PostgreSQL Source Code  git master
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros
postgres.h
Go to the documentation of this file.
1 /*-------------------------------------------------------------------------
2  *
3  * postgres.h
4  * Primary include file for PostgreSQL server .c files
5  *
6  * This should be the first file included by PostgreSQL backend modules.
7  * Client-side code should include postgres_fe.h instead.
8  *
9  *
10  * Portions Copyright (c) 1996-2014, PostgreSQL Global Development Group
11  * Portions Copyright (c) 1995, Regents of the University of California
12  *
13  * src/include/postgres.h
14  *
15  *-------------------------------------------------------------------------
16  */
17 /*
18  *----------------------------------------------------------------
19  * TABLE OF CONTENTS
20  *
21  * When adding stuff to this file, please try to put stuff
22  * into the relevant section, or add new sections as appropriate.
23  *
24  * section description
25  * ------- ------------------------------------------------
26  * 1) variable-length datatypes (TOAST support)
27  * 2) datum type + support macros
28  * 3) exception handling backend support
29  *
30  * NOTES
31  *
32  * In general, this file should contain declarations that are widely needed
33  * in the backend environment, but are of no interest outside the backend.
34  *
35  * Simple type definitions live in c.h, where they are shared with
36  * postgres_fe.h. We do that since those type definitions are needed by
37  * frontend modules that want to deal with binary data transmission to or
38  * from the backend. Type definitions in this file should be for
39  * representations that never escape the backend, such as Datum or
40  * TOASTed varlena objects.
41  *
42  *----------------------------------------------------------------
43  */
44 #ifndef POSTGRES_H
45 #define POSTGRES_H
46 
47 #include "c.h"
48 #include "utils/elog.h"
49 #include "utils/palloc.h"
50 
51 /* ----------------------------------------------------------------
52  * Section 1: variable-length datatypes (TOAST support)
53  * ----------------------------------------------------------------
54  */
55 
56 /*
57  * struct varatt_external is a "TOAST pointer", that is, the information needed
58  * to fetch a Datum stored in an out-of-line on-disk Datum. The data is
59  * compressed if and only if va_extsize < va_rawsize - VARHDRSZ. This struct
60  * must not contain any padding, because we sometimes compare pointers using
61  * memcmp.
62  *
63  * Note that this information is stored unaligned within actual tuples, so
64  * you need to memcpy from the tuple into a local struct variable before
65  * you can look at these fields! (The reason we use memcmp is to avoid
66  * having to do that just to detect equality of two TOAST pointers...)
67  */
68 typedef struct varatt_external
69 {
70  int32 va_rawsize; /* Original data size (includes header) */
71  int32 va_extsize; /* External saved size (doesn't) */
72  Oid va_valueid; /* Unique ID of value within TOAST table */
73  Oid va_toastrelid; /* RelID of TOAST table containing it */
75 
76 /*
77  * Out-of-line Datum thats stored in memory in contrast to varatt_external
78  * pointers which points to data in an external toast relation.
79  *
80  * Note that just as varatt_external's this is stored unaligned within the
81  * tuple.
82  */
83 typedef struct varatt_indirect
84 {
85  struct varlena *pointer; /* Pointer to in-memory varlena */
87 
88 
89 /*
90  * Type of external toast datum stored. The peculiar value for VARTAG_ONDISK
91  * comes from the requirement for on-disk compatibility with the older
92  * definitions of varattrib_1b_e where v_tag was named va_len_1be...
93  */
94 typedef enum vartag_external
95 {
99 
100 #define VARTAG_SIZE(tag) \
101  ((tag) == VARTAG_INDIRECT ? sizeof(varatt_indirect) : \
102  (tag) == VARTAG_ONDISK ? sizeof(varatt_external) : \
103  TrapMacro(true, "unknown vartag"))
104 
105 /*
106  * These structs describe the header of a varlena object that may have been
107  * TOASTed. Generally, don't reference these structs directly, but use the
108  * macros below.
109  *
110  * We use separate structs for the aligned and unaligned cases because the
111  * compiler might otherwise think it could generate code that assumes
112  * alignment while touching fields of a 1-byte-header varlena.
