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Abstract— We propose a metric for determining whether ferent versions of the same system.
one version of a system is more secure than another with re- o
spect to a fixed set of dimensions. Rather than count bugs A. Motivation

at the code level or count’vulnerablhty rep_o_rts atthe syste.m Our work is motivated by the practical problem faced in
level, we count a system’sttack opportunities. We use this

count as an indication of the system’s “attackability,” like- NdUstry today. Industry has responded to demands for im-
lihood that it will be successfully attacked. We describe a Provement in software and systems security by increasing
system’sattack surface along three abstract dimensions: tar- €ffortt into creating “more secure” products and services.
gets and enablers, channels and protocols, and access rightsHow can industry determine if this effort is paying off and

Intuitively, the more exposed the system’s surface, the more how can we as consumers determine if industry’s effort has
attack opportunities, and hence the more likely it will be a2 made a difference?
target of attack. Thus, one way to imgove system security

_ i Our approach to measuring relative security between
is to reduce its attack surface.

: . . . systems is inspired by Howard's informal notion ref-
To validate our ideas, we recast Microsoft Security Bul- -, . o u
letin MS02-005 using our terminology, and we show how ative attack surface [1]. Howard identified 17 “attack vec-

Howard’s Relative Attack Surface Quotient for Windows is  tors,” i.e., likely opportunities of attack. Examples of his

an instance of our general metric. attack vectors are open sockets, weak ACLs, dynamic web
Keywords— Security metrics, attacks, vulnerabilities, at- Pages, and enabled guest accounts. Based on these 17 at-
tack surface, threat modeling. tack vectors, he computes a “measure” of the attack sur-

face, which he calls the Relative Attack Surface Quotient
(RASQ), for seven running versions of Windows.

We added three attack vectors to Howard’s original 17
Given that security is not an either-or property, how camd show the RASQ calcuation for five versions of Win-
we determine that a new release of a system is “more dews in Figure 1. The bar chart suggests that a default
cure” than an earlier version? What metrics should wenning version of Windows Server 2003 is much more
use and what things should we count? Our work argussture than previous versions with respect to the 20 attack
that rather than attempt to measure the security of a sysetors. It also illustrates that the attack surface of Win-
tem in absolute terms with respect to a yardstick, a maiews Server 2003 increases only marginally when IIS is
useful approach is to measure its “relative” security. Vé@abled—in sharp contrast to Windows NT 4.0, where en-

use “relative” in the following sense: Given System A, wabling 1IS (by installing the “Option Pack”) dramatically
compare its securityelative to System B, and we do thisincreased the RASQ, and to Windows 2000, where IIS is
comparison with respect to a given number of yardsticksabled by defalt As will be discussed in Section VI-
which we calldimensions. So rather than say “System AC, these differences in RASQ are consistent with anecdo-
is secure” or “System A has a measured security numkerevidence for the relative security of different Windows
N” we say “System A is more secure than System B wifllatforms and configurations.
respect to a fixed set of dimensions.”

In what follows, we assume that System A and Systefn A New Metric: Attackability
B have the same operating environment. That is, the sefwo measurements are often used to determine the se-
of assumptions about the environment in which Systemcérity of a system: at the code level, a count of the number
and System B is deployed is the same; in particular, thbugs found (or fixed from one version to the next); and
threat models for System A and System B are the samgthe system level, a count of the number of times a system
Thus, it helps to think of System A and System B as difer any of its versions) is mentioned in the set of Common
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Fig. 1. Relative Attack Surface Quotient of Different Versions of Windows

Vulnerabilities and Exposures (CVE) bulletins [2], CERT Suppose now we are given a fixed set of dimensions and
advisories [3], etc. a fixed set of attack opportunities (i.e., system features) for

Rather than measure code-level or system-level vuln@®ch dimension. Then with respect to this fixed set of di-
ability, we consider a different measure, somewhat in JBensions of attack opportunities, we can measure whether
tween, which we calbttack opportunity, or “attackabil- System A is “more secure” than System B.
ity” for short. Counting the number of bugs found (or
fixed) misses bugs that are not found (or fixed), perhaps
the very one that is exploited,; it treats all bugs alike when

one might be easier to exploit than another, or the exploitn our work, we use state machines to model Systems A
of one may result in more damage than the exploit of afq B. Our abstract model allows Systems A and B to be
other. Instead, we want a measure—at a higher abstragy two state machines, each of which interacts with the
tion level—that gives more weight to bugs that are moggme state machine model of its environment, i.e., threat
likely to be exploited. Counting the number of times @odel. In practice, it is more useful and more meaningful
system version appears in bulletins and advisories ignagegompare two systems that have some close relationship,
the specifics of the system configuration that give risedqy  they provide similar functionality, perhaps through
the exploit: whether a security patch has been installgghjlar APIs, rather than two arbitrary systems. The ab-
whether defaults are turned off, whether it always runsdfract dimensions along which we compare two systems
system administrator mode. Instead, we want a measurg§re derived directly from our state machine mogieticess
at a lower abstraction level—that allows us to refer to VeRid data resources and theactions that we can execute on
specific states (i.e., configurations) of a system. Given tfigse resources. For a given attack, which we define to be a
intermediate viewpoint, we propose that there are Cert@kﬂquence of action executions, we distinguésigets from
system features that are more likely than others to be @Raplers: targets are processes or data resources that an
portunities of attack. The counts of these “more likely té’dversary aims to control, areablers are all other pro-
be attacked” system features determine a system’s atta@ses and data resources that are used by the adversary
ability. to carry out the attack successfully. The adversary obtains
Further, we will categorize these attack opportunitiesntrol over these resources through communicatian-
into different abstractlimensions, which together define anelsandprotocols. Control is subject to the constraints im-
system’sattack surface. Intuitively, the more exposed theposed by a system&et of access rights. In summary, our
system’s surface, the more attack opportunities, and heattack surface’s three dimensions are: targets and enablers,
the more likely it will be a target of attack. Thus, one waghannels and protocols, and access rights. Attackability is
to improve system security is to reduce its attack surfaca.measure of how exposed a system’s attack surface is.



