced

Use the @WebListener annotation to define a listener to get events for various
operations on the particular web application context. Classes annotated with
@WebListener must implement one of the following interfaces:

javax.servlet.ServletContextListener
javax.servlet.ServletContextAttributeListener
javax.servlet.ServletRequestListener
javax.servlet.ServletRequestAttributeListener
javax.servlet..http.HttpSessionListener
javax.servlet..http.HttpSessionAttributeListener

For example, the following code snippet defines a listener that implements two of
these interfaces:

import javax.servlet.ServletContextAttributeListener;
import javax.servlet.ServletContextListener;
import javax.servlet.annotation.WebListener;

@WebListener ()
public class SimpleServletListener implements ServletContextListener,
ServletContextAttributelListener ({

17.2.2 Handling Servlet Errors

Any number of exceptions can occur when a servlet executes. When an exception
occurs, the web container generates a default page containing the following message:

A Servlet Exception Has Occurred

But you can also specify that the container should return a specific error page for a
given exception.

17.3 Sharing Information

Web components, like most objects, usually work with other objects to accomplish
their tasks. Web components can do so by

= Using private helper objects (for example, JavaBeans components).
= Sharing objects that are attributes of a public scope.
s Using a database.

= Invoking other web resources. The Java Servlet technology mechanisms that allow
a web component to invoke other web resources are described in Invoking Other
Web Resources.

Java Servlet Technology 17-3

Creating and Initializing a Servlet

17.3.1 Using Scope Objects

Collaborating web components share information by means of objects that are
maintained as attributes of four scope objects. You access these attributes by using the
getAttribute and setAttribute methods of the class representing the scope.

Table 17-2 lists the scope objects.

Table 17-2 Scope Objects

Scope

Object Class Accessible from

Web context javax.servlet.ServletC Web components within a web context. See
ontext Accessing the Web Context.

Session javax.servlet.http.Htt Web components handling a request that belongs to
pSession the session. See Maintaining Client State.

Request Subtype of Web components handling the request.
javax.servlet.ServletR
equest

Page javax.servlet.jsp.JspC The JSP page that creates the object.
ontext

17.3.2 Controlling Concurrent Access to Shared Resources

In a multithreaded server, shared resources can be accessed concurrently. In addition
to scope object attributes, shared resources include in-memory data, such as instance
or class variables, and external objects, such as files, database connections, and
network connections.

Concurrent access can arise in several situations:
= Multiple web components accessing objects stored in the web context.
= Multiple web components accessing objects stored in a session.

= Multiple threads within a web component accessing instance variables. A web
container will typically create a thread to handle each request. To ensure that a
servlet instance handles only one request at a time, a servlet can implement the
SingleThreadModel interface. If a servlet implements this interface, no two threads
will execute concurrently in the servlet's service method. A web container can
implement this guarantee by synchronizing access to a single instance of the
servlet or by maintaining a pool of web component instances and dispatching each
new request to a free instance. This interface does not prevent synchronization
problems that result from web components' accessing shared resources, such as
static class variables or external objects.

When resources can be accessed concurrently, they can be used in an inconsistent
fashion. You prevent this by controlling the access using the synchronization
techniques described in the Threads lesson at
http://docs.oracle.com/javase/tutorial/essential/concurrency/ind
ex.html.

17.4 Creating and Initializing a Servlet

Use the @WebServlet annotation to define a servlet component in a web application.
This annotation is specified on a class and contains metadata about the servlet being
declared. The annotated servlet must specify at least one URL pattern. This is done by
using the urlPatterns or value attribute on the annotation. All other attributes are
optional, with default settings. Use the value attribute when the only attribute on the

17-4 The Java EE 7 Tutorial

Writing Service Methods

annotation is the URL pattern; otherwise use the urlpPatterns attribute when other
attributes are also used.

Classes annotated with @WebServlet must extend the
javax.servlet.http.HttpServlet class. For example, the following code snippet
defines a servlet with the URL pattern /report:

import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;

@WebServlet (" /report")
public class MoodServlet extends HttpServlet {

The web container initializes a servlet after loading and instantiating the servlet class
and before delivering requests from clients. To customize this process to allow the
servlet to read persistent configuration data, initialize resources, and perform any
other one-time activities, you can either override the init method of the Servlet
interface or specify the initParams attribute of the @WebServlet annotation. The
initParams attribute contains a @WebInitParam annotation. If it cannot complete its
initialization process, a servlet throws an UnavailableException.

Use an initialization parameter to provide data needed by a particular servlet. By
contrast, a context parameter provides data that is available to all components of a
web application.

17.5 Writing Service Methods

The service provided by a servlet is implemented in the service method of a
GenericServlet, in the doMethod methods (where Method can take the value Get,
Delete, Options, Post, Put, or Trace) of an HttpServlet object, or in any other
protocol-specific methods defined by a class that implements the Servlet interface.
The term service method is used for any method in a servlet class that provides a
service to a client.

The general pattern for a service method is to extract information from the request,
access external resources, and then populate the response, based on that information.
For HTTP servlets, the correct procedure for populating the response is to do the
following:

1. Retrieve an output stream from the response.
2. Fill in the response headers.
3. Write any body content to the output stream.

Response headers must always be set before the response has been committed. The
web container will ignore any attempt to set or add headers after the response has
been committed. The next two sections describe how to get information from requests
and generate responses.

17.5.1 Getting Information from Requests

A request contains data passed between a client and the servlet. All requests
implement the ServletRequest interface. This interface defines methods for accessing
the following information:

= Parameters, which are typically used to convey information between clients and
servlets

Java Servlet Technology 17-5

Writing Service Methods

s Object-valued attributes, which are typically used to pass information between the
web container and a servlet or between collaborating servlets

s Information about the protocol used to communicate the request and about the
client and server involved in the request

s Information relevant to localization

You can also retrieve an input stream from the request and manually parse the data. To
read character data, use the BufferedReader object returned by the request's
getReader method. To read binary data, use the ServletInputStream returned by
getInputStreamn.

HTTP servlets are passed an HTTP request object, HttpServletRequest, which
contains the request URL, HTTP headers, query string, and so on. An HTTP request
URL contains the following parts:

http://[host] : [port] [request-path]? [query-string]

The request path is further composed of the following elements:

= Context path: A concatenation of a forward slash (/) with the context root of the
servlet's web application.

= Servlet path: The path section that corresponds to the component alias that
activated this request. This path starts with a forward slash (/).

» Path info: The part of the request path that is not part of the context path or the
servlet path.

You can use the getContextPath, getServletPath, and getPathInfo methods of the
HttpServletRequest interface to access this information. Except for URL encoding
differences between the request URI and the path parts, the request URI is always
comprised of the context path plus the servlet path plus the path info.

Query strings are composed of a set of parameters and values. Individual parameters
are retrieved from a request by using the getParameter method. There are two ways to
generate query strings.

= A query string can explicitly appear in a web page.

= A query string is appended to a URL when a form with a GET HTTP method is
submitted.

17.5.2 Constructing Responses

A response contains data passed between a server and the client. All responses
implement the ServletResponse interface. This interface defines methods that allow
you to

= Retrieve an output stream to use to send data to the client. To send character data,
use the PrintWiriter returned by the response’s getliriter method. To send binary
data in a Multipurpose Internet Mail Extensions (MIME) body response, use the
ServletOutputStream returned by getOutputStream. To mix binary and text data,
as in a multipart response, use a ServletOutputStream and manage the character
sections manually.

= Indicate the content type (for example, text/html) being returned by the response
with the setContentType (String) method. This method must be called before the
response is committed. A registry of content type names is kept by the Internet
Assigned Numbers Authority (IANA) at
http://www.iana.org/assignments/media-types/.

17-6 The Java EE 7 Tutorial

Filtering Requests and Responses

= Indicate whether to buffer output with the setBufferSize(int) method. By
default, any content written to the output stream is immediately sent to the client.
Buffering allows content to be written before anything is sent back to the client,
thus providing the servlet with more time to set appropriate status codes and
headers or forward to another web resource. The method must be called before
any content is written or before the response is committed.

= Set localization information, such as locale and character encoding. See
Chapter 20, "Internationalizing and Localizing Web Applications" for details.

HTTP response objects, javax.servlet.http.HttpServletResponse, have fields
representing HT'TP headers, such as the following:

» Status codes, which are used to indicate the reason a request is not satisfied or that
a request has been redirected.

= Cookies, which are used to store application-specific information at the client.
Sometimes, cookies are used to maintain an identifier for tracking a user's session
(see Session Tracking).

17.6 Filtering Requests and Responses

A filter is an object that can transform the header and content (or both) of a request or
response. Filters differ from web components in that filters usually do not themselves
create a response. Instead, a filter provides functionality that can be "attached" to any
kind of web resource. Consequently, a filter should not have any dependencies on a
web resource for which it is acting as a filter; this way, it can be composed with more
than one type of web resource.

The main tasks that a filter can perform are as follows:
= Query the request and act accordingly.
= Block the request-and-response pair from passing any further.

= Modify the request headers and data. You do this by providing a customized
version of the request.

= Modify the response headers and data. You do this by providing a customized
version of the response.

s Interact with external resources.

Applications of filters include authentication, logging, image conversion, data
compression, encryption, tokenizing streams, XML transformations, and so on.

You can configure a web resource to be filtered by a chain of zero, one, or more filters
in a specific order. This chain is specified when the web application containing the
component is deployed and is instantiated when a web container loads the
component.

17.6.1 Programming Filters

The filtering API is defined by the Filter, FilterChain, and FilterConfig interfaces
in the javax.servlet package. You define a filter by implementing the Filter
interface.

Use the @WebFilter annotation to define a filter in a web application. This annotation
is specified on a class and contains metadata about the filter being declared. The
annotated filter must specify at least one URL pattern. This is done by using the
urlPatterns or value attribute on the annotation. All other attributes are optional,

Java Servlet Technology 17-7

Filtering Requests and Responses

with default settings. Use the value attribute when the only attribute on the
annotation is the URL pattern; use the urlpPatterns attribute when other attributes are
also used.