113  */
114 typedef union
115 {
116  struct /* Normal varlena (4-byte length) */
117  {
119  char va_data[1];
120  } va_4byte;
121  struct /* Compressed-in-line format */
122  {
123  uint32 va_header;
124  uint32 va_rawsize; /* Original data size (excludes header) */
125  char va_data[1]; /* Compressed data */
126  } va_compressed;
127 } varattrib_4b;
128 
129 typedef struct
130 {
132  char va_data[1]; /* Data begins here */
133 } varattrib_1b;
134 
135 /* inline portion of a short varlena pointing to an external resource */
136 typedef struct
137 {
138  uint8 va_header; /* Always 0x80 or 0x01 */
139  uint8 va_tag; /* Type of datum */
140  char va_data[1]; /* Data (of the type indicated by va_tag) */
142 
143 /*
144  * Bit layouts for varlena headers on big-endian machines:
145  *
146  * 00xxxxxx 4-byte length word, aligned, uncompressed data (up to 1G)
147  * 01xxxxxx 4-byte length word, aligned, *compressed* data (up to 1G)
148  * 10000000 1-byte length word, unaligned, TOAST pointer
149  * 1xxxxxxx 1-byte length word, unaligned, uncompressed data (up to 126b)
150  *
151  * Bit layouts for varlena headers on little-endian machines:
152  *
153  * xxxxxx00 4-byte length word, aligned, uncompressed data (up to 1G)
154  * xxxxxx10 4-byte length word, aligned, *compressed* data (up to 1G)
155  * 00000001 1-byte length word, unaligned, TOAST pointer
156  * xxxxxxx1 1-byte length word, unaligned, uncompressed data (up to 126b)
157  *
158  * The "xxx" bits are the length field (which includes itself in all cases).
159  * In the big-endian case we mask to extract the length, in the little-endian
160  * case we shift. Note that in both cases the flag bits are in the physically
161  * first byte. Also, it is not possible for a 1-byte length word to be zero;
162  * this lets us disambiguate alignment padding bytes from the start of an
163  * unaligned datum. (We now *require* pad bytes to be filled with zero!)
164  *
165  * In TOAST datums the tag field in varattrib_1b_e is used to discern whether
166  * its an indirection pointer or more commonly an on-disk tuple.
167  */
168 
169 /*
170  * Endian-dependent macros. These are considered internal --- use the
171  * external macros below instead of using these directly.
172  *
173  * Note: IS_1B is true for external toast records but VARSIZE_1B will return 0
174  * for such records. Hence you should usually check for IS_EXTERNAL before
175  * checking for IS_1B.
176  */
177 
178 #ifdef WORDS_BIGENDIAN
179 
180 #define VARATT_IS_4B(PTR) \
181  ((((varattrib_1b *) (PTR))->va_header & 0x80) == 0x00)
182 #define VARATT_IS_4B_U(PTR) \
183  ((((varattrib_1b *) (PTR))->va_header & 0xC0) == 0x00)
184 #define VARATT_IS_4B_C(PTR) \
185  ((((varattrib_1b *) (PTR))->va_header & 0xC0) == 0x40)
186 #define VARATT_IS_1B(PTR) \
187  ((((varattrib_1b *) (PTR))->va_header & 0x80) == 0x80)
188 #define VARATT_IS_1B_E(PTR) \
189  ((((varattrib_1b *) (PTR))->va_header) == 0x80)
190 #define VARATT_NOT_PAD_BYTE(PTR) \
191  (*((uint8 *) (PTR)) != 0)
192 
193 /* VARSIZE_4B() should only be used on known-aligned data */
194 #define VARSIZE_4B(PTR) \