C. Contributions and Roadmap A. Sate Machines

We use a state machine formal framework to supportA state machine, M = (S,1,A,T), is a four-tuple

three main contributions of this paper: whereS is a set of states] C S is a set of initial states,
« The notion of a systemattack surface. A'is a set of actions, an@d = S x A x S is a transition
« A newrelative measure of security, attackability. relation. A states € S is a mapping from typedesources

« A model for vulnerabilities as differences between itte their typedvalues:
tended and actual behavior, in terms of pre-conditions and
post-conditions (Section 11-B). s: Resy — Valy

Our relative apprga}ch has the advaqtage thqt SECUY interest to us are state resources thatpaoeesses and
analysts are more willing and able to give relative rank- " N .
ata. A state transition, (s, a, ), is the execution of ac-

ings of threats and relative values to risk-mitigation co(y-

) ion a in states resulting in states. A change in state
trols, than absolute numbers [4]. We also avoid the nee ?o “ " g . g .
means that either a new resource is added to the mapping,

assign probabilities to attacks. .
a resource was deleted, or a resource changes in value. We

We view our work as only a first step toward coming UP. < ime each state transition is atomic

V.V'th a megnlngful, yet practical way .Of measuring (rg_la- An execution of a state machine is the alternating se-
tive) security. By no means do we claim to have identified . o
. e . . guence of states and action executions:
the right” or “all” the dimensions of an attack surface. In-
deed, our use of the word “dimensions” is only meant to
be suggestive of a surface; our dimensions are not orthog-
onal. We hope with this paper to spark a fruitful line ofheres, € I andVi > 0.(s;_1,a;, s;) € T. An execution
new research in security metrics. can be finite or infinite. If finite, it ends in a state.

In Section Il we present our formal framework and then The behavior of a state machine), is the set of all
in Section Il we explain our abstract dimensions of a s)igs executions. We denote this d8éh(M). A states is
tem’s attack surface. To illustrate these ideas concretelyyaachable if either s € I or there is an executiory, €
Section IV we recast Microsoft Security Bulletin MS02Beh (M), such that appears ire.
005 in terms of our concepts of targets and enablers. Inye will assume that actions are specified by pre- and
Section V we give an abstract attack surface measuremgst-conditions. For an action, € A, if a.pre anda.post
function. Again, to be concrete, in Section VI we revisgenotea’s pre- and post-condition specifications, we can

Howard’'s RASQ metric in terms of our abstract dimenhen define the subset of the transition relatifnthat in-
sions. In Section VIl we discuss how best to apply ag@ives only actioru as follows:

not to apply the RASQ approach. We close with a review
of related work in Section VIII and suggestions for future T’ = {(s,a,s’) : S x Ax S | a.pre(s) = a.post(s,s’)}
work in Section IX.

Spa1 Sy a2 S ... Si—1 Q5 S; ...

We model both the system under attack and the threat
Il. TERMINOLOGY AND MODEL (adversary) as state machines:

Our formal model is guided by the following three terms System = (S, I, Ag, Ts)
from Trust in Cyberspace [5]: Threat = (Sr, Ir, Az, Tr)
« A wulnerability is an error or weakness in design, imple-
mentation, or operation. We partition the resources of a state machiné, into
« An attack is the means of exploiting a vulnerability. @ set oflocal resources and a set ofglobal resources,
« A threat is an adversary motivated and capable of eResn = Resf WG We define thecombination of the
ploiting a vulnerability. two state machineS§T = System X Threat, by merging alll
We model both the system and the threat as state ‘g corresponding components:
chines, which we will calBystem andThreat, respectively. s Ssp C 2fesst=Valst
A state machine has a set of states, a set of initial statedsT = Is U I
a set of actions, and a state transition relation. We moeeflsT = As U Ar
an attack as a sequence of executions of actions that endsr = Ts U T
in a state that satisfies the adversary’s goal, and in whitke identify the global resources &f and the global re-
one or more of the actions executed in an attack involvesaurces ofl’ such thatResS, = Res§ = Res% and so
vulnerability. Ress = Rest W Resk W Res$... Finally, Valgy =



Valsg U Valp. We extend the definitions of executionsl. Sa.; — Sint # @

behaviors, etc. in the standard way. If there is a difference in state sets then there are some
An adversary targets a system under attack to accatates that are defined féctual that are not intended to
plish a goal: be defined folntend. The difference may be due to (1) a

resource that is in a state Actual, but not inlntend or (2)
a value allowed for resource #ctual that is not allowed

where Goal is formulated as a predicate over states ffr that resource imntend. (A resource that is not in a state
Sgr. Note that we make explicit the goal of the adveld Actual, but is inintend is ok.) The difference may not
sary in our model of a system under attack. Examp|e goa%too serious if the states in the difference are not reach-
might be “Obtain root access on host H” or “Deface wegble by some transition iy, If they are reachable, then
site on server S.” In other contexts, such as fault-tolerdf@ difference in transition relations will pick up on this
computing, Threat is synonymous with the system’s “enyulnerability. However, even if they are not reachable, it
vironment.” Thus, we us&hreat to model environmental means that if any of the specifications for actions changes
failures, due to benign or malicious actions, that affeciththe future, we must be careful to make sure that the set
system’s state. of reachable states ifxctual is a subset of that dhtend.
Intuitively, the way to reduce the attack surface is & Iae — Iy # @
ensure that the behavior &stem prohibits Threat from If there is a difference in initial state sets then there is

System-Under-Attack = (System X Threat) x Goal

achieving itsGoal. at least one state in which we can start an execution when
o we ought not to. This situation can arise if resources are
B. Mulnerabilities not initialized when they should be, they are given incor-

Vulnerabilities can be found at different levels of a sy&ect initial values, or when there are resources in an initial
tem: implementation, design, operational, etc. They agtual state but not in any initial intended state.
share the common intuition that something in the act@BlA o — At # @
behavior of the system deviates from the intended behavif there is a difference in action sets then there are some
ior. We can capture this intuition more formally by comactions that can be actually done that are not intended.
paring the difference between the behaviors of two stateese actions will surely lead to unexpected behavior. The
machines. Suppose there is a state machine that modiference will show up in the differences in the state tran-
the intended behavior, and one that models the actual §iien relations (see below).