Classes annotated with the @WebFilter annotation must implement the
javax.servlet.Filter interface.

To add configuration data to the filter, specify the initParams attribute of the
@WebFilter annotation. The initParams attribute contains a @WebInitParam
annotation. The following code snippet defines a filter, specifying an initialization
parameter:

import javax.servlet.Filter;
import javax.servlet.annotation.WebFilter;
import javax.servlet.annotation.WebInitParam;

@WebFilter (filterName = "TimeOfDayFilter",
urlPatterns = {"/*"},
initParams = {

@WebInitParam(name = "mood", value = "awake")})
public class TimeOfDayFilter implements Filter {

The most important method in the Filter interface is doFilter, which is passed
request, response, and filter chain objects. This method can perform the following
actions:

= Examine the request headers.
= Customize the request object if the filter wishes to modify request headers or data.

» Customize the response object if the filter wishes to modify response headers or
data.

= Invoke the next entity in the filter chain. If the current filter is the last filter in the
chain that ends with the target web component or static resource, the next entity is
the resource at the end of the chain; otherwise, it is the next filter that was
configured in the WAR. The filter invokes the next entity by calling the doFilter
method on the chain object, passing in the request and response it was called with
or the wrapped versions it may have created. Alternatively, the filter can choose to
block the request by not making the call to invoke the next entity. In the latter case,
the filter is responsible for filling out the response.

= Examine response headers after invoking the next filter in the chain.
s Throw an exception to indicate an error in processing.

In addition to doFilter, you must implement the init and destroy methods. The
init method is called by the container when the filter is instantiated. If you wish to
pass initialization parameters to the filter, you retrieve them from the FilterConfig
object passed to init.

17.6.2 Programming Customized Requests and Responses

There are many ways for a filter to modify a request or a response. For example, a filter
can add an attribute to the request or can insert data in the response.

A filter that modifies a response must usually capture the response before it is
returned to the client. To do this, you pass a stand-in stream to the servlet that
generates the response. The stand-in stream prevents the servlet from closing the
original response stream when it completes and allows the filter to modify the servlet's
response.

17-8 The Java EE 7 Tutorial

Filtering Requests and Responses

To pass this stand-in stream to the servlet, the filter creates a response wrapper that
overrides the getWriter or getOutputStream method to return this stand-in stream.
The wrapper is passed to the doFilter method of the filter chain. Wrapper methods
default to calling through to the wrapped request or response object.

To override request methods, you wrap the request in an object that extends either
ServletRequestWrapper or HttpServletRequestWrapper. To override response
methods, you wrap the response in an object that extends either
ServletResponselirapper or HttpServletResponseWrapper.

17.6.3 Specifying Filter Mappings

A web container uses filter mappings to decide how to apply filters to web resources.
A filter mapping matches a filter to a web component by name or to web resources by
URL pattern. The filters are invoked in the order in which filter mappings appear in
the filter mapping list of a WAR. You specify a filter mapping list for a WAR in its
deployment descriptor by either using NetBeans IDE or coding the list by hand with
XML.

If you want to log every request to a web application, you map the hit counter filter to
the URL pattern /*.

You can map a filter to one or more web resources, and you can map more than one
filter to a web resource. This is illustrated in Figure 17-1, where filter F1 is mapped to
servlets 51, S2, and S3; filter F2 is mapped to servlet S2; and filter F3 is mapped to
servlets S1 and S2.

Figure 17-1 Filter-to-Servlet Mapping

|k | F3 _»@

F2

_ -~ — @
_ @

Recall that a filter chain is one of the objects passed to the doFilter method of a filter.
This chain is formed indirectly by means of filter mappings. The order of the filters in
the chain is the same as the order in which filter mappings appear in the web
application deployment descriptor.

When a filter is mapped to servlet S1, the web container invokes the doFilter
method of F1. The doFilter method of each filter in S1's filter chain is invoked by the
preceding filter in the chain by means of the chain.doFilter method. Because S1's
filter chain contains filters F1 and F3, F1's call to chain.doFilter invokes the doFilter
method of filter F3. When F3's doFilter method completes, control returns to F1's
doFilter method.

17.6.3.1 To Specify Filter Mappings Using NetBeans IDE
1. Expand the application's project node in the Project tab.

Java Servlet Technology 17-9

Invoking Other Web Resources

Expand the Web Pages and WEB-INF nodes under the project node.
Double-click web . xml.
Click Filters at the top of the editor window.

Expand the Servlet Filters node in the editor window.

@ g k& 0D

Click Add Filter Element to map the filter to a web resource by name or by URL
pattern.

7. Inthe Add Servlet Filter dialog box, enter the name of the filter in the Filter Name
field.

8. Click Browse to locate the servlet class to which the filter applies.

You can include wildcard characters so that you can apply the filter to more than
one servlet.

9. Click OK.

10. To constrain how the filter is applied to requests, follow these steps.
a. Expand the Filter Mappings node.
b. Select the filter from the list of filters.
c. Click Add.

d. In the Add Filter Mapping dialog box, select one of the following dispatcher
types:
- REQUEST: Only when the request comes directly from the client

— ASYNC: Only when the asynchronous request comes from the client

- FORWARD: Only when the request has been forwarded to a component
(see Transferring Control to Another Web Component)

- INCLUDE: Only when the request is being processed by a component that
has been included (see Including Other Resources in the Response)

- ERROR: Only when the request is being processed with the error page
mechanism (see Handling Servlet Errors)

You can direct the filter to be applied to any combination of the preceding
situations by selecting multiple dispatcher types. If no types are specified, the
default option is REQUEST.

17.7 Invoking Other Web Resources

Web components can invoke other web resources both indirectly and directly. A web
component indirectly invokes another web resource by embedding a URL that points
to another web component in content returned to a client. While it is executing, a web
component directly invokes another resource by either including the content of
another resource or forwarding a request to another resource.

To invoke a resource available on the server that is running a web component, you
must first obtain a RequestDispatcher object by using the

getRequestDispatcher ("URL") method. You can get a RequestDispatcher object from
either a request or the web context; however, the two methods have slightly different
behavior. The method takes the path to the requested resource as an argument. A
request can take a relative path (that is, one that does not begin with a /), but the web
context requires an absolute path. If the resource is not available or if the server has
not implemented a RequestDispatcher object for that type of resource,

17-10 The Java EE 7 Tutorial

Accessing the Web Context

getRequestDispatcher will return null. Your servlet should be prepared to deal with
this condition.

17.7.1 Including Other Resources in the Response

It is often useful to include another web resource, such as banner content or copyright
information) in the response returned from a web component. To include another
resource, invoke the include method of a RequestDispatcher object:

include (request, response);

If the resource is static, the include method enables programmatic server-side
includes. If the resource is a web component, the effect of the method is to send the
request to the included web component, execute the web component, and then include
the result of the execution in the response from the containing servlet. An included
web component has access to the request object but is limited in what it can do with
the response object.

= It can write to the body of the response and commit a response.

= It cannot set headers or call any method, such as setCookie, that affects the
headers of the response.

17.7.2 Transferring Control to Another Web Component

In some applications, you might want to have one web component do preliminary
processing of a request and have another component generate the response. For
example, you might want to partially process a request and then transfer to another
component, depending on the nature of the request.

To transfer control to another web component, you invoke the forward method of a
RequestDispatcher. When a request is forwarded, the request URL is set to the path of
the forwarded page. The original URI and its constituent parts are saved as request
attributes

javax.servlet.forward. [request-uri|context-path |servlet-path | path-info | query-string].

The forward method should be used to give another resource responsibility for
replying to the user. If you have already accessed a ServletOutputStream or
PrintWriter object within the servlet, you cannot use this method; doing so throws an
IllegalStateException.

17.8 Accessing the Web Context

The context in which web components execute is an object that implements the
ServletContext interface. You retrieve the web context by using the
getServletContext method. The web context provides methods for accessing

= Initialization parameters

= Resources associated with the web context
» Object-valued attributes

= Logging capabilities

The counter's access methods are synchronized to prevent incompatible operations by
servlets that are running concurrently. A filter retrieves the counter object by using the
context's getAttribute method. The incremented value of the counter is recorded in
the log.

Java Servlet Technology 17-11

Maintaining Client State

17.9 Maintaining Client State

Many applications require that a series of requests from a client be associated with one
another. For example, a web application can save the state of a user's shopping cart
across requests. Web-based applications are responsible for maintaining such state,
called a session, because HTTP is stateless. To support applications that need to
maintain state, Java Servlet technology provides an API for managing sessions and
allows several mechanisms for implementing sessions.

17.9.1 Accessing a Session

Sessions are represented by an HttpSession object. You access a session by calling the
getSession method of a request object. This method returns the current session
associated with this request; or, if the request does not have a session, this method
creates one.

17.9.2 Associating Objects with a Session

You can associate object-valued attributes with a session by name. Such attributes are
accessible by any web component that belongs to the same web context and is
handling a request that is part of the same session.

Recall that your application can notify web context and session listener objects of
servlet lifecycle events (Handling Servlet Lifecycle Events). You can also notify objects
of certain events related to their association with a session such as the following;:

= When the object is added to or removed from a session. To receive this notification,
your object must implement the
javax.servlet.http.HttpSessionBindingListener interface.

= When the session to which the object is attached will be passivated or activated. A
session will be passivated or activated when it is moved between virtual machines
or saved to and restored from persistent storage. To receive this notification, your
object must implement the
javax.servlet.http.HttpSessionActivationListener interface.

17.9.3 Session Management

Because an HTTP client has no way to signal that it no longer needs a session, each
session has an associated timeout so that its resources can be reclaimed. The timeout
period can be accessed by using a session's getMaxInactiveInterval and
setMaxInactiveInterval methods.

= To ensure that an active session is not timed out, you should periodically access
the session by using service methods because this resets the session's time-to-live
counter.

