
MySQL Connector/C++ Developer Guide



MySQL Connector/C++ Developer Guide

Abstract

This manual describes how to install, configure, and develop database applications using MySQL Connector/C++, the
C++ interface for communicating with MySQL servers.

For release notes detailing the changes in each release of Connector/C++, see MySQL Connector/C++ Release
Notes.

Document generated on: 2014-02-05 (revision: 37634)

http://dev.mysql.com/doc/relnotes/connector-cpp/en/
http://dev.mysql.com/doc/relnotes/connector-cpp/en/


iii

Table of Contents
Preface and Legal Notices ..................................................................................................................  v
1 Introduction to MySQL Connector/C++ .............................................................................................  1
2 How to Get MySQL Connector/C++ .................................................................................................  5
3 Installing MySQL Connector/C++ from a Binary Distribution ............................................................... 7
4 Installing MySQL Connector/C++ from Source ................................................................................  11

4.1 Building MySQL Connector/C++ from Source on Unix, Solaris, and Mac OS X .......................  11
4.2 Building MySQL Connector/C++ from Source on Windows .................................................... 13
4.3 Dynamically Linking MySQL Connector/C++ Against the MySQL Client Library ....................... 16

5 Building MySQL Connector/C++ Windows Applications with Microsoft Visual Studio ..........................  17
6 Building MySQL Connector/C++ Linux Applications with NetBeans ..................................................  27
7 MySQL Connector/C++ Getting Started: Usage Examples ...............................................................  33

7.1 MySQL Connector/C++ Connecting to MySQL .....................................................................  34
7.2 MySQL Connector/C++ Running a Simple Query .................................................................  34
7.3 MySQL Connector/C++ Fetching Results .............................................................................  35
7.4 MySQL Connector/C++ Using Prepared Statements .............................................................  36
7.5 MySQL Connector/C++ Complete Example 1 .......................................................................  36
7.6 MySQL Connector/C++ Complete Example 2 .......................................................................  37

8 MySQL Connector/C++ Tutorials ....................................................................................................  41
8.1 Prerequisites and Background Information ...........................................................................  41
8.2 Calling Stored Procedures with Statement Objects ............................................................  42
8.3 Calling Stored Procedures with PreparedStatement Objects ............................................. 47

9 MySQL Connector/C++ Debug Tracing ........................................................................................... 51
10 MySQL Connector/C++ Usage Notes ...........................................................................................  53
11 MySQL Connector/C++ Known Bugs and Issues ........................................................................... 59
12 MySQL Connector/C++ Support ...................................................................................................  61
A Licenses for Third-Party Components ............................................................................................  63

A.1 Boost Library License .........................................................................................................  63
A.2 OpenSSL v1.0 License .......................................................................................................  63



iv



v

Preface and Legal Notices
This manual describes how to install, configure, and develop database applications using MySQL
Connector/C++, the C++ interface for communicating with MySQL servers.

Legal Notices

Copyright © 2008, 2014, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted
in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free.
If you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and
technical data delivered to U.S. Government customers are "commercial computer software" or
"commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be
subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19,
Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway,
Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which
may create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe
use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by
use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. MySQL is a trademark of Oracle
Corporation and/or its affiliates, and shall not be used without Oracle's express written authorization. Other
names may be trademarks of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

This documentation is in prerelease status and is intended for demonstration and preliminary use only.
It may not be specific to the hardware on which you are using the software. Oracle Corporation and its
affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this
documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this
documentation.

The information contained in this document is for informational sharing purposes only and should be
considered in your capacity as a customer advisory board member or pursuant to your beta trial agreement



Legal Notices

vi

only. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, and timing of any features or functionality
described in this document remains at the sole discretion of Oracle.

This document in any form, software or printed matter, contains proprietary information that is the exclusive
property of Oracle. Your access to and use of this material is subject to the terms and conditions of your
Oracle Software License and Service Agreement, which has been executed and with which you agree
to comply. This document and information contained herein may not be disclosed, copied, reproduced,
or distributed to anyone outside Oracle without prior written consent of Oracle or as specifically provided
below. This document is not part of your license agreement nor can it be incorporated into any contractual
agreement with Oracle or its subsidiaries or affiliates.

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion to other
formats is allowed as long as the actual content is not altered or edited in any way. You shall not publish
or distribute this documentation in any form or on any media, except if you distribute the documentation in
a manner similar to how Oracle disseminates it (that is, electronically for download on a Web site with the
software) or on a CD-ROM or similar medium, provided however that the documentation is disseminated
together with the software on the same medium. Any other use, such as any dissemination of printed
copies or use of this documentation, in whole or in part, in another publication, requires the prior written
consent from an authorized representative of Oracle. Oracle and/or its affiliates reserve any and all rights
to this documentation not expressly granted above.

For more information on the terms of this license, or for details on how the MySQL documentation is built
and produced, please visit MySQL Contact & Questions.

For help with using MySQL, please visit either the MySQL Forums or MySQL Mailing Lists where you can
discuss your issues with other MySQL users.

For additional documentation on MySQL products, including translations of the documentation into other
languages, and downloadable versions in variety of formats, including HTML and PDF formats, see the
MySQL Documentation Library.

http://dev.mysql.com/contact/
http://forums.mysql.com
http://lists.mysql.com
http://dev.mysql.com/doc


1

Chapter 1 Introduction to MySQL Connector/C++
MySQL Connector/C++ is a MySQL database connector for C++. It lets you develop C++ applications that
connect to the MySQL Server.

For release notes detailing the changes in each release of MySQL Connector/C++, see MySQL Connector/
C++ Release Notes.

MySQL Connector/C++ Benefits

MySQL Connector/C++ offers the following benefits for C++ users compared to the MySQL C API (MySQL
client library):

• Convenience of pure C++; no C function calls required

• Supports JDBC 4.0, an industry standard API

• Supports the object-oriented programming paradigm

• Reduces development time

• Licensed under the GPL with the FLOSS License Exception

• Available under a commercial license upon request

JDBC Compatibility

MySQL Connector/C++ is compatible with the JDBC 4.0 API. MySQL Connector/C++ does not implement
the entire JDBC 4.0 API, but does feature the following classes:

• Connection

• DatabaseMetaData

• Driver

• PreparedStatement

• ResultSet

• ResultSetMetaData

• Savepoint

• Statement

The JDBC 4.0 API defines approximately 450 methods for the classes just mentioned. MySQL Connector/
C++ implements approximately 80% of these.

Platform Support and Prerequisites

MySQL Connector/C++ requires:

• MySQL 5.1 or later

• Microsoft Visual Studio 2003 or later on Windows

http://dev.mysql.com/doc/relnotes/connector-cpp/en/
http://dev.mysql.com/doc/relnotes/connector-cpp/en/


Platform Support and Prerequisites 

2

The release has been successfully compiled and tested on the following platforms:

AIX

• 5.2 (PPC32, PPC64)

• 5.3 (PPC32, PPC64)

FreeBSD

• 6.0 (x86, x86_64)

HPUX

• 11.11 (PA-RISC 32bit, PA-RISC 64bit)

Linux

• Debian 3.1 (PPC32, x86)

• FC4 (x86)

• RHEL 3 (x86, x86_64)

• RHEL 4 (x86, x86_64)

• RHEL 5 (x86, x86_64)

• RHEL 6 (x86, x86_64)

• SLES 9 (x86, x86_64)

• SLES 10 (x86_64)

• SuSE 10.3, (x86_64)

• Ubuntu 8.04 (x86)

• Ubuntu 8.10 (x86_64)

Mac OS X

• Mac OS X 10.3 (PPC32, PPC64)

• Mac OS X 10.4 (PPC32, PPC64, x86)

• Mac OS X 10.5 (PPC32, PPC64, x86, x86_64)

Solaris

• Solaris 8 (SPARC32, SPARC64, x86)

• Solaris 9 (SPARC32, SPARC64, x86)

• Solaris 10 (SPARC32, SPARC64, x86, x86_64)

Windows

• XP Professional (32bit)



Release Status 

3

• 2003 (64bit)

Release Status

MySQL Connector/C++ is available as a Generally Available (GA) version. We ask users and developers
to try it out and provide feedback.

Note that MySQL Workbench is successfully using MySQL Connector/C++.

If you have any queries, please contact us.

Licensing

MySQL Connector/C++ is licensed under the terms of the GPL, like most MySQL Connectors. There are
special exceptions to the terms and conditions of the GPL as applied to this software; see FLOSS License
Exception. If you need a non-GPL license for commercial distribution, please contact us.



4



5

Chapter 2 How to Get MySQL Connector/C++
Binary and source packages can be obtained from MySQL Connector/C++ downloads.

MySQL Connector/C++ Binary Distributions

Binary distributions are available for these platforms:

Microsoft Windows:

• MSI installer package

• Without installer (a Zip file)

Other platforms:

• Compressed GNU TAR archive (tar.gz)

MySQL Connector/C++ Source Distributions

Source packages use compressed GNU TAR file (tar.gz) format and can be used on any supported
platform.

MySQL Connector/C++ Source Repository

The latest development sources are available through Launchpad.

The MySQL Connector/C++ code repository uses Bazaar. To check out the latest source code, use the
bzr command-line tool:

shell> bzr branch lp:~mysql/mysql-connector-cpp/trunk .

http://dev.mysql.com/downloads/connector/cpp/
https://launchpad.net/mysql-connector-cpp


6



7

Chapter 3 Installing MySQL Connector/C++ from a Binary
Distribution

Caution

One problem that can occur is when the tools you use to build your application are
not compatible with the tools used to build the binary versions of MySQL Connector/
C++. Ideally, build your application with the same tools that were used to build
the MySQL Connector/C++ binaries. To help with this, the following resources are
provided.

All distributions include a README file that contains platform-specific notes. At the end of the README file
contained in the binary distribution, you will find the settings used to build the binaries. If you experience
build-related issues on a platform, it may help to check the settings used on the platform to build the binary.

Developers using Microsoft Windows must satisfy the following requirements:

1. Use a supported version of Visual Studio, either Visual Studio 2005 or Visual Studio 2008.

2. Ensure that your application uses the same runtime library as that used to build MySQL Connector/C+
+. Visual Studio 2005 builds use Microsoft.VC80.CRT (8.0.50727.762), and Visual Studio 2008 builds
use Microsoft.VC90.CRT (9.0.21022.8).

3. Your application should use the same linker configuration as MySQL Connector/C++. For example, use
one of /MD, /MDd, /MT, or /MTd.

To use a variation of the requirements previously listed, such as a different compiler version, release
configuration, or runtime library, compile MySQL Connector/C++ from source using your desired settings
and ensure that your application is built using these same settings. To avoid issues, ensure that the three
variables of compiler version, runtime library, and runtime linker configuration settings are the same for
both application and MySQL Connector/C++ itself.

A better solution that ensures compatibility is to build your MySQL Connector/C++ libraries from the source
code using the same tools that you use to build your application.

Downloading MySQL Connector/C++

Binary packages can be obtained from MySQL Connector/C++ downloads.