havior: 4. Taet — Tpoy £ @
Intend = (Stne, Lints Arnt, Tint) _ If tlhere is a difference in statIT trans_ltlon ssts tr;]enlthere
Actual = (Suct, Lact, Apet, Tact) is at least one state transition alloweddctual that should

not be allowed according totend. This situation can arise
We define the vulnerability difference satll, to be the pecause either (i) the action sets are different or (ii) the pre-
difference in behaviors of the two machines: Ipost-conditions for an action common to both action sets
Vul = Beh(Actual) — Beh(Intend) are dlﬁerent'_ N
More precisely, for case (ii) wherd ., = A, CON-

An execution sequence Ml arises from one or moresider a given actiom € Ary;. If a.Tact — a.T7ne 1S NON-
differences between some component of the state mackimgty then there are some states either in which we can
Actual and the corresponding componentlafend, i.e., executea in Actual and not inlntend or which we can
differences between the corresponding sets of (1) statsch as a result of executingin Actual and not inln-

(or more relevantly, reachable states), (2) initial states, (&)d. Letas.¢.pre andar,;.pre be the pre-conditions for
actions, or (4) transition relations. We refer to any one @fn Actual andIntend, respectively, and similarly for their
these kinds of differences asanerability. Let's consider post-conditions. In terms of pre- and post-conditions,
each of these cases: difference can arise if

3There are more elegant formulations of composing two state ntalAct-PT€ = AInt.pre and

chines; we use a simple-minded approach that basically merges s Act-POSt = Qpt.post.

state machines into one big one. In the extreme, if the local resourpgfuitively, if the “actual” behavior is stronger than the “in-
sets are empty, then the two machines share all state resources; i&éf}?ded" then we are safe.

global resource set is empty, they share nothing. Thus our model is_ .

flexible enough to allow communication through only shared memory, Given thatActual models the actual behavior of the sys-

only message passing, or a combination of the two. tem, then our system combined with tlikreat machine



looks like: I[ll. DIMENSIONS OF ANATTACK SURFACE

System-Under-Attack = (Actual X Threat) x Goal We consider three broad dimensions to our attack sur-
face:
as opposed to «» Targets and enablers. To achieve his goal, the adversary

has in mind one or more targets on the system to attack. An
attack target, or simplytarget, is a distinguished process

again with the expectation that wehatend implemented ©" data resource o8ystem that plays a critical role in the
correctly,Goal would not be achievable. adversary’s achieving his goal. We use the temabler

In this paper we focus our attention at implementatioff2” @Y accessed process or data resource that is used as

level vulnerabilities, in particular, differences that can H&t of the means of the attack but is not singled out to be

blamed on an action’s pre-condition or post-condition trfafar9et: o
is too weak or incorrect. A typical example is in handlinty hannels and protocols. Communication channels are

a buffer overrun. Here is the intended behavior, for a givilf Meéans by which the adversary gains access to the
input string, s: targets onSystem. We allow both message-passing and

shared-memory channeBrotocols determine the rules of
length(s)< 512 = “process normally” interaction among the parties communicating on a channel.
A length(s)> 512 = “report error and terminate” « Accessrights. These rights are associated with each pro-
cess and data resource of a state machine.
If the programmer forgot to check the length of the input, Intuitively, the more targets, the larger the attack sur-

System-Under-Attack = (Intend X Threat) x Goal

the actual behavior might instead be face. The more channels, the larger the attack surface. The
more generous the access rights, the larger the attack sur-
length(s)< 512 = “process normally” face.
A length(s)> 512 = “execute extracted payload” We now look at each of these dimensions in turn.

Here “execute extracted payload” presumably has an @b-Targets and Enablers
servable unintended side effect that differs from just re-

porting an error Targets and enablers are resources that an attacker can

use or coopt. There are two kinds: processes and data.
C. Attacks Since it is a matter of the adversary’s goal that determines
whether a resource is a target or enabler, for the remainder

An attack is the “means of exploiting a vulnerabilpf this section we use the term targets to stand for both. In

ity” [5]. We model an attack to be a sequence of actigfarticular, a target in one attack might simply be an enabler

executions, at least one of which involves a vulnerabiliyr a different attack, and vice versa.

More precisely, an attack; either starts in an unintended Examples of process targets are browsers, mailers, and

initial state or reaches an unintended state through On@&{fabase servers. Examp|es of data targets are files, direc-

the actions executed fn In general, an attack will includetgries, registries, and access rights.

the execution of actions from both state machit@stem  The adversary wants to control the target: modify it,

andThreat. gain access to it, or destroy it. Control means more than
The difference between an arbitrary sequence of actiginership; more generally, the adversary can use it, e.g.,

executions and an attack is that an attack includes eithetrigger the next step in the attack. Consider a typical

(or both) (1) the execution of an action whose behavigibrm or virus attack, which follows this general pattern:

deviates from the intended (see previous section) or §gp 1: Ship an executable—treated as a piece of data—

the execution of an action, € Aact — Arne(# ). Inthis  within a carrier to a target machine.

second case, the set of unintended behaviors will inclu@lep 2: Use an enabler, e.g., a browser, to extract the pay-

behaviors not in the set of intended behaviors sifigg # load (the executable) from the carrier.

