MySQL Connector/C++ Developer Guide

MySQL Connector/C++ Developer Guide
Abstract

This manual describes how to install, configure, and develop database applications using MySQL Connector/C++, the
C++ interface for communicating with MySQL servers.

For release notes detailing the changes in each release of Connector/C++, see MySQL Connector/C++ Release
Notes.

Document generated on: 2014-02-05 (revision: 37634)

http://dev.mysql.com/doc/relnotes/connector-cpp/en/
http://dev.mysql.com/doc/relnotes/connector-cpp/en/

Table of Contents

Preface and Legal NOTICEScoouiuiiiiiiiee ettt e et e e et e et e e e eaa s %
1 Introduction to MySQL CONNECIOICH ...o.uiiiiiiii ettt et ettt e e et e e e er e e e ent e eees 1
2 How to Get MYSQL CONNECIOICH ...ttt ettt ettt ettt e e et e e e et e e e ee e e eentaneaees 5
3 Installing MySQL Connector/C++ from a Binary Distributionccoooiiiiiiiiii e 7
4 Installing MySQL Connector/C++ frOM SOUICEc.uuuiiiiiiii ettt 11
4.1 Building MySQL Connector/C++ from Source on Unix, Solaris, and Mac OS Xccc.uun.... 11
4.2 Building MySQL Connector/C++ from Source on WIiNAOWScccuuiiiiiiiiinieiiiiiieeiiiieeeeiien 13
4.3 Dynamically Linking MySQL Connector/C++ Against the MySQL Client Libraryc........ 16
5 Building MySQL Connector/C++ Windows Applications with Microsoft Visual Studioc........... 17
6 Building MySQL Connector/C++ Linux Applications with NetBeanscccoooivvviiiiiiii s 27
7 MySQL Connector/C++ Getting Started: Usage EXamplescooooiiiiiiiiiiniiiece e 33
7.1 MySQL Connector/C++ Connecting to0 MYSQLccuuuiiiiiiiieieiie e 34
7.2 MySQL Connector/C++ Running a Simple QUETYuiiiiiiiiiiiii e 34
7.3 MySQL Connector/C++ Fetching RESUILSccoouuiiiiiiiii e 35
7.4 MySQL Connector/C++ Using Prepared Statementsc..iveiiiiiiieiiiiiiieeiiieeeeeeeeiiee e 36
7.5 MySQL Connector/C++ Complete EXamMPIE L ...t 36
7.6 MySQL Connector/C++ Complete EXamPIE 2 ..ot 37
8 MYSQL CoNNECLONCH+ TULOAIScieeiiieiiiii ettt et e e e e e enanas 41
8.1 Prerequisites and Background INfOrmMationooiiiiiiiiiiiiiiii e 41
8.2 Calling Stored Procedures with St at ement ODJECESvviiiiiiiiiiiiii e 42
8.3 Calling Stored Procedures with Prepar edSt at enent ODJECtScvvviiiiiiiiiiiiiieii e, 47
9 MySQL Connector/C++ Debug TraCingc.uuieiiiiiieiiiiie ettt e e e e e 51
10 MySQL CoNnNECtOr/CH+ USAGE NOTESuuiiiiiiiieieii ettt ettt e e e 53
11 MySQL Connector/C++ Known BUgS and ISSUEScccuuuiiiiiiiiiieiiiiie et 59
12 MySQL CONNECION/CrHt SUPPOIT ...eeeetieeeiii ettt ettt ettt ettt ettt et e et e ee et e an e e e sna e e ennans 61
A Licenses for Third-Party COMPONENTSccouuuiiiiiiiieeiiii ettt e et e e et e e e eaaa e eeees 63
A.1 BOOSE LIDrary LICENSE ...ttt 63
A.2 OPENSSL V1.0 LICENSE ...ttt ettt et e et e e e e e 63

Preface and Legal Notices

This manual describes how to install, configure, and develop database applications using MySQL
Connector/C++, the C++ interface for communicating with MySQL servers.

Legal Notices

Copyright © 2008, 2014, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted

in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free.
If you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and

technical data delivered to U.S. Government customers are "commercial computer software" or
"commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be
subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19,
Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway,
Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which
may create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe
use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by
use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. MySQL is a trademark of Oracle
Corporation and/or its affiliates, and shall not be used without Oracle's express written authorization. Other
names may be trademarks of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

This documentation is in prerelease status and is intended for demonstration and preliminary use only.

It may not be specific to the hardware on which you are using the software. Oracle Corporation and its
affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this
documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this
documentation.

The information contained in this document is for informational sharing purposes only and should be
considered in your capacity as a customer advisory board member or pursuant to your beta trial agreement

Legal Notices

only. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, and timing of any features or functionality
described in this document remains at the sole discretion of Oracle.

This document in any form, software or printed matter, contains proprietary information that is the exclusive
property of Oracle. Your access to and use of this material is subject to the terms and conditions of your
Oracle Software License and Service Agreement, which has been executed and with which you agree

to comply. This document and information contained herein may not be disclosed, copied, reproduced,

or distributed to anyone outside Oracle without prior written consent of Oracle or as specifically provided
below. This document is not part of your license agreement nor can it be incorporated into any contractual
agreement with Oracle or its subsidiaries or affiliates.

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion to other
formats is allowed as long as the actual content is not altered or edited in any way. You shall not publish

or distribute this documentation in any form or on any media, except if you distribute the documentation in
a manner similar to how Oracle disseminates it (that is, electronically for download on a Web site with the
software) or on a CD-ROM or similar medium, provided however that the documentation is disseminated
together with the software on the same medium. Any other use, such as any dissemination of printed
copies or use of this documentation, in whole or in part, in another publication, requires the prior written
consent from an authorized representative of Oracle. Oracle and/or its affiliates reserve any and all rights
to this documentation not expressly granted above.

For more information on the terms of this license, or for details on how the MySQL documentation is built
and produced, please visit MySQL Contact & Questions.

For help with using MySQL, please visit either the MySQL Forums or MySQL Mailing Lists where you can
discuss your issues with other MySQL users.

For additional documentation on MySQL products, including translations of the documentation into other
languages, and downloadable versions in variety of formats, including HTML and PDF formats, see the
MySQL Documentation Library.

vi

http://dev.mysql.com/contact/
http://forums.mysql.com
http://lists.mysql.com
http://dev.mysql.com/doc

Chapter 1 Introduction to MySQL Connector/C++

MySQL Connector/C++ is a MySQL database connector for C++. It lets you develop C++ applications that
connect to the MySQL Server.

For release notes detailing the changes in each release of MySQL Connector/C++, see MySQL Connector/
C++ Release Notes.

MySQL Connector/C++ Benefits

MySQL Connector/C++ offers the following benefits for C++ users compared to the MySQL C API (MySQL
client library):

« Convenience of pure C++; no C function calls required

» Supports JDBC 4.0, an industry standard API

Supports the object-oriented programming paradigm

Reduces development time
 Licensed under the GPL with the FLOSS License Exception

» Available under a commercial license upon request

JDBC Compatibility

MySQL Connector/C++ is compatible with the JDBC 4.0 API. MySQL Connector/C++ does not implement
the entire JDBC 4.0 API, but does feature the following classes:

* Connection

» Dat abaseMet aDat a
e Driver

* PreparedSt at enent
* Resul t Set

* Resul t Set Met aDat a
e Savepoi nt

» Stat enent

The JDBC 4.0 API defines approximately 450 methods for the classes just mentioned. MySQL Connector/
C++ implements approximately 80% of these.

Platform Support and Prerequisites
MySQL Connector/C++ requires:
* MySQL 5.1 or later

» Microsoft Visual Studio 2003 or later on Windows

http://dev.mysql.com/doc/relnotes/connector-cpp/en/
http://dev.mysql.com/doc/relnotes/connector-cpp/en/

Platform Support and Prerequisites

The release has been successfully compiled and tested on the following platforms:
AlIX

. 5.2 (PPC32, PPC64)

« 5.3 (PPC32, PPC64)

FreeBSD

» 6.0 (x86, x86_64)

HPUX

» 11.11 (PA-RISC 32bit, PA-RISC 64bit)

Linux

 Debian 3.1 (PPC32, x86)

» FC4 (x86)

« RHEL 3 (x86, x86_64)

« RHEL 4 (x86, x86_64)

« RHEL 5 (x86, x86_64)

« RHEL 6 (x86, x86_64)

» SLES 9 (x86, x86_64)

« SLES 10 (x86_64)

» SuSE 10.3, (x86_64)

e Ubuntu 8.04 (x86)

« Ubuntu 8.10 (x86_64)

Mac OS X

* Mac OS X 10.3 (PPC32, PPC64)

* Mac OS X 10.4 (PPC32, PPC64, x86)

» Mac OS X 10.5 (PPC32, PPC64, x86, x86_64)
Solaris

» Solaris 8 (SPARC32, SPARC64, x86)

» Solaris 9 (SPARC32, SPARC64, x86)

» Solaris 10 (SPARC32, SPARC64, x86, x86_64)
Windows

» XP Professional (32bit)

Release Status

« 2003 (64bit)
Release Status

MySQL Connector/C++ is available as a Generally Available (GA) version. We ask users and developers
to try it out and provide feedback.