Archive Package

Unpack the distribution archive into an appropriate directory. If you plan to use a dynamically linked version
of MySQL Connector/C++, make sure that your system can reference the MySQL client library (MySQL
Connector/C++ is linked against and thus requires the MySQL client library). Consult your operating
system documentation on how to modify and expand the search path for libraries. If you cannot modify the
library search path, it may help to copy your application, the MySQL Connector/C++ library and the MySQL
client library into the same directory. Most systems search for libraries in the current directory.

Windows users can choose between two binary packaging formats:

• Windows MSI Installer (.msi file): To use the MSI Installer, launch it and follow the prompts in the
screens it presents to install MySQL Connector/C in the location of your choosing.

• Zip archive without installer (.zip file): To use a Zip archive, unpack it in the directory where you intend
to install it using WinZip or another tool that can read .zip files.

http://dev.mysql.com/downloads/connector/cpp/


8

Windows MSI Installer

Using the MSI Installer may be the easiest solution. The MSI Installer does not require any administrative
permissions as it simply copies files.

The MSI Installer begins by presenting a welcome screen.

Figure 3.1 MSI Installer Welcome Screen

The MSI Installer overview screen enables you to select the type of installation you want to perform.
The “Typical” installation consists of all required header files and the Release libraries. The “Custom”
installation enables you to install additional Debug versions of the connector libraries.

Figure 3.2 MSI Installer Overview Screen



9

If you select a “Custom” installation, the MSI Installer presents a Custom Setup screen that enables you to
select which features to install and where to install them.

Figure 3.3 MSI Installer Custom Setup Screen



10



11

Chapter 4 Installing MySQL Connector/C++ from Source

Table of Contents
4.1 Building MySQL Connector/C++ from Source on Unix, Solaris, and Mac OS X ...............................  11
4.2 Building MySQL Connector/C++ from Source on Windows ............................................................ 13
4.3 Dynamically Linking MySQL Connector/C++ Against the MySQL Client Library ..............................  16

MySQL Connector/C++ is based on the MySQL client library (MySQL C API) and is linked against it. Thus,
to compile MySQL Connector/C++, the MySQL Client Library must be installed.

You also need the cross-platform build tool CMake 2.4, or newer, and GLib 2.2.3 or newer. Check the
README file included with the distribution for platform-specific notes.

Typically, the MySQL client library is installed when the MySQL Server is installed. However, check your
operating system documentation for other installation options.

As of MySQL Connector/C++ 1.1.0, the Boost C++ libraries 1.34.0 or newer must be installed. Boost
is required only to build the connector, required to use the connector. You can obtain Boost and its
installation instructions from the official site. Once Boost is installed, tell the build system where the Boost
files are by defining the BOOST_ROOT:STRING option. This can be done when you invoke CMake. For
example:

shell> cmake . -DBOOST_ROOT:STRING=/usr/local/boost_1_40_0

Change /usr/local/boost_1_40_0/ as necessary to match your installation. For further details,
see Section 4.1, “Building MySQL Connector/C++ from Source on Unix, Solaris, and Mac OS X” and
Section 4.2, “Building MySQL Connector/C++ from Source on Windows”.

4.1 Building MySQL Connector/C++ from Source on Unix, Solaris,
and Mac OS X

1. Change location to the top-level directory of the source distribution:

shell> cd /path/to/mysql-connector-cpp

2. Run CMake to build a Makefile:

shell> cmake .
-- Check for working C compiler: /usr/local/bin/gcc
-- Check for working C compiler: /usr/local/bin/gcc -- works
[...]
-- Generating done
-- Build files have been written to: /path/to/mysql-connector-cpp/

On non-Windows systems, CMake first checks to see if the CMake variable
MYSQL_CONFIG_EXECUTABLE is set. If it is not found, CMake tries to locate mysql_config in the
default locations.

If you have any problems with the configuration process, check the troubleshooting instructions given
later.

http://www.boost.org


Building MySQL Connector/C++ from Source on Unix, Solaris, and Mac OS X

12

3. Use make to build the libraries. First make sure you have a clean build:

shell> make clean

Then build the connector:

shell> make
[  1%] Building CXX object »
driver/CMakeFiles/mysqlcppconn.dir/mysql_connection.o
[  3%] Building CXX object »
driver/CMakeFiles/mysqlcppconn.dir/mysql_constructed_resultset.o
[...]
[100%] Building CXX object examples/CMakeFiles/statement.dir/statement.o
Linking CXX executable statement

If all goes well, you will find the MySQL Connector/C++ library in the driver directory.

4. Install the header and library files:

shell> make install

Unless you have changed the location in the configuration step, make install copies the header
files to the directory /usr/local/include. The header files copied are mysql_connection.h and
mysql_driver.h.

Again, unless you have specified otherwise, make install copies the library files to /usr/
local/lib. The files copied are the dynamic library libmysqlcppconn.so, and the static library
libmysqlcppconn-static.a. The extension of the dynamic library might be different on your
system (for example, .dylib on Mac OS X).

If you encounter any errors, please first carry out these checks:

1. CMake options: MySQL installation path, debug version and more

In case of configuration or compilation problems, check the list of CMake options:

shell> cmake -L
[...]
CMAKE_BACKWARDS_COMPATIBILITY:STRING=2.4
CMAKE_BUILD_TYPE:STRING=
CMAKE_INSTALL_PREFIX:PATH=/usr/local
EXECUTABLE_OUTPUT_PATH:PATH=
LIBRARY_OUTPUT_PATH:PATH=
MYSQLCPPCONN_GCOV_ENABLE:BOOL=0
MYSQLCPPCONN_TRACE_ENABLE:BOOL=0
MYSQL_CONFIG_EXECUTABLE:FILEPATH=/usr/bin/mysql_config

For example, if your MySQL Server installation path is not /usr/local/mysql and you want to build
a debug version of the MySQL Connector/C++, use this command:

shell> cmake \
  -D CMAKE_BUILD_TYPE:STRING=Debug \
  -D MYSQL_CONFIG_EXECUTABLE=/path/to/my/mysql/server/bin/mysql_config .

2. Verify your settings with cmake -L:

shell> cmake -L



Building MySQL Connector/C++ from Source on Windows

13

[...]
CMAKE_BACKWARDS_COMPATIBILITY:STRING=2.4
CMAKE_BUILD_TYPE:STRING=
CMAKE_INSTALL_PREFIX:PATH=/usr/local
EXECUTABLE_OUTPUT_PATH:PATH=
LIBRARY_OUTPUT_PATH:PATH=
MYSQLCPPCONN_GCOV_ENABLE:BOOL=0
MYSQLCPPCONN_TRACE_ENABLE:BOOL=0
MYSQL_CONFIG_EXECUTABLE=/path/to/my/mysql/server/bin/mysql_config

Proceed by executing a make clean command followed by a make command, as described
previously.

Once you have installed MySQL Connector/C++, you can carry out a quick test to check the installation. To
do this, compile and run one of the example programs, such as examples/standalone_example.cpp.
This example is discussed in more detail later, but for now, you can use it to test whether the connector
has been correctly installed. This procedure assumes that you have a working MySQL Server to which you
can connect. It also assumes header and library locations of /usrlocal/include and /usr/local/
lib, respectively; adjust these as necessary for your system.

1. Compile the example program. To do this, change location to the examples directory and enter this
command:

shell> g++ -o test_install \
  -I/usr/local/include -I/usr/local/include/cppconn \
  -Wl,-Bdynamic -lmysqlcppconn standalone_example.cpp

2. Make sure the dynamic library which is used in this case can be found at runtime:

shell> export LD_LIBRARY_PATH=/usr/local/lib

3. Now run the program to test your installation, substituting the appropriate host, user, password, and
database names for your system:

shell> ./test_install localhost root password database

You should see output similar to the following:

Connector/C++ standalone program example...

... running 'SELECT 'Welcome to Connector/C++' AS _message'

... MySQL replies: Welcome to Connector/C++

... say it again, MySQL

....MySQL replies: Welcome to Connector/C++

... find more at http://www.mysql.com

If you see any errors, take note of them and go through the troubleshooting procedures discussed
earlier.

4.2 Building MySQL Connector/C++ from Source on Windows

Note

The only compiler formally supported for Windows is Microsoft Visual Studio 2003
and above.



Building MySQL Connector/C++ from Source on Windows

14

The basic steps for building the connector on Windows are the same as for Unix. It is important to use
CMake 2.6.2 or newer to generate build files for your compiler and to invoke the compiler.

Note

On Windows, mysql_config is not present, so CMake attempts to retrieve
the location of MySQL from the environment variable $ENV{MYSQL_DIR}.
If MYSQL_DIR is not set, CMake then proceeds to check for MySQL in the
following locations: $ENV{ProgramFiles}/MySQL/*/include, and
$ENV{SystemDrive}/MySQL/*/include.

CMake makes it easy for you to try other compilers. However, you may experience compile warnings,
compile errors or linking issues not detected by Visual Studio. Patches are gratefully accepted to fix issues
with other compilers.

Consult the CMake manual or check cmake --help to find out which build systems are supported by your
CMake version:

C:\>cmake --help
cmake version 2.6-patch 2
Usage
[...]
Generators

The following generators are available on this platform:
  Borland Makefiles           = Generates Borland makefiles.
  MSYS Makefiles              = Generates MSYS makefiles.
  MinGW Makefiles             = Generates a make file for use with
                                mingw32-make.
  NMake Makefiles             = Generates NMake makefiles.
  Unix Makefiles              = Generates standard UNIX makefiles.
  Visual Studio 6             = Generates Visual Studio 6 project files.
  Visual Studio 7             = Generates Visual Studio .NET 2002 project
                                files.
  Visual Studio 7 .NET 2003   = Generates Visual Studio .NET 2003 project
                                files.
  Visual Studio 8 2005        = Generates Visual Studio .NET 2005 project
                                files.
  Visual Studio 8 2005 Win64  = Generates Visual Studio .NET 2005 Win64
                                project files.
  Visual Studio 9 2008        = Generates Visual Studio 9 2008 project fil
  Visual Studio 9 2008 Win64  = Generates Visual Studio 9 2008 Win64 proje
                                files.
[...]

It is likely that your CMake binary supports more compilers, known by CMake as generators, than can
actually be used to build MySQL Connector/C++. We have built the connector using the following
generators:

• Microsoft Visual Studio 8 (Visual Studio 2005)

• Microsoft Visual Studio 9 (Visual Studio 2008, Visual Studio 2008 Express)

• NMake

Please see the building instructions for Unix, Solaris and Mac OS X for troubleshooting and configuration
hints.