Afnt. Sep 3: Get an interpreter to execute the executable to
For a given attackk, the means of an attack is the set cause a state change on the target machine.

of all actions ink and the set of all process and data reshere the attacker’s goal, achieved after the third step, may

sources accessed in performing each actiok.inThese be to modify state on the target machine, to use up its re-

resources include all global and local resources accessaatces, or to set it up for further attacks.

by each action irk and all parameters passed in as argu-The prevalence of this type of attack leads us to hame

ments or returned as a result to each action executéd intwo special types of data resources. Fiesecutables is



a distinguished type of data resource in that they canditack sequence, tidreat machine might establish a new
interpreted (i.e., evaluated). We associate with executabtesssage-passing channel, e.g., after scanning host ma-
one or more eval functionsyal: executable — unit? Dif-  chines to find out what services are running on port 80.
ferenteval functions might interpret the same executable Part of calculating the attack surface is determining the
with differing effects. Executables can be targets and ceypes of channels, the numbers of instances of each chan-
trolling such a target includes the ability to call aml nel type, the types of protocols allowed per channel type,
function on it. The adversary would do so, for examplthe numbers and types of processes at the channel end-
for the side effect of establishing the pre-condition of thwints, the access rights (see below) associated with the
next step in the attack. channels and their endpoints, etc.

Obvious example types ofval functions include
browsers, mailers, applications, and services (e.g., WebAccess rights

servers, databases, scripting engines). Less obvious e associataccess rights with all resources. For exam-

amples mclude’appllgatlon extensions (e._g., Web ,h le, for data that are text files, we might associate read and
dlers, add-on dlI's, ActiveX controls, ISAPI filters, devic

_ : _ __Wwrite rights; for executables, we might associate execute
drivers), which run in the same process as the appl'cat'ﬂghts. Note that we associate rights not only with files

and helper applications (e.g., CGI scripts), which run in d directories, but also with channels (since they are data

L a
separate process from the application. resources) and channel endpoints (since they are running

Carriers are our second distinguished type of data rﬁfocesses).

source. Executables are embedded in carriers. Spec'fbonceptually we model these rights as a relation, sug-

cally, carriers have a functloa_ :trac_t payload_. carrier — gestive of Lampson’s orginal access control matrix [6]:
executable. Examples of carriers include viruses, worms,

Trojan horses, and email messages. Access C Principals x Res x Rights

Part of calculating the attack surface is determining the
types and numbers of instances of potential process targétgrePrincipals = Users U Processes, Res = Processes
and data targets, the types and numbers of instances of'eVapta, andRights is left uninterpreted. Res is the same
functions for executables that could have potentially daf¢t of resources introduced in Section Il.) For example, in
aging side effects; and the types and numbers of instaridgi, Rights = {read, write, execute in the Andrew file

of carriers for any executable. systemRights = {read, lookup, insert, delete, write, lock,
administef, and in Windows there are eighteen different
B. Channels and Protocols rights associated with files and directories alone; and of

A channel is a means of communicatin informatio%ourse not all rights are appropriate for all principals or
9 resources. More generally, to represent conditional access

from a sender to areceiver (e.g., from an attacker to atarlggert_]ts we can extend the above relation with a fourth di-

. kets. RPC i d d _gnension,Accessg Principals x Res x Rights x Condi-
passing (e.g., sockets, connections, and name plﬁeﬁg, whereConditions is a set of state predicates.

and shared-memory (e.g., files, directories, and registries . .
y (e 9 here are shorthands for some “interesting” subsets of

Channel “endpoints” are processes. . . .
. . i . the Access relation, e.g., accounts, trust relationships, and
Associated with each kind of channel igptocol, the . . ) ) T
rivilege levels, that we usually implement in practice, in

rules of exchanging information. For message-passfﬁ . : )
. |§J of representing thAccess relation as a matrix.
channels, example protocols include ftp, RPC, http, an

streaming. For shared-memory, examples include prol. Accounts represent principals, i.e., users and processes.

cols that might govern the order of operations (e.g., a f-ill- us, we view an account as shorthand for a particular

has to be open before read), constrain simultaneous acBé'Qé"pa' with a particular set of access rights. Accounts

(e.g., multiple-reader/single-writer or single-reader/sing| an be data or process targets.

) : . : here ar m ial nts that hav faul
writer), or prescribe locking rules (e.g., acquire locks ac- ere are some special accounts that have default access

cording to a given partial order). rights. Examples are well-known accounts such as guest

Channels are data resources. A channel shared bet acgounts, and accounts with "admin” privileges. These

. . "¥§Sﬂ‘:auy have names that are easy to guess.
System and Threat machines is an element dtesg; in

o : >+ . Part of calculating the attack surface is determining the
the combination of the two machines. In practice, in an .

number of accounts, the number of accounts with ad-
“\Writing the return type ofval asunit is our way, borrowed from Min privileges, and the existence and number of guest ac-

ML, to indicate that a function has a side effect. counts, etc. Also, part of calculating the attack surface is