Note that MySQL Workbench is successfully using MySQL Connector/C++.

If you have any queries, please contact us.
Licensing
MySQL Connector/C++ is licensed under the terms of the GPL, like most MySQL Connectors. There are

special exceptions to the terms and conditions of the GPL as applied to this software; see FLOSS License
Exception. If you need a non-GPL license for commercial distribution, please contact us.

Chapter 2 How to Get MySQL Connector/C++

Binary and source packages can be obtained from MySQL Connector/C++ downloads.

MySQL Connector/C++ Binary Distributions
Binary distributions are available for these platforms:
Microsoft Windows:
» MSil installer package
» Without installer (a Zip file)
Other platforms:

» Compressed GNU TAR archive (t ar . gz)

MySQL Connector/C++ Source Distributions

Source packages use compressed GNU TAR file (t ar . gz) format and can be used on any supported
platform.

MySQL Connector/C++ Source Repository
The latest development sources are available through Launchpad.

The MySQL Connector/C++ code repository uses Bazaar. To check out the latest source code, use the
bzr command-line tool:

shel | > bzr branch | p: ~nmysqgl / mysql - connect or - cpp/ trunk .

http://dev.mysql.com/downloads/connector/cpp/
https://launchpad.net/mysql-connector-cpp

Chapter 3 Installing MySQL Connector/C++ from a Binary
Distribution

Caution

One problem that can occur is when the tools you use to build your application are
not compatible with the tools used to build the binary versions of MySQL Connector/
C++. Ideally, build your application with the same tools that were used to build

the MySQL Connector/C++ binaries. To help with this, the following resources are
provided.

All distributions include a READVE file that contains platform-specific notes. At the end of the READVE file
contained in the binary distribution, you will find the settings used to build the binaries. If you experience
build-related issues on a platform, it may help to check the settings used on the platform to build the binary.

Developers using Microsoft Windows must satisfy the following requirements:
1. Use a supported version of Visual Studio, either Visual Studio 2005 or Visual Studio 2008.

2. Ensure that your application uses the same runtime library as that used to build MySQL Connector/C+
+. Visual Studio 2005 builds use Microsoft.VC80.CRT (8.0.50727.762), and Visual Studio 2008 builds
use Microsoft.VC90.CRT (9.0.21022.8).

3. Your application should use the same linker configuration as MySQL Connector/C++. For example, use
one of / MD, / MDd, / MT, or / MTd.

To use a variation of the requirements previously listed, such as a different compiler version, release
configuration, or runtime library, compile MySQL Connector/C++ from source using your desired settings
and ensure that your application is built using these same settings. To avoid issues, ensure that the three
variables of compiler version, runtime library, and runtime linker configuration settings are the same for
both application and MySQL Connector/C++ itself.

A better solution that ensures compatibility is to build your MySQL Connector/C++ libraries from the source
code using the same tools that you use to build your application.

Downloading MySQL Connector/C++
Binary packages can be obtained from MySQL Connector/C++ downloads.
Archive Package

Unpack the distribution archive into an appropriate directory. If you plan to use a dynamically linked version
of MySQL Connector/C++, make sure that your system can reference the MySQL client library (MySQL
Connector/C++ is linked against and thus requires the MySQL client library). Consult your operating
system documentation on how to modify and expand the search path for libraries. If you cannot modify the
library search path, it may help to copy your application, the MySQL Connector/C++ library and the MySQL
client library into the same directory. Most systems search for libraries in the current directory.

Windows users can choose between two binary packaging formats:

* Windows MSI Installer (. nrsi file): To use the MSI Installer, launch it and follow the prompts in the
screens it presents to install MySQL Connector/C in the location of your choosing.

» Zip archive without installer (. zi p file): To use a Zip archive, unpack it in the directory where you intend
to install it using W nZi p or another tool that can read . zi p files.

http://dev.mysql.com/downloads/connector/cpp/

Windows MSI Installer

Using the MSI Installer may be the easiest solution. The MSI Installer does not require any administrative
permissions as it simply copies files.

The MSI Installer begins by presenting a welcome screen.

Figure 3.1 MSI Installer Welcome Screen

i'._% MyS[L Connector C++ Setup ;lglil

Welcome to the MySOL Connector C++
Setup Wizard

\" The Setup wizard allows you bo change the way MySOL
Connector C++ Features are installed on wour computer ar
ko remove it From wour computer, Click Mext to continue or

Cancel ko exit the Setup Wizard,

AN

MySoll

Back I Mk I Zancel |

The MSI Installer overview screen enables you to select the type of installation you want to perform.
The “Typical” installation consists of all required header files and the Release libraries. The “Custom”
installation enables you to install additional Debug versions of the connector libraries.

Figure 3.2 MSI Installer Overview Screen

i MyS0QL Connector C++ Setup =10l x]

Choose Setup Type
hoose the setup bype that best suits vour needs

Typical

Installs the most common program Features, Recommended For most users,

Cuskarn |

Allowws users to choose which program Features will be installed and where
they will be installed, Recommended For advanced users,

Complete |

all program Features will be installed. Requires the most disk space.

Back sk Cancel

If you select a “Custom” installation, the MSI Installer presents a Custom Setup screen that enables you to
select which features to install and where to install them.

Figure 3.3 MSI Installer Custom Setup Screen

i'-:!:“ MySi[L Connector C++ Setup ;lglﬂ

Custom Setup

Select the way vou want Features to be installed,

Click the icons in the tree below to change the way Features will be installed,

: : The My3QL Connector T4+ client
....... libraiy.

[< -| Cebug Libary

This feature requires OKE on your
hard drive, It has 1 of 1
subfeatures selecked. The
subfeatures require 7364KE on vour
hard drive.

Location: CoiProgrammel My SOl y30L Conneckor T4+ 1.0,4,00 Browse, . |

Reset Disk Usage Back. I Mext I Cancel |

10

Chapter 4 Installing MySQL Connector/C++ from Source

Table of Contents

4.1 Building MySQL Connector/C++ from Source on Unix, Solaris, and Mac OS Xcccoeevviiiviiennnnnn. 11
4.2 Building MySQL Connector/C++ from Source on WINAOWScoiiiiiiiiiiiiiiiiieceeee e e aee e 13
4.3 Dynamically Linking MySQL Connector/C++ Against the MySQL Client Libraryccc.cooeieenni 16

MySQL Connector/C++ is based on the MySQL client library (MySQL C API) and is linked against it. Thus,
to compile MySQL Connector/C++, the MySQL Client Library must be installed.

You also need the cross-platform build tool CVake 2.4, or newer, and GLib 2.2.3 or newer. Check the
README file included with the distribution for platform-specific notes.

Typically, the MySQL client library is installed when the MySQL Server is installed. However, check your
operating system documentation for other installation options.

As of MySQL Connector/C++ 1.1.0, the Boost C++ libraries 1.34.0 or newer must be installed. Boost

is required only to build the connector, required to use the connector. You can obtain Boost and its
installation instructions from the official site. Once Boost is installed, tell the build system where the Boost
files are by defining the BOOST_ROOT: STRI NG option. This can be done when you invoke CVake. For
example:

shel | > cnake . - DBOOST_ROOT: STRI NG=/ usr /| ocal / boost _1 40 _0

Change / usr/ | ocal / boost 1 40 0/ as necessary to match your installation. For further details,
see Section 4.1, “Building MySQL Connector/C++ from Source on Unix, Solaris, and Mac OS X" and
Section 4.2, “Building MySQL Connector/C++ from Source on Windows".

4.1 Building MySQL Connector/C++ from Source on Unix, Solaris,
and Mac OS X

1. Change location to the top-level directory of the source distribution:

shel | > cd /path/to/ nmysql - connect or - cpp

2. Run CWVake to build a Makefi | e:

shel | > cnake .

-- Check for working C conpiler: /usr/local/bin/gcc
-- Check for working C conpiler: /usr/local/bin/gcc -- works

[...]

-- Generating done

- Build files have been witten to: /path/to/ nysql-connector-cpp/

On non-Windows systems, CVake first checks to see if the C\vake variable
MYSQL_CONFI G_EXECUTABLE is set. If it is not found, C\Vake tries to locate nysql _confi g in the
default locations.

If you have any problems with the configuration process, check the troubleshooting instructions given
later.

11

http://www.boost.org

Building MySQL Connector/C++ from Source on Unix, Solaris, and Mac OS X

3. Use nake to build the libraries. First make sure you have a clean build:

shel | > nake cl ean

Then build the connector:

shel | > make

[194 Building CXX object »

driver/ CMakeFi | es/ mysql cppconn. di r/ mysqgl _connecti on. o

[39 Building CXX object »

driver/ CMVakeFi | es/ mysql cppconn. dir/ mysqgl _constructed_resul tset.o

[...]