195  (((varattrib_4b *) (PTR))->va_4byte.va_header & 0x3FFFFFFF)
196 #define VARSIZE_1B(PTR) \
197  (((varattrib_1b *) (PTR))->va_header & 0x7F)
198 #define VARTAG_1B_E(PTR) \
199  (((varattrib_1b_e *) (PTR))->va_tag)
200 
201 #define SET_VARSIZE_4B(PTR,len) \
202  (((varattrib_4b *) (PTR))->va_4byte.va_header = (len) & 0x3FFFFFFF)
203 #define SET_VARSIZE_4B_C(PTR,len) \
204  (((varattrib_4b *) (PTR))->va_4byte.va_header = ((len) & 0x3FFFFFFF) | 0x40000000)
205 #define SET_VARSIZE_1B(PTR,len) \
206  (((varattrib_1b *) (PTR))->va_header = (len) | 0x80)
207 #define SET_VARTAG_1B_E(PTR,tag) \
208  (((varattrib_1b_e *) (PTR))->va_header = 0x80, \
209  ((varattrib_1b_e *) (PTR))->va_tag = (tag))
210 #else /* !WORDS_BIGENDIAN */
211 
212 #define VARATT_IS_4B(PTR) \
213  ((((varattrib_1b *) (PTR))->va_header & 0x01) == 0x00)
214 #define VARATT_IS_4B_U(PTR) \
215  ((((varattrib_1b *) (PTR))->va_header & 0x03) == 0x00)
216 #define VARATT_IS_4B_C(PTR) \
217  ((((varattrib_1b *) (PTR))->va_header & 0x03) == 0x02)
218 #define VARATT_IS_1B(PTR) \
219  ((((varattrib_1b *) (PTR))->va_header & 0x01) == 0x01)
220 #define VARATT_IS_1B_E(PTR) \
221  ((((varattrib_1b *) (PTR))->va_header) == 0x01)
222 #define VARATT_NOT_PAD_BYTE(PTR) \
223  (*((uint8 *) (PTR)) != 0)
224 
225 /* VARSIZE_4B() should only be used on known-aligned data */
226 #define VARSIZE_4B(PTR) \
227  ((((varattrib_4b *) (PTR))->va_4byte.va_header >> 2) & 0x3FFFFFFF)
228 #define VARSIZE_1B(PTR) \
229  ((((varattrib_1b *) (PTR))->va_header >> 1) & 0x7F)
230 #define VARTAG_1B_E(PTR) \
231  (((varattrib_1b_e *) (PTR))->va_tag)
232 
233 #define SET_VARSIZE_4B(PTR,len) \
234  (((varattrib_4b *) (PTR))->va_4byte.va_header = (((uint32) (len)) << 2))
235 #define SET_VARSIZE_4B_C(PTR,len) \
236  (((varattrib_4b *) (PTR))->va_4byte.va_header = (((uint32) (len)) << 2) | 0x02)
237 #define SET_VARSIZE_1B(PTR,len) \
238  (((varattrib_1b *) (PTR))->va_header = (((uint8) (len)) << 1) | 0x01)
239 #define SET_VARTAG_1B_E(PTR,tag) \
240  (((varattrib_1b_e *) (PTR))->va_header = 0x01, \
241  ((varattrib_1b_e *) (PTR))->va_tag = (tag))
242 #endif /* WORDS_BIGENDIAN */
243 
244 #define VARHDRSZ_SHORT offsetof(varattrib_1b, va_data)
245 #define VARATT_SHORT_MAX 0x7F
246 #define VARATT_CAN_MAKE_SHORT(PTR) \
247  (VARATT_IS_4B_U(PTR) && \
248  (VARSIZE(PTR) - VARHDRSZ + VARHDRSZ_SHORT) <= VARATT_SHORT_MAX)
249 #define VARATT_CONVERTED_SHORT_SIZE(PTR) \
250  (VARSIZE(PTR) - VARHDRSZ + VARHDRSZ_SHORT)
251 
252 #define VARHDRSZ_EXTERNAL offsetof(varattrib_1b_e, va_data)
253 
254 #define VARDATA_4B(PTR) (((varattrib_4b *) (PTR))->va_4byte.va_data)
255 #define VARDATA_4B_C(PTR) (((varattrib_4b *) (PTR))->va_compressed.va_data)
256 #define VARDATA_1B(PTR) (((varattrib_1b *) (PTR))->va_data)
257 #define VARDATA_1B_E(PTR) (((varattrib_1b_e *) (PTR))->va_data)
258 
259 #define VARRAWSIZE_4B_C(PTR) \
260  (((varattrib_4b *) (PTR))->va_compressed.va_rawsize)
261 
262 /* Externally visible macros */
263 
264 /*
265  * VARDATA, VARSIZE, and SET_VARSIZE are the recommended API for most code
266  * for varlena datatypes. Note that they only work on untoasted,
267  * 4-byte-header Datums!