determining for each account if the tightest access rigbhte-condition is that the length of the object, X, embedded
possible are associated with it. in D, should be less than or equal to 512 bytes.
« A trust relationship is just a shorthand for an expanded The intended post-condition is to display the embedded
access rights matrix. For example, we might define a sp&ject as long as the ability to run ActiveX Controls is
cific trust relation, Tr C Principals x Principals, where enabled for zone Z. The actual post-condition, due to the
network hosts might be a subsetRifincipals. Then we non-trivial pre-condition, is that if the length of X is longer
might define the access rights for princigalto be the than 512 bytes, then the executable E extracted from X is
same as or a subset of those for principaf 7'r(p1,p2). evaluated for its effects. By referring to the pre- and post-
We could do something similar to represent the “speatenditions of E, i.e., E.pre and E.post, we capture E’s ef-
for” relation of Lampson, Abadi, Burrows, and Wobfects as if it were evaluated; this makes sense only for a re-
ber [7]. In both cases, by modeling access rights as a (fldurce that is an executable, and thus hasvahfunction
ternary relation, however, we lose some information: tdefined for it. Note that most executables, when evaluated,
structural relationship between the two principals (A trustsll simply crash the MSHTML process.
B or A speaks for B). We choose, however, to stick to the After describing the vulnerability, we give a series of
simpler access rights matrix model because of its pregample attacks, each of which shows how the vulnerability
lence in use. can be exploited by the adversary. Before giving some
« Privilege levels map a principal to a level in a total orsample attacks for MS02-005a, we explain the parts in our
partial order, e.g.none < user < root. Associated with template that we use to describe each attack.
a given level is a set of access rights. Suppose we haueTnhe goal of the attack.
function, priv_level: Principals — {none, user, rogt then , A resource table showing for each resource (data or pro-
the rights of principalp would be those associated witlgess) involved in the attack whether it serves as a carrier
priv_level(p). (“Y” means “yes; a blank, “no”), a channel (if so, “MP”
Reducing the attack surface with respect to access rightsans message-passing; “SM” means shared-memory;
is a special case of abiding by the Principle of Least Prignd a blank means it is not a channel), or a target or en-
ilege: Grant only the relevant rights to each of the princibler (“T” means it is a target; “E”, an enabler).
pals who are allowed access to a given resource. « The pre-condition for the attack. Each clause is a con-
junct of the pre-condition.
« The attack itself, written as a sequence of actions. The
To validate our general attack surface model, we destion exploiting the vulnerability is in boldface. (More
scribed a dozen Microsoft Security bulletins [8] using of@rmally, we would specify each action with pre- and post-
terminology [9]. The one example we present here illusenditions. For the attack to make sense, the pre-condition
trates how two different attacks can exploit the same vof-the attack should imply the pre-condition of the first
nerability via different channels. action in the attack, the post-condition of tith action
The Microsoft Security Bulletin MS02-005, poste@hould imply the pre-condition of the+ 1st action, and
February 11, 2002, reports six vulnerabilities and a cunibe post-condition of the last action should imply the post-
lative patch to fix all of them. We explain just the first (segondition of the attack.)
Figures 2 and 3). The problem is that the processing ofeathe post-condition for the attack. This post-condition
HTML document (a web page sent back from a server @@rresponds to the adversary's goal, i.e., the reason for
HTML email) that embeds another object involves a buffeaunching the attack in the first place. It should imply the
overrun. Exploiting this buffer overrun vulnerability letgoal (see first item above).
the adversary run arbitrary code in the security context ofLet’s now return to our example. Since MSHTML is
the user. used by both the browser and the mailer, we give two sam-
We now walk through the template which we use for dpte attacks, each exploiting the same vulnerability just de-
scribing these bulletins. First we specify the vulnerabiligcribed.
as the difference in actual from intended behavior for anin the first attack (Figure 2), the adversary’s goal is to
action. Here the action is the processing by MSHTML (thran arbitrary code on the client. As indicated by the re-
HTML renderer on Microsoft Windows 2000 and Winsource table for Attack 1, he accomplishes his goal by us-
dows XP) of an HTML document D in a security zonéng the web server and the client browser as enablers. The
Z. The intended pre-condition is “true,” i.e., this actiomerver-client web connection is the message-passing chan-
should be allowed in all possible states. However, duertel by which the attack occurs. The HTML document is
a missing validation check of the action’s input, the actufle carrier of the payload and the MSHTML process is the

IV. SECURITY BULLETINS



Action Vulnerability : MSHTML processes HTML document D in zone Z.
Intended precondition: true
Actual precondition: D containsEMBED SRC=X> =- length(X) < 512
Intended postcondition: (one of many clauses)
D containskEMBED SRC=X> A “Run ActiveX Controls” is enabled for Z- display(X)
Actual postcondition: (one of many clauses)
D containscEMBED SRC=X> A “Run ActiveX Controls” is enabled for Z-
[ (length(X) > 512 A extractpayload(X) = E)= (E.pre=- E.post)
A length(X) < 512 = display(X) ]

Attack 1: Web server executes arbitrary code on client.
Goal: Enable execution of arbitrary code on client.

Resource Table

| Resource | Carrier | Channel | Target/Enabler |
HTTPD web server (process) E
server-client web connection C (dat@) MP E
browser B (process) E
HTML document D (data) Y E
MSHTML (process) T

Preconditions

« Victim requests a web page from adversary’s site S.

« Victim’'s machine maps site S to zone Z.

« Victim’'s machine has “Run ActiveX Controls” security option enabled for zone Z.
« Adversary creates HTML document D containing an embecElBED SRC=X>,
where length(X)> 512 and extracpayload(X) = E.

Attack Sequence

1. Web server sends document D to browser B over connection C.
2. B passes D to MSHTML in zone Z.

3. MSHTML processes D in zone Z.

Postconditions
« Arbitrary, depending on the payload.

Fig. 2. Microsoft Security Bulletin MS02-005a: Cumulative Patch for Internet Explorer (1)

target of attack. look Express. Note that people usually consider Outlook

The pre-condition for the attack is that the victim Shou%xpress to be the target, bu_t in tact, for this attack, it is an
enapler. The channel, carrier, and target are the same as

have requested a web page from the adversary and sh?éjr o first attack
have enabled for zone Z the option to run ActiveX Con- '
trols, and that the adversary’s site is mapped to zone Z

on the victim’s machine. The attack itself is the sequencer, pre-condition is different: the victim needs to be

of three actions: the weh server sends an HTML OIOCLBle to receive mail from the attacker and HTML email

ment D with an ill-formed embedded object to the CIIerr]eceived is in zone Z that is not the restricted zone. The

browser; the browser passes D to the MSHTML process, . L
e tack is a sequence of four actions: the web server sends
the MSHTML processes D as specified in the vulnerabjl- . :
) " : ..an HTML document D with an ill-formed embedded ob-
ity. The post-condition of the attack is the effect of runmng . . . o i
JEct to the victim via email; the victim views the HTML
the embedded executable. , . : _
document in the mailer process, i.e., Outlook Express; the
In the second attack (Figure 3), the adversary’s goahisiler process sends D to MSHTML in zone Z; and finally,
the same and the vulnerability is the same. The meanshef MSHTML processes D as specified in the vulnerabil-
attack, however, are different. Here, the enablers areitgn The post-condition is as for the first attack, i.e., the

HTML mail document and the mailer process, i.e., Ougffect of running the embedded executable.



Attack 2: Mail-based attack (HTML email) executing arbitrary code on client.
Goal: Enable execution of arbitrary code on client.