Use these steps to build the connector:

1. Change location to the top-level directory of the source distribution:



Building MySQL Connector/C++ from Source on Windows

15

shell> cd C:\path_to_mysql_cpp

2. Run CMake to generate build files for your generator:

Visual Studio

 C:\>cmake -G "Visual Studio 9 2008"
-- Check for working C compiler: cl
-- Check for working C compiler: cl -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Check for working CXX compiler: cl
-- Check for working CXX compiler: cl -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- ENV{MYSQL_DIR} =
-- MySQL Include dir: C:/Programme/MySQL/MySQL Server 5.5/include
-- MySQL Library    : C:/Programs/MySQL/MySQL Server 5.5/lib/opt/mysqlclient.lib
-- MySQL Library dir: C:/Programs/MySQL/MySQL Server 5.5/lib/opt
-- MySQL CFLAGS:
-- MySQL Link flags:
-- MySQL Include dir: C:/Programs/MySQL/MySQL Server 5.5/include
-- MySQL Library dir: C:/Programs/MySQL/MySQL Server 5.5/lib/opt
-- MySQL CFLAGS:
-- MySQL Link flags:
-- Configuring cppconn
-- Configuring test cases
-- Looking for isinf
-- Looking for isinf - not found
-- Looking for isinf
-- Looking for isinf - not found.
-- Looking for finite
-- Looking for finite - not found.
-- Configuring C/J junit tests port
-- Configuring examples
-- Configuring done
-- Generating done
-- Build files have been written to: C:\path_to_mysql_cpp
C:\>dir *.sln *.vcproj
[...]
19.11.2008  12:16            23.332 MYSQLCPPCONN.sln
[...]
19.11.2008  12:16            27.564 ALL_BUILD.vcproj
19.11.2008  12:16            27.869 INSTALL.vcproj
19.11.2008  12:16            28.073 PACKAGE.vcproj
19.11.2008  12:16            27.495 ZERO_CHECK.vcproj

NMake

 C:\>cmake -G "NMake Makefiles"
-- The C compiler identification is MSVC
-- The CXX compiler identification is MSVC
[...]
-- Build files have been written to: C:\path_to_mysql_cpp

3. Use your compiler to build MySQL Connector/C++.

Visual Studio - GUI



Dynamically Linking MySQL Connector/C++ Against the MySQL Client Library

16

Open the newly generated project files in the Visual Studio GUI or use a Visual Studio command line
to build the driver. The project files contain a variety of different configurations, debug and nondebug
versions among them.

Visual Studio - NMake

C:\>nmake

Microsoft (R) Program Maintenance Utility Version 9.00.30729.01
Copyright (C) Microsoft Corporation.  All rights reserved.

Scanning dependencies of target mysqlcppconn
[  2%] Building CXX object driver/CMakeFiles/mysqlcppconn.dir/mysql_connection.obj
mysql_connection.cpp
[...]
Linking CXX executable statement.exe
[100%] Built target statement

4.3 Dynamically Linking MySQL Connector/C++ Against the MySQL
Client Library

Note

This section refers to dynamic linking of MySQL Connector/C++ with the client
library, not dynamic linking of the application to MySQL Connector/C++.

Precompiled binaries of MySQL Connector/C++ use static binding with the client
library by default.

An application that uses MySQL Connector/C++ can be either statically or dynamically linked to the
MySQL Connector/C++ libraries. MySQL Connector/C++ is usually statically linked to the underlying
MySQL client library (or Connector/C). Note that, unless otherwise stated, reference to the MySQL client
library is also taken to include Connector/C, which is a separately packaged, standalone version of the
MySQL client library. From MySQL Connector/C++ 1.1.0 on, it is possible to also dynamically link to
the underlying MySQL client library. The ability of MySQL Connector/C++ to dynamically link to MySQL
client library is not enabled by default. Enabling this feature is done through a compile-time option when
compiling the MySQL Connector/C++ source code.

To use the ability to dynamically link the client library to MySQL Connector/C++, define the
MYSQLCLIENT_STATIC_BINDING:BOOL when building the MySQL Connector/C++ source code:

shell> rm CMakeCache.txt
shell> cmake -DMYSQLCLIENT_STATIC_BINDING:BOOL=1 .
shell> make clean
shell> make
shell> make install

Now, in your application, when creating a connection, MySQL Connector/C++ will select and load a client
library at runtime. It will choose the client library by searching defined locations and environment variables
depending on the host operating system. It is also possible when creating a connection in an application
to define an absolute path to the client library to be loaded at runtime. This can be convenient if you have
defined a standard location from which you want the client library to be loaded. This is sometimes done to
circumvent possible conflicts with other versions of the client library that may be located on the system.



17

Chapter 5 Building MySQL Connector/C++ Windows Applications
with Microsoft Visual Studio

MySQL Connector/C++ is available as a static or dynamic library to use with your application. This section
describes how to link the library to your application.

Note

To avoid potential crashes, the build configuration of MySQL Connector/C++ should
match the build configuration of the application using it. For example, do not use the
release build of MySQL Connector/C++ with a debug build of the client application.

Static Library

The MySQL Connector/C++ static library file is mysqlcppconn-static.lib. You link this library
statically with your application. Also link against the files libmysql.dll and libmysql.lib. At runtime,
the application will require access to libmysql.dll.

Dynamic Library

The MySQL Connector/C++ dynamic library file is mysqlcppconn.dll. To build your client application,
link it with the file mysqlcppconn.lib. At runtime, the application will require access to the files
mysqlcppconn.dll and libmysql.dll.

Building a MySQL Connector/C++ Application with Microsoft Visual Studio

The initial steps for building an application to use either the static or dynamic library are the same. Some
additional steps vary, depend on whether you are building your application to use the static or dynamic
library.

1. Select File, New, Project from the main menu.

Figure 5.1 Creating a New Project

2. In the wizard, select Visual C++, Win32. From Visual Studio Installed Templates, select the
application type Win32 Console Application. Enter a name for the application, then click OK, to move
to the Win32 Application Wizard.



18

Figure 5.2 The New Project Dialog Box

3. In the Win32 Application Wizard, click Application Settings and ensure the defaults are selected. The
radio button Console application and the check box Precompiled headers are selected. Click Finish
to close the wizard.



19

Figure 5.3 The Win32 Application Wizard

4. From the drop down list box on the toolbar, change from the default Debug build to the Release build.

Figure 5.4 Selecting the Release Build

5. From the main menu select Project, Properties. This can also be accessed using the hot key ALT + F7.



20

Figure 5.5 Selecting Project Properties from the Main Menu

6. Under Configuration Properties, open the tree view.

7. Select C++, General in the tree view.

Figure 5.6 Setting Properties



21

8. Ensure that Visual Studio can find the MySQL include directory. This directory includes header files that
can optionally be installed when installing MySQL Server.

Figure 5.7 MySQL Include Directory

9. In the Additional Include Directories text field, add the MySQL include/ directory.



22

Figure 5.8 Select Directory Dialog

10. Also set the location of additional libraries that Visual Studio needs to build the application. These are
located in the MySQL lib/opt directory, a subdirectory of the MySQL Server installation directory.

Figure 5.9 Typical Contents of MySQL lib/opt Directory

11. In the tree view, open Linker, General, Additional Library Directories.



23

Figure 5.10 Additional Library Directories

12. Add the lib/opt directory into the Additional Library Directories text field. This enables the library
file libmysql.lib to be found.

Figure 5.11 Additional Library Directories Dialog



Static Build 

24

Static Build

The remaining steps depend on whether you are building an application to use the MySQL Connector/C++
static or dynamic library. If you are building your application to use the dynamic library, see Dynamic Build.
If you are building your application to use the static library, carry out the following steps:

1. Open Linker, Input, Additional Dependencies.

Figure 5.12 Additional Dependencies

2. Enter mysqlcppconn-static.lib and libmysql.lib.



Dynamic build 

25

Figure 5.13 Adding Additional Dependencies

3. By default CPPCONN_PUBLIC_FUNC is defined to declare functions to be compatible with an application
that calls a DLL. If you are building an application to call the static library, ensure that function
prototypes are compatible with this. In this case, define CPPCONN_PUBLIC_FUNC to be an empty
string, so that functions are declared with the correct prototype.

In the Project, Properties tree view, under C++, Preprocessor, enter CPPCONN_PUBLIC_FUNC= into
the Preprocessor Definitions text field.

Figure 5.14 Setting the CPPCONN_PUBLIC_FUNC Define

Note

Make sure you enter CPPCONN_PUBLIC_FUNC= and not
CPPCONN_PUBLIC_FUNC, so that it is defined as an empty string.

Dynamic build

If you are building an application to use the MySQL Connector/C++ dynamically linked library, carry out
these steps:



Dynamic build 

26

1. Under Linker, Input, add mysqlcppconn.lib into the Additional Dependencies text field.

2. mysqlcppconn.dll must be in the same directory as the application executable, or somewhere
on the system's path, so that the application can access the MySQL Connector/C++ Dynamic Linked
Library at runtime.

Copy mysqlcppconn.dll to the same directory as the application. Alternatively, extend the PATH
environment variable using SET PATH=%PATH%;C:\path\to\cpp. Alternatively, you can copy
mysqlcppconn.dll to the Windows installation Directory, typically c:\windows.



27

Chapter 6 Building MySQL Connector/C++ Linux Applications
with NetBeans

This section describes how to build MySQL Connector/C++ applications for Linux using the NetBeans IDE.

Figure 6.1 The NetBeans IDE

Note

To avoid potential crashes, the build configuration of MySQL Connector/C++ should
match the build configuration of the application using it. For example, do not use the
release build of MySQL Connector/C++ with a debug build of the client application.

1. Create a new project. Select File, New Project. Choose a C/C++ Application and click Next.

2. Give the project a name and click Finish. A new project is created.

3. In the Projects tab, right-click Source Files and select New, then Main C++ File....

4. Change the filename, or simply select the defaults and click Finish to add the new file to the project.

5. Now add some working code to your main source file. Explore your MySQL Connector/C++ installation
and navigate to the examples directory.

6. Select a suitable example, such as standalone_example_docs1.cpp. Copy all the code in this
file, and use it to replace the code in your existing main source file. Amend the code to reflect the



28

connection properties required for your test database. You now have a working example that will
access a MySQL database using MySQL Connector/C++.

7. At this point, NetBeans shows some errors in the source code. Direct NetBeans to the necessary
header files to include. Select File, Project Properties from the main menu.

8. In the Categories: tree view panel, navigate to Build, C++ Compiler.

9. In the General panel, select Include Directories.

10. Click the ... button.

11. Click Add, then navigate to the directory where the MySQL Connector/C++ header files are located.
This is /usr/local/include unless you have installed the files to a different location. Click Select.
Click OK.

Figure 6.2 Setting the Header Include Directory

12. Click OK again to close the Project Properties dialog.

At this point, you have created a NetBeans project containing a single C++ source file. You have also
ensured that the necessary include files are accessible. Before continuing, decide whether your project
is to use the MySQL Connector/C++ static or dynamic library. The project settings are slightly different in
each case, because you link against a different library.

Using the Static Library

To use the static MySQL Connector/C++ library, link against two library files, libmysqlcppconn-
static.a and libmysqlclient.a. The locations of the files depend on your setup, but typically the



29

former are in /usr/local/lib and the latter in /usr/lib. The file libmysqlclient.a is not part of
MySQL Connector/C++, but is the MySQL client library file distributed with MySQL Server. (Remember,
the MySQL client library is an optional component as part of the MySQL Server installation process.) The
MySQL Client Library is also available as part of the MySQL Connector/C distribution.