= When a particular client interaction is finished, you use the session's invalidate
method to invalidate a session on the server side and remove any session data.

17.9.3.1 To Set the Timeout Period Using NetBeans IDE

To set the timeout period in the deployment descriptor using NetBeans IDE, follow
these steps.

1. Open the project if you haven't already.
2. Expand the node of your project in the Projects tab.
3. Expand the Web Pages and WEB-INF nodes that are under the project node.

17-12 The Java EE 7 Tutorial

Finalizing a Servlet

4. Double-click web.xml.
5. Click General at the top of the editor.
6. Inthe Session Timeout field, enter an integer value.

The integer value represents the number of minutes of inactivity that must pass
before the session times out.

17.9.4 Session Tracking

To associate a session with a user, a web container can use several methods, all of
which involve passing an identifier between the client and the server. The identifier
can be maintained on the client as a cookie, or the web component can include the
identifier in every URL that is returned to the client.

If your application uses session objects, you must ensure that session tracking is
enabled by having the application rewrite URLs whenever the client turns off cookies.
You do this by calling the response's encodeURL (URL) method on all URLs returned by
a servlet. This method includes the session ID in the URL only if cookies are disabled;
otherwise, the method returns the URL unchanged.

17.10 Finalizing a Servlet

The web container may determine that a servlet should be removed from service (for
example, when a container wants to reclaim memory resources or when it is being
shut down). In such a case, the container calls the destroy method of the Servlet
interface. In this method, you release any resources the servlet is using and save any
persistent state. The destroy method releases the database object created in the init
method.

A servlet's service methods should all be complete when a servlet is removed. The
server tries to ensure this by calling the destroy method only after all service requests
have returned or after a server-specific grace period, whichever comes first. If your
servlet has operations that may run longer than the server's grace period, the
operations could still be running when destroy is called. You must make sure that any
threads still handling client requests complete.

The remainder of this section explains how to do the following:
» Keep track of how many threads are currently running the service method.

= Provide a clean shutdown by having the destroy method notify long-running
threads of the shutdown and wait for them to complete.

= Have the long-running methods poll periodically to check for shutdown and, if
necessary, stop working, clean up, and return.

17.10.1 Tracking Service Requests

To track service requests, include in your servlet class a field that counts the number of
service methods that are running. The field should have synchronized access methods
to increment, decrement, and return its value:

public class ShutdownExample extends HttpServlet {
private int serviceCounter = 0;

// Access methods for serviceCounter
protected synchronized void enteringServiceMethod() {
serviceCounter++;

}

Java Servlet Technology 17-13

Finalizing a Servlet

protected synchronized void leavingServiceMethod() {
serviceCounter--;

}
protected synchronized int numServices() {
return serviceCounter;

}

The service method should increment the service counter each time the method is
entered and should decrement the counter each time the method returns. This is one of
the few times that your HttpServlet subclass should override the service method.
The new method should call super.service to preserve the functionality of the
original service method:

protected void service (HttpServletRequest req,
HttpServletResponse resp)
throws ServletException,IOException {
enteringServiceMethod() ;
try {
super.service(req, resp);
} finally {
leavingServiceMethod() ;

17.10.2 Notifying Methods to Shut Down

To ensure a clean shutdown, your destroy method should not release any shared
resources until all the service requests have completed. One part of doing this is to
check the service counter. Another part is to notify the long-running methods that it is
time to shut down. For this notification, another field is required. The field should
have the usual access methods:

public class ShutdownExample extends HttpServlet {
private boolean shuttingDown;

//Access methods for shuttingDown

protected synchronized void setShuttingDown (boolean flag) {
shuttingDown = flag;

}

protected synchronized boolean isShuttingDown () {
return shuttingDown;

Here is an example of the destroy method using these fields to provide a clean
shutdown:

public void destroy() {
/* Check to see whether there are still service methods /*
/* running, and if there are, tell them to stop. */
if (numServices()> 0) {
setShuttingDown (true) ;

/* Wait for the service methods to stop. */
while (numServices()> 0) {
try {
Thread.sleep(interval);
} catch (InterruptedException e) {

17-14 The Java EE 7 Tutorial

Uploading Files with Java Servlet Technology

17.10.3 Creating Polite Long-Running Methods

The final step in providing a clean shutdown is to make any long-running methods
behave politely. Methods that might run for a long time should check the value of the
field that notifies them of shutdowns and should interrupt their work, if necessary:

public void doPost(...) {

for(i = 0; ((i < lotsOfStuffToDo) &&
lisShuttingDown ()); i++) {
try {
partOfLongRunningOperation (i) ;
} catch (InterruptedException e) {

}

17.11 Uploading Files with Java Servlet Technology

Supporting file uploads is a very basic and common requirement for many web
applications. In prior versions of the Servlet specification, implementing file upload
required the use of external libraries or complex input processing. The Java Servlet
specification now helps to provide a viable solution to the problem in a generic and
portable way. Java Servlet technology now supports file upload out of the box, so any
web container that implements the specification can parse multipart requests and
make mime attachments available through the HttpServletRequest object.

A new annotation, javax.servlet.annotation.MultipartConfig, is used to indicate
that the servlet on which it is declared expects requests to made using the
multipart/form-data MIME type. Servlets that are annotated with @MultipartConfig
can retrieve the Part components of a given multipart/form-data request by calling
the request.getPart (String name) or request.getParts() method.

17.11.1 The @MultipartConfig Annotation

The @MultipartConfig annotation supports the following optional attributes:

» location: An absolute path to a directory on the file system. The location
attribute does not support a path relative to the application context. This location
is used to store files temporarily while the parts are processed or when the size of
the file exceeds the specified fileSizeThreshold setting. The default location is

» fileSizeThreshold: The file size in bytes after which the file will be temporarily
stored on disk. The default size is 0 bytes.

» MaxFileSize: The maximum size allowed for uploaded files, in bytes. If the size of
any uploaded file is greater than this size, the web container will throw an
exception (I1legalStateException). The default size is unlimited.

» maxRequestSize: The maximum size allowed for a multipart/form-data request,
in bytes. The web container will throw an exception if the overall size of all
uploaded files exceeds this threshold. The default size is unlimited.

For, example, the @MultipartConfig annotation could be constructed as follows:

Java Servlet Technology 17-15

Asynchronous Processing

@MultipartConfig(location="/tmp", fileSizeThreshold=1024*1024,
maxFileSize=1024*1024*5, maxRequestSize=1024*1024*5%5)

Instead of using the @MultipartConfig annotation to hard-code these attributes in
your file upload servlet, you could add the following as a child element of the servlet
configuration element in the web. xm1 file.

<multipart-config>
<location>/tmp</location>
<max-file-size>20848820</max-file-size>
<max-request-size>418018841</max-request-size>
<file-size-threshold>1048576</file-size-threshold>
</multipart-config>

17.11.2 The getParts and getPart Methods

The Servlet specification supports two additional HttpServletRequest methods:
m Collection<Part> getParts()
m Part getPart(String name)

The request.getParts () method returns collections of all Part objects. If you have
more than one input of type file, multiple Part objects are returned. Since Part objects
are named, the getPart (String name) method can be used to access a particular Part.
Alternatively, the getParts () method, which returns an Iterable<Part>, can be used
to get an Iterator over all the Part objects.

The javax.servlet.http.Part interface is a simple one, providing methods that allow
introspection of each Part. The methods do the following:

= Retrieve the name, size, and content-type of the Part
= Query the headers submitted with a Part

» Delete a Part

= Write a Part out to disk

For example, the Part interface provides the write (String filename) method to
write the file with the specified name. The file can then be saved in the directory that is
specified with the location attribute of the @MultipartConfig annotation or, in the
case of the fileupload example, in the location specified by the Destination field in the
form.

17.12 Asynchronous Processing

Web containers in application servers normally use a server thread per client request.
Under heavy load conditions, containers need a large amount of threads to serve all
the client requests. Scalability limitations include running out of memory or
exhausting the pool of container threads. To create scalable web applications, you must
ensure that no threads associated with a request are sitting idle, so the container can
use them to process new requests.

There are two common scenarios where a thread associated with a request can be
sitting idle:

s The thread needs to wait for a resource to become available or process data before
building the response. For example, an application may need to query a database
or access data from a remote web service before generating the response.

17-16 The Java EE 7 Tutorial

Asynchronous Processing

s The thread needs to wait for an event before generating the response. For example,
an application may have to wait for a JMS message, new information from another
client, or new data available in a queue before generating the response.

These scenarios represent blocking operations that limit the scalability of web
applications. Asynchronous processing refers to assigning these blocking operations to
a new thread and retuning the thread associated with the request immediately to the
container.

17.12.1 Asynchronous Processing in Servlets

Java EE provides asynchronous processing support for servlets and filters. If a servlet
or a filter reaches a potentially blocking operation when processing a request, it can
assign the operation to an asynchronous execution context and return the thread
associated with the request immediately to the container without generating a
response. The blocking operation completes in the asynchronous execution context in
a different thread, which can generate a response or dispatch the request to another
servlet.

To enable asynchronous processing on a servlet, set the parameter asyncSupported to
true on the @lWlebServlet annotation as follows:

@WebServlet (urlPatterns={"/asyncservlet"}, asyncSupported=true)
public class AsyncServlet extends HttpServlet { ... }

The javax.servlet.AsyncContext class provides the functionality that you need to
perform asynchronous processing inside service methods. To obtain an instance of
AsyncContext, call the startAsync () method on the request object of your service
method; for example:

public void doGet (HttpServletRequest req, HttpServletResponse resp) {
AsyncContext acontext = req.startAsync();

}

This call puts the request into asynchronous mode and ensures that the response is not
committed after exiting the service method. You have to generate the response in the
asynchronous context after the blocking operation completes or dispatch the request to
another servlet.

Table 17-3 describes the basic functionality provided by the AsyncContext class.