268  *
269  * Code that wants to use 1-byte-header values without detoasting should
270  * use VARSIZE_ANY/VARSIZE_ANY_EXHDR/VARDATA_ANY. The other macros here
271  * should usually be used only by tuple assembly/disassembly code and
272  * code that specifically wants to work with still-toasted Datums.
273  *
274  * WARNING: It is only safe to use VARDATA_ANY() -- typically with
275  * PG_DETOAST_DATUM_PACKED() -- if you really don't care about the alignment.
276  * Either because you're working with something like text where the alignment
277  * doesn't matter or because you're not going to access its constituent parts
278  * and just use things like memcpy on it anyways.
279  */
280 #define VARDATA(PTR) VARDATA_4B(PTR)
281 #define VARSIZE(PTR) VARSIZE_4B(PTR)
282 
283 #define VARSIZE_SHORT(PTR) VARSIZE_1B(PTR)
284 #define VARDATA_SHORT(PTR) VARDATA_1B(PTR)
285 
286 #define VARTAG_EXTERNAL(PTR) VARTAG_1B_E(PTR)
287 #define VARSIZE_EXTERNAL(PTR) (VARHDRSZ_EXTERNAL + VARTAG_SIZE(VARTAG_EXTERNAL(PTR)))
288 #define VARDATA_EXTERNAL(PTR) VARDATA_1B_E(PTR)
289 
290 #define VARATT_IS_COMPRESSED(PTR) VARATT_IS_4B_C(PTR)
291 #define VARATT_IS_EXTERNAL(PTR) VARATT_IS_1B_E(PTR)
292 #define VARATT_IS_EXTERNAL_ONDISK(PTR) \
293  (VARATT_IS_EXTERNAL(PTR) && VARTAG_EXTERNAL(PTR) == VARTAG_ONDISK)
294 #define VARATT_IS_EXTERNAL_INDIRECT(PTR) \
295  (VARATT_IS_EXTERNAL(PTR) && VARTAG_EXTERNAL(PTR) == VARTAG_INDIRECT)
296 #define VARATT_IS_SHORT(PTR) VARATT_IS_1B(PTR)
297 #define VARATT_IS_EXTENDED(PTR) (!VARATT_IS_4B_U(PTR))
298 
299 #define SET_VARSIZE(PTR, len) SET_VARSIZE_4B(PTR, len)
300 #define SET_VARSIZE_SHORT(PTR, len) SET_VARSIZE_1B(PTR, len)
301 #define SET_VARSIZE_COMPRESSED(PTR, len) SET_VARSIZE_4B_C(PTR, len)
302 
303 #define SET_VARTAG_EXTERNAL(PTR, tag) SET_VARTAG_1B_E(PTR, tag)
304 
305 #define VARSIZE_ANY(PTR) \
306  (VARATT_IS_1B_E(PTR) ? VARSIZE_EXTERNAL(PTR) : \
307  (VARATT_IS_1B(PTR) ? VARSIZE_1B(PTR) : \
308  VARSIZE_4B(PTR)))
309 
310 /* Size of a varlena data, excluding header */
311 #define VARSIZE_ANY_EXHDR(PTR) \
312  (VARATT_IS_1B_E(PTR) ? VARSIZE_EXTERNAL(PTR)-VARHDRSZ_EXTERNAL : \
313  (VARATT_IS_1B(PTR) ? VARSIZE_1B(PTR)-VARHDRSZ_SHORT : \
314  VARSIZE_4B(PTR)-VARHDRSZ))
315 
316 /* caution: this will not work on an external or compressed-in-line Datum */
317 /* caution: this will return a possibly unaligned pointer */
318 #define VARDATA_ANY(PTR) \
319  (VARATT_IS_1B(PTR) ? VARDATA_1B(PTR) : VARDATA_4B(PTR))
320 
321 
322 /* ----------------------------------------------------------------
323  * Section 2: datum type + support macros
324  * ----------------------------------------------------------------
325  */
326 
327 /*
328  * Port Notes:
329  * Postgres makes the following assumptions about datatype sizes:
330  *
331  * sizeof(Datum) == sizeof(void *) == 4 or 8
332  * sizeof(char) == 1
333  * sizeof(short) == 2
334  *
335  * When a type narrower than Datum is stored in a Datum, we place it in the
336  * low-order bits and are careful that the DatumGetXXX macro for it discards
337  * the unused high-order bits (as opposed to, say, assuming they are zero).