Resource Table

| Resource | Carrier | Channel | Target/Enabler |

HTTPD web server (process) |
server-client mail connection C (data) MP
Outlook Express OE (process)
HTML mail message M (data)
HTML document D (data) Y
MSHTML (process)

| mjmjmmm

Preconditions

« Victim able to receive mail from attacker.

« Victim’'s HTML email is received in zone Z.

« Victim’s machine has “Run ActiveX Controls” security option enabled for zone Z.
« Adversary creates HTML document D containing an embecEBED SRC=X>,
where length(X)> 512 and extracpayload(X) = E.

« Adversary creates mail message M with D included, whegeRestricted Zone.

Attack Sequence

1. Adversary sends HTML message M to victim via email.
2. Victim views (or previews) M in OE.

3. OE passes D to MSHTML in zone Z .

4. MSHTML processes D in zone Z.

Postconditions
« Arbitrary, depending on the payload.

Fig. 3. Microsoft Security Bulletin MS02-005a: Cumulative Patch for Internet Explorer (11)

V. ANALYZING ATTACK SURFACES the constraints imposed by protocols on channels, and the

&%nstraints imposed by access rights on all resources), or

communication channels and protocols, and access ri %ghts of each typ'e. (e.g., to reflect that certain types of

to guide us in deciding (1) what things to count, to det grgets are more critical than others or to reflect that cer-
’ fgin instances of channels are less critical than others).

mine a system’s attackability; (2) what things to elimina _ . ) ‘
or reduce, to improve system security; and (3) how to com-We deliberately leaveuninterpreted because in practice

pare two versions of the same system. In this section Wgat & security analyst may want to measure may differ
om system to system. Moreover, defining a predise

consider briefly the first two items; Section VI gives a adr _ -
tailed concrete example of all three. general, even for a given system, can be extremely diffi-

cult. We leave the investigation of what different types of
A. Measuring the Attack Surface metrics are appropriate féfor future work. In Section VI

We can define a measure of the system’s attack surficed'Ve a very simplistid.

to be some function of the targets and enablers, the chan- .
. : gers ¢ g d?edum ng the Attack Surface
nels associated with each type or instance of a target an
enabler, the protocols that constrain the use of channelsfhe concepts underlying our attack surface also give us
and the access rights that constrain the access to allargystematic way to think about how to reduce it. We can
sources. eliminate or reduce the number of (1) types or instances
SURE = of targets, processes, enablers, executables, carriers, eval
. functions, channels, protocols, and rights; (2) types or in-
f (targets, enablers, channels, protocols, access rights) e .
stances of vulnerabilities, e.g., by strengthening the actual
In general, we can define the functibim terms of ad- pre- or post-condition to match the intended; or (3) types
ditional functions on targets, enablers, channels, and acinstances of attacks, e.g., through deploying one or more
cess rights to represent relationships between these (sagurity technologies.

We use our broad dimensions of targets and enabl



Principles and rules of thumb that system administratd@s Services running as SYSTEM: Services configured to
and software developers follow in making their systent®y on as LocalSystem (or System), as opposed to Lo-
more secure correspond naturally to our concepts. For extService or some other user. (LocalSystem is in the ad-
ample, the tasks specified in “lockdown instructions” faninistrators group.)
improving security of a system frequently include elin. Active Web handlers: Web server components handling
inating data and process targets and strengthening acdégyent protocols that are installed but not disabled (e.qg.,
rights. Figure 4 contains some examples of security desiga W3C component handles http; the nntp component
principles cast in terms of our attack surface concepts. handles nntp).

8. Active ISAPI filters: Web server add-in components
VI. AN EXAMPLE ATTACK SURFACE METRIC that filter particular kinds of requests. ISAPI stands for In-

Howard identified a set of 17 RASQ vectors [1] antgrnet Services Application Programming Interface; it en-
defined a simple attack surface function to determine fH/es developers to extend the functionality provided by
relative attack surface of seven different versions of Wi-Web server. An ISAPI filter is a dynamic link library
dows. In Section VI-A we present 20 attack vector&dll) that uses ISAPI to respond to events that occur on
Howard's original 17 plus 3 others we added later. [Re Server.

Section VI-B we present his RASQ calculation for all 28- Dynamic web pages: Files under the web server root
attack vectors in detail. In Section VI-C we analyze hiher than static (.html) pages. Examples include .exe files,
RASQ results: we confirm observed behavior reflectin@SP (Active Server Pages) files, and .pl (Perl script) files.
user experience and lockdown scenarios, but also we péWi-t Executable vdirs: “Virtual Directories” defined under

out additional missing elements. the web server root that allow execution of scripts or exe-
cutables stored in them.
A. Attack Vectors for Windows 11. Enabled accounts: Accounts defined in local users, ex-

Howard’s original 17 RASQ vectors [1] are shown gluding any disabled agcountg. ) .
. s L . . 12. Enabled accounts in admin group: Accounts in the ad-
the first 17 in Figure 5. Upon cuinitial analysis of his . . . :
mlnlstators group, excluding any disabled accounts.

work, we noted t'hat he had not considered enablers, ST% Null sessions to pipes and shares: Whether pipes or
as scripting engines. Thus, we subsequently added tnrs%e

L i ares” (directories that can be shared by remote users
more attack vectors, shown in italics. Figure 5 shows hq ( y )

: . affow anonymous remote connections.
we map the 20 attack vectors into our terminology of chap; y

4. Guest account enabled: Whether there exists a special
nels, process targets, data targets, process enablers,, and_, o
. guest” account and it is enabled.
access rights.

. . . 15. Weak ACLs in FS: Files or directories that allow “full
We describe each in more detail below. ” ,‘ b .
_ control” to everybody. “Full control” is the moral equiva-
1. Open sockets: TCP or UDP sockets on which at Ie?eqﬁt of UNIX rwrwxrwx permissions

one service is listening. Since one service can listen 5 Weak ACLs in Registry: Registry keys that allow “full
multiple sockets and multiple services can listen on tESntroI” to everybody

same socket, this attack vector is a channel type; the NYH~ Weak ACLS on shares: Directories that can be shared
ber of channels is independent of the number of service&., remote users that allow “full control” to everybody.