Table 17-3 Functionality provided by the AsyncContext class

Method signature Description

void start (Runnable run) The container provides a different thread in which the
blocking operation can be processed.

You provide code for the blocking operation as a class that
implements the Runnable interface. You can provide this
class as an inner class when calling the start method or
use another mechanism to pass the AsyncContext instance
to your class.

ServletRequest getRequest () Returns the request used to initialize this asynchronous
context. In the example above the request is the same as in
the service method.

You can use this method inside the asynchronous context
to obtain parameters from the request.

Java Servlet Technology 17-17

Asynchronous Processing

Table 17-3 (Cont.) Functionality provided by the AsyncContext class

Method signature Description

ServletResponse getResponse() Returns the response used to initialize this asynchronous
context. In the example above the response is the same as
in the service method.

You can use this method inside the asynchronous context
to write to the response with the results of the blocking
operation.

void complete() Completes the asynchronous operation and closes the
response associated with this asynchronous context.

You call this method after writing to the response object
inside the asynchronous context.

void dispatch(String path) Dispatches the request and response objects to the given
path.

You use this method to have another servlet write to the
response after the blocking operation completes.

17.12.2 Waiting for a Resource

This section demonstrates how to use the functionality provided by the AsyncContext
class for the following use case:

1. A servlet receives a parameter from a GET request.

2. The servlet uses a resource, such as a database or a web service, to retrieve
information based on the value of the parameter. The resource can be slow at
times, so this may be a blocking operation.

3. The servlet generates a response using the result from the resource.
The following code shows a basic servlet that does not use asynchronous processing;:

@WebServlet (urlPatterns={"/syncservlet"})
public class SyncServlet extends HttpServlet {
private MyRemoteResource resource;
@Override
public void init(ServletConfig config) {
resource = MyRemoteResource.create("configl=x,config2=y");

@Override
public void doGet (HttpServletRequest request,
HttpServletResponse response) {
response.setContentType ("text/html;charset=UTF-8") ;
String param = request.getParameter ("param");
String result = resource.process (param) ;
/* ... print to the response ... */

The following code shows the same servlet using asynchronous processing:

@WebServlet (urlPatterns={"/asyncservlet"}, asyncSupported=true)
public class AsyncServlet extends HttpServlet {
/* ... Same variables and init method as in SyncServlet ... */

@Override

public void doGet (HttpServletRequest request,
HttpServletResponse response) {

17-18 The Java EE 7 Tutorial

Non-Blocking 1/0

response.setContentType ("text/html; charset=UTF-8") ;

final AsyncContext acontext = request.startAsync();

acontext.start (new Runnable() {

public void run() {

String param = acontext.getRequest () .getParameter ("param");
String result = resource.process (param);
HttpServletResponse response = acontext.getResponse();
/* ... print to the response ... */
acontext.complete();

}

AsyncServlet adds asyncSupported=true to the @WebServlet annotation. The rest of
the differences are inside the service method:

m request.startAsync() causes the request to be processed asynchronously; the
response is not sent to the client at the end of the service method.

= acontext.start(new Runnable() {...}) getsanew thread from the container.

s The code inside the run () method of the inner class executes in the new thread.
The inner class has access to the asynchronous context to read parameters from the
request and write to the response. Calling the complete () method of the
asynchronous context commits the response and sends it to the client.

The service method of AsyncServlet returns immediately, and the request is processed
in the asynchronous context.

17.13 Non-Blocking I/0O

Web containers in application servers normally use a server thread per client request.
To develop scalable web applications, you must ensure that threads associated with
client requests are never sitting idle waiting for a blocking operation to complete.
Asynchronous Processing provides a mechanism to execute application-specific
blocking operations in a new thread, returning the thread associated with the request
immediately to the container. Even if you use asynchronous processing for all the
application-specific blocking operations inside your service methods, threads
associated with client requests can be momentarily sitting idle because of
input/output considerations.

For example, if a client is submitting a large HTTP POST request over a slow network
connection, the server can read the request faster than the client can provide it. Using
traditional I/O, the container thread associated with this request would be sometimes
sitting idle waiting for the rest of the request.

Java EE provides non-blocking I/O support for servlets and filters when processing
requests in asynchronous mode. The following steps summarize how to use
non-blocking I/0O to process requests and write responses inside service methods:

1. Put the request in asynchronous mode as described in Asynchronous Processing.

2. Obtain an input stream and/or an output stream from the request and response
objects in the service method.

3. Assign a read listener to the input stream and/or a write listener to the output
stream.

4. Process the request and the response inside the listener’s callback methods.

Java Servlet Technology 17-19

Non-Blocking 1/0

Table 17-4 and Table 17-5 describe the methods available in the servlet input and
output streams for non-blocking I/O support. Table 17-6 describes the interfaces for
read listeners and write listeners.

Table 17-4 Non-blocking I/O support in javax.servlet.ServietinputStream

Method Description

void setReadListener (ReadListener rl) Associates this input stream with a
listener object that contains callback
methods to read data asynchronously. You
provide the listener object as an
anonymous class or use another
mechanism to pass the input stream to the
read listener object.

boolean isReady () Returns true if data can be read without
blocking.

boolean isFinished() Returns true when all the data has been
read.

Table 17-5 Non-blocking I/O support in javax.serviet.ServietOutputStream

Method Description

void setWriteListener (WriteListener wl) Associates this output stream with a
listener object that contains callback
methods to write data asynchronously.
You provide the write listener object as an
anonymous class or use another
mechanism to pass the output stream to
the write listener object.

boolean isReady () Returns true if data can be written without
blocking.

Table 17-6 Listener interfaces for non-blocking I/O support

Interface Methods Description

ReadListener void onDataAvailable() A ServletInputStream instance calls these
methods on its listener when there is data
available to read, when all the data has been read,
void onError (Throwable t) or when there is an error.

void onAllDataRead ()

WriteListener void onWritePossible() A ServletOutputStream instance calls these
methods on its listener when it is possible to write

void onError (Throwable t) data without blocking or when there is an error

17.13.1 Reading a Large HTTP POST Request Using Non-Blocking 1/0

The code in this section shows how to read a large HTTP POST request inside a servlet
by putting the request in asynchronous mode (as described in Asynchronous
Processing) and using the non-blocking I/0O functionality from Table 17—4 and

Table 17-6.

@WebServlet (urlPatterns={"/asyncioservlet"}, asyncSupported=true)
public class AsyncIOServlet extends HttpServlet {
@Override
public void doPost (HttpServletRequest request,
HttpServletResponse response)
throws IOException {
final AsyncContext acontext = request.startAsync();

17-20 The Java EE 7 Tutorial

Protocol Upgrade Processing

final ServletInputStream input = request.getInputStream();

input.setReadListener (new ReadListener() {

byte buffer[] = new byte[4*1024];
StringBuilder sbuilder = new StringBuilder();
@Override
public void onDataAvailable() {
try {
do {

int length = input.read(buffer);
sbuilder.append(new String(buffer, 0, length));
} while(input.isReady());

} catch (IOException ex) { ... }
}
@Override
public void onAllDataRead() {

try {

acontext.getResponse() .getWriter()
.write("...the response...");
} catch (IOException ex) { ... }

acontext.complete();

}
@Override
public void onError (Throwable t) { ... }

}

This example declares the web servlet with asynchronous support using the
@WebServlet annotation parameter asyncSupported=true. The service method first
puts the request in asynchronous mode by calling the startAsync () method of the
request object, which is required in order to use non-blocking I/O. Then the service
method obtains an input stream associated with the request and assigns a read listener
defined as an inner class. The listener reads parts of the request as they become
available and then writes some response to the client when it finishes reading the
request.

17.14 Protocol Upgrade Processing

In HTTP/1.1 clients can request to switch to a different protocol on the current
connection by using the Upgrade header field. If the server accepts the request to
switch to the protocol indicated by the client, it generates an HTTP response with
status 101 (switching protocols). After this exchange, the client and the server
communicate using the new protocol.

For example, a client can make an HTTP request to switch to the XYZP protocol as
follows:

GET /xyzpresource HTTP/1.1
Host: localhost:8080
Accept: text/html

Upgrade: XYZP

Connection: Upgrade
OtherHeaderA: Value

The client can specify parameters for the new protocol using HTTP headers. The
server can accept the request and generate a response as follows:

HTTP/1.1 101 Switching Protocols

Java Servlet Technology 17-21

Protocol Upgrade Processing

Upgrade: XYZP
Connection: Upgrade
OtherHeaderB: Value

(XYZP data)

Java EE supports the HTTP protocol upgrade functionality in servlets as described in
Table 17-7.

Table 17-7 Protocol upgrade support

Class or Interface Method

HttpServletRequest HttpUpgradeHandler upgrade (Class handler)

The upgrade method starts the protocol upgrade processing.
This method instantiates a class that implements the
HttpUpgradeHandler interface and delegates the connection to it.

You call the upgrade method inside a service method when
accepting a request from a client to switch protocols.

HttpUpgradeHandler void init (WebConnection wc)

The init method is called when the servlet accepts the request
to switch protocols. You implement this method and obtain
input and output streams from the WebConnection object to
implement the new protocol

HttpUpgradeHandler void destroy()

The destroy method is called when the client disconnects. You
implement this method and free any resources associated with
processing the new protocol.

WebConnection ServletInputStream getInputStream()

The getInputStream method provides access to the input stream
of the connection. You can use Non-Blocking I/O with the
returned stream to implement the new protocol.

WebConnection ServletOutputStream getOutputStream()

The getOutputStream method provides access to the output
stream of the connection. You can use Non-Blocking I/O with
the returned stream to implement the new protocol.