[10094 Bui |l di ng CXX obj ect exanpl es/ CVakeFi | es/ statenent. dir/statenment. o
Li nki ng CXX execut abl e st at ement

If all goes well, you will find the MySQL Connector/C++ library in the dr i ver directory.

Install the header and library files:

shel | > make install

Unless you have changed the location in the configuration step, make i nstal | copies the header
files to the directory / usr/ | ocal /i ncl ude. The header files copied are nysql _connecti on. h and
nysql _driver. h.

Again, unless you have specified otherwise, make i nst al | copies the library files to / usr/

| ocal /'1'i b. The files copied are the dynamic library | i bmysql cppconn. so, and the static library
I'i brysgl cppconn- st ati c. a. The extension of the dynamic library might be different on your
system (for example, . dyl i b on Mac OS X).

If you encounter any errors, please first carry out these checks:

1. CMake options: MySQL installation path, debug version and more

2.

In case of configuration or compilation problems, check the list of CMake options:

shel | > cnake -L

[...]

CVAKE_BACKWARDS_COWPATI BI LI TY: STRI NG=2. 4

CVAKE_BUI LD_TYPE: STRI NG=

CMAKE | NSTALL_PREFI X: PATH=/ usr /| ocal
EXECUTABLE_OUTPUT_PATH: PATH=

LI BRARY_OUTPUT_PATH: PATH=

MYSQLCPPCONN_GCOV_ENABLE: BOOL=0
MYSQLCPPCONN_TRACE_ENABLE: BOOL=0

MYSQL_CONFI G_EXECUTABLE: FI LEPATH=/ usr/ bi n/ mysql _config

For example, if your MySQL Server installation path is not / usr/ | ocal / nysql and you want to build
a debug version of the MySQL Connector/C++, use this command:

shel | > cnake \
-D CMAKE_BUI LD _TYPE: STRI NG=Debug \
-D MYSQL_CONFI G_EXECUTABLE=/ pat h/ t o/ my/ mysql / server/bi n/ mysqgl _config .

Verify your settings with crreke - L:

shel | > cnmake -L

12

Building MySQL Connector/C++ from Source on Windows

[...]

CVAKE_BACKWARDS _COWPATI BI LI TY: STRI NG=2. 4

CMAKE_BUI LD_TYPE: STRI NG=

CVAKE_| NSTALL_PREFI X: PATH=/ usr/ | ocal

EXECUTABLE_QUTPUT_PATH: PATH=

LI BRARY_OUTPUT_PATH: PATH=

MYSQLCPPCONN_GCOV_ENABLE: BOOL=0

MYSQLCPPCONN_TRACE_ENABLE: BOOL=0

MYSQL_CONFI G_EXECUTABLE=/ pat h/ t o/ my/ nysql / ser ver/ bi n/ mysql _config

Proceed by executing a make cl ean command followed by a make command, as described
previously.

Once you have installed MySQL Connector/C++, you can carry out a quick test to check the installation. To
do this, compile and run one of the example programs, such as exanpl es/ st andal one_exanpl e. cpp.
This example is discussed in more detail later, but for now, you can use it to test whether the connector
has been correctly installed. This procedure assumes that you have a working MySQL Server to which you
can connect. It also assumes header and library locations of / usr | ocal /i ncl ude and / usr /| ocal /

[i b, respectively; adjust these as necessary for your system.

1. Compile the example program. To do this, change location to the exanpl es directory and enter this
command:

shell > g++ -0 test_install \
-1 /usr/local/include -1/usr/local/include/cppconn \
-W, -Bdynam ¢ - nysqgl cppconn st andal one_exanpl e. cpp

2. Make sure the dynamic library which is used in this case can be found at runtime:

shel | > export LD LI BRARY_PATH=/usr/local /lib

3. Now run the program to test your installation, substituting the appropriate host, user, password, and
database names for your system:

shell> ./test_install |ocal host root password database

You should see output similar to the following:

Connect or/ C++ st andal one program exanpl e. ..
runni ng ' SELECT ' Wl come to Connector/C++ AS _nessage'
M/SQ replies: Welcome to Connector/C++
. say it again, MySQ
.MySQL replies: Welcone to Connector/C++

find nore at http://ww. mysql.com

If you see any errors, take note of them and go through the troubleshooting procedures discussed
earlier.

4.2 Building MySQL Connector/C++ from Source on Windows

Note

The only compiler formally supported for Windows is Microsoft Visual Studio 2003
and above.

13

Building MySQL Connector/C++ from Source on Windows

The basic steps for building the connector on Windows are the same as for Unix. It is important to use
Chake 2.6.2 or newer to generate build files for your compiler and to invoke the compiler.

Note

On Windows, nysql _confi g is not present, so CMake attempts to retrieve
the location of MySQL from the environment variable $ENV{ M\YSQL_DI R} .
If MYSQL_DI Ris not set, C\Vake then proceeds to check for MySQL in the
following locations: $ENV{ Pr ogr anti | es}/ MySQL/ */ i ncl ude, and
$ENV{ Syst enDri ve}/ MySQL/ */i ncl ude.

CWMake makes it easy for you to try other compilers. However, you may experience compile warnings,
compile errors or linking issues not detected by Visual Studio. Patches are gratefully accepted to fix issues
with other compilers.

Consult the Cvake manual or check crreke - - hel p to find out which build systems are supported by your
ChMake version:

C. \>cmake --help

cmake version 2.6-patch 2
Usage

[...1]

CGenerators

The followi ng generators are available on this platform

Bor| and Makefil es Gener at es Borl and nakefil es.

MSYS Makefil es Gener at es MBYS nakefil es.

M nGW Makefi | es Generates a nmake file for use with
m ngw32- make.
Gener at es Nvake makefil es.
Gener ates standard UNI X makefil es.
Generates Visual Studio 6 project files.
Generates Visual Studio .NET 2002 proj ect

NVake Makefil es
Uni x Makefil es

Vi sual Studio 6
Vi sual Studio 7

files.

Visual Studio 7 .NET 2003 = Generates Visual Studio .NET 2003 proj ect
files.

Vi sual Studio 8 2005 = Generates Visual Studio .NET 2005 proj ect
files.

Vi sual Studio 8 2005 Wn64 = Generates Visual Studio .NET 2005 W n64
project files.

Generates Visual Studio 9 2008 project fil
Generates Visual Studio 9 2008 W n64 proje
files.

Vi sual Studio 9 2008
Vi sual Studio 9 2008 W n64

[...1]

It is likely that your C\Vake binary supports more compilers, known by C\Vake as generators, than can
actually be used to build MySQL Connector/C++. We have built the connector using the following
generators:

» Microsoft Visual Studio 8 (Visual Studio 2005)
» Microsoft Visual Studio 9 (Visual Studio 2008, Visual Studio 2008 Express)
* NMake

Please see the building instructions for Unix, Solaris and Mac OS X for troubleshooting and configuration
hints.

Use these steps to build the connector:

1. Change location to the top-level directory of the source distribution:

14

Building MySQL Connector/C++ from Source on Windows

shell > cd C \path_to_nysql _cpp
Run CMViake to generate build files for your generator:

Visual Studio

C \>cmake -G "Visual Studio 9 2008"
-- Check for working C conpiler: cl
-- Check for working C conpiler: cl -- works
-- Detecting C conpiler ABl info
-- Detecting C conpiler ABI info - done
-- Check for working CXX conpiler: cl
-- Check for working CXX conpiler: cl -- works
-- Detecting CXX conpiler ABI info
-- Detecting CXX conpiler ABI info - done
-- ENVfMWSQL_DI R} =
-- MySQL Include dir: C:/Progranmre/ MySQL/ MySQL Server 5.5/incl ude
-- MySQL Library : C/Programs/ MySQL/ MySQL Server 5.5/1ib/opt/nysqglclient.lib
-- MySQL Library dir: C:/Progranms/ M/SQ/MSQ Server 5.5/1ib/opt
-- MySQL CFLAGS:
-- MySQL Link flags:
-- MySQL Include dir: C:/Programs/ M/SQ/MSQ Server 5.5/include
-- MySQL Library dir: C:/Progranms/ M/SQ/MSQ Server 5.5/1ib/opt
-- MySQL CFLAGS:
-- MySQL Link flags:
-- Configuring cppconn
-- Configuring test cases
-- Looking for isinf
-- Looking for isinf - not found
-- Looking for isinf
-- Looking for isinf - not found.
-- Looking for finite
-- Looking for finite - not found.
-- Configuring C/J junit tests port
-- Configuring exanpl es
-- Configuring done
-- Cenerating done
-- Build files have been witten to: C\path_to_nysqgl _cpp
C\>dir *.sln *.vcproj
[...]
19.11. 2008 12:16 23. 332 MYSQLCPPCONN. sl n

[eoel

19.11.2008 12:16 27.564 ALL_BUI LD. vcpr oj
19.11.2008 12:16 27.869 | NSTALL. vcpr oj
19.11.2008 12:16 28. 073 PACKAGE. vcpr oj
19.11.2008 12:16 27.495 ZERO CHECK. vcpr oj
NMake

C.\>cmake -G "Nwvake Makefil es"

-- The C conpiler identification is MSVC
-- The CXX conpiler identification is MSVC

[...]