1. Set the project to link the necessary library files. Select File, Project Properties from the main menu.

2. In the Categories: tree view, navigate to Linker.

3. In the General panel, select Additional Library Directories. Click the ... button.

4. Select and add the /usr/lib and /usr/local/lib directories.

5. In the same panel, add the two library files required for static linking as discussed earlier. The
properties panel should then look similar to the following screenshot.

Figure 6.3 Setting the Static Library Directories and File Names

6. Click OK to close the Project Properties dialog.

Using the Dynamic Library

To use the MySQL Connector/C++ dynamic library, link your project with a single library file,
libmysqlcppconn.so. The location of this file depends on how you configured your installation of
MySQL Connector/C++, but typically is /usr/local/lib.

1. Set the project to link the necessary library file. Select File, Project Properties from the main menu.

2. In the Categories: tree view, navigate to Linker.



30

3. In the General panel, select Additional Library Directories. Click the ... button.

4. Select and add the /usr/local/lib directories.

5. In the same panel, add the library file required for static linking as discussed earlier. The properties
panel should look similar to the following screenshot.

Figure 6.4 Setting the Dynamic Library Directory and File Name

6. Click OK to close the Project Properties dialog.

After configuring your project, build it by selecting Run, Build Main Project from the main menu. You then
run the project using Run, Run Main Project.

On running the application, you should see a screen similar to the following (this is actually the static
version of the application shown):



31

Figure 6.5 The Example Application Running

Note

The preceding settings and procedures were carried out for the default Debug
configuration. To create a Release configuration, select that configuration before
setting the Project Properties.



32



33

Chapter 7 MySQL Connector/C++ Getting Started: Usage
Examples

Table of Contents
7.1 MySQL Connector/C++ Connecting to MySQL .............................................................................  34
7.2 MySQL Connector/C++ Running a Simple Query .........................................................................  34
7.3 MySQL Connector/C++ Fetching Results .....................................................................................  35
7.4 MySQL Connector/C++ Using Prepared Statements .....................................................................  36
7.5 MySQL Connector/C++ Complete Example 1 ............................................................................... 36
7.6 MySQL Connector/C++ Complete Example 2 ............................................................................... 37

The download package contains usage examples in the directory examples/. These examples explain
how to use the following classes:

• Connection

• Driver

• PreparedStatement

• ResultSet

• ResultSetMetaData

• Statement

The examples cover:

• Using the Driver class to connect to MySQL

• Creating tables, inserting rows, fetching rows using (simple) statements

• Creating tables, inserting rows, fetching rows using prepared statements

• Hints for working around prepared statement limitations

• Accessing result set metadata

The examples in this document are only code snippets, not complete programs. The code snippets provide
a brief overview on the API. For complete programs, check the examples/ directory of your MySQL
Connector/C++ installation Please also read the README file in that directory. To test the example code,
edit the examples.h file in the examples/ directory to add your connection information, then rebuild the
code by issuing a make command.

The examples in the examples/ directory include:

• examples/connect.cpp:

How to create a connection, insert data into MySQL and handle exceptions.

• examples/connection_meta_schemaobj.cpp:

How to obtain metadata associated with a connection object, for example, a list of tables, databases,
MySQL version, connector version.



MySQL Connector/C++ Connecting to MySQL

34

• examples/debug_output.cpp:

How to activate and deactivate the MySQL Connector/C++ debug protocol.

• examples/exceptions.cpp:

A closer look at the exceptions thrown by the connector and how to fetch error information.

• examples/prepared_statements.cpp:

How to run Prepared Statements including an example how to handle SQL statements that cannot be
prepared by the MySQL Server.

• examples/resultset.cpp:

How to use a cursor to fetch data and iterate over a result set.

• examples/resultset_meta.cpp:

How to obtain metadata associated with a result set, for example, number of columns and column types.

• examples/resultset_types.cpp:

Result sets returned from metadata methods. (This is more a test than an example.)

• examples/standalone_example.cpp:

Simple standalone program not integrated into regular CMake builds.

• examples/statements.cpp:

How to execute SQL statements without using Prepared Statements.

• examples/cpp_trace_analyzer.cpp:

This example shows how to filter the output of the debug trace. Please see the inline comments for
further documentation. This script is unsupported.

7.1 MySQL Connector/C++ Connecting to MySQL
To establish a connection to MySQL Server, retrieve an instance of sql::Connection from a
sql::mysql::MySQL_Driver object. A sql::mysql::MySQL_Driver object is returned by
sql::mysql::MySQL_Driver::get_mysql_driver_instance().

sql::mysql::MySQL_Driver *driver;
sql::Connection *con;

driver = sql::mysql::MySQL_Driver::get_mysql_driver_instance();
con = driver->connect("tcp://127.0.0.1:3306", "user", "password");

delete con;

Make sure that you free, con, the sql::Connection object as soon as you do not need it any more. But
do not explicitly free driver, the connector object! The connector will take care of freeing that.

7.2 MySQL Connector/C++ Running a Simple Query
For running simple queries, you can use the methods sql::Statement::execute(),
sql::Statement::executeQuery() and sql::Statement::executeUpdate(). Use the method



MySQL Connector/C++ Fetching Results

35

sql::Statement::execute() if your query does not return a result set or if your query returns more
than one result set. See the examples/ directory for more information.

sql::mysql::MySQL_Driver *driver;
sql::Connection *con;
sql::Statement *stmt;

driver = sql::mysql::get_mysql_driver_instance();
con = driver->connect("tcp://127.0.0.1:3306", "user", "password");

stmt = con->createStatement();
stmt->execute("USE " EXAMPLE_DB);
stmt->execute("DROP TABLE IF EXISTS test");
stmt->execute("CREATE TABLE test(id INT, label CHAR(1))");
stmt->execute("INSERT INTO test(id, label) VALUES (1, 'a')");

delete stmt;
delete con;

Note that you must free sql::Statement and sql::Connection objects explicitly using delete.

7.3 MySQL Connector/C++ Fetching Results

The API for fetching result sets is identical for (simple) statements and prepared statements.
If your query returns one result set, use sql::Statement::executeQuery() or
sql::PreparedStatement::executeQuery() to run your query. Both methods return
sql::ResultSet objects. The preview version does buffer all result sets on the client to support cursors.

// ...
sql::Connection *con;
sql::Statement *stmt;
sql::ResultSet  *res;
// ...
stmt = con->createStatement();
// ...

res = stmt->executeQuery("SELECT id, label FROM test ORDER BY id ASC");
while (res->next()) {
  // You can use either numeric offsets...
  cout << "id = " << res->getInt(1); // getInt(1) returns the first column
  // ... or column names for accessing results.
  // The latter is recommended.
  cout << ", label = '" << res->getString("label") << "'" << endl;
}

delete res;
delete stmt;
delete con;

Note

In the preceding code snippet, column indexing starts from 1.

Note that you must free sql::Statement, sql::Connection and sql::ResultSet objects explicitly
using delete.

Cursor usage is demonstrated in the examples contained in the download package.



MySQL Connector/C++ Using Prepared Statements

36

7.4 MySQL Connector/C++ Using Prepared Statements
If you are not familiar with Prepared Statements on MySQL, take a look at the source code comments and
explanations in the file examples/prepared_statement.cpp.

sql::PreparedStatement is created by passing an SQL query to
sql::Connection::prepareStatement(). As sql::PreparedStatement is derived from
sql::Statement, you will feel familiar with the API once you have learned how to use (simple)
statements (sql::Statement). For example, the syntax for fetching results is identical.

// ...
sql::Connection *con;
sql::PreparedStatement  *prep_stmt
// ...

prep_stmt = con->prepareStatement("INSERT INTO test(id, label) VALUES (?, ?)");

prep_stmt->setInt(1, 1);
prep_stmt->setString(2, "a");
prep_stmt->execute();

prep_stmt->setInt(1, 2);
prep_stmt->setString(2, "b");
prep_stmt->execute();

delete prep_stmt;
delete con;

As usual, you must free sql::PreparedStatement and sql::Connection objects explicitly.

7.5 MySQL Connector/C++ Complete Example 1
The following code shows a complete example of how to use MySQL Connector/C++:

/* Copyright 2008, 2010, Oracle and/or its affiliates. All rights reserved.

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.

There are special exceptions to the terms and conditions of the GPL
as it is applied to this software. View the full text of the
exception in file EXCEPTIONS-CONNECTOR-C++ in the directory of this
software distribution.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/

/* Standard C++ includes */
#include <stdlib.h>
#include <iostream>

/*
  Include directly the different
  headers from cppconn/ and mysql_driver.h + mysql_util.h



MySQL Connector/C++ Complete Example 2

37

  (and mysql_connection.h). This will reduce your build time!
*/
#include "mysql_connection.h"

#include <cppconn/driver.h>
#include <cppconn/exception.h>
#include <cppconn/resultset.h>
#include <cppconn/statement.h>

using namespace std;

int main(void)
{
cout << endl;
cout << "Running 'SELECT 'Hello World!' »
   AS _message'..." << endl;

try {
  sql::Driver *driver;
  sql::Connection *con;
  sql::Statement *stmt;
  sql::ResultSet *res;

  /* Create a connection */
  driver = get_driver_instance();
  con = driver->connect("tcp://127.0.0.1:3306", "root", "root");
  /* Connect to the MySQL test database */
  con->setSchema("test");

  stmt = con->createStatement();
  res = stmt->executeQuery("SELECT 'Hello World!' AS _message");
  while (res->next()) {
    cout << "\t... MySQL replies: ";
    /* Access column data by alias or column name */
    cout << res->getString("_message") << endl;
    cout << "\t... MySQL says it again: ";
    /* Access column fata by numeric offset, 1 is the first column */
    cout << res->getString(1) << endl;
  }
  delete res;
  delete stmt;
  delete con;

} catch (sql::SQLException &e) {
  cout << "# ERR: SQLException in " << __FILE__;
  cout << "(" << __FUNCTION__ << ") on line " »
     << __LINE__ << endl;
  cout << "# ERR: " << e.what();
  cout << " (MySQL error code: " << e.getErrorCode();
  cout << ", SQLState: " << e.getSQLState() << " )" << endl;
}

cout << endl;

return EXIT_SUCCESS;
}

7.6 MySQL Connector/C++ Complete Example 2

The following code shows a complete example of how to use MySQL Connector/C++:

/* Copyright 2008, 2010, Oracle and/or its affiliates. All rights reserved.

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by



MySQL Connector/C++ Complete Example 2

38

the Free Software Foundation; version 2 of the License.