The following code demonstrates how to accept an HTTP protocol upgrade request
from a client:

@WebServlet (urlPatterns={"/xyzpresource"})

public class XYZPUpgradeServlet extends HttpServlet {
@Override
public void doGet (HttpServletRequest request,

if

HttpServletResponse response) {
("XYZP".equals (request.getHeader ("Upgrade")
/* Accept upgrade request */
response.setStatus (101) ;

response.setHeader ("Upgrade", "XYZP");
response.setHeader ("Connection", "Upgrade");

response.setHeader ("OtherHeaderB", "Value");

/* Delegate the connection to the upgrade handler */
XYZPUpgradeHandler = request.upgrade (XYZPUpgradeHandler.class);
/* (the service method returns immedately) */

)) o

} else {

/* ... write error response ... */

17-22 The Java EE 7 Tutorial

The mood Example Application

}

The XYZPUpgradeHandler class handles the connection:

public class XYZPUpgradeHandler implements HttpUpgradeHandler {
@Override
public void init (WebConnection wc) {
ServletInputStream input = wc.getInputStream();
ServletOutputStream output = wc.getOutputStream() ;

/* ... implement XYZP using these streams (protocol-specific) ... */
}
@Override
public void destroy() { ... }

}

The class that implements HttpUpgradeHandler uses the streams from the current
connection to communicate with the client using the new protocol. See the Servlet 3.1
specification for details on HTTP protocol upgrade support.

17.15 The mood Example Application

The mood example application, located in the tut-install/examples/web/mood/ directory,
is a simple example that displays Duke's moods at different times during the day. The
example shows how to develop a simple application by using the @WebServlet,
@WebFilter, and @WebListener annotations to create a servlet, a listener, and a filter.

17.15.1 Components of the mood Example Application

The mood example application is comprised of three components:
mood.web.MoodServlet, mood.web.TimeOfDayFilter, and
mood.web.SimpleServletListener.

MoodServlet, the presentation layer of the application, displays Duke's mood in a
graphic, based on the time of day. The @WebServlet annotation specifies the URL
pattern:

@WebServlet (" /report")
public class MoodServlet extends HttpServlet {

TimeOfDayFilter sets an initialization parameter indicating that Duke is awake:

@WebFilter (filterName = "TimeOfDayFilter",
urlPatterns = {"/*"},
initParams = ({

@WebInitParam(name = "mood", value = "awake")})
public class TimeOfDayFilter implements Filter {

The filter calls the doFilter method, which contains a switch statement that sets
Duke's mood based on the current time.

SimpleServletListener logs changes in the servlet's lifecycle. The log entries appear
in the server log.

17.15.2 Running the mood Example

You can use either NetBeans IDE or Maven to build, package, deploy, and run the mood
example.

Java Servlet Technology 17-23

The fileupload Example Application

17.15.2.1 To Run the mood Example Using NetBeans IDE

1. From the File menu, select Open Project.
2. In the Open Project dialog box, navigate to:

tut-install/examples/web/servlet/

Select the mood folder.
Click Open Project.
In the Projects tab, right-click the mood project and select Build.

o o & v

Right-click the project and select Run.

This opens the URL http://localhost:8080/mood/report in a web browser
window.

The URL specifies the context root, followed by the URL pattern specified for the
servlet.

A web page appears with the title "Servlet MoodServlet at /mood", a text string
describing Duke's mood, and an illustrative graphic.

17.15.2.2 To Run the mood Example Using Maven

1. Ensure that the GlassFish Server is running. For more information, see Chapter 2,
"Using the Tutorial Examples".

2. Ina terminal window, go to:

tut-install/examples/web/servlet/mood/

3. Enter the following command to deploy the application:

mvn install

4. In a web browser, open the URL http://localhost:8080/mood/report.
The URL specifies the context root, followed by the URL pattern.

A web page appears with the title "Servlet MoodServlet at /mood" a text string
describing Duke's mood, and an illustrative graphic.

17.16 The fileupload Example Application
The fileupload example illustrates how to implement and use the file upload feature.

The Duke's Forest case study provides a more complex example that uploads an image
file and stores its content in a database.

17.16.1 Architecture of the fileupload Example Application

The fileupload example application consists of a single servlet and an HTML form
that makes a file upload request to the servlet.

This example includes a very simple HTML form with two fields, File and Destination.
The input type, file, enables a user to browse the local file system to select the file.
When the file is selected, it is sent to the server as a part of a POST request. During this
process two mandatory restrictions are applied to the form with input type file:

s The enctype attribute must be set to a value of multipart/form-data.

s Its method must be POST.

17-24 The Java EE 7 Tutorial

The fileupload Example Application

When the form is specified in this manner, the entire request is sent to the server in
encoded form. The servlet then uses its own means to handle the request to process the
incoming file data and extract a file from the stream. The destination is the path to the
location where the file will be saved on your computer. Pressing the Upload button at
the bottom of the form posts the data to the servlet, which saves the file in the
specified destination.

The HTML form in tut-install/examples/web/fileupload/web/index.html is as
follows:

<!DOCTYPE html>
<html lang="en">
<head>
<title>File Upload</title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

</head>
<body>
<form method="POST" action="upload" enctype="multipart/form-data" >
File:
<input type="file" name="file" id="file" />

Destination:
<input type="text" value="/tmp" name="destination"/>
</br>
<input type="submit" value="Upload" name="upload" id="upload" />
</form>
</body>
</html>

A POST request method is used when the client needs to send data to the server as
part of the request, such as when uploading a file or submitting a completed form. In
contrast, a GET request method sends a URL and headers only to the server, whereas
POST requests also include a message body. This allows arbitrary length data of any
type to be sent to the server. A header field in the POST request usually indicates the
message body's Internet media type.

When submitting a form, the browser streams the content in, combining all parts, with
each part representing a field of a form. Parts are named after the input elements and
are separated from each other with string delimiters named boundary.

This is what submitted data from the fileupload form looks like, after selecting
sample.txt as the file that will be uploaded to the tmp directory on the local file
system:

POST /fileupload/upload HTTP/1.1

Host: localhost:8080

Content-Type: multipart/form-data;
boundary=--------———-——————————————— 263081694432439
Content-Length: 441

————————————————————————————— 263081694432439

Content-Disposition: form-data; name="file"; filename="sample.txt"
Content-Type: text/plain

Data from sample file

————————————————————————————— 263081694432439
Content-Disposition: form-data; name="destination"

————————————————————————————— 263081694432439
Content-Disposition: form-data; name="upload"

Upload

Java Servlet Technology 17-25

The fileupload Example Application

————————————————————————————— 263081694432439--

The servlet FileUploadServlet. java can be found in the
tut-install /examples /web/fileupload/src/java/fileupload/ directory. The servlet
begins as follows:

@WebServlet (name = "FileUploadServlet", urlPatterns = {"/upload"})
@MultipartConfig
public class FileUploadServlet extends HttpServlet {
private final static Logger LOGGER =
Logger.getLogger (FileUploadServlet.class.getCanonicalName()) ;

The @WebServlet annotation uses the urlPatterns property to define servlet
mappings.

The @MultipartConfig annotation indicates that the servlet expects requests to made
using the multipart/form-data MIME type.

The processRequest method retrieves the destination and file part from the request,
then calls the getFileName method to retrieve the file name from the file part. The
method then creates a FileOutputStream and copies the file to the specified
destination. The error-handling section of the method catches and handles some of the
most common reasons why a file would not be found. The processRequest and
getFileName methods look like this:

protected void processRequest (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException ({
response.setContentType ("text/html;charset=UTF-8") ;

// Create path components to save the file

final String path = request.getParameter ("destination");
final Part filePart = request.getPart("file");

final String fileName = getFileName(filePart);

OutputStream out = null;
InputStream filecontent = null;
final PrintWriter writer = response.getWriter();

try {
out = new FileOutputStream(new File(path + File.separator
+ fileName));
filecontent = filePart.getInputStream();

int read = 0;
final byte[] bytes = new byte[1024];
while ((read = filecontent.read(bytes)) != -1) {
out.write(bytes, 0, read);
}
writer.println("New file " + fileName + " created at " + path);
LOGGER. log (Level.INFO, "File{0O}being uploaded to {1}",
new Object[]{fileName, path});
} catch (FileNotFoundException fne) {
writer.println("You either did not specify a file to upload or are "
+ "trying to upload a file to a protected or nonexistent "
+ "location.");
writer.println("
 ERROR: " + fne.getMessage());

LOGGER. log (Level .SEVERE, "Problems during file upload. Error: {0}",
new Object[]{fne.getMessage()});

17-26 The Java EE 7 Tutorial

The fileupload Example Application

} finally {

if (out != null) {
out.close();

}

if (filecontent != null) {
filecontent.close();

}

if (writer !'= null) {
writer.close();

}
}
private String getFileName (final Part part) {

final String partHeader = part.getHeader ("content-disposition");
LOGGER.log (Level .INFO, "Part Header = {0}", partHeader);

for (String content : part.getHeader ("content-disposition").split(";")) {
if (content.trim().startsWith("filename")) {
return content.substring(
content.indexOf ('=") + 1).trim().replace("\"", "");

}
}

return null;

17.16.2 Running the fileupload Example

You can use either NetBeans IDE or Maven to build, package, deploy, and run the
fileupload example.

17.16.2.1 To Build, Package, and Run the fileupload Example Using NetBeans IDE

1. From the File menu, choose Open Project.
2. Inthe Open Project dialog, navigate to:

tut-install/examples/web/servlet/

3. Select the fileupload folder.
4. Click Open Project.
5. In the Projects tab, right-click fileupload and select Run.

17.16.2.2 To Build, Package, and Deploy the fileupload Example Using Maven

1. Ensure that the GlassFish Server is running. For more information, see Chapter 2,
"Using the Tutorial Examples".

2. Ina terminal window, go to:

tut-install/examples/web/servlet/fileupload/

3. Enter the following command to deploy the application:

mvn install

17.16.2.3 To Run the fileupload Example
1. In a web browser, type the following URL:

http://localhost:8080/fileupload/

Java Servlet Technology 17-27

The dukeetf Example Application

2. On the File Upload page, click Browse to display a file browser window.
3. Select a file to upload and click Open.

The name of the file you selected is displayed in the File field. If you do not select
a file, an exception will be thrown.