-- Build files have been witten to: C\path to_nysql cpp

Use your compiler to build MySQL Connector/C++.

Visual Studio - GUI

15

Dynamically Linking MySQL Connector/C++ Against the MySQL Client Library

Open the newly generated project files in the Visual Studio GUI or use a Visual Studio command line
to build the driver. The project files contain a variety of different configurations, debug and nondebug
versions among them.

Visual Studio - NMake

C. \ >nnake

M crosoft (R) Program Mai ntenance Wility Version 9.00.30729. 01
Copyright (C) Mcrosoft Corporation. All rights reserved.

Scanni ng dependenci es of target mysql cppconn
[2% Building CXX object driver/CMakeFil es/ mysql cppconn. di r/ nysqgl _connecti on. obj
nmysql _connecti on. cpp

[...]
Li nki ng CXX execut abl e statenent. exe
[100% Built target statenent

4.3 Dynamically Linking MySQL Connector/C++ Against the MySQL
Client Library

Note

This section refers to dynamic linking of MySQL Connector/C++ with the client
library, not dynamic linking of the application to MySQL Connector/C++.

Precompiled binaries of MySQL Connector/C++ use static binding with the client
library by default.

An application that uses MySQL Connector/C++ can be either statically or dynamically linked to the
MySQL Connector/C++ libraries. MySQL Connector/C++ is usually statically linked to the underlying
MySQL client library (or Connector/C). Note that, unless otherwise stated, reference to the MySQL client
library is also taken to include Connector/C, which is a separately packaged, standalone version of the
MySQL client library. From MySQL Connector/C++ 1.1.0 on, it is possible to also dynamically link to

the underlying MySQL client library. The ability of MySQL Connector/C++ to dynamically link to MySQL
client library is not enabled by default. Enabling this feature is done through a compile-time option when
compiling the MySQL Connector/C++ source code.

To use the ability to dynamically link the client library to MySQL Connector/C++, define the
MYSQLCLI ENT_STATI C_BI NDI NG BOOL when building the MySQL Connector/C++ source code:

shel | > rm CVakeCache. t xt

shel | > crmake - DMYSQLCLI ENT_STATI C_BI NDI NG BOOL=1 .
shel | > make cl ean

shel | > make

shel | > make install

Now, in your application, when creating a connection, MySQL Connector/C++ will select and load a client
library at runtime. It will choose the client library by searching defined locations and environment variables
depending on the host operating system. It is also possible when creating a connection in an application
to define an absolute path to the client library to be loaded at runtime. This can be convenient if you have
defined a standard location from which you want the client library to be loaded. This is sometimes done to
circumvent possible conflicts with other versions of the client library that may be located on the system.

16

Chapter 5 Building MySQL Connector/C++ Windows Applications
with Microsoft Visual Studio

MySQL Connector/C++ is available as a static or dynamic library to use with your application. This section
describes how to link the library to your application.

Note

To avoid potential crashes, the build configuration of MySQL Connector/C++ should
match the build configuration of the application using it. For example, do not use the
release build of MySQL Connector/C++ with a debug build of the client application.

Static Library

The MySQL Connector/C++ static library file is mysql cppconn- st ati c. | i b. You link this library
statically with your application. Also link against the files | i brrysqgl . dl | and i brrysql . |'i b. At runtime,
the application will require accessto | i brysql . dl | .

Dynamic Library

The MySQL Connector/C++ dynamic library file is nysql cppconn. dl | . To build your client application,
link it with the file mysql cppconn. | i b. At runtime, the application will require access to the files
nysql cppconn. dl | and !l i bnysql.dlI.

Building a MySQL Connector/C++ Application with Microsoft Visual Studio

The initial steps for building an application to use either the static or dynamic library are the same. Some
additional steps vary, depend on whether you are building your application to use the static or dynamic
library.

1. Select File, New, Project from the main menu.

Figure 5.1 Creating a New Project

B start Pape - Visual C++ 2008 Express Edition

Edit Yiew Tools ‘Window Help

Hew P |l2d Project... Chrl+Shift+M

Open [(3| File... Chrl+M =nts

Close Project From Existing Code. ..
jb— = *._ Micrasoft®
-8 Visual C+
R Express Editic

} ! o
@ save sl Ctrl+Shift+5

Recent Projects 3

Exit

2. Inthe wizard, select Visual C++, Win32. From Visual Studio Installed Templates, select the
application type Win32 Console Application. Enter a name for the application, then click OK, to move
to the Win32 Application Wizard.

17

Figure 5.2 The New Project Dialog Box

New Project E

Praoject bypes: Templates: |§|
=) visual C++ visual Studio installed templates
CLR.
Wina2 @Win% Console Application EWin32 Project
General
My Templates
i Search Online Templates. ..
& project for creating a 'Win32 console application |
Mame: | tests |
Location: | C:\Documents and Settings| Tany Bedford\My Documents!visual Studio 20084Projects w | [Browse. .,]
Solution Marme: | bestd | Create directory For solution
[oK l ’ Cancel]

3. Inthe Win32 Application Wizard, click Application Settings and ensure the defaults are selected. The
radio button Console application and the check box Precompiled headers are selected. Click Finish

to close the wizard.

18

Figure 5.3 The Win32 Application Wizard

Win32 Application Wizard - test3

Application Settings

Crvaryie Application type: Add common header files For:
application Settings (O wiindaws application

(%) Consale application

QDL

() Static library

Additional options:
|:| Emply projeck

Precompiled header

[Firish ” Cancel]

4. From the drop down list box on the toolbar, change from the default Debug build to the Release build.

Figure 5.4 Selecting the Release Build

B test3 - Visual C++ 2008 Express Edition

File Edit Wiew Project Build Debug Tools ‘Window Help

id- - = ¥ 52 [| o - - EL B |Debug - | Win3z

-—

Solution Explorer - te

ER o

083 =585 e — [

test3.cpp | Start Page |C0nFigurati0n Manager...

5. From the main menu select Project, Properties. This can also be accessed using the hot key ALT + F7.

19

Figure 5.5 Selecting Project Properties from the Main Menu

B iest3 - Visual C++ 2008 Express Edition

File Edit View | Project | Build Debug Tools ‘Window Help
v - 5L v Add s NN
' b a= || VB 2NEN
Salution Ex 2:: | Add Mew Item... Ctr+shife+a
B 2t Add Existing Item.., Shift+alk+a
(ed S__%Iution test3 0 S New Filter _—
B E
S [Header|) Show Al Files
h] skda ;
Unload Project
ﬂ targ darfx
A Resoure References...
= L Source A
cj sk nt &
.;j test Ser as Startlp Project
E] readme Custom Build Rules. .. ;
Tool Build Order. ..
Properties Alt+F7

Under Configuration Properties, open the tree view.

Select C++, General in the tree view.

Figure 5.6 Setting Properties

test3 Property Pages

Configuration: |F\EtiVB(RB|BEISB) “ | Platform: |-°-EtiVB(Win32) Vl [Configuration Manager. ..]

Additional Include Directories
Resolve #using References

=) Common Properkies
Framework and References

(=) Configuration Properties
General
Debugging
[L

Optimization
Preprocessar
Code Generation
Language
Precompiled Headers
Qutput Files
Browse Information
Advanced
Command Line
Linker
Manifest Tool
#ML Document Generatar
Browese Information
Build Events
Custon Build Step

[B B

Debug Information Format
Suppress Skartup Eanner
Warning Level

Detect 64-bit Partability Issues
Treak Warnings As Errors

Use UNIZODE Response Files

Additional Include Directories

Program Database {/2i)
Yes (fnologo)

Level 3 {/W3)

Mo

Mo

Yes

Specifies one ar more directoties ko add to the include path; use semi-colon delimited list if maore than one.

(/1lpath]y

QK

l [Cancel

20

8. Ensure that Visual Studio can find the MySQL include directory. This directory includes header files that
can optionally be installed when installing MySQL Server.