There are special exceptions to the terms and conditions of the GPL
as it is applied to this software. View the full text of the
exception in file EXCEPTIONS-CONNECTOR-C++ in the directory of this
software distribution.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/

/* Standard C++ includes */
#include <stdlib.h>
#include <iostream>

/*
  Include directly the different
  headers from cppconn/ and mysql_driver.h + mysql_util.h
  (and mysql_connection.h). This will reduce your build time!
*/
#include "mysql_connection.h"

#include <cppconn/driver.h>
#include <cppconn/exception.h>
#include <cppconn/resultset.h>
#include <cppconn/statement.h>
#include <cppconn/prepared_statement.h>

using namespace std;

int main(void)
{
cout << endl;
cout << "Let's have MySQL count from 10 to 1..." << endl;

try {
  sql::Driver *driver;
  sql::Connection *con;
  sql::Statement *stmt;
  sql::ResultSet *res;
  sql::PreparedStatement *pstmt;

  /* Create a connection */
  driver = get_driver_instance();
  con = driver->connect("tcp://127.0.0.1:3306", "root", "root");
  /* Connect to the MySQL test database */
  con->setSchema("test");

  stmt = con->createStatement();
  stmt->execute("DROP TABLE IF EXISTS test");
  stmt->execute("CREATE TABLE test(id INT)");
  delete stmt;

  /* '?' is the supported placeholder syntax */
  pstmt = con->prepareStatement("INSERT INTO test(id) VALUES (?)");
  for (int i = 1; i <= 10; i++) {
    pstmt->setInt(1, i);
    pstmt->executeUpdate();
  }
  delete pstmt;



MySQL Connector/C++ Complete Example 2

39

  /* Select in ascending order */
  pstmt = con->prepareStatement("SELECT id FROM test ORDER BY id ASC");
  res = pstmt->executeQuery();

  /* Fetch in reverse = descending order! */
  res->afterLast();
  while (res->previous())
    cout << "\t... MySQL counts: " << res->getInt("id") << endl;
  delete res;

  delete pstmt;
  delete con;

} catch (sql::SQLException &e) {
  cout << "# ERR: SQLException in " << __FILE__;
  cout << "(" << __FUNCTION__ << ") on line " »
     << __LINE__ << endl;
  cout << "# ERR: " << e.what();
  cout << " (MySQL error code: " << e.getErrorCode();
  cout << ", SQLState: " << e.getSQLState() << »
     " )" << endl;
}

cout << endl;

return EXIT_SUCCESS;
}



40



41

Chapter 8 MySQL Connector/C++ Tutorials

Table of Contents
8.1 Prerequisites and Background Information ...................................................................................  41
8.2 Calling Stored Procedures with Statement Objects ....................................................................  42
8.3 Calling Stored Procedures with PreparedStatement Objects ..................................................... 47

The following tutorials illustrate various aspects of using MySQL Connector/C++. Also consult the
examples in Chapter 7, MySQL Connector/C++ Getting Started: Usage Examples.

8.1 Prerequisites and Background Information
This section describes the prerequisites that must be satisifed before you work through the remaining
tutorial sections, and shows how to set up the framework code that serves as the basis for the tutorial
applications.

These tutorials refer to tables and sample data from the world database, which you can download from
the “Example Databases” section of the MySQL Documentation page.

Each tutorial application uses a framework consisting of the following code. The examples vary at the line
that says /* INSERT TUTORIAL CODE HERE! */ within the try block, which is replaced for each
application with the application-specific code.

#include <stdlib.h>
#include <iostream>
#include <sstream>
#include <stdexcept>
/* uncomment for applications that use vectors */
/*#include <vector>*/

#include "mysql_connection.h"

#include <cppconn/driver.h>
#include <cppconn/exception.h>
#include <cppconn/resultset.h>
#include <cppconn/statement.h>
#include <cppconn/prepared_statement.h>

#define EXAMPLE_HOST "localhost"
#define EXAMPLE_USER "worlduser"
#define EXAMPLE_PASS "worldpass"
#define EXAMPLE_DB "world"

using namespace std;

int main(int argc, const char **argv)
{
  string url(argc >= 2 ? argv[1] : EXAMPLE_HOST);
  const string user(argc >= 3 ? argv[2] : EXAMPLE_USER);
  const string pass(argc >= 4 ? argv[3] : EXAMPLE_PASS);
  const string database(argc >= 5 ? argv[4] : EXAMPLE_DB);

  cout << "Connector/C++ tutorial framework..." << endl;
  cout << endl;

  try {

http://dev.mysql.com/doc/index-other.html


Calling Stored Procedures with Statement Objects

42

    /* INSERT TUTORIAL CODE HERE! */

  } catch (sql::SQLException &e) {
    /*
      MySQL Connector/C++ throws three different exceptions:

      - sql::MethodNotImplementedException (derived from sql::SQLException)
      - sql::InvalidArgumentException (derived from sql::SQLException)
      - sql::SQLException (derived from std::runtime_error)
    */
    cout << "# ERR: SQLException in " << __FILE__;
    cout << "(" << __FUNCTION__ << ") on line " << __LINE__ << endl;
    /* what() (derived from std::runtime_error) fetches error message */
    cout << "# ERR: " << e.what();
    cout << " (MySQL error code: " << e.getErrorCode();
    cout << ", SQLState: " << e.getSQLState() << " )" << endl;

    return EXIT_FAILURE;
  }

  cout << "Done." << endl;
  return EXIT_SUCCESS;
}

Try the framework code as a standalone program using this procedure:

1. Copy and paste the framework code to a file such as framework.cpp. Edit the #define statements
to reflect your connection parameters (server, user, password, database). Also, because the file
contains those parameters, set its access mode to be readable only to yourself.

2. Compile the framework. For example, on Mac OS X, the command might look like this (enter the
command on one line):

shell> g++ -o framework
  -I/usr/local/include -I/usr/local/include/cppconn
  -lmysqlcppconn framework.cpp

Adapt the command as necessary for your system. A similar command is needed for the tutorial
applications that follow.

3. To run the framework, enter the following:

shell> ./framework

You will see a simple message:

Connector/C++ tutorial framework...

Done.

You are now ready to continue to the tutorials.

8.2 Calling Stored Procedures with Statement Objects
A stored procedure can be called using a Statement or PreparedStatement object. This section
shows how to call stored procedures using Statement objects. To see how to use PreparedStatement
objects, see Section 8.3, “Calling Stored Procedures with PreparedStatement Objects”.

You can construct and call different types of stored procedures:



Calling Stored Procedures with Statement Objects

43

1. A stored procedure that returns no result. For example, such a stored procedure can log non-critical
information, or change database data in a straightforward way.

2. A stored procedure that returns one or more values using output parameters. For example, such a
procedure can indicate success or failure, or retrieve and return data items.

3. A stored procedure that returns one or more result sets. The procedure can execute one or more
queries, each of which returns an arbitrary number of rows. Your application loops through each result
set to display, transform, or otherwise process each row in it.

The following stored procedures illustrate each of these scenarios.

The following procedure adds a country to the world database, but does not return a result. This
corresponds to Scenario 1 described earlier.

CREATE PROCEDURE add_country (IN country_code CHAR(3),
                              IN country_name CHAR(52),
                              IN continent_name CHAR(30))
BEGIN
  INSERT INTO Country(Code, Name, Continent)
    VALUES (country_code, country_name, continent_name);
END;

The next procedures use an output parameter to return the population of a specified country or continent,
or the entire world. These correspond to Scenario 2 described earlier.

CREATE PROCEDURE get_pop (IN country_name CHAR(52),
                          OUT country_pop BIGINT)
BEGIN
  SELECT Population INTO country_pop FROM Country
    WHERE Name = country_name;
END;

CREATE PROCEDURE get_pop_continent (IN continent_name CHAR(30),
                                    OUT continent_pop BIGINT)
BEGIN
  SELECT SUM(Population) INTO continent_pop FROM Country
    WHERE Continent = continent_name;
END;

CREATE PROCEDURE get_pop_world (OUT world_pop BIGINT)
BEGIN
  SELECT SUM(Population) INTO world_pop FROM Country;
END;

The next procedure returns several result sets. This corresponds to Scenario 3 described earlier.

CREATE PROCEDURE get_data ()
BEGIN
  SELECT Code, Name, Population, Continent FROM Country
    WHERE Continent = 'Oceania' AND Population < 10000;
  SELECT Code, Name, Population, Continent FROM Country
    WHERE Continent = 'Europe' AND Population < 10000;
  SELECT Code, Name, Population, Continent FROM Country
    WHERE Continent = 'North America' AND Population < 10000;
END;



Scenario 1: Using a Statement for a Stored Procedure That Returns No Result 

44

Enter and test the stored procedures manually to ensure that they will be available to your C++
applications. (Select world as the default database before you create them.) You are now ready to start
writing applications using Connector/C++ that call stored procedures.

Scenario 1: Using a Statement for a Stored Procedure That Returns No
Result

This example shows how to call a stored procedure that returns no result set.

1. Make a copy of the tutorial framework code:

shell> cp framework.cpp sp_scenario1.cpp

2. Add the following code to the try block of the tutorial framework:

sql::Driver* driver = get_driver_instance();
std::auto_ptr<sql::Connection> con(driver->connect(url, user, pass));
con->setSchema(database);
std::auto_ptr<sql::Statement> stmt(con->createStatement());

// We need not check the return value explicitly. If it indicates
// an error, Connector/C++ generates an exception.
stmt->execute("CALL add_country('ATL', 'Atlantis', 'North America')");

3. Compile the program as described in Section 8.1, “Prerequisites and Background Information”.

4. Run the program:

shell> ./sp_scenario1

5. Using the mysql command-line client or other suitable program, check the world database to
determine that it has been updated correctly. You can use this query:

mysql> SELECT Code, Name, Continent FROM Country WHERE Code='ATL';
+------+----------+---------------+
| Code | Name     | Continent     |
+------+----------+---------------+
| ATL  | Atlantis | North America |
+------+----------+---------------+

The code in this application simply invokes the execute method, passing to it a statement that calls the
stored procedure. The procedure itself returns no value, although it is important to note there is always a
return value from the CALL statement; this is the execute status. MySQL Connector/C++ handles this
status for you, so you need not handle it explicitly. If the execute call fails for some reason, it raises an
exception that the catch block handles.

Scenario 2: Using a Statement for a Stored Procedure That Returns an
Output Parameter

This example shows how to handle a stored procedure that returns an output parameter.

1. Make a copy of the tutorial framework code:

http://dev.mysql.com/doc/refman/5.6/en/call.html


Scenario 2: Using a Statement for a Stored Procedure That Returns an Output Parameter 

45

shell> cp framework.cpp sp_scenario2.cpp

2. Add the following code to the try block of the tutorial framework:

sql::Driver* driver = get_driver_instance();
std::auto_ptr<sql::Connection> con(driver->connect(url, user, pass));
con->setSchema(database);
std::auto_ptr<sql::Statement> stmt(con->createStatement());

stmt->execute("CALL get_pop('Uganda', @pop)");

std::auto_ptr<sql::ResultSet> res(stmt->executeQuery("SELECT @pop AS _reply"));
while (res->next())
  cout << "Population of Uganda: " << res->getString("_reply") << endl;

stmt->execute("CALL get_pop_continent('Asia', @pop)");

res.reset(stmt->executeQuery("SELECT @pop AS _reply"));
while (res->next())
  cout << "Population of Asia: " << res->getString("_reply") << endl;

stmt->execute("CALL get_pop_world(@pop)");

res.reset(stmt->executeQuery("SELECT @pop AS _reply"));
while (res->next())
  cout << "Population of World: " << res->getString("_reply") << endl;

3. Compile the program as described in Section 8.1, “Prerequisites and Background Information”.

4. Run the program:

shell> ./sp_scenario2
Connector/C++ tutorial framework...