338  * This is needed to support old-style user-defined functions, since depending
339  * on architecture and compiler, the return value of a function returning char
340  * or short may contain garbage when called as if it returned Datum.
341  */
342 
343 typedef uintptr_t Datum;
344 
345 #define SIZEOF_DATUM SIZEOF_VOID_P
346 
347 typedef Datum *DatumPtr;
348 
349 #define GET_1_BYTE(datum) (((Datum) (datum)) & 0x000000ff)
350 #define GET_2_BYTES(datum) (((Datum) (datum)) & 0x0000ffff)
351 #define GET_4_BYTES(datum) (((Datum) (datum)) & 0xffffffff)
352 #if SIZEOF_DATUM == 8
353 #define GET_8_BYTES(datum) ((Datum) (datum))
354 #endif
355 #define SET_1_BYTE(value) (((Datum) (value)) & 0x000000ff)
356 #define SET_2_BYTES(value) (((Datum) (value)) & 0x0000ffff)
357 #define SET_4_BYTES(value) (((Datum) (value)) & 0xffffffff)
358 #if SIZEOF_DATUM == 8
359 #define SET_8_BYTES(value) ((Datum) (value))
360 #endif
361 
362 /*
363  * DatumGetBool
364  * Returns boolean value of a datum.
365  *
366  * Note: any nonzero value will be considered TRUE, but we ignore bits to
367  * the left of the width of bool, per comment above.
368  */
369 
370 #define DatumGetBool(X) ((bool) (((bool) (X)) != 0))
371 
372 /*
373  * BoolGetDatum
374  * Returns datum representation for a boolean.
375  *
376  * Note: any nonzero value will be considered TRUE.
377  */
378 
379 #define BoolGetDatum(X) ((Datum) ((X) ? 1 : 0))
380 
381 /*
382  * DatumGetChar
383  * Returns character value of a datum.
384  */
385 
386 #define DatumGetChar(X) ((char) GET_1_BYTE(X))
387 
388 /*
389  * CharGetDatum
390  * Returns datum representation for a character.
391  */
392 
393 #define CharGetDatum(X) ((Datum) SET_1_BYTE(X))
394 
395 /*
396  * Int8GetDatum
397  * Returns datum representation for an 8-bit integer.
398  */
399 
400 #define Int8GetDatum(X) ((Datum) SET_1_BYTE(X))
401 
402 /*
403  * DatumGetUInt8
404  * Returns 8-bit unsigned integer value of a datum.
405  */
406 
407 #define DatumGetUInt8(X) ((uint8) GET_1_BYTE(X))
408 
409 /*
410  * UInt8GetDatum
411  * Returns datum representation for an 8-bit unsigned integer.
412  */
413 
414 #define UInt8GetDatum(X) ((Datum) SET_1_BYTE(X))
415 
416 /*
417  * DatumGetInt16
418  * Returns 16-bit integer value of a datum.
419  */
420 
421 #define DatumGetInt16(X) ((int16) GET_2_BYTES(X))
422 
423 /*
424  * Int16GetDatum
425  * Returns datum representation for a 16-bit integer.
426  */
427 
428 #define Int16GetDatum(X) ((Datum) SET_2_BYTES(X))
429 
430 /*
431  * DatumGetUInt16
432  * Returns 16-bit unsigned integer value of a datum.
433  */
434 
435 #define DatumGetUInt16(X) ((uint16) GET_2_BYTES(X))
436 
437 /*
438  * UInt16GetDatum
439  * Returns datum representation for a 16-bit unsigned integer.