Figure 5.7 MySQL Include Directory

Command Prompt

C:smysglhine lude *dir
Uolume in drive C has no lahel.
Uolume Serial Mumber iz 7484-B7C3

Directory of C:smysglhinclude

i8.-12-2088 <DIR> .
1812 2088 <DIR> .-
15-11.-2008 3 config—win.h
15112008 decimal.h
15112008 errmnsg.h
15112808 keycache . h
15%-11-2088 3 libmysqgl.def
18122008 mysgl
15-11.-2008 mysgl.h
15112008 mysgld_ername.h
15112808 mysgld_error.h
15%-11.-2088 mysgl_com.h
15-11.-2008 mysgl_embed.h
15-11.-2008 mysgl_time.h
15112008 mysgl_version.h
15112808 my_alloc.h
15%-11.-2088 my_attribute.h
15-11.-2008 my_dbug.h
151120808 my_dir.h
15112808 my_getopt.h
15%-11.-2088 my_glohal.h
i5-11.-2088 my_list_h
15-11.-2008 my_net.h
15112008 my_no_pthread.h
15112808 my_pthread.h
15%-11.-2088 . my_sys.h
15-11.-2008 my_xml_h
15-11.-2008 m_ctype.h
15112008 m_string.h
15112808 sgql_common.h
15%-11.-2088 sgl_state.h
15-11.-2008 gz lopt—case.h
15-11-2088 0O6:53 gz lopt—longopts.h
15112008 B6:53 sslopt—vars.h
157112008 @6:53 typelib.h

32 Fileds> 486 hytes

3 Diwdsd 4,091,248 648 hytes free

C:smysglhine lude >

9. Inthe Additional Include Directories text field, add the MySQL i ncl ude/ directory.

21

Figure 5.8 Select Directory Dialog

| J) 25a95fa67307e691a5 -
) databases
) Documents and Settings
) emacs-22.3
= 23 mysql
) bin
+) data
Sl }include
) mysgl
H b
|2 share b

Folder: include

[Make Mews Folder l [a4 l [Cancel]

10. Also set the location of additional libraries that Visual Studio needs to build the application. These are
located in the MySQL | i b/ opt directory, a subdirectory of the MySQL Server installation directory.

Figure 5.9 Typical Contents of MySQL lib/opt Directory

Command Prompt

C:xmysglslibhopt >dir
Uolume in drive C has no lahel.
Uolume Serial Mumber is 9484-B7C3

Directory of C:ismysglslibs~opt

18-12-2088 13:56 <DIR> .
iB-12-2088 13:56 <DIR> .
15112088 @6:53 34.876 libmysgl.lib
15-11-2088 @6:53 6.590,.464 libmysgl.pdh
15-11-2088 @6:53 7,718,426 mysglclient.lib
15%-11-2088 B6:53 397,312 mysglclient.pdh
15-11-2088 B6:53 2,675, 708 myzy=z_1lih
15112088 @6:53 135,168 mysysz.pdh
15-11-2088 @6:53 regex.lih
157112008 @6:53 regex.pdb
15%-11-2088 B6:53 strings.lib
15-11-2088 B6:53 strings . pdbh
B6:53 - z1ih.1ib
A6:53 - zlibh.pdhb
12 Filecsd 28.781.234 hytes
2 Diris) 4,891 ,.240,448 bhytes free

C:wnmysglslibNopt >

11. In the tree view, open Linker, General, Additional Library Directories.

22

Figure 5.10 Additional Library Directories

test3 Property Pages

Configuration: |F\EtiVB(RB|BEISB) “ | Platform: |-°-EtiVB(Win32) v | [Configuration Manager...]
(=) Configuration Properties ~ Output File F00ukDir Y $(ProjectMame) . exe
General | Show Progress Mot Set
Debugging Wersion
= CIC+H+ Enable Incremental Linking No {/INCREMENTAL:ND)
General Suppress Startup Banner Yes (INOLOGD)
Optirnization Ignare Import Library Ma
Prepracessar . Reqgister Cukpuk Mo
Code Generation Per-user Redirection Mo
:;:E;:E:e A Headers additional Library Directaties |)
Qutput Files Link Library Dependencies Yes
Erowse InFormation Use Library Dependency Inputs Mo
Advanced lUse UNICODE Response Files Yes
Cormand Line
[=I- Linker
General
Inpuk
Manifest File
Debugging
Syskem B
Optimization
Embedded IDL
Advanced Additional Library Directories

Specifies one or more additional paths ko search For libraries; configuration specific; use semi-colon

i d Li
ommanc Lne delimited list if more than one, (JLIBPATH:[dir])

|£

|
el

[QK l[Cancel l[Apply l

12. Add the | i b/ opt directory into the Additional Library Directories text field. This enables the library
fileli brrysql . i b to be found.

Figure 5.11 Additional Library Directories Dialog

Additional Library Directories

Inherited values:

Inherit from parent or project defaults

o [oot |

23

Static Build

Static Build

The remaining steps depend on whether you are building an application to use the MySQL Connector/C++
static or dynamic library. If you are building your application to use the dynamic library, see Dynamic Build.
If you are building your application to use the static library, carry out the following steps:

1. Open Linker, Input, Additional Dependencies.

Figure 5.12 Additional Dependencies

test3 Property Pages

Configuration: |F\ctive(ReIease) | Platfarm: |Active(Win32) e | [Configuration Managet. ..]
(=) Configuration Properties ~ Additional Dependencies [
General | Ignave All Defaulk Libt aties Mo
Debugaing Ignore Specific Library
= CiC++ Module Definition File
General #Add Module to Assembly
Cptirnization Embed Managed Resource File
Preprocessar . Force Symbol References
fode Generation Delay Loaded DLLs
P‘:E;:E:e dHeaders Assembly Link Resource
Cutput Files
Browse Information
Advanced
Cormand Line
[=I- Linker
General
Inpuk
Manifest File
Debugging
Syskem B
Optimization
Embedded IDL
Advanced Additional Dependencies
command Line 3 Specifies additional items to add to the link line (ex: kernel32.lib); configuration specific.
< | >
[Gk l [Cancel l [Apply

2. Enternysql cppconn-static.libandlibnysql.lib.

24

Dynamic build

Figure 5.13 Adding Additional Dependencies

Additional Dependencies |E| E|

rysqlcppoonn-static,lib
libraysql.lib

Inherited values:

kernel3z.lio A

user3z lib 3

qdiz2.lib =
winspool.lib
comdlg3Z lib

b

Inberit from parent or project defaulks

I 04 H Cancel]

3. By default CPPCONN_PUBLI C_FUNC s defined to declare functions to be compatible with an application
that calls a DLL. If you are building an application to call the static library, ensure that function
prototypes are compatible with this. In this case, define CPPCONN_PUBLI C_FUNC to be an empty
string, so that functions are declared with the correct prototype.

In the Project, Properties tree view, under C++, Preprocessor, enter CPPCONN_PUBLI C_FUNC= into
the Preprocessor Definitions text field.

Figure 5.14 Setting the CPPCONN_PUBLIC_FUNC Define

Preprocessor, Definitions |E| E|

WINGZ

NDEEUG

_CONSOLE
CPPCOMN_PUBLIC_FUNC=

Inherited values:

_UNICODE
UMICODE

Inherit from parent or project defaults

Ee

Note

Make sure you enter CPPCONN_PUBLI C_FUNC= and not
CPPCONN_PUBLI C_FUNC, so that it is defined as an empty string.

Dynamic build

If you are building an application to use the MySQL Connector/C++ dynamically linked library, carry out
these steps:

25

Dynamic build

1. Under Linker, Input, add mysql cppconn. | i b into the Additional Dependencies text field.

2. nysql cppconn. dl | must be in the same directory as the application executable, or somewhere
on the system's path, so that the application can access the MySQL Connector/C++ Dynamic Linked
Library at runtime.

Copy nysqgl cppconn. dl | to the same directory as the application. Alternatively, extend the PATH
environment variable using SET PATH=%ATHY) C: \ pat h\ t o\ cpp. Alternatively, you can copy
nysql cppconn. dl | to the Windows installation Directory, typically c: \ wi ndows.

26

Chapter 6 Building MySQL Connector/C++ Linux Applications
with NetBeans

This section describes how to build MySQL Connector/C++ applications for Linux using the NetBeans IDE.

Figure 6.1 The NetBeans IDE

w test_dynamic - NetBeans IDE 6.5.1 _oXx
File Edit View Navigate Source Refactor Run Debug Versioning Tools Window Help

9 ¥ E) (7 | pebug - 'ﬁ" EEE: » ' Q- | search (Ctrl+1)

Pro... « x| Files ‘Classes ‘Services | Start Page x|@newmain_cpp x 4[> v| =
< (] test_dynamic = = o | o

_ = - - I = | @ o @ _s
b @ Header Files E%SE Poh g6 mE | msK
b [Resource Files e ==

- Qﬁ Source Files
'
b [Important Files Created on 08 April 2009, 16:47
b (@ test_static

T #include <stdlib.hs
#include <iostreams

#include "mysgl_connection.h”

using namespace std;

newmain.cpp - Navigator @ x
@ cppconn/driver.h int main(void)
@ cppconnfexception.h
@@ cppconnjresultset.h cout << endl; o - .
@ cppconnjstatement.h cout << "Running 'SELECT 'Hello Worldl' AS _message'..." << endl;
B iostream try {

sgl::Driver *driver;
sgl::Connection *con;
1:1 INS

U mysql_connection.h
std
@ stdlib.h
Output - test_dynamic (Build, Run) ¥ x| Tasks ‘
Yt —0 G151/ URLUY, LMU-L ITILA- 00, L25 L_UY Tl 1L UL U/ URDUL, WHU-L 1 TILA-X00,/ TI8WNE 1.0 -L/UsT, 10Cd 1/ 110 - Iy sy | Cppeunn
[] make[2]: Leaving directory “/home/tbedford/NetBeansProjects/test_dynanic’
[[» make[1]: Leaving directory °/home/thedford/NetBeansProjects/test_dynanic’

Build successful. Exit value O.

