From the author's equation 13, 14 We can write by inserting V''(A)=0, Solving for R we get, $$R= \frac{6^{D/4} \sqrt{D}}{\sqrt{-2^{1+\frac{D}{2}} 3^{D/2}+3 2^{1+D} A-3^{1+\frac{D}{2}} A^2}}$$ Now inserting the V into the article equation (11)$$E= \left(\frac{\pi }{2}\right)^{D/2} R^D V,$$ we get, $$E= \left(\frac{\pi }{2}\right)^{D/2} \left(-\left(\frac{2}{3}\right)^{D/2} A^3+2^{\frac{1}{2} (-4-D)} A^4+A^2 \left(1+\frac{D}{2 R^2}\right)\right) R^D$$ Now inserting the value of R, we get, $$E= \left(-\left(\frac{2}{3}\right)^{D/2} A^3+2^{\frac{1}{2} (-4-D)} A^4+A^2 \left(1+2^{-1-\frac{D}{2}} 3^{-D/2} \left(-2^{1+\frac{D}{2}} 3^{D/2}+3 2^{1+D} A-3^{1+\frac{D}{2}} A^2\right)\right)\right) \left(\frac{6^{D/4} \sqrt{D}}{\sqrt{-2^{1+\frac{D}{2}} 3^{D/2}+3 2^{1+D} A-3^{1+\frac{D}{2}} A^2}}\right)^D \left(\frac{\pi }{2}\right)^{D/2}$$
For $D= 3$ we finally get, $$E= \frac{27 6^{3/4} \left(-\frac{2}{3} \sqrt{\frac{2}{3}} A^3+\frac{A^4}{8 \sqrt{2}}+A^2 \left(1+\frac{-12 \sqrt{6}+48 A-9 \sqrt{3} A^2}{12 \sqrt{6}}\right)\right) \pi ^{3/2}}{\left(-12 \sqrt{6}+48 A-9 \sqrt{3} A^2\right)^{3/2}} \tag{1}$$ the graph for equation (1) must satisfy the article graph (FIG 2)
My graph:
Plot[(27 6^(3/4) (-(2/3) Sqrt[2/3] A^3 + A^4/(8 Sqrt[2]) +A^2 (1 + (-12 Sqrt[6] + 48 A - 9 Sqrt[3] A^2)/( 12 Sqrt[6]))) \[Pi]^(3/2))/(-12 Sqrt[6] + 48 A - 9 Sqrt[3] A^2)^(3/2), {A, 0.5, 2.5}]
But the author got,
Output :
Am I doing wrong in simulation?
Then The author got like this in Fig 3
`
D
s with a number. However, even if you do this, it doesn't seem to output the answer you want. – Greg Ros Jul 2 at 19:25