440  */
441 
442 #define UInt16GetDatum(X) ((Datum) SET_2_BYTES(X))
443 
444 /*
445  * DatumGetInt32
446  * Returns 32-bit integer value of a datum.
447  */
448 
449 #define DatumGetInt32(X) ((int32) GET_4_BYTES(X))
450 
451 /*
452  * Int32GetDatum
453  * Returns datum representation for a 32-bit integer.
454  */
455 
456 #define Int32GetDatum(X) ((Datum) SET_4_BYTES(X))
457 
458 /*
459  * DatumGetUInt32
460  * Returns 32-bit unsigned integer value of a datum.
461  */
462 
463 #define DatumGetUInt32(X) ((uint32) GET_4_BYTES(X))
464 
465 /*
466  * UInt32GetDatum
467  * Returns datum representation for a 32-bit unsigned integer.
468  */
469 
470 #define UInt32GetDatum(X) ((Datum) SET_4_BYTES(X))
471 
472 /*
473  * DatumGetObjectId
474  * Returns object identifier value of a datum.
475  */
476 
477 #define DatumGetObjectId(X) ((Oid) GET_4_BYTES(X))
478 
479 /*
480  * ObjectIdGetDatum
481  * Returns datum representation for an object identifier.
482  */
483 
484 #define ObjectIdGetDatum(X) ((Datum) SET_4_BYTES(X))
485 
486 /*
487  * DatumGetTransactionId
488  * Returns transaction identifier value of a datum.
489  */
490 
491 #define DatumGetTransactionId(X) ((TransactionId) GET_4_BYTES(X))
492 
493 /*
494  * TransactionIdGetDatum
495  * Returns datum representation for a transaction identifier.
496  */
497 
498 #define TransactionIdGetDatum(X) ((Datum) SET_4_BYTES((X)))
499 
500 /*
501  * MultiXactIdGetDatum
502  * Returns datum representation for a multixact identifier.
503  */
504 
505 #define MultiXactIdGetDatum(X) ((Datum) SET_4_BYTES((X)))
506 
507 /*
508  * DatumGetCommandId
509  * Returns command identifier value of a datum.
510  */
511 
512 #define DatumGetCommandId(X) ((CommandId) GET_4_BYTES(X))
513 
514 /*
515  * CommandIdGetDatum
516  * Returns datum representation for a command identifier.
517  */
518 
519 #define CommandIdGetDatum(X) ((Datum) SET_4_BYTES(X))
520 
521 /*
522  * DatumGetPointer
523  * Returns pointer value of a datum.
524  */
525 
526 #define DatumGetPointer(X) ((Pointer) (X))
527 
528 /*
529  * PointerGetDatum
530  * Returns datum representation for a pointer.
531  */
532 
533 #define PointerGetDatum(X) ((Datum) (X))
534 
535 /*
536  * DatumGetCString
537  * Returns C string (null-terminated string) value of a datum.
538  *
539  * Note: C string is not a full-fledged Postgres type at present,
540  * but type input functions use this conversion for their inputs.
541  */
542 
543 #define DatumGetCString(X) ((char *) DatumGetPointer(X))
544 
545 /*
546  * CStringGetDatum
547  * Returns datum representation for a C string (null-terminated string).
548  *
549  * Note: C string is not a full-fledged Postgres type at present,
550  * but type output functions use this conversion for their outputs.
551  * Note: CString is pass-by-reference; caller must ensure the pointed-to
552  * value has adequate lifetime.
553  */
554 
555 #define CStringGetDatum(X) PointerGetDatum(X)
556 
557 /*
558  * DatumGetName
559  * Returns name value of a datum.
560  */
561 
562 #define DatumGetName(X) ((Name) DatumGetPointer(X))
563 
564 /*
565  * NameGetDatum
566  * Returns datum representation for a name.
567  *
568  * Note: Name is pass-by-reference; caller must ensure the pointed-to
569  * value has adequate lifetime.
570  */
571 
572 #define NameGetDatum(X) PointerGetDatum(X)
573 
574 /*
575  * DatumGetInt64
576  * Returns 64-bit integer value of a datum.