4. In the Destination field, type a directory name.

The directory must have already been created and must also be writable. If you do
not enter a directory name, or if you enter the name of a nonexistent or protected
directory, an exception will be thrown.

5. Click Upload to upload the file that you selected to the directory that you
specified in the Destination field.

A message reports that the file was created in the directory that you specified.

6. Go to the directory that you specified in the Destination field and verify that the
uploaded file is present.

17.17 The dukeetf Example Application

The dukeetf example application, located in the tut-install/ examples/web/dukeet £/
directory, demonstrates how to use asynchronous processing in a servlet to provide
data updates to web clients. The example resembles a service that provides periodic
updates on the price and trading volume of an electronically traded fund (ETF).

17.17.1 Architecture of the dukeetf Example Application

The dukeetf example application consists of a servlet, an enterprise bean, and an
HTML page:

» The servlet puts requests in asynchronous mode, stores them in a queue, and
writes the responses when new data for price and trading volume becomes
available.

s The enterprise bean updates the price and volume information once every second.

s The HTML page uses JavaScript code to make requests to the servlet for new data,
parse the response from the servlet and update the price and volume information
without reloading the page.

The dukeetf example application uses a programming model known as long polling.
In the traditional HTTP request and response model, the user must make an explicit
request (like clicking on a link or submitting a form) to get any new information from
the server, and the page has to be reloaded. Long polling provides a mechanism for
web applications to push updates to clients using HTTP without the user making an
explicit request. The server handles connections asynchronously and the client uses
JavaScript to make new connections. In this model, clients make a new request
immediately after receiving new data and the server keeps the connection open until
new data becomes available.

17.17.1.1 The Servlet

The DukeETFServlet class uses asynchronous processing:

@WebServlet (urlPatterns={"/dukeetf"}, asyncSupported=true)
public class DukeETFServlet extends HttpServlet ({

}

17-28 The Java EE 7 Tutorial

The dukeetf Example Application

In the following code example, the init method initializes a queue to hold client
requests and starts a new thread. The thread updates the price and trading volume
information every second with random increments and sends the new values as plain
text to all connected clients:

@Override
public void init(ServletConfig config) {
/* Queue for requests */
requestQueue = new ConcurrentLinkedQueue<AsyncContext>();
/* Set the price and volume periodically,
Send the information to all connected clients. */
Executors.newSingleThreadExecutor () .execute (new Runnable() {
public void run() {
Random random = new Random() ;
while (true) {
/* Set price and volume */
price += 1.0* (random.nextInt (100)-50)/100.0;
volume += random.nextInt(5000) - 2500;
/* Send information to all clients */
for (AsyncContext acontext : requestQueue) {
try {
PrintWriter writer = acontext.getResponse ()
.getWriter();
writer.printf("%$.2f, %d", price, volume);
acontext.complete();
} catch (IOException ex) {}
}
/* Wait */
try { Thread.sleep(DELAY MS); } catch (Exception e) {}

I
}

The code above does not require an enterprise bean for this example, but it contains
several bad practices:

s The servlet contains business logic (updating the price and volume information).
You should normally use enterprise beans to implement business logic.

» The servlet creates a new thread. You should use threads provided by the
container whenever possible, instead of manually creating new threads.

»s The servlet calls Thread. sleep inside a while loop to simulate periodic events.
You should use the timer service from the enterprise Java beans (EJB) container to
schedule periodic notifications.

The following code replaces the previous init method and adds the send method:

@Override
public void init(ServletConfig config) {
/* Queue for requests */
requestQueue = new ConcurrentLinkedQueue<>();
/* Register with the enterprise bean that provides
* price/volume updates */
pvbean.registerServlet (this);

/* PriceVolumeBean calls this method every second to send updates */
public void send(double price, int volume) {

/* Send update to all connected clients */

for (AsyncContext acontext : requestQueue) {

Java Servlet Technology 17-29

The dukeetf Example Application

try {
String msg = String.format("%.2f, %d", price, volume);
PrintWriter writer = acontext.getResponse().getWriter();
writer.write(msg);
logger.log(Level .INFO, "Sent: {0}", msg);
/* Close the connection
* The client (JavaScript) makes a new one instantly */
acontext.complete();
} catch (IOException ex) {
logger.log(Level .INFO, ex.toString());

The service method puts client requests in asynchronous mode and adds a listener to
each request. The listener is implemented as an anonymous class that removes the
request from the queue when the servlet finishes writing a response or when there is
an error. Finally, the service method adds the request to the request queue created in
the init method. The service method is the following:

@Override
public void doGet (HttpServletRequest request,
HttpServletResponse response) {
response.setContentType ("text/html") ;
/* Put request in async mode */
final AsyncContext acontext = request.startAsync();
/* Remove from the queue when done */
acontext.addListener (new AsyncListener() {
public void onComplete (AsyncEvent ae) throws IOException {
requestQueue.remove (acontext) ;
}
public void onTimeout (AsyncEvent ae) throws IOException {
requestQueue.remove (acontext) ;
}
public void onError (AsyncEvent ae) throws IOException {
requestQueue.remove (acontext) ;
}
public void onStartAsync (AsyncEvent ae) throws IOException {}
I N
/* Add to the queue */
requestQueue.add(acontext) ;

17.17.1.2 The Enterprise Bean

The PriceVolumeBean class is an enterprise bean that uses the timer service from the
container to update the price and volume information and call the servlet’s send
method once every second:

@Startup

@Singleton

public class PriceVolumeBean {
/* Use the container's timer service */
@Resource TimerService tservice;
private DukeETFServlet servlet;

@PostConstruct

public void init() {
/* Intialize the EJB and create a timer */
random = new Random() ;

17-30 The Java EE 7 Tutorial

The dukeetf Example Application

servlet = null;
tservice.createIntervalTimer (1000, 1000, new TimerConfig());

public void registerServlet (DukeETFServlet servlet) ({
/* Associate a servlet to send updates to */
this.servlet = servlet;

@Timeout
public void timeout() {
/* Adjust price and volume and send updates */
price += 1.0* (random.nextInt (100)-50)/100.0;
volume += random.nextInt (5000) - 2500;
if (servlet != null)
servlet.send(price, volume);

}

See Using the Timer Service in Chapter 28, "Running the Enterprise Bean Examples"
for more information on the timer service.

17.17.1.3 The HTML Page

The HTML page consists of a table and some JavaScript code. The table contains two
fields referenced from JavaScript code:

<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>...</head>
<body onload="makeAjaxRequest();">

<table>
<td id="price">--.--</td>
<td id="volume">--</td>
</table>
</body>
</html>

The JavaScript code uses the XMLHttpRequest API, which provides functionality for
transferring data between a client and a server. The script makes an asynchronous
request to the servlet and designates a callback method. When the server provides a
response, the callback method updates the fields in the table and makes a new request.
The JavaScript code is the following:

var ajaxRequest;
function updatePage() {
if (ajaxRequest.readyState === 4) {
var arraypv = ajaxRequest.responseText.split(",");
document .getElementById("price") .innerHTML = arraypv[0];
document .getElementById("volume") .innerHTML = arraypv[1];
makeAjaxRequest () ;

}
function makeAjaxRequest () {
ajaxRequest = new XMLHttpRequest();
ajaxRequest.onreadystatechange = updatePage;
ajaxRequest.open("GET", "http://localhost:8080/dukeetf/dukeetf",
true) ;

Java Servlet Technology 17-31

Further Information about Java Servlet Technology

ajaxRequest.send(null);

}

The XMLHttpRequest API is supported by most modern browsers, and it is widely
used in AJAX web client development (Asynchronous JavaScript and XML).

See The dukeetf2 Example Application in Chapter 18, "Java API for WebSocket" for an
equivalent version of this example implemented using a WebSocket endpoint.

17.17.2 Running the dukeetf Example Application

This section describes how to run the dukeetf example application using NetBeans
IDE and from the command line.

17.17.2.1 To Run the dukeetf Example Application Using NetBeans IDE

1. From the File menu, select Open Project.
2. In the Open Project dialog box, navigate to:
tut-install /examples/web/servlet/
3. Select the dukeetf folder.
4. Click Open Project.
5. In the Projects tab, right-click the dukeetf project and select Run.

This command builds and packages the application into a WAR file (dukeetf .war)
located in the target/ directory, deploys it to the server, and launches a web
browser window with the following URL:

http://localhost:8080/dukeetf/

Open the same URL on a different web browser to see how both pages get price
and volume updates simultaneously.

17.17.2.2 To Run the dukeetf Example Application Using Maven

1. Ensure that the GlassFish Server is running. For more information, see Chapter 2,
"Using the Tutorial Examples".

2. Inaterminal window, go to:
tut-install | examples/web/servlet /dukeet f
3. Enter the following command to deploy the application:

mvn install

4. Open a web browser window and type the following address:
http://localhost:8080/dukeetf/

Open the same URL on a different web browser to see how both pages get price
and volume updates simultaneously.

17.18 Further Information about Java Servlet Technology
For more information on Java Servlet technology, see
= Java Servlet 3.1 specification:

http://jcp.org/en/jsr/detail?id=340

17-32 The Java EE 7 Tutorial

Further Information about Java Servlet Technology

= Java Servlet web site:

http://www.oracle.com/technetwork/java/index-jsp-135475.html

Java Servlet Technology 17-33

Further Information about Java Servlet Technology

17-34 The Java EE 7 Tutorial

18

Java API for WebSocket

This chapter describes the Java API for WebSocket (JSR-356), which provides support
for creating WebSocket applications. WebSocket is an application protocol that
provides full-duplex communications between two peers over the TCP protocol.

In the traditional request-response model used in HTTP, the client requests resources
and the server provides responses. The exchange is always initiated by the client; the
server cannot send any data without the client requesting it first. This model worked
well for the World Wide Web when clients made occasional requests for documents
that changed infrequently, but the limitations of this approach are increasingly
relevant as content changes quickly and users expect a more interactive experience on
the web. The WebSocket protocol addresses these limitations by providing a
full-duplex communication channel between the client and the server. Combined with
other client technologies, such as JavaScript and HTML5, WebSocket enables web
applications to deliver a richer user experience.