Population of Uganda: 21778000
Population of Asia: 3705025700
Population of World: 6078749450
Done.

In this scenario, each stored procedure sets the value of an output parameter. This is not returned directly
to the execute method, but needs to be obtained using a subsequent query. If you were executing the
SQL statements directly, you might use statements similar to these:

CALL get_pop('Uganda', @pop);
SELECT @pop;
CALL get_pop_continent('Asia', @pop);
SELECT @pop;
CALL get_pop_world(@pop);
SELECT @pop;

In the C++ code, a similar sequence is carried out for each procedure call:

• Execute the CALL statement.

• Obtain the output parameter by executing an additional query. The query produces a ResultSet object.

• Retrieve the data using a while loop. The simplest way to do this is to use a getString method on
the ResultSet, passing the name of the variable to access. In this example _reply is used as a
placeholder for the variable and therefore is used as the key to access the correct element of the result
dictionary.

http://dev.mysql.com/doc/refman/5.6/en/call.html


Scenario 3: Using a Statement for a Stored Procedure That Returns a Result Set 

46

Although the query used to obtain the output parameter returns only a single row, it is important to
use the while loop to catch more than one row, to avoid the possibility of the connection becoming
unstable.

Scenario 3: Using a Statement for a Stored Procedure That Returns a Result
Set

This example shows how to handle result sets produced by a stored procedure.

Note

This scenario requires MySQL 5.5.3 or higher. The client/server protocol does not
support fetching multiple result sets from stored procedures prior to 5.5.3.

1. Make a copy of the tutorial framework code:

shell> cp framework.cpp sp_scenario3.cpp

2. Add the following code to the try block of the tutorial framework:

sql::Driver* driver = get_driver_instance();
std::auto_ptr<sql::Connection> con(driver->connect(url, user, pass));
con->setSchema(database);
std::auto_ptr<sql::Statement> stmt(con->createStatement());

stmt->execute("CALL get_data()");
std::auto_ptr< sql::ResultSet > res;
do {
  res.reset(stmt->getResultSet());
  while (res->next()) {
    cout << "Name: " << res->getString("Name")
         << " Population: " << res->getInt("Population")
         << endl;
  }
} while (stmt->getMoreResults());

3. Compile the program as described in Section 8.1, “Prerequisites and Background Information”.

4. Run the program:

shell> ./sp_scenario3
Connector/C++ tutorial framework...

Name: Cocos (Keeling) Islands Population: 600
Name: Christmas Island Population: 2500
Name: Norfolk Island Population: 2000
Name: Niue Population: 2000
Name: Pitcairn Population: 50
Name: Tokelau Population: 2000
Name: United States Minor Outlying Islands Population: 0
Name: Svalbard and Jan Mayen Population: 3200
Name: Holy See (Vatican City State) Population: 1000
Name: Anguilla Population: 8000
Name: Atlantis Population: 0
Name: Saint Pierre and Miquelon Population: 7000
Done.

The code is similar to the examples shown previously. The code of particular interest here is:



Calling Stored Procedures with PreparedStatement Objects

47

do {
  res.reset(stmt->getResultSet());
  while (res->next()) {
    cout << "Name: " << res->getString("Name")
         << " Population: " << res->getInt("Population")
         << endl;
  }
} while (stmt->getMoreResults());

The CALL is executed as before, but this time the results are returned into multiple ResultSet objects
because the stored procedure executes multiple SELECT statements. In this example, the output shows
that three result sets are processed, because there are three SELECT statements in the stored procedure.
Each result set returns more than one row.

The results are processed using this code pattern:

do {
  Get Result Set
  while (Get Result) {
    Process Result
  }
} while (Get More Result Sets);

Note

Use this pattern even if the stored procedure executes only a single SELECT and
produces only one result set. This is a requirement of the underlying protocol.

8.3 Calling Stored Procedures with PreparedStatement Objects

This section shows how to call stored procedures using prepared statements. It is recommended
that, before working through it, you first work through the previous tutorial Section 8.2, “Calling Stored
Procedures with Statement Objects”. That section shows the stored procedures required by the
applications in this section.

Scenario 1: Using a PreparedStatement for a Stored Procedure That
Returns No Result

This example shows how to call a stored procedure that returns no result set.

1. Make a copy of the tutorial framework code:

shell> cp framework.cpp ps_scenario1.cpp

2. Add the following code to the try block of the tutorial framework:

vector<string> code_vector;
code_vector.push_back("SLD");
code_vector.push_back("DSN");
code_vector.push_back("ATL");

http://dev.mysql.com/doc/refman/5.6/en/call.html


Scenario 2: Using a PreparedStatement for a Stored Procedure That Returns an Output Parameter 

48

vector<string> name_vector;
name_vector.push_back("Sealand");
name_vector.push_back("Disneyland");
name_vector.push_back("Atlantis");

vector<string> cont_vector;
cont_vector.push_back("Europe");
cont_vector.push_back("North America");
cont_vector.push_back("Oceania");

sql::Driver * driver = get_driver_instance();

std::auto_ptr< sql::Connection > con(driver->connect(url, user, pass));
con->setSchema(database);

std::auto_ptr< sql::PreparedStatement >  pstmt;

pstmt.reset(con->prepareStatement("CALL add_country(?,?,?)"));
for (int i=0; i<3; i++)
{
  pstmt->setString(1,code_vector[i]);
  pstmt->setString(2,name_vector[i]);
  pstmt->setString(3,cont_vector[i]);

  pstmt->execute();
}

Also, uncomment #include <vector> near the top of the code, because vectors are used to store
sample data.

3. Compile the program as described in Section 8.1, “Prerequisites and Background Information”.

4. Run the program:

shell> ./ps_scenario1

5. You can check whether the database has been updated correctly by using this query:

mysql> SELECT Code, Name, Continent FROM Country
    -> WHERE Code IN('DSN','ATL','SLD');
+------+------------+---------------+
| Code | Name       | Continent     |
+------+------------+---------------+
| ATL  | Atlantis   | Oceania       |
| DSN  | Disneyland | North America |
| SLD  | Sealand    | Europe        |
+------+------------+---------------+

The code is relatively simple, as no processing is required to handle result sets. The procedure call,
CALL add_country(?,?,?), is made using placeholders for input parameters denoted by '?'. These
placeholders are replaced by the appropriate data values using the PreparedStatement object's
setString method. The for loop is set up to iterate 3 times, as there are three data sets in this example.
The same PreparedStatement is executed three times, each time with different input parameters.

Scenario 2: Using a PreparedStatement for a Stored Procedure That
Returns an Output Parameter

This example shows how to handle a stored procedure that returns an output parameter.

1. Make a copy of the tutorial framework code:



Scenario 2: Using a PreparedStatement for a Stored Procedure That Returns an Output Parameter 

49

shell> cp framework.cpp ps_scenario2.cpp

2. Add the following code to the try block of the tutorial framework:

vector<string> cont_vector;
cont_vector.push_back("Europe");
cont_vector.push_back("North America");
cont_vector.push_back("Oceania");

sql::Driver * driver = get_driver_instance();

std::auto_ptr< sql::Connection > con(driver->connect(url, user, pass));
con->setSchema(database);

std::auto_ptr< sql::Statement > stmt(con->createStatement());
std::auto_ptr< sql::PreparedStatement >  pstmt;
std::auto_ptr< sql::ResultSet > res;

pstmt.reset(con->prepareStatement("CALL get_pop_continent(?,@pop)"));

for (int i=0; i<3; i++)
{
  pstmt->setString(1,cont_vector[i]);
  pstmt->execute();
  res.reset(stmt->executeQuery("SELECT @pop AS _population"));
  while (res->next())
    cout << "Population of "
         << cont_vector[i]
         << " is "
         << res->getString("_population") << endl;
}

Also, uncomment #include <vector> near the top of the code, because vectors are used to store
sample data.

3. Compile the program as described in Section 8.1, “Prerequisites and Background Information”.

4. Run the program:

shell> ./ps_scenario2
Connector/C++ tutorial framework...

Population of Europe is 730074600
Population of North America is 482993000
Population of Oceania is 30401150
Done.

In this scenario a PreparedStatement object is created that calls the get_pop_continent stored
procedure. This procedure takes an input parameter, and also returns an output parameter. The approach
used is to create another statement that can be used to fetch the output parameter using a SELECT query.
Note that when the PreparedStatement is created, the input parameter to the stored procedure is
denoted by '?'. Prior to execution of the prepared statement, it is necessary to replace this placeholder by
an actual value. This is done using the setString method:

pstmt->setString(1,cont_vector[i]);

Although the query used to obtain the output parameter returns only a single row, it is important to use the
while loop to catch more than one row, to avoid the possibility of the connection becoming unstable.



Scenario 3: Using a PreparedStatement for a Stored Procedure That Returns a Result Set 

50

Scenario 3: Using a PreparedStatement for a Stored Procedure That
Returns a Result Set

This example shows how to handle result sets produced by a stored procedure.

Note

This scenario requires MySQL 5.5.3 or higher. The client/server protocol does not
support fetching multiple result sets from stored procedures prior to 5.5.3.

1. Make a copy of the tutorial framework code:

shell> cp framework.cpp ps_scenario3.cpp

2. Add the following code to the try block of the tutorial framework:

sql::Driver * driver = get_driver_instance();

std::auto_ptr< sql::Connection > con(driver->connect(url, user, pass));
con->setSchema(database);

std::auto_ptr< sql::PreparedStatement >  pstmt;
std::auto_ptr< sql::ResultSet > res;

pstmt.reset(con->prepareStatement("CALL get_data()"));
res.reset(pstmt->executeQuery());

do {
  res.reset(pstmt->getResultSet());
  while (res->next()) {
    cout << "Name: " << res->getString("Name")
         << " Population: " << res->getInt("Population")
         << endl;
  }
} while (pstmt->getMoreResults());

3. Compile the program as described in Section 8.1, “Prerequisites and Background Information”.

4. Run the program:

shell> ./ps_scenario3

5. Make a note of the output generated.

The code executes the stored procedure using a PreparedStatement object. The standard do/while
construct is used to ensure that all result sets are fetched. The returned values are fetched from the result
sets using the getInt and getString methods.



51

Chapter 9 MySQL Connector/C++ Debug Tracing
Although a debugger can be used to debug your application, you may find it beneficial to turn on the debug
traces of the connector. Some problems happen randomly which makes them difficult to debug using a
debugger. In such cases, debug traces and protocol files are more useful because they allow you to trace
the activities of all instances of your program.

DTrace is a very powerful technology to trace any application without having to develop an extra trace
module for your application. Unfortunately, DTrace is currently only available on Solaris, Mac OS X 10.5,
and FreeBSD.