577  *
578  * Note: this macro hides whether int64 is pass by value or by reference.
579  */
580 
581 #ifdef USE_FLOAT8_BYVAL
582 #define DatumGetInt64(X) ((int64) GET_8_BYTES(X))
583 #else
584 #define DatumGetInt64(X) (* ((int64 *) DatumGetPointer(X)))
585 #endif
586 
587 /*
588  * Int64GetDatum
589  * Returns datum representation for a 64-bit integer.
590  *
591  * Note: if int64 is pass by reference, this function returns a reference
592  * to palloc'd space.
593  */
594 
595 #ifdef USE_FLOAT8_BYVAL
596 #define Int64GetDatum(X) ((Datum) SET_8_BYTES(X))
597 #else
598 extern Datum Int64GetDatum(int64 X);
599 #endif
600 
601 /*
602  * DatumGetFloat4
603  * Returns 4-byte floating point value of a datum.
604  *
605  * Note: this macro hides whether float4 is pass by value or by reference.
606  */
607 
608 #ifdef USE_FLOAT4_BYVAL
609 extern float4 DatumGetFloat4(Datum X);
610 #else
611 #define DatumGetFloat4(X) (* ((float4 *) DatumGetPointer(X)))
612 #endif
613 
614 /*
615  * Float4GetDatum
616  * Returns datum representation for a 4-byte floating point number.
617  *
618  * Note: if float4 is pass by reference, this function returns a reference
619  * to palloc'd space.
620  */
621 
622 extern Datum Float4GetDatum(float4 X);
623 
624 /*
625  * DatumGetFloat8
626  * Returns 8-byte floating point value of a datum.
627  *
628  * Note: this macro hides whether float8 is pass by value or by reference.
629  */
630 
631 #ifdef USE_FLOAT8_BYVAL
632 extern float8 DatumGetFloat8(Datum X);
633 #else
634 #define DatumGetFloat8(X) (* ((float8 *) DatumGetPointer(X)))
635 #endif
636 
637 /*
638  * Float8GetDatum
639  * Returns datum representation for an 8-byte floating point number.
640  *
641  * Note: if float8 is pass by reference, this function returns a reference
642  * to palloc'd space.
643  */
644 
645 extern Datum Float8GetDatum(float8 X);
646 
647 
648 /*
649  * Int64GetDatumFast
650  * Float8GetDatumFast
651  * Float4GetDatumFast
652  *
653  * These macros are intended to allow writing code that does not depend on
654  * whether int64, float8, float4 are pass-by-reference types, while not
655  * sacrificing performance when they are. The argument must be a variable
656  * that will exist and have the same value for as long as the Datum is needed.
657  * In the pass-by-ref case, the address of the variable is taken to use as
658  * the Datum. In the pass-by-val case, these will be the same as the non-Fast
659  * macros.
660  */
661 
662 #ifdef USE_FLOAT8_BYVAL
663 #define Int64GetDatumFast(X) Int64GetDatum(X)
664 #define Float8GetDatumFast(X) Float8GetDatum(X)
665 #else
666 #define Int64GetDatumFast(X) PointerGetDatum(&(X))
667 #define Float8GetDatumFast(X) PointerGetDatum(&(X))
668 #endif
669 
670 #ifdef USE_FLOAT4_BYVAL
671 #define Float4GetDatumFast(X) Float4GetDatum(X)
672 #else
673 #define Float4GetDatumFast(X) PointerGetDatum(&(X))
674 #endif
675 
676 
677 /* ----------------------------------------------------------------
678  * Section 3: exception handling backend support
679  * ----------------------------------------------------------------
680  */
681 
682 /*
683  * These declarations supports the assertion-related macros in c.h.
684  * assert_enabled is here because that file doesn't have PGDLLIMPORT in the
685  * right place, and ExceptionalCondition must be present, for the backend only,
686  * even when assertions are not enabled.
687  */
688 extern PGDLLIMPORT bool assert_enabled;
689 
690 extern void ExceptionalCondition(const char *conditionName,
691  const char *errorType,
692  const char *fileName, int lineNumber) __attribute__((noreturn));
693 
694 #endif /* POSTGRES_H */