The following topics are addressed here:

= Introduction to WebSocket

» Creating WebSocket Applications in Java EE
s Programmatic Endpoints

= Annotated Endpoints

= Sending and Receiving Messages

» Maintaining Client State

= Using Encoders and Decoders

» Path Parameters

» Handling Errors

s The dukeetf2 Example Application

s The websocketbot Example Application

m Further Information about WebSocket

18.1 Introduction to WebSocket

In a WebSocket application, the server publishes a WebSocket endpoint and the client
uses the endpoint’s URI to connect to the server. The WebSocket protocol is
symmetrical after the connection has been established: the client and the server can
send messages to each other at any time while the connection is open, and they can

Java API for WebSocket 18-1

Creating WebSocket Applications in Java EE

close the connection at any time. Clients usually connect only to one server, and
servers accept connections from multiple clients.

The WebSocket protocol has two parts: handshake and data transfer. The client
initiates the handshake by sending a request to a WebSocket endpoint using its URI.
The handshake is compatible with existing HTTP-based infrastructure: web servers
interpret it as an HTTP connection upgrade request. An example handshake from a
client looks like this:

GET /path/to/websocket/endpoint HTTP/1.1
Host: localhost

Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Key: xgBt3ImNzJbYQRINXEFlkg==
Origin: http://localhost
Sec-WebSocket-Version: 13

An example handshake from the server in response to the client looks like this:

HTTP/1.1 101 Switching Protocols

Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Accept: K7DILALooIWIG/MOpVvWFB3y3FE8=

The server applies a known operation to the value of the Sec-WebSocket-Key header to
generate the value of the Sec-WebSocket-Accept header. The client applies the same
operation to the value of the Sec-WebSocket-Key header, and the connection is
established successfully if the result matches the value received from the server. The
client and the server can send messages to each other after a successful handshake.

WebSocket supports text messages (encoded as UTF-8) and binary messages. The
control frames in WebSocket are close, ping, and pong (a response to a ping frame). Ping
and pong frames may also contain application data.

WebSocket endpoints are represented by URIs that have the following form:

ws://host:port/path?query
wss://host:port/path?query

The ws scheme represents an unencrypted WebSocket connection, and the wss scheme
represents an encrypted connection. The port component is optional; the default port
number is 80 for unencrypted connections and 443 for encrypted connections. The
path component indicates the location of an endpoint within a server. The query
component is optional.

Modern web browsers implement the WebSocket protocol and provide a JavaScript
API to connect to endpoints, send messages, and assign callback methods for
WebSocket events (such as opened connections, received messages, and closed
connections).

18.2 Creating WebSocket Applications in Java EE

The Java EE platform includes the Java API for WebSocket (JSR-356), which enables
you to create, configure, and deploy WebSocket endpoints in web applications. The
WebSocket client API specified in JSR-356 also enables you to access remote WebSocket
endpoints from any Java application.

The Java API for WebSocket consists of the following packages:

s The javax.websocket.server package contains annotations, classes, and
interfaces to create and configure server endpoints.

18-2 The Java EE 7 Tutorial

Programmatic Endpoints

s The javax.websocket package contains annotations, classes, interfaces, and
exceptions that are common to client and server endpoints.

WebSocket endpoints are instances of the javax.websocket.Endpoint class. The Java
API for WebSocket enables you to create two kinds of endpoints: programmatic
endpoints and annotated endpoints. To create a programmatic endpoint, you extend
the Endpoint class and override its lifecycle methods. To create an annotated
endpoint, you decorate a Java class and some of its methods with the annotations
provided by the packages above. After you have created an endpoint, you deploy it to
an specific URI in the application so remote clients can connect to it.

Note: In most cases, it is easier to create and deploy an annotated
endpoint than a programmatic endpoint. This chapter provides a
simple example of a programmatic endpoint, but it focuses on
annotated endpoints.

The process for creating and deploying a WebSocket endpoint is the following;:
1. Create an endpoint class.

2. Implement the lifecycle methods of the endpoint.

3. Add your business logic to the endpoint.

4. Deploy the endpoint inside a web application.

The process is slightly different for programmatic endpoints and annotated endpoints,
and it is covered in detail in the following sections.

Note: As opposed to servlets, WebSocket endpoints are instantiated
multiple times. The container creates an instance of an endpoint per
connection to its deployment URI. Each instance is associated with
one and only one connection. This facilitates keeping user state for
each connection and makes development easier since there is only one
thread executing the code of an endpoint instance at any given time.

18.3 Programmatic Endpoints

The following example shows how to create an endpoint by extending the Endpoint
class:

public class EchoEndpoint extends Endpoint {
@Override
public void onOpen(final Session session, EndpointConfig config) {
session.addMessageHandler (new MessageHandler.Whole<String>() {

@Override
public void onMessage (String msg) {
try {
session.getBasicRemote () .sendText (msg) ;
} catch (IOException e) { ... }

This endpoint echoes every message received. The Endpoint class defines three
lifecycle methods: onOpen, onClose, and onError. The EchoEndpoint class implements
the onOpen method, which is the only abstract method in the Endpoint class.

Java API for WebSocket 18-3

Annotated Endpoints

The Session parameter represents a conversation between this endpoint and the
remote endpoint. The addMessageHandler method registers message handlers, and the
getBasicRemote method returns an object that represents the remote endpoint. The
Session interface is covered in detail in the rest of this chapter.

The message handler is implemented as an anonymous inner class. The onMessage
method of the message handler is invoked when the endpoint receives a text message.

To deploy this programmatic endpoint, use the following code in your Java EE
application:

ServerEndpointConfig.Builder.create (EchoEndpoint.class, "/echo").build();
When you deploy your application, the endpoint is available at

ws://<host>:<port>/<application>/echo; for example,
ws://localhost:8080/echoapp/echo.

18.4 Annotated Endpoints

The following example shows how to create the same endpoint from Programmatic
Endpoints using annotations instead:

@ServerEndpoint ("/echo")
public class EchoEndpoint {

@OnMessage
public void onMessage(Session session, String msg) {
try {
session.getBasicRemote () .sendText (msg) ;
} catch (IOException e) { ... }

}

The annotated endpoint is simpler than the equivalent programmatic endpoint, and it
is deployed automatically with the application to the relative path defined in the
ServerEndpoint annotation. Instead of having to create an additional class for the
message handler, this example uses the OnMessage annotation to designate the method
invoked to handle messages.

Table 18-1 lists the annotations available in the javax.websocket package to designate
the methods that handle lifecycle events. The examples in the table show the most
common parameters for these methods. See the API reference for details on what
combinations of parameters are allowed in each case.

Table 18-1 WebSocket Endpoint Lifecycle Annotations

Annotation Event Example

OnOpen Connection opened. @OnOpen
public void open(Session session,
EndpointConfig conf) { }

OnMessage Message received. @OnMessage
public void message (Session session,
String msg) { }

OnError Connection error. @OnError
public void error(Session session,
Throwable error) { }

OnClose Connection closed. @onClose
public void close(Session session,
CloseReason reason) { }

18-4 The Java EE 7 Tutorial

Sending and Receiving Messages

18.5 Sending and Receiving Messages

WebSocket endpoints can send and receive text and binary messages. In addition, they
can also send ping frames and receive pong frames. This section describes how to use
the Session and RemoteEndpoint interfaces to send messages to the connected peer
and how to use the OnMessage annotation to receive messages from it.

18.5.1 Sending Messages

Follow these steps to send messages in an endpoint:
1. Obtain the Session object from the connection.

The Session object is available as a parameter in the annotated lifecycle methods
of the endpoint, like those in Table 18-1. When your message is a response to a
message from the peer, you have the Session object available inside the method
that received the message (the method annotated with @onMessage). If you have to
send messages that are not responses, store the Session object as an instance
variable of the endpoint class in the method annotated with @0nOpen, so you can
access it from other methods.

2. Use the Session object to obtain a RemoteEndpoint object.

The Session.getBasicRemote () method and the Session.getAsyncRemote ()
method return RemoteEndpoint.Basic and RemoteEndpoint.Async objects
respectively. The RemoteEndpoint .Basic interface provides blocking methods to
send messages; the RemoteEndpoint . Async interface provides non-blocking
methods.

3. Use the RemoteEndpoint object to send messages to the peer.

The following list shows some of the methods you can use to send messages to the
peer:

m void RemoteEndpoint.Basic.sendText (String text)

Send a text message to the peer. This method blocks until the whole message
has been transmitted.

s void RemoteEndpoint.Basic.sendBinary (ByteBuffer data)

Send a binary message to the peer. This method blocks until the whole
message has been transmitted.

s void RemoteEndpoint.sendPing(ByteBuffer appData)
Send a ping frame to the peer.

s void RemoteEndpoint.sendPong (ByteBuffer appData)
Send a pong frame to the peer.

The example in Annotated Endpoints demonstrates how to use this procedure to reply
to every incoming text message.