Running “/usr/bin/gnome-terninal --disable-factory --hide-menubar --title="dist/Debug/CNU-Linux-=85/test_dynamic " -x "/t

Run successful. Exit value O.

Note

To avoid potential crashes, the build configuration of MySQL Connector/C++ should
match the build configuration of the application using it. For example, do not use the
release build of MySQL Connector/C++ with a debug build of the client application.

1. Create a new project. Select File, New Project. Choose a C/C++ Application and click Next.
Give the project a name and click Finish. A new project is created.
In the Projects tab, right-click Source Files and select New, then Main C++ File....

Change the filename, or simply select the defaults and click Finish to add the new file to the project.

o A~ W DN

Now add some working code to your main source file. Explore your MySQL Connector/C++ installation
and navigate to the exanpl es directory.

6. Select a suitable example, such as st andal one_exanpl e_docs1. cpp. Copy all the code in this
file, and use it to replace the code in your existing main source file. Amend the code to reflect the

27

connection properties required for your test database. You now have a working example that will
access a MySQL database using MySQL Connector/C++.

7. Atthis point, NetBeans shows some errors in the source code. Direct NetBeans to the necessary
header files to include. Select File, Project Properties from the main menu.

8. Inthe Categories: tree view panel, navigate to Build, C++ Compiler.
9. Inthe General panel, select Include Directories.
10. Click the ... button.

11. Click Add, then navigate to the directory where the MySQL Connector/C++ header files are located.
Thisis/usr /1 ocal /i ncl ude unless you have installed the files to a different location. Click Select.
Click OK.

Figure 6.2 Setting the Header Include Directory

Categories:

¢ General Configuration:|Debug (active) ¥ Manage Configurations...
= © Build
2 C Compiler ~ General
. Include Directories Jusrflocalfinclude
@ Fortran Compiler Preprocessor Definitions
2 Linker ~ Basic Options
2 Packaging Development Mode Debug -
@ Run Warning Level Some Warnings -
@ Debug Architecture <Default> -
Strip Symbols
~Tool
Tool g++

~Command Line
Additional Options

Debug

Cancel| Apply | Help

12. Click OK again to close the Project Properties dialog.

At this point, you have created a NetBeans project containing a single C++ source file. You have also
ensured that the necessary include files are accessible. Before continuing, decide whether your project
is to use the MySQL Connector/C++ static or dynamic library. The project settings are slightly different in
each case, because you link against a different library.

Using the Static Library

To use the static MySQL Connector/C++ library, link against two library files, | i brmysql cppconn-
static.aandlibmysqgl client. a. The locations of the files depend on your setup, but typically the

28

formerarein/usr/l ocal /|l ibandthe latterin/usr/1ib. Thefilel i bnysql client. ais not part of
MySQL Connector/C++, but is the MySQL client library file distributed with MySQL Server. (Remember,
the MySQL client library is an optional component as part of the MySQL Server installation process.) The
MySQL Client Library is also available as part of the MySQL Connector/C distribution.

1.
2.

3.

Set the project to link the necessary library files. Select File, Project Properties from the main menu.

In the Categories: tree view, navigate to Linker.
In the General panel, select Additional Library Directories. Click the ... button.
Select and add the / usr /| i band/usr/ 1 ocal /| i b directories.

In the same panel, add the two library files required for static linking as discussed earlier. The
properties panel should then look similar to the following screenshot.

Figure 6.3 Setting the Static Library Directories and File Names

Categories:

@ General Configuration:|Debug (active) ¥ Manage Configurations...
= = Build
2 C Compiler ~ General
2 C++ Compiler Output dist/Debug/$ {PLATFORM }/test_... .
2 Fortran Compiler Additional Library Directories Jusrflocal/lib: fusr{lib
_ _ Runtime Search Directories
2 Packaging ~ Options
2 Run Strip Symbols
@ Debug “Input
Additional Dependencies
~Tool
Tool g++

~Libraries

Libraries mysqlcppconn-static, mysqglclient
~Command Line

Additional Options

Debug L]

Cancel| Apply | Help

6. Click OK to close the Project Properties dialog.

Using the Dynamic Library

To use the MySQL Connector/C++ dynamic library, link your project with a single library file,
I i brrysgl cppconn. so. The location of this file depends on how you configured your installation of
MySQL Connector/C++, but typically is/ usr/ | ocal /| i b.

1. Set the project to link the necessary library file. Select File, Project Properties from the main menu.

2.

In the Categories: tree view, navigate to Linker.

29

3. Inthe General panel, select Additional Library Directories. Click the ... button.

4. Selectand add the / usr/1 ocal /|'i b directories.

5. In the same panel, add the library file required for static linking as discussed earlier. The properties
panel should look similar to the following screenshot.
Figure 6.4 Setting the Dynamic Library Directory and File Name
|+ Project Properties - test_dynamic 5

Categories:

@ General Configuration: Debug (active) ¥ Manage Configurations...
= @ Build
o C Compiler ~ General
2 C++ Compiler Output dist/Debug/${PLATFORM }/test_... ..
2 Fortran Compiler Additional Library Directories Jusrflocal/lib
PN Runtime Search Directories
2 Packaging ~ Options
2 Run Strip Symbols
2 Debug ~Input
Additional Dependencies
~Tool
Tool g++

~Libraries

Libraries mysqlcppconn
~Command Line

Additional Options

Debug 7]

Cancel| Apply | Help

6. Click OK to close the Project Properties dialog.

After configuring your project, build it by selecting Run, Build Main Project from the main menu. You then
run the project using Run, Run Main Project.

On running the application, you should see a screen similar to the following (this is actually the static
version of the application shown):

30

Figure 6.5 The Example Application Running

Running 'SELECT 'Hello World!' AS message'...
. MySQL replies: Hello World!
. MysSQL says it again: Hello World!

[Press Enter to close window]l

| Note

The preceding settings and procedures were carried out for the default Debug
configuration. To create a Rel ease configuration, select that configuration before

setting the Project Properties.

31

32

Chapter 7 MySQL Connector/C++ Getting Started: Usage
Examples

Table of Contents

7.1 MySQL Connector/C++ Connecting t0 MYSQLuiiiiiiii e e e e r e e e e e eanees 34
7.2 MySQL Connector/C++ Running a SiMple QUETYcvuuuiiiiiiei e e e e e e e e e aeeeen 34
7.3 MySQL Connector/C++ Fetching RESUILScviuiiiiiii e e e e e eees 35
7.4 MySQL Connector/C++ Using Prepared StatemMentscovvvniiiiiiiiieii e e e e e ees 36
7.5 MySQL Connector/C++ Complete EXamPle Loiiiiiiiiei e e e e e e e 36
7.6 MySQL Connector/C++ Complete EXAmMPIE 2 ...c.vniiiiniiii i e e e 37

The download package contains usage examples in the directory exanpl es/ . These examples explain
how to use the following classes:

» Connection

e Driver

* PreparedSt at enent
* Resul t Set

* Resul t Set Met aDat a
e Statenent

The examples cover:

e Using the Dri ver class to connect to MySQL

Creating tables, inserting rows, fetching rows using (simple) statements
» Creating tables, inserting rows, fetching rows using prepared statements
* Hints for working around prepared statement limitations

» Accessing result set metadata

The examples in this document are only code snippets, not complete programs. The code snippets provide
a brief overview on the API. For complete programs, check the exanpl es/ directory of your MySQL
Connector/C++ installation Please also read the READVE file in that directory. To test the example code,
edit the exanpl es. h file in the exanpl es/ directory to add your connection information, then rebuild the
code by issuing a make command.

The examples in the exanpl es/ directory include:
» exanpl es/ connect . cpp:

How to create a connection, insert data into MySQL and handle exceptions.
« exanpl es/ connecti on_neta_schenmaobj . cpp:

How to obtain metadata associated with a connection object, for example, a list of tables, databases,
MySQL version, connector version.