2. Qpen RPC endpoints: Remotely-ac_cessmleu handIE(]sen if one has not explicitly created any shares, there is
registered for remote procedure calls with the endpo'ém‘default share” created for each drive; it should be pro-
manager.” Again, a given service can register multipggcted so that others cannot get to it

handlers for different RPC interfaces. 18. VBScript enabled: Whether applications, such as In-

3. Opgn named pipes: R_emo_tely-acgessmle named PR Ret Explorer and Outlook Express, are enabled to exe-
on which at least one service is listening. cute Visual Basic Script

4. Services: Services installed, but not disabled, on ' Jscript enabled: As for (18), except for Jscript.

machine. (These are equivalent to daemons on UNIX SY8. ActiveX enabled: As for (18), except for ActiveX

tems.) _ _ _ _Controls.
5. Services running by default: Services actually running

at the time the measurements are taken. Since our nM@aattack Surface Calculation
surements are taken when the system first comes up, the?e H " lculati h K ; is th
are the services that are running by default at start-up time! mowards caicu atlon,_ t € attack surface area Is the

sum of independent contributions from a set of channels

5Pincus and Wing types, a set of process target types, a set of data target



| Colloquial | Formal

Turn off macros. Eliminate an eval function for one type of data.

Block attachments in Outlook. Avoid giving any executable (data)
as an argument to an eval function.

Secure by default. Eliminate entire types of targets, enablers, and chanrjels;
restrict access rights.

Check for buffer overrun. Strengthen the post-condition of the actual behavior
to match that of the intended behavior.

Validate your input. Strengthen the pre-condition of the actual behavior
to match that of the intended behavior.

Change your password every 90 daydncrease the likelihood that the authentication
mechanism’s pre-condition is satisfied.

Fig. 4. Security Design Principles

| 20 RASQ Attack Vectors | Formal
Open sockets channels
Open RPC endpoints channels
Open named pipes channels
Services process targets
Services running by default process targets, constrained by access rights
Services running as SYSTEM | process targets, constrained by access rights
Active Web handlers process targets
Active ISAPI Filters process targets
Dynamic Web pages process targets
Executable vdirs data targets
Enabled accounts data targets

Enabled accounts in admin grolidata targets, constrained by access right
Null sessions to pipes and shareshannels

192}

Guest account enabled data targets, constrained by access rights
Weak ACLs in FS data targets, constrained by access rights
Weak ACLs in Registry data targets, constrained by access rights
Weak ACLs on shares data targets, constrained by access rights
VBScript enabled process enabler
Jscript enabled process enabler
ActiveX enabled process enabler

Fig. 5. Mapping RASQ Attack Vectors into Our Formalism

types, a set of process enablers, all subject to the conFigure 6 gives a table showing each of the four terms in

straints of the access rights relatiof, detail. Each term takes the form of a double summation:
for each type (of channel typeshty, process target types,

SURFA — SURFC‘}Z 4 SURFI;‘} i SURFC{} i SURFP‘; ptty, data targ_et typesitty), and process enabler types,
pety, for each instance of that type,vaight, w, for that

. . . '%n%tance is added to the total attack surface. For a given
This simple approach has a major advantage in that i ) :
e, 7, We assume we can index the instances per type

allows the categories to be measured independently. THS . .
g P Y- 'Slich that we can refer to thieh instance by;. Forweight

simplification comes at a cost. For example, since int%—n tions, w, that are conditional on the state of the in-

actions between services and channels are not conS|dereac, .
, : . P starice (e.g., whether or not an account is default), we use
Howard’'s RASQ calculation fails to distinguish between : o :
. : . the notation(cond, v1, v2) where the value is; if cond is
sockets opened by a service running as administrator and . .
rue andvs if cond is false.

(less attackable) sockets opened by a service running as an
arbitrary user.



SURFCI% - ZcEchty Zlcz‘l w(ci) ‘

chty w(e)
socket 1.0
endpoint 0.9
namedpipe 0.8
nullsession 0.9

SURFPﬁ = ZpEpttz/ Z‘zpz‘l w(pz) ‘

ptty w(pi)
service 0.4 +def(p;) + adm(p;)
webhandler, 1.0
isapi 1.0
dynpage 0.6
where def(p;) = (default(p;), 0.8, 0.0)
adm(p;) = (run_as.admin(p;), 0.9, 0.0)

d
SURFj = 2 dedtty ZL:|1 w(d;) ‘

account| 0.7 +adg(d;) + gue(d;)
file (weakACL(d;), 0.7, 0.0)

regkey | (weakACL(d;), 0.4, 0.0)
share (weakACL(d;), 0.9, 0.0)
vdir (executable(d;), 1.0, 0.0)
adg(d;) = (d; € AdminGroup, 0.9, 0.0)
gue(d;) = (d;.name ="“guest”, 0.9, 0.0)

where

SURFpIi = Zeepety ZeiG{IE,OE} w(ei) ‘
pety w(e;)
vbscript | (app_executes vbscript(e;), 1.0, 0.0)
jscript (app_executes_ jscript(e;), 1.0, 0.0)
activex | (app.executes activex(e;), 1.0, 0.0)
IE = Internet Explorer
OE = Outlook Express

where

Fig. 6. Howard’s Relative Attack Surface Quotient Metric

The influence of the access rights relation is the most ob-
vious for data targets, since it is used to determine whether
an account is in a group with administrator privileges and
whether it is a guest account. Note that we view an ac-
count as a shorthand for a subset of the access rights, i.e.,
a particular principal with a particular set of rights. Ac-
cess rights is also used to determine the valueeakACL
on files, registry keys, and shares. The predigaakACL
is true of its data target if all principals have all possible
rights to it, i.e.,“full control”.

The weights for process enablers are the count of the
number of applications that enable a particular form of at-
tack. Here, we consider only two applications, Internet
Explorer and Outlook Express; in general, we would count
others. Script-based attacks, for example, may target arbi-
trary process or data targets, but are enabled by applica-
tions that process script embedded in HTML documents.
Malicious ActiveX components can similarly have arbi-
trary targets, but any successful attack is enabled by an ap-
plication that allows execution of the potentially malicious
component.