18.5.1.1 Sending Messages to All Peers Connected to an Endpoint

Each instance of an endpoint class is associated with one and only one connection and
peer; however, there are cases when an endpoint instance needs to send messages to
all connected peers. Examples include chat applications and online auctions. The
Session interface provides the getOpenSessions method for this purpose. The
following example demonstrates how to use this method to forward incoming text
messages to all connected peers:

Java API for WebSocket 18-5

Maintaining Client State

@ServerEndpoint (" /echoall")
public class EchoAllEndpoint {

@OnMessage
public void onMessage(Session session, String msg) {
try {
for (Session sess : session.getOpenSessions()) {

if (sess.isOpen())
sess.getBasicRemote () .sendText (msg) ;

}
} catch (IOException e) { ... }

18.5.2 Receiving Messages

The OnMessage annotation designates methods that handle incoming messages. You
can have at most three methods annotated with @0nMessage in an endpoint, one for
each message type: text, binary, and pong. The following example demonstrates how
to designate methods to receive all three types of messages:

@ServerEndpoint ("/receive")
public class ReceiveEndpoint ({

@OnMessage

public void textMessage(Session session, String msg) {
System.out.println("Text message: " + msg);

}

@0OnMessage

public void binaryMessage (Session session, ByteBuffer msg) {
System.out.println("Binary message: " + msg.toString());

}

@0OnMessage

public void pongMessage (Session session, PongMessage msg) {
System.out.println("Pong message: " +

msg.getApplicationData() .toString());

18.6 Maintaining Client State

Since the container creates an instance of the endpoint class for every connection, you
can define and use instance variables to store client state information. In addition, the
Session.getUserProperties method provides a modifiable map to store user
properties. For example, the following endpoint replies to incoming text messages
with the contents of the previous message from each client:

@ServerEndpoint ("/delayedecho")
public class DelayedEchoEndpoint {
@0OnOpen
public void open(Session session) {
session.getUserProperties() .put ("previousMsg", " ");

}

@0OnMessage
public void message(Session session, String msg) {
String prev = (String) session.getUserProperties()

.get ("previousMsg") ;
session.getUserProperties () .put ("previousMsg", msg);
try {

18-6 The Java EE 7 Tutorial

Using Encoders and Decoders

session.getBasicRemote () .sendText (prev) ;
} catch (IOException e) { ... }

}

To store information common to all connected clients, you can use class (static)
variables; however, you are responsible for ensuring thread-safe access to them.

18.7 Using Encoders and Decoders

The Java API for WebSocket provides support for converting between WebSocket
messages and custom Java types using encoders and decoders. An encoder takes a
Java object and produces a representation that can be transmitted as a WebSocket
message; for example, encoders typically produce JSON, XML, or binary
representations. A decoder performs the reverse function: it reads a WebSocket
message and creates a Java object.

This mechanism simplifies WebSocket applications, because it decouples the business
logic from the serialization and deserialization of objects.

18.7.1 Implementing Encoders to Convert Java Objects into WebSocket Messages
The procedure to implement and use encoders in endpoints is the following:
1. Implement one of the following interfaces:
» Encoder.Text<T> for text messages
= Encoder.Binary<T> for binary messages

These interfaces specify the encode method. Implement an encoder class for each
custom Java type that you want to send as a WebSocket message.

2. Add the names of your encoder implementations to the encoders optional
parameter of the ServerEndpoint annotation.

3. Use the sendObject (Object data) method of the RemoteEndpoint .Basic or
RemoteEndpoint.Async interfaces to send your objects as messages. The container
looks for an encoder that matches your type and uses it to covert the object to a
WebSocket message.

For example, if you have two Java types (Messagea and MessageB) that you want to
send as text messages, implement the Encoder . Text<MessageA> and
Encoder.Text<MessageB> interfaces as follows:

public class MessageATextEncoder implements Encoder.Text<MessageA> {

@Override

public void init (EndpointConfig ec) { }
@Override

public void destroy() { }

@Override

public String encode (MessageA msgA) throws EncodeException {
// Access msgA’s properties and convert to JSON text...
return msgAJsonString;

}

And similarly for Encoder . Text<MessageB>. Then, add the encoders parameter to the
ServerEndpoint annotation as follows:

@ServerEndpoint (

Java API for WebSocket 18-7

Using Encoders and Decoders

value = "/myendpoint",
encoders = { MessageATextEncoder.class, MessageBTextEncoder.class }

)
public class EncEndpoint { ... }

Now you can send Message2 and MessageB objects as WebSocket messages using the
sendObject method as follows:

MessageA msgA = new MessageA(...);
MessageB msgB = new MessageB(...);
session.getBasicRemote.sendObject (msgl)
session.getBasicRemote.sendObject (msgB)

’
’

As in this example, you can have more than one encoder for text messages and more
than one encoder for binary messages. Like endpoints, encoder instances are
associated with one and only one WebSocket connection and peer, so there is only one
thread executing the code of an encoder instance at any given time.

18.7.2 Implementing Decoders to Convert WebSocket Messages into Java Objects

The procedure to implement and use decoders in endpoints is the following;:
1. Implement one of the following interfaces:

m Decoder.Text<T> for text messages

» Decoder.Binary<T> for binary messages

These interfaces specify the willDecode and decode methods.

Note: Unlike with encoders, you can specify at most one decoder for
binary messages and one decoder for text messages.

2. Add the names of your decoder implementations to the decoders optional
parameter of the ServerEndpoint annotation.

3. Use the OnMessage annotation in the endpoint to designate a method that takes
your custom Java type as a parameter. When the endpoint receives a message that
can be decoded by one of the decoders you specified, the container calls the
method annotated with @0nMessage that takes your custom Java type as a
parameter if this method exists.

For example; if you have two Java types (Messagea and MessageB) that you want to
send and receive as text messages, define them so that they extend a common class
(Message). Since you can only define one decoder for text messages, implement a
decoder for the Message class as follows:

public class MessageTextDecoder implements Decoder.Text<Message> {

@Override

public void init (EndpointConfig ec) { }
@Override

public void destroy() { }

@Override

public Message decode(String string) throws DecodeException {
// Read message. ..
if (/* message is an A message */)
return new MessageA(...);
else if (/* message is a B message */)
return new MessageB(...);

18-8 The Java EE 7 Tutorial

Path Parameters

@Override

public boolean willDecode(String string) {
// Determine if the message can be converted into either a
// MessageA object or a MessageB object...
return canDecode;

}

Then, add the decoder parameter to the ServerEndpoint annotation as follows:

@ServerEndpoint (
value = "/myendpoint",
encoders = { MessageATextEncoder.class, MessageBTextEncoder.class },
decoders = { MessageTextDecoder.class }

)
public class EncDecEndpoint { ... }

Now define a method in the endpoint class that receives Messagea and MessageB
objects as follows:

@OnMessage
public void message(Session session, Message msg) {
if (msg instanceof Messaged) {
// We received a MessageA object...
else if (msg instanceof MessageB) {
// We received a MessageB object...

Like endpoints, decoder instances are associated with one and only one WebSocket
connection and peer, so there is only one thread executing the code of a decoder
instance at any given time.

18.8 Path Parameters

The serverEndpoint annotation enables you to use URI templates to specify parts of
an endpoint deployment URI as application parameters. For example, consider this
endpoint:

@ServerEndpoint (" /chatrooms/{room-name}")
public class ChatEndpoint {

If the endpoint is deployed inside a web application called chatapp at a local Java EE
server in port 8080, clients can connect to the endpoint using any of the following
URIs:

http://localhost:8080/chatapp/chatrooms/currentnews
http://localhost:8080/chatapp/chatrooms/music
http://localhost:8080/chatapp/chatrooms/cars
http://localhost:8080/chatapp/chatrooms/technology

Annotated endpoints can receive path parameters as arguments in methods annotated
with @0nOpen, @0nMessage, and @0OnClose. In this example, the endpoint uses the
parameter in the @0nOpen method to determine which chat room the client wants to
join:

@ServerEndpoint (" /chatrooms/{room-name}")

public class ChatEndpoint {

Java API for WebSocket 18-9

Handling Errors

@OnOpen
public void open(Session session,
EndpointConfig c,
@PathParam("room-name") String roomName) {
// Add the client to the chat room of their choice ...

}

The path parameters used as arguments in these methods can be strings, primitive
types, or boxed versions of them.

18.9 Handling Errors

To designate a method that handles errors in an annotated WebSocket endpoint,
decorate it with @OnError:

@ServerEndpoint ("/testendpoint")
public class TestEndpoint {

@OnError
public void error(Session session, Throwable t) {
t.printStackTrace() ;

}

This method is invoked when there are connection problems, runtime errors from
message handlers, or conversion errors decoding messages.

18.10 The dukeetf2 Example Application

The dukeetf2 example application, located in the tut-install/examples/web/dukeetf2/
directory, demonstrates how to use a WebSocket endpoint to provide data updates to
web clients. The example resembles a service that provides periodic updates on the
price and trading volume of an electronically traded fund (ETF).

18.10.1 Architecture of the dukeetf2 Sample Application
The dukeetf2 example application consists of a WebSocket endpoint, an enterprise
bean, and an HTML page:

= The endpoint accepts connections from clients and sends them updates when new
data for price and trading volume becomes available.

= The enterprise bean updates the price and volume information once every second.

s The HTML page uses JavaScript code to connect to the WebSocket endpoint, parse
incoming messages, and update the price and volume information without
reloading the page.

18.10.1.1 The Endpoint

The WebSocket endpoint is implemented in the ETFEndpoint class, which stores all
connected sessions in a queue and provides a method that the enterprise bean calls
when there is new information available to send:

@ServerEndpoint ("/dukeetf")
public class ETFEndpoint {
private static final Logger logger = Logger.getLogger ("ETFEndpoint");

18-10 The Java EE 7 Tutorial

The dukeetf2 Example Application

/* Queue for all open WebSocket sessions */
static Queue<Session> queue = new ConcurrentLinkedQueue<> () ;

/* PriceVolumeBean calls this method to send updates */
public static void send(double price, int volume) {
String msg = String.format("%.2f, %d", price, volume);
try {
/* Send updates to all open WebSocket sessions */
for (Session session : queue) {
session.getBasicRemote () .sendText (msg) ;
logger.log(Level .INFO, "Sent: {0}", msg);
}
} catch (IOException e) {
logger.log(Level.INFO, e.toString());

The lifecycle methods of the endpoint add and remove sessions to and from the queue:

@ServerEndpoint (" /dukeetf")
public class ETFEndpoint {
@OnOpen
public void openConnection(Session session) {
/* Register this connection in the queue */

queue.add (session);
logger.log (Level.INFO, "Connection opened.");

@0nClose

public void closedConnection(Session session) {
/* Remove this connection from