MySQL Connector/C++ can write two trace files:

1. Trace file generated by the MySQL client library

2. Trace file generated internally by MySQL Connector/C++

The first trace file can be generated by the underlying MySQL client library (libmysqlclient). To enable
this trace, the connector will call the mysql_debug() C API function internally. Because only debug
versions of the MySQL client library are capable of writing a trace file, compile MySQL Connector/C++
against a debug version of the library to use this trace. The trace shows the internal function calls and the
addresses of internal objects as shown here:

>mysql_stmt_init
| >_mymalloc
| | enter: Size: 816
| | exit: ptr: 0x68e7b8
| <_mymalloc | >init_alloc_root
| | enter: root: 0x68e7b8
| | >_mymalloc
| | | enter: Size: 2064
| | | exit: ptr: 0x68eb28
[...]

The second trace is the MySQL Connector/C++ internal trace. It is available with debug and nondebug
builds of the connector as long as you have enabled the tracing module at compile time using cmake -
DMYSQLCPPCONN_TRACE_ENABLE:BOOL=1. By default, tracing functionality is not available and calls to
trace functions are removed by the preprocessor.

Compiling the connector with tracing functionality enabled causes two additional tracing function calls per
each connector function call. For example:

|  INF: Tracing enabled
<MySQL_Connection::setClientOption
>MySQL_Prepared_Statement::setInt
|  INF: this=0x69a2e0
|  >MySQL_Prepared_Statement::checkClosed
|  <MySQL_Prepared_Statement::checkClosed
| <MySQL_Prepared_Statement::setInt
[...]

Run your own benchmark to find out how much this will impact the performance of your application.

A simple test using a loop running 30,000 INSERT SQL statements showed no significant real-time impact.
The two variants of this application using a trace enabled and trace disabled version of the connector
performed equally well. The runtime measured in real time was not significantly impacted as long as writing
a debug trace was not enabled. However, there will be a difference in the time spent in the application.
When writing a debug trace, the I/O subsystem may become a bottleneck.

http://dev.mysql.com/doc/refman/5.6/en/mysql-debug.html
http://dev.mysql.com/doc/refman/5.6/en/insert.html


52

In summary, use connector builds with tracing enabled carefully. Trace-enabled versions may cause higher
CPU usage even if the overall runtime of your application is not impacted significantly.

The example from examples/debug_output.cpp demonstrates how to activate the debug traces in
your program. Currently they can only be activated through API calls. The traces are controlled on a per-
connection basis. You can use the setClientOptions() method of a connection object to activate
and deactivate trace generation. The MySQL client library trace is always written to a file, whereas the
connector's protocol messages are printed to the standard output.

sql::Driver *driver;
int on_off = 1;

/* Using the Driver to create a connection */
driver = get_driver_instance();
std::auto_ptr< sql::Connection > con(driver->connect(host, user, pass));

/*
Activate debug trace of the MySQL client library (C API)
Only available with a debug build of the MySQL client library!
*/
con->setClientOption("libmysql_debug", "d:t:O,client.trace");

/*
Connector/C++ tracing is available if you have compiled the
driver using cmake -DMYSQLCPPCONN_TRACE_ENABLE:BOOL=1
*/
con->setClientOption("client_trace", &on_off);



53

Chapter 10 MySQL Connector/C++ Usage Notes
MySQL Connector/C++ is compatible with the JDBC 4.0 API. See the JDBC overview for information on
JDBC 4.0. Please also check the examples/ directory of the download package.

• The MySQL Connector/C++ sql::DataType class defines the following JDBC standard data types:
UNKNOWN, BIT, TINYINT, SMALLINT, MEDIUMINT, INTEGER, BIGINT, REAL, DOUBLE, DECIMAL,
NUMERIC, CHAR, BINARY, VARCHAR, VARBINARY, LONGVARCHAR, LONGVARBINARY, TIMESTAMP,
DATE, TIME, GEOMETRY, ENUM, SET, SQLNULL.

MySQL Connector/C++ does not support the following JDBC standard data types: ARRAY, BLOB, CLOB,
DISTINCT, FLOAT, OTHER, REF, STRUCT.

• DatabaseMetaData::supportsBatchUpdates() returns true because MySQL supports batch
updates in general. However, the MySQL Connector/C++ API provides no API calls for batch updates.

• Two non-JDBC methods let you fetch and set unsigned integers: getUInt64() and getUInt().
These are available for ResultSet and Prepared_Statement:

• ResultSet::getUInt64()

• ResultSet::getUInt()

• Prepared_Statement::setUInt64()

• Prepared_Statement::setUInt()

The corresponding getLong() and setLong() methods have been removed.

• The DatabaseMetaData::getColumns() method has 23 columns in its result set, rather than the
22 columns defined by JDBC. The first 22 columns are as described in the JDBC documentation, but
column 23 is new:

23. IS_AUTOINCREMENT: A string which is “YES” if the column is an auto-increment column, “NO”
otherwise.

• MySQL Connector/C++ may return different metadata for the same column, depending on the method
you call.

Suppose that you have a column that accepts a character set and a collation in its specification and you
specify a binary collation, such as:

VARCHAR(20) CHARACTER SET utf8 COLLATE utf8_bin

The server sets the BINARY flag in the result set metadata of this column. The
ResultSetMetadata::getColumnTypeName() method uses the metadata and will report, due to
the BINARY flag, that the column type name is BINARY. This is illustrated here:

mysql> CREATE TABLE varbin (a VARCHAR(20) CHARACTER SET utf8 COLLATE utf8_bin);
Query OK, 0 rows affected (0.00 sec)

mysql> select * from varbin;
Field   1:  `a`
Catalog:    `def`
Database:   `test`
Table:      `varbin`
Org_table:  `varbin`

http://www.oracle.com/technetwork/java/overview-141217.html


54

Type:       VAR_STRING
Collation:  latin1_swedish_ci (8)
Length:     20
Max_length: 0
Decimals:   0
Flags:      BINARY

0 rows in set (0.00 sec)

mysql> SELECT * FROM INFORMATION_SCHEMA.COLUMNS WHERE TABLE_NAME='varbin'\G
*************************** 1. row ***************************
           TABLE_CATALOG: NULL
            TABLE_SCHEMA: test
              TABLE_NAME: varbin
             COLUMN_NAME: a
        ORDINAL_POSITION: 1
          COLUMN_DEFAULT: NULL
             IS_NULLABLE: YES
               DATA_TYPE: varchar
CHARACTER_MAXIMUM_LENGTH: 20
  CHARACTER_OCTET_LENGTH: 60
       NUMERIC_PRECISION: NULL
           NUMERIC_SCALE: NULL
      CHARACTER_SET_NAME: utf8
          COLLATION_NAME: utf8_bin
             COLUMN_TYPE: varchar(20)
              COLUMN_KEY:
                   EXTRA:
              PRIVILEGES: select,insert,update,references
          COLUMN_COMMENT:
1 row in set (0.01 sec)

However, INFORMATION_SCHEMA gives no hint in its COLUMNS table that metadata will contain the
BINARY flag. DatabaseMetaData::getColumns() uses INFORMATION_SCHEMA and will report the
type name VARCHAR for the same column. It also returns a different type code.

• When inserting or updating BLOB or TEXT columns, MySQL Connector/C++ developers are advised not
to use setString(). Instead, use the dedicated setBlob() API function.

The use of setString() can cause a Packet too large error message. The error occurs if the length of
the string passed to the connector using setString() exceeds max_allowed_packet (minus a few
bytes reserved in the protocol for control purposes). This situation is not handled in MySQL Connector/C
++, because it could lead to security issues, such as extremely large memory allocation requests due to
malevolently long strings.

If setBlob() is used, this problem does not arise because setBlob() takes a streaming approach
based on std::istream. When sending the data from the stream to MySQL Server, MySQL
Connector/C++ splits the stream into chunks appropriate for MySQL Server using the current
max_allowed_packet setting.

Caution

When using setString(), it is not possible to set max_allowed_packet to
a value large enough for the string prior to passing it to MySQL Connector/C++.
That configuration option cannot be changed within a session.

This difference from the JDBC specification ensures that MySQL Connector/C++ is not vulnerable to
memory flooding attacks.

http://dev.mysql.com/doc/refman/5.6/en/packet-too-large.html
http://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_max_allowed_packet
http://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_max_allowed_packet
http://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_max_allowed_packet


55

• In general, MySQL Connector/C++ works with MySQL 5.0, but it is not completely supported. Some
methods may not be available when connecting to MySQL 5.0. This is because the Information Schema
is used to obtain the requested information. There are no plans to improve the support for 5.0 because
the current GA version of MySQL Server is 5.6. MySQL Connector/C++ is primarily targeted at the
MySQL Server GA version that is available on its release.

The following methods throw a sql::MethodNotImplemented exception when you connect to a
MySQL server earlier than 5.1:

• DatabaseMetadata::getCrossReference()

• DatabaseMetadata::getExportedKeys()

• MySQL Connector/C++ includes a Connection::getClientOption() method that is not included in
the JDBC API specification. The prototype is:

void getClientOption(const std::string & optionName, void * optionValue)

The method can be used to check the value of connection properties set when establishing a database
connection. The values are returned through the optionValue argument passed to the method with the
type void *.

Currently, getClientOption() supports fetching the optionValue of the following options:

• metadataUseInfoSchema

• defaultStatementResultType

• defaultPreparedStatementResultType
The metadataUseInfoSchema connection option controls whether to use the
Information_Schemata for returning the metadata of SHOW statements:

• For metadataUseInfoSchema, interpret the optionValue argument as a boolean upon return.

• For defaultStatementResultType and defaultPreparedStatementResultType, interpret
the optionValue argument as an integer upon return.

The connection property can be set either when establishing the connection through the connection
property map, or using void Connection::setClientOption(const std::string &
optionName, const void * optionValue) where optionName is assigned the value
metadataUseInfoSchema.

Some examples:

bool isInfoSchemaUsed;
conn->getClientOption("metadataUseInfoSchema", (void *) &isInfoSchemaUsed);

int defaultStmtResType;
int defaultPStmtResType;
conn->getClientOption("defaultStatementResultType", (void *) &defaultStmtResType);
conn->getClientOption("defaultPreparedStatementResultType", (void *) &defaultPStmtResType);

• MySQL Connector/C++ supports the following methods not found in the JDBC API standard:

std::string MySQL_Connection::getSessionVariable(const std::string & varname)



56

void MySQL_Connection::setSessionVariable(const std::string & varname, const std::string & value)

These methods get and set MySQL session variables. Both are members of the MySQL_Connection
class.

getSessionVariable() is equivalent to executing the following and fetching the first return value:

SHOW SESSION VARIABLES LIKE "<varname>"

You can use the “%” and “_” SQL pattern characters in <varname>.

setSessionVariable() is equivalent to executing:

SET SESSION <varname> = <value>

• Fetching the value of a column can sometimes return different values depending on whether the call is
made from a Statement or Prepared Statement. This is because the protocol used to communicate with
the server differs depending on whether a Statement or Prepared Statement is used.