Our reformulation of Howard’s original model shows
that there are only 13 types of attack targets, rather than
17; in addition, there are 3 types of enablers.

C. Analysis of Attack Surface Calculation

The results of applying these specific weight functions
for five different versions of Windows are shown in Figure
1. As mentioned in the introduction, the two main con-
clusions to draw are thatith respect to the 20 RASQ at-
tack vectors (1) the default version of a running Windows
Server 2003 system is more secure than the default ver-
sion of a running Windows 2000 system, and (2) a running
Windows Server 2003 with IS installed is only slightly
less secure than a running Windows Server 2003 without
IIS installed.

While it is too early to draw any conclusions about Win-
dows Server 2003, the RASQ numbers are consistent with
observed behavior in several ways:

For channels, access control is factored into the weightgyorms such as Code Red and Nimda spread through a
in one very limited case: Howard gives a slightly lowejariety of mechanisms. In particular, Windows NT 4.0

weight to named pipes compared to the other channels §igstems were at far greater risk of being successfully at-
cause named pipes are not generally accessible overtgldRed by these worms if the systems were installed with
Internet. An alternate, more general approach to modeling than if they were not. This observation is consistent
this situation would be to calculate a “local attack surfacgjith the increased RASQ of this less secure configuration.
and “remote attack surface,” each of which is appropriateyindows 2000 security is generally perceived as being
for different threats. an improvement over Windows NT 4.0 security [10]; the
For process targets, the weight function for servicdgferences in RASQ for the two versions in a similar con-
makes use of the access rights relation explicitly by rfiguration (i.e., with IS enabled) reflect this perception.
ferring to whether a service is a default service or if it isConversely, Windows 2000 (unlike Windows NT 4.0)
running as administrator. is shipped with IIS enabled by default, which means that



the default system is actuallyore likely to be attacked. is more meaningful than reading too much into an over-
This observation is consistent with anecdotal evidence tABbtRASQ number. It is more precise to say that System
many Windows 2000 users (including one author of thdsis more secure than System B because A has fewer ser-
paper) affected by Code Red and Nimda had no idea tiviges running by default rather than because As RASQ is
were actually running IIS. lower than B’s. After all, summing terms with different
As a sanity check, we also measured the RASQ in twaits does not “type check”. For example, if the number
“lockdown” configurations: applying 1S security checkef instances in one attack vector classNidor System A
lists to both NT 4.0 with 1S [11] and Windows 2000 [12]and O for System B, but for a different attack vector class,
Since the tasks specified in the lockdown instructiott® number is O for System A and for System B, then all
include disabling services, eliminating unnecessary a&tse being equal, the systems would have the same RASQ
counts, and strengthening ACLs, the RASQ unsurprisinglymber. Clearly, the overall RASQ number does not re-
decreases: on Windows NT 4.0, from 598.3 in the defati&ct the security of either A or B with respect to the two
configuration to 395.4 in the lockdown configuration; odifferent attack vector classes.
Windows 2000, from 342.2 in the default to 305.1. TheseThe RASQ numbers we presented are computed for a
decreases are consistent with users’ experience that gixen configuration of a running system. When an RASQ
tems in lockdown configurations are more secure; for axamber is lower for System A than System B because cer-
ample, such configurations were not affected by the Cdde features are turned off by default for System A and
Red worm [13]. enabled by default for System B, that does not mean that
Our set of 20 attack vectors still misses types and i@ystem A is inherently “more secure”; for example, as the
stances, some of which also need more complex weightner of System A begins to turn features on over time
functions: it can become just as insecure as System B. On the other
« For channels, some IPC mechanisms were not countealnd, if 95% of deployed systems are always configured
for example COM is counted if DCOM is enabled, but otlas System A initially (e.g., features off by default) and re-
erwise it is not. main that way forever, then we could say in some global
« For process targets, we did not handle executables gense that we are “more secure” than if those systems were
are associated with file extensions that might execute awonfigured as System B.
matically (i.e., “auto-exec”) or be executed mistakenly ByDo not compare apples to oranges. It is tempting to
a user. Also, we did not count ActiveX controls themselveslculate an RASQ for Windows and one for Linux and
as process targets, only as process enablers, i.e., whdtiesr try to conclude one operating system is more secure
applications such as IE and OE were set up to invoke themmore attackable than the other. This would be a big mis-
« The model treats all instances of each type the san@ke. For one, the set of attack vectors would be different
whereas some instances should probably be weighted fdifthe two different systems. And even if the sets of attack
ferently. For example, a socket over which several conectors were identical, the threat models differ.
plex protocols are transmitted should be a bigger contrib-Rather, a better way to apply the RASQ approach for a
utor to the attack surface than a socket with a single pgiven system is first to identify a set of attack vectors, and
tocol; and port 80 is well-known attack target that shoulden for each attack vector class, compute a meaningful
get a higher weight than other channel endpoints. metric, e.g., number of running instances per class. Com-
« Just as for process targets that are services, for otp@ring different configurations of the same system per at-
types of process targets the weight function should takek vector class can illuminate poor design decisions, e.g.,
into consideration the privileges of the account that th@ many sockets open initially or too many accounts with
process is executing as. For example, for versions of H8min privileges. When faced with numbers that are too
< 5.0, ISAPI filters always run as System, but in IS 6.Gigh or simply surprising, the system engineer can then
they run as Network Service by default. revisit these design decisions.
These missing attack opportunities and refined weight
functions suggest potential enhancements to Howard’s VIII. RELATED WORK
RASQ model and the attack surface calculation. To our knowledge the notion of “attackability” as a se-
curity metric is novel. At the code level, many have fo-
cused on counting or analyzing bugs (e.g., [14], [15], [16],
We have some caveats in applying the RASQ approd&f]) but none with the explicit goal of correlating bug
naively: count with system vulnerability.
« Obtaining numbers for individual attack vector classesAt the system level, Browne et al. [18] define an ana-

VIl. DiscussioN oF THERASQ APPROACH
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