33

MySQL Connector/C++ Connecting to MySQL

« exanpl es/ debug_out put . cpp:

How to activate and deactivate the MySQL Connector/C++ debug protocol.
» exanpl es/ excepti ons. cpp:

A closer look at the exceptions thrown by the connector and how to fetch error information.
« exanpl es/ prepared_statements. cpp:

How to run Prepared Statements including an example how to handle SQL statements that cannot be
prepared by the MySQL Server.

o exanpl es/resul tset. cpp:

How to use a cursor to fetch data and iterate over a result set.
« exanpl es/resul tset _neta. cpp:

How to obtain metadata associated with a result set, for example, number of columns and column types.
» exanpl es/resul tset _types. cpp:

Result sets returned from metadata methods. (This is more a test than an example.)
« exanpl es/ st andal one_exanpl e. cpp:

Simple standalone program not integrated into regular C\Vake builds.
» exanpl es/ st at enent s. cpp:

How to execute SQL statements without using Prepared Statements.
« exanpl es/ cpp_trace_anal yzer. cpp:

This example shows how to filter the output of the debug trace. Please see the inline comments for
further documentation. This script is unsupported.

7.1 MySQL Connector/C++ Connecting to MySQL

To establish a connection to MySQL Server, retrieve an instance of sql : : Connecti on from a
sql ::mysql :: MySQL_Dri ver object. Asqgl ::nysql:: MySQL_Dri ver objectis returned by
sqgl::nysql:: MySQ._Driver::get_nysql _driver _instance().

sql ::mysql:: MySQL_Dri ver *driver;
sql : : Connecti on *con;

driver = sql::nysql:: MSQ. _Driver::get_nysqgl _driver_instance();
con = driver->connect("tcp://127.0.0.1: 3306", "user", "password");

del ete con;

Make sure that you free, con, the sql : : Connect i on object as soon as you do not need it any more. But
do not explicitly free dr i ver , the connector object! The connector will take care of freeing that.

7.2 MySQL Connector/C++ Running a Simple Query

For running simple queries, you can use the methods sql : : St at enent : : execut e(),
sql :: Statenent:: executeQuery() andsqgl :: Statenent:: execut eUpdat e() . Use the method

34

MySQL Connector/C++ Fetching Results

sql :: Statenent: : execut e() if your query does not return a result set or if your query returns more
than one result set. See the exanpl es/ directory for more information.

sql ::nmysql:: MySQL_Dri ver *driver;
sql : : Connecti on *con;
sql :: Statenent *stnt;

driver = sql::nysql::get_nysql _driver_instance();
con = driver->connect("tcp://127.0.0. 1: 3306", "user", "password");

stnt = con->createStatenent();

st nt - >execut e("USE " EXAMPLE_DB) ;

st nt - >execut e("DROP TABLE | F EXI STS test");

st nt - >execut e(" CREATE TABLE test(id INT, |abel CHAR(1))");

stnt - >execute("I NSERT I NTO test(id, |abel) VALUES (1, 'a')");

del ete stnt;
del et e con;

Note that you must free sql : : St at enrent and sql : : Connect i on objects explicitly using del et e.

7.3 MySQL Connector/C++ Fetching Results

The API for fetching result sets is identical for (simple) statements and prepared statements.

If your query returns one result set, use sql : : St at enent : : execut eQuery() or

sql : : Prepar edSt at ement : : execut eQuer y() to run your query. Both methods return

sqgl : : Resul t Set objects. The preview version does buffer all result sets on the client to support cursors.

I/

sql : : Connecti on *con;

sql :: Statenent *stnt;

sqgl :: Resul t Set *res;

I/

stnt = con->createStatenent();
I/

res = stnt->executeQuery("SELECT id, |abel FROMtest ORDER BY id ASC');
while (res->next()) {
/1 You can use either nuneric offsets...

cout << "id =" << res->getInt(1); // getint(1l) returns the first colum
/1 ... or colum nanes for accessing results.
// The latter is recommended.
cout << ", label ="'" << res->getString("label") << "'" << endl;
}
del ete res;
del ete stnt;
del ete con;
Note

In the preceding code snippet, column indexing starts from 1.

Note that you must free sql : : St at ement, sql : : Connecti on and sql : : Resul t Set objects explicitly
using delete.

Cursor usage is demonstrated in the examples contained in the download package.

35

MySQL Connector/C++ Using Prepared Statements

7.4 MySQL Connector/C++ Using Prepared Statements

If you are not familiar with Prepared Statements on MySQL, take a look at the source code comments and
explanations in the file exanpl es/ pr epar ed_st at enent . cpp.

sql : : Prepar edSt at enent is created by passing an SQL query to

sql : : Connection:: prepareStatenent ().Assql:: PreparedSt at enent is derived from
sql : : St at enent , you will feel familiar with the API once you have learned how to use (simple)
statements (sql : : St at enent). For example, the syntax for fetching results is identical.

/1

sql : : Connecti on *con;

sql : : Prepar edSt at ement *prep_stnt
/1

prep_stnt = con->prepareStatenent ("I NSERT I NTO test (id, |abel) VALUES (?, ?2)");

prep_stnt->setlnt(1, 1);
prep_stnt->setString(2, "a");
prep_stnt - >execute();

prep_stnt->setlnt(1, 2);
prep_stnt->setString(2, "b");
prep_stnt - >execute();

del ete prep_stnt;
del ete con;

As usual, you must free sql : : Prepar edSt at enent and sql : : Connect i on objects explicitly.

7.5 MySQL Connector/C++ Complete Example 1

The following code shows a complete example of how to use MySQL Connector/C++:

/* Copyright 2008, 2010, Oracle and/or its affiliates. Al rights reserved.

This programis free software; you can redistribute it and/or nodify
it under the ternms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.

There are special exceptions to the terms and conditions of the GPL
as it is applied to this software. View the full text of the
exception in file EXCEPTI ONS- CONNECTOR-C++ in the directory of this
sof tware distribution.

This programis distributed in the hope that it will be useful,
but W THOUT ANY WARRANTY; wi thout even the inplied warranty of
MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPOSE. See the
G\U General Public License for nore details.

You shoul d have received a copy of the GNU General Public License

along with this program if not, wite to the Free Software

Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*

/

/* Standard C++ includes */
#i ncl ude <stdlib. h>
#i ncl ude <i ostrean»

/*
Include directly the different
headers from cppconn/ and nysql _driver.h + nysqgl _util.h

36

MySQL Connector/C++ Complete Example 2

(and nysqgl _connection.h). This will reduce your build tine!
*/
#i ncl ude "mysqgl _connecti on. h"

#i ncl ude <cppconn/dri ver. h>

#i ncl ude <cppconn/ excepti on. h>
#i ncl ude <cppconn/resultset. h>
#i ncl ude <cppconn/ st at ement . h>

usi ng namespace std;

int mai n(voi d)

{

cout << endl;

cout << "Running ' SELECT 'Hello Wrld!" »
AS _nmessage'..." << endl;

try {
sql ::Driver *driver;
sql : : Connecti on *con;
sql :: Statenent *stnt;
sql :: Resul t Set *res;

/* Create a connection */

driver = get_driver_instance();

con = driver->connect("tcp://127.0.0.1:3306", "root", "root");
/* Connect to the MySQL test database */

con->set Schema("test");

stnt = con->createStatenent();
res = stmnt->executeQuery("SELECT 'Hello World!' AS _nessage");
while (res->next()) {
cout << "\t... MySQL replies: ";
/* Access columm data by alias or colum nanme */
cout << res->getString("_nessage") << endl;
cout << "\t... MySQL says it again: ";
/* Access columm fata by nuneric offset, 1 is the first colum */
cout << res->getString(l) << endl;
}
del ete res;
del ete stnt;
del ete con;

} catch (sql::SQ.Exception &) {
cout << "# ERR SQ.Exception in " << _ _FILE ;
cout << "(" << __FUNCTION__ << ") on line " »
<< __LINE__ << endl;
cout << "# ERR " << e.what();
cout << " (MySQL error code: " << e.getErrorCode();
cout << ", SQ.State: " << e.getSQ.State() << ")" << endl;

}

cout << endl;

return EXI T_SUCCESS;
}

7.6 MySQL Connector/C++ Complete Example 2

The following code shows a complete example of how to use MySQL Connector/C++:

/* Copyright 2008, 2010, Oracle and/or its affiliates. Al rights reserved.

This programis free software; you can redistribute it and/or nodify
it under the ternms of the GNU General Public License as published by

37

MySQL Connector/C++ Complete Example 2

the Free Software Foundation; version 2 of the License.

There are special exceptions to the terms and conditions of the GPL
as it is applied to this software. View the full text of the
exception in file EXCEPTI ONS- CONNECTOR-C++ in the directory of this
sof tware distribution.

This programis distributed in the hope that it will be useful,
but W THOUT ANY WARRANTY; wi thout even the inplied warranty of
MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPOSE. See the
G\U General Public License for nore details.