To illustrate this, consider the case where a column has been defined as type BIGINT. The most
negative BIGINT value is then inserted into the column. If a Statement and Prepared Statement are
created that perform a GetUInt64() call, then the results will be different in each case. The Statement
returns the maximum positive value for BIGINT. The Prepared Statement returns 0.

The difference results from the fact that Statements use a text protocol, and Prepared Statements use
a binary protocol. With the binary protocol in this case, a binary value is returned from the server that
can be interpreted as an int64. In the preceding scenario, a very large negative value is fetched with
GetUInt64(), which fetches unsigned integers. Because the large negative value cannot be sensibly
converted to an unsigned value, 0 is returned.

In the case of the Statement, which uses the text protocol, values are returned from the server as
strings, and then converted as required. When a string value is returned from the server in the preceding
scenario, the large negative value must be converted by the runtime library function strtoul(), which
GetUInt64() calls. The behavior of strtoul() is dependent upon the specific runtime and host
operating system, so the results can be platform dependent. In the case, given a large positive value
was actually returned.

Although it is very rare, there are some cases where Statements and Prepared Statements can
return different values unexpectedly, but this usually only happens in extreme cases such as the one
mentioned.

• The JDBC documentation lists many fields for the DatabaseMetaData class. JDBC also appears to
define certain values for those fields. However, MySQL Connector/C++ does not define certain values
for those fields. Internally enumerations are used and the compiler determines the values to assign to a
field.

To compare a value with the field, use code such as the following, rather than making assumptions
about specific values for the attribute:

// dbmeta is an instance of DatabaseMetaData
if (myvalue == dbmeta->attributeNoNulls) {
    ...
}

http://docs.oracle.com/javase/7/docs/api/java/sql/DatabaseMetaData.html
http://docs.oracle.com/javase/7/docs/api/java/sql/DatabaseMetaData.html#attributeNoNulls


57

Usually myvalue will be a column from a result set holding metadata information. MySQL Connector/C+
+ does not guarantee that attributeNoNulls is 0. It can be any value.

• When programming stored procedures, JDBC has available an extra class, an extra abstraction layer for
callable statements, the CallableStatement class. As this class is not present in MySQL Connector/
C++, use the methods from the Statement and PreparedStatement classes to execute a stored
procedure using CALL.

http://dev.mysql.com/doc/refman/5.6/en/call.html


58



59

Chapter 11 MySQL Connector/C++ Known Bugs and Issues
Please report bugs through the MySQL Bug System. See How to Report Bugs or Problems.

For release notes detailing the changes in each release of Connector/C++, see MySQL Connector/C++
Release Notes.

• When linking against a static library for 1.0.3 on Windows, define CPPDBC_PUBLIC_FUNC either in the
compiler options (preferable) or with /D "CPPCONN_PUBLIC_FUNC=". You can also explicitly define it
in your code by placing #define CPPCONN_PUBLIC_FUNC before the header inclusions.

• Generally speaking, C++ library binaries are less portable than C library binaries. Issues can be caused
by name mangling, different Standard Template Library (STL) versions, and using different compilers
and linkers for linking against the libraries than were used for building the library itself.

Even a small change in the compiler version can cause problems. If you obtain error messages that you
suspect are related to binary incompatibilities, build MySQL Connector/C++ from source, using the same
compiler and linker that you will use to build and link your application.

Due to the variations between Linux distributions, compiler and linker versions and STL versions, it is not
possible to provide binaries for each and every possible configuration. However, the MySQL Connector/
C++ binary distributions contain a README file that describes the environment and settings used to build
the binary versions of the libraries.

• To avoid potential crashes, the build configuration of MySQL Connector/C++ should match the build
configuration of the application using it. For example, do not use the release build of MySQL Connector/
C++ with a debug build of the client application.

http://dev.mysql.com/doc/refman/5.6/en/bug-reports.html
http://dev.mysql.com/doc/relnotes/connector-cpp/en/
http://dev.mysql.com/doc/relnotes/connector-cpp/en/


60



61

Chapter 12 MySQL Connector/C++ Support
For general discussion of the MySQL Connector/C++ please use the C/C++ community forum or join the
MySQL Connector/C++ mailing list.

Bugs can be reported at the MySQL bug Web site.

For release notes detailing the changes in each release of MySQL Connector/C++, see MySQL Connector/
C++ Release Notes.

For Licensing questions, and to purchase MySQL Products and Services, please see http://
www.mysql.com/buy-mysql/

http://forums.mysql.com/list.php?167
http://lists.mysql.com
http://bugs.mysql.com
http://dev.mysql.com/doc/relnotes/connector-cpp/en/
http://dev.mysql.com/doc/relnotes/connector-cpp/en/


62



63

Appendix A Licenses for Third-Party Components

Table of Contents
A.1 Boost Library License .................................................................................................................  63
A.2 OpenSSL v1.0 License ...............................................................................................................  63

MySQL Connector/C++

• Section A.1, “Boost Library License”

• Section A.2, “OpenSSL v1.0 License”

A.1 Boost Library License
The following software may be included in this product:

Boost C++ Libraries

Use of any of this software is governed by the terms of the license below:

Boost Software License - Version 1.0 - August 17th, 2003

Permission is hereby granted, free of charge, to any person or
organization obtaining a copy of the software and accompanying
documentation covered by this license (the "Software") to use,
reproduce, display, distribute, execute, and transmit the Software,
and to prepare derivative works of the Software, and to permit
third-parties to whom the Software is furnished to do so, all
subject to the following:

The copyright notices in the Software and this entire statement,
including the above license grant, this restriction and the
following disclaimer, must be included in all copies of the
Software, in whole or in part, and all derivative works of the
Software, unless such copies or derivative works are solely in the
form of machine-executable object code generated by a source
language processor.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND
NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR ANYONE
DISTRIBUTING THE SOFTWARE BE LIABLE FOR ANY DAMAGES OR OTHER
LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE.

A.2 OpenSSL v1.0 License
The following software may be included in this product:

NOTE: Does not apply to GPL licensed server (OpenSSL is not shipped with it)

OpenSSL v1.0

LICENSE ISSUES
==============
The OpenSSL toolkit stays under a dual license, i.e. both the conditions of



OpenSSL v1.0 License

64

the OpenSSL License and the original SSLeay license apply to the toolkit. See
below for the actual license texts. Actually both licenses are BSD-style Open
Source licenses. In case of any license issues related to OpenSSL please
contact openssl-core@openssl.org.

OpenSSL License
---------------
/ ====================================================================
Copyright (c) 1998-2008 The OpenSSL Project.
All rights reserved.  
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:  
.
1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.  
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.  
3. All advertising materials mentioning features or use of this software must
display the following acknowledgment:  "This product includes software
developed by the OpenSSL Project for use in the OpenSSL Toolkit. (Link1 /)"  
.
4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
endorse or promote products derived from this software without prior written
permission. For written permission, please contact openssl-core@openssl.org.  
 
5. Products derived from this software may not be called "OpenSSL" nor may
"OpenSSL" appear in their names without prior written permission of the
OpenSSL Project.  
6. Redistributions of any form whatsoever must retain the following
acknowledgment:  "This product includes software developed by the OpenSSL
Project for use in the OpenSSL Toolkit (Link2 /)"  
.
THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY  EXPRESSED
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE  IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR  PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL THE OpenSSL PROJECT OR  ITS CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL,  SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT  NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)  HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,  STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE)  ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED  OF THE POSSIBILITY OF SUCH DAMAGE.  
====================================================================  
This product includes cryptographic software written by Eric Young
(eay@cryptsoft.com). This product includes software written by Tim Hudson
(tjh@cryptsoft.com).  

Original SSLeay License
-----------------------
/ Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
All rights reserved.  
This package is an SSL implementation written by Eric Young
(eay@cryptsoft.com).  The implementation was written so as to conform with
Netscapes SSL.   This library is free for commercial and non-commercial use
as long as the following conditions are aheared to. The following conditions
apply to all code found in this distribution, be it the RC4, RSA,  lhash,
DES, etc., code; not just the SSL code. The SSL documentation included with
this distribution is covered by the same copyright terms except that the
holder is Tim Hudson (tjh@cryptsoft.com).   Copyright remains Eric Young's,
and as such any Copyright notices in the code are not to be removed.  If this
package is used in a product, Eric Young should be given attribution as the
author of the parts of the library used.  This can be in the form of a
textual message at program startup or in documentation (online or textual)
provided with the package.   Redistribution and use in source and binary
forms, with or without modification, are permitted provided that the
following conditions are met:  1. Redistributions of source code must retain



OpenSSL v1.0 License

65

the copyright notice, this list of conditions and the following disclaimer.  
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.  3. All advertising
materials mentioning features or use of this software must display the
following acknowledgement:  "This product includes cryptographic software
written by Eric Young (eay@cryptsoft.com)" The word 'cryptographic' can be
left out if the routines from the library being used are not cryptographic
related :-).  4. If you include any Windows specific code (or a derivative
thereof) from the apps directory (application code) you must include an
acknowledgement:  "This product includes software written by Tim Hudson
(tjh@cryptsoft.com)"   THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE  ARE
DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE  FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL  DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS  OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)  HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT  LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY  OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF  SUCH DAMAGE.   The
license and distribution terms for any publically available version or
derivative of this code cannot be changed. i.e. this code cannot simply be  
copied and put under another distribution license  [including the GNU Public
License.]



66


	MySQL Connector/C++ Developer Guide
	Table of Contents
	Preface and Legal Notices
	Chapter 1 Introduction to MySQL Connector/C++
	Chapter 2 How to Get MySQL Connector/C++
	Chapter 3 Installing MySQL Connector/C++ from a Binary Distribution
	Chapter 4 Installing MySQL Connector/C++ from Source
	4.1 Building MySQL Connector/C++ from Source on Unix, Solaris, and Mac OS X
	4.2 Building MySQL Connector/C++ from Source on Windows
	4.3 Dynamically Linking MySQL Connector/C++ Against the MySQL Client Library

	Chapter 5 Building MySQL Connector/C++ Windows Applications with Microsoft Visual Studio
	Chapter 6 Building MySQL Connector/C++ Linux Applications with NetBeans
	Chapter 7 MySQL Connector/C++ Getting Started: Usage Examples
	7.1 MySQL Connector/C++ Connecting to MySQL
	7.2 MySQL Connector/C++ Running a Simple Query
	7.3 MySQL Connector/C++ Fetching Results
	7.4 MySQL Connector/C++ Using Prepared Statements
	7.5 MySQL Connector/C++ Complete Example 1
	7.6 MySQL Connector/C++ Complete Example 2

	Chapter 8 MySQL Connector/C++ Tutorials
	8.1 Prerequisites and Background Information
	8.2 Calling Stored Procedures with Statement Objects
	8.3 Calling Stored Procedures with PreparedStatement Objects

	Chapter 9 MySQL Connector/C++ Debug Tracing
	Chapter 10 MySQL Connector/C++ Usage Notes
	Chapter 11 MySQL Connector/C++ Known Bugs and Issues
	Chapter 12 MySQL Connector/C++ Support
	Appendix A Licenses for Third-Party Components
	A.1 Boost Library License
	A.2 OpenSSL v1.0 License


