Tell me more ×
Mathematics Stack Exchange is a question and answer site for people studying math at any level and professionals in related fields. It's 100% free, no registration required.

Is there any trick to evaluate this or this is an approximation, I mean I am not allowed to use calculator. $$\sqrt{7\sqrt{7\sqrt{7\sqrt{7\sqrt{7\cdots}}}}}$$

share|improve this question
 
 
It would probably be easier to think of it if you write it as a fractional exponent: $7^\frac{1}{32}$ –  Dan the Man yesterday
 
Actually, in general, root(n*x) is closer to n than x. Unless n is x. From that, if you do it an infinite number of times, x will always get to n –  Cruncher yesterday
 
"The square root approximation". Good episode title for Big Bang Theory! –  Kaz 22 hours ago
 
@user2378, please stop adding the roots tag. It has nothing to do with this question. Take a look at the tag's description. –  Antonio Vargas 56 mins ago
add comment

4 Answers

up vote 39 down vote accepted

Let $$\sqrt{7\sqrt{7\sqrt{7\sqrt{7\sqrt{7...}}}}}=x $$

Clearly, $x>0$

$$\implies x^2=7\sqrt{7\sqrt{7\sqrt{7\sqrt{7\sqrt{7...}}}}}=7x$$

share|improve this answer
 
$x^2-7x =0$ and hence x=7? –  user2378 yesterday
 
@user2378, what is the other root of $x^2=7x?$ –  lab bhattacharjee yesterday
 
other is $0$ but we cant consider that. –  user2378 yesterday
3  
You didnt prove convergence –  Abdulh Khazzak Gustav ElFakiri yesterday
4  
@AbdulhKhazzakGustavElFakiri, we can apply the logic heer (math.stackexchange.com/questions/324650/…) $$\sum_{n = 0}^\infty 7^{\frac1{2^n}}=\ln 7 \sum_{n = 0}^\infty \frac1{2^n}=\cdots$$ –  lab bhattacharjee yesterday
add comment

$$\sqrt{7\sqrt{7\sqrt{7\sqrt{7\sqrt{7...}}}}}=7^\frac{1}{2}\cdot7^\frac{1}{4}\cdot 7^\frac{1}{8}\cdots=7^{\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots}=7^{\frac{\frac{1}{2}}{1-\frac{1}{2}}}=7$$

share|improve this answer
2  
this hints looks so fresh!! I usually do this by Mr.Labbhattacharjee's way... –  Praphulla Koushik yesterday
 
Ah!! I am disappointed... This looks so nice if it was left just by writing $\sqrt{7\sqrt{7\sqrt{7\dots}}}=7^{\frac{1}{2}}7^{\frac{1}{4}}7^{\frac{1}{8}}...$ –  Praphulla Koushik yesterday
 
Sorry sir, but exactly what you say –  Madrit Zhaku yesterday
2  
it would have been look much great if you have removed $=7^{\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots}=7^{\frac{\frac{1}{2}}{1-\frac{1‌​}{2}}}=7$ part... –  Praphulla Koushik yesterday
 
what did help was the beginning, and this is now the complete solution of the example –  Madrit Zhaku yesterday
show 2 more comments

Your expression can be written as $$7^{\frac12 + \frac14 ...}.$$

Now you can use sum of infinite GP = $\frac{a}{1-r}$ where $a$ is the first term and $r$ is the common ratio.

Thus sum $= 1$.

Your expression $=$ $7^1$ = $7$

share|improve this answer
add comment

$\newcommand{\+}{^{\dagger}}% \newcommand{\angles}[1]{\left\langle #1 \right\rangle}% \newcommand{\braces}[1]{\left\lbrace #1 \right\rbrace}% \newcommand{\bracks}[1]{\left\lbrack #1 \right\rbrack}% \newcommand{\ceil}[1]{\,\left\lceil #1 \right\rceil\,}% \newcommand{\dd}{{\rm d}}% \newcommand{\ds}[1]{\displaystyle{#1}}% \newcommand{\equalby}[1]{{#1 \atop {= \atop \vphantom{\huge A}}}}% \newcommand{\expo}[1]{\,{\rm e}^{#1}\,}% \newcommand{\fermi}{\,{\rm f}}% \newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}% \newcommand{\half}{{1 \over 2}}% \newcommand{\ic}{{\rm i}}% \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow}% \newcommand{\isdiv}{\,\left.\right\vert\,}% \newcommand{\ket}[1]{\left\vert #1\right\rangle}% \newcommand{\ol}[1]{\overline{#1}}% \newcommand{\pars}[1]{\left( #1 \right)}% \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\pp}{{\cal P}}% \newcommand{\root}[2][]{\,\sqrt[#1]{\,#2\,}\,}% \newcommand{\sech}{\,{\rm sech}}% \newcommand{\sgn}{\,{\rm sgn}}% \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}}% \newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$ If $\exists\ \lim_{n \to \infty}x_{n} = s > 0$: $$ s = \root{7s}\quad\imp\quad s = 7 $$ Also $$ x_{n} - 7 = \root{7}x_{n - 1}^{1/2} - 7 = {7x_{n - 1} - 49 \over \root{7}x_{n - 1}^{1/2} + 7} ={x_{n - 1} - 7 \over \root{x_{n - 1}/7} + 1} < x_{n - 1} - 7 $$

share|improve this answer
add comment

Your Answer

 
discard

By posting your answer, you agree to the privacy policy and terms of service.

Not the answer you're looking for? Browse other questions tagged or ask your own question.