You shoul d have received a copy of the GNU General Public License

along with this program if not, wite to the Free Software

Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*

/

/* Standard C++ includes */
#i ncl ude <stdlib. h>
#i ncl ude <i ostrean»

/*
Include directly the different
headers from cppconn/ and nysql _driver.h + nysqgl _util.h
(and nysqgl _connection.h). This will reduce your build tine!
*/
#i ncl ude "nmysqgl _connecti on. h"

#i ncl ude <cppconn/dri ver. h>

#i ncl ude <cppconn/ excepti on. h>

#i ncl ude <cppconn/resultset. h>

#i ncl ude <cppconn/ st at ement . h>

#i ncl ude <cppconn/ prepar ed_st at enent . h>

usi ng nanmespace std;

int mai n(voi d)

{

cout << endl;

cout << "Let's have MySQ count from10 to 1..." << endl;
try {

sql ::Driver *driver;

sql : : Connecti on *con;

sql :: Statenment *stnt;

sql :: Resul t Set *res;

sql : : Prepar edSt at ement *pstnt;

/* Create a connection */

driver = get_driver_instance();

con = driver->connect("tcp://127.0.0.1:3306", "root", "root");
/* Connect to the MySQL test database */

con->set Schema("test");

stnt = con->createStatenent();

st nt - >execut e("DROP TABLE | F EXI STS test");
st nt - >execut e(" CREATE TABLE test(id INT)");
del ete stnt;

/[* '?" is the supported pl acehol der syntax */
pstm = con->prepareStatenent ("1 NSERT | NTO test(id) VALUES (?)");
for (int i =1; i <= 10; i++) {

pstnt->setint (1, i);

pst nt - >execut eUpdat e() ;

}
del ete pstnt;

38

MySQL Connector/C++ Complete Example 2

/* Select in ascending order */
pstm = con->prepareStatenent ("SELECT id FROM test ORDER BY id ASC');
res = pstnt->executeQuery();

/* Fetch in reverse = descendi ng order! */
res->afterLast();
whil e (res->previous())
cout << "\t... MySQL counts: " << res->getInt("id") << endl;
del ete res;

del ete pstnt;
del ete con;

} catch (sql::SQ.Exception &) {

cout << "# ERR SQ.Exception in " << _ FILE ;

cout << "(" << __FUNCTION__ << ") on line " »
<< __LINE__ << endl;

cout << "# ERR " << e.what();

cout << " (MySQL error code: " << e.getErrorCode();

cout << ", SQ State: " << e.getSQ.State() << »
)" << endl;

}

cout << endl;

return EXI T_SUCCESS;
}

39

40

Chapter 8 MySQL Connector/C++ Tutorials

Table of Contents

8.1 Prerequisites and Background INfOrmationcccouiiiiiiiiiiiiii e e 41
8.2 Calling Stored Procedures with St at emEnt ObDJECESivvviiiiiiiii e 42
8.3 Calling Stored Procedures with Prepar edSt at ement ObJECESevvviiiiiiiiiiic e, 47

The following tutorials illustrate various aspects of using MySQL Connector/C++. Also consult the
examples in Chapter 7, MySQL Connector/C++ Getting Started: Usage Examples.

8.1 Prerequisites and Background Information

This section describes the prerequisites that must be satisifed before you work through the remaining
tutorial sections, and shows how to set up the framework code that serves as the basis for the tutorial
applications.

These tutorials refer to tables and sample data from the wor | d database, which you can download from
the “Example Databases” section of the MySQL Documentation page.

Each tutorial application uses a framework consisting of the following code. The examples vary at the line
that says/* | NSERT TUTORI AL CODE HERE! */ within the t ry block, which is replaced for each
application with the application-specific code.

#i ncl ude <stdlib. h>

#i ncl ude <i ostreanr

#i ncl ude <sstreanp

#i ncl ude <stdexcept>

/* uncomment for applications that use vectors */
[*#i ncl ude <vect or>*/

#i ncl ude "mysqgl _connecti on. h"

#i ncl ude <cppconn/dri ver. h>

#i ncl ude <cppconn/ excepti on. h>

#i ncl ude <cppconn/resultset. h>

#i ncl ude <cppconn/ st at enent . h>

#i ncl ude <cppconn/ prepar ed_st at enent . h>

#defi ne EXAMPLE_HOST "I ocal host "
#defi ne EXAMPLE_USER "wor | duser”
#defi ne EXAMPLE_PASS "wor | dpass”
#defi ne EXAMPLE_DB "wor | d"

usi hg namespace std;

int main(int argc, const char **argv)

{
string url (argc >= 2 ? argv[1l] : EXAMPLE_HOST);
const string user(argc >= 3 ? argv[2] : EXAMPLE_USER);
const string pass(argc >= 4 ? argv[3] : EXAMPLE_PASS);
const string database(argc >= 5 ? argv[4] : EXAWPLE DB);

cout << "Connector/C++ tutorial franmework..." << endl;
cout << endl;

try {

41

http://dev.mysql.com/doc/index-other.html

Calling Stored Procedures with St at enent Objects

/* | NSERT TUTCORI AL CODE HERE! */

} catch (sql::SQ.Exception &) {
/*
MySQL Connector/C++ throws three different exceptions:

- sqgl :: Met hodNot | npl enent edExcepti on (derived from sql:: SQLExcepti on)
- sqgl::InvalidArgunment Exception (derived from sql:: SQLExcepti on)
- sqgl:: SQLException (derived fromstd::runtime_error)
*/
cout << "# ERR SQ.Exception in " << __FILE ;
cout << "(" << __FUNCTION_ _ << ") on line " << __LINE__ << endl;
/* what () (derived fromstd::runtime_error) fetches error nessage */
cout << "# ERR " << e.what();
cout << " (MySQL error code: " << e.getErrorCode();
cout << ", SQLState: " << e.getSQ.State() << ")" << endl;

return EXI T_FAI LURE;
}

cout << "Done." << endl;
return EXI T_SUCCESS;
}

Try the framework code as a standalone program using this procedure:

1. Copy and paste the framework code to a file such as f r anewor k. cpp. Edit the #def i ne statements
to reflect your connection parameters (server, user, password, database). Also, because the file
contains those parameters, set its access mode to be readable only to yourself.

2. Compile the framework. For example, on Mac OS X, the command might look like this (enter the
command on one line):

shel | > g++ -0 franework
-1 /usr/local/include -1/usr/local/include/cppconn
-1 mysql cppconn framewor k. cpp

Adapt the command as necessary for your system. A similar command is needed for the tutorial
applications that follow.

3. To run the framework, enter the following:

shel | > . /framework

You will see a simple message:

Connector/ C++ tutorial framework...

Done.

You are now ready to continue to the tutorials.

8.2 Calling Stored Procedures with St at enent Objects

A stored procedure can be called using a St at enent or Pr epar edSt at enent object. This section
shows how to call stored procedures using St at enent objects. To see how to use Pr epar edSt at enent
objects, see Section 8.3, “Calling Stored Procedures with Pr epar edSt at enent Objects”.

You can construct and call different types of stored procedures:

42

Calling Stored Procedures with St at enment Objects

1. A stored procedure that returns no result. For example, such a stored procedure can log non-critical
information, or change database data in a straightforward way.

2. A stored procedure that returns one or more values using output parameters. For example, such a
procedure can indicate success or failure, or retrieve and return data items.

3. A stored procedure that returns one or more result sets. The procedure can execute one or more
queries, each of which returns an arbitrary number of rows. Your application loops through each result
set to display, transform, or otherwise process each row in it.

The following stored procedures illustrate each of these scenarios.

The following procedure adds a country to the wor | d database, but does not return a result. This
corresponds to Scenario 1 described earlier.

CREATE PROCEDURE add_country (I N country_code CHAR(3),
I'N country_nane CHAR(52),
I'N continent _name CHAR(30))
BEG N
I NSERT | NTO Count ry(Code, Nane, Conti nent)
VALUES (country_code, country_nane, continent_nane);
END;

The next procedures use an output parameter to return the population of a specified country or continent,
or the entire world. These correspond to Scenario 2 described earlier.

CREATE PROCEDURE get_pop (I N country_nanme CHAR(52),
QUT country_pop Bl G NT)
BEG N
SELECT Popul ati on | NTO country_pop FROM Country
WHERE Nanme = country_nane;
END;

CREATE PROCEDURE get pop_continent (IN continent_name CHAR(30),
QUT continent_pop Bl G NT)
BEG N
SELECT SUM Popul ation) | NTO conti nent_pop FROM Country
WHERE Conti nent = continent _nane;
END;

CREATE PROCEDURE get _pop_world (OUT worl d_pop Bl G NT)
BEG N

SELECT SUM Popul ation) | NTO worl d_pop FROM Country;
END;

The next procedure returns several result sets. This corresponds to Scenario 3 described earlier.

CREATE PROCEDURE get_data ()
BEG N
SELECT Code, Nane, Popul ation, Continent FROM Country
WHERE Continent = 'Cceania’ AND Popul ati on < 10000;
SELECT Code, Nane, Popul ation, Continent FROM Country

WHERE Conti nent = ' Europe' AND Popul ati on < 10000;
SELECT Code, Nane, Popul ation, Continent FROM Country
WHERE Continent = 'North Anerica' AND Popul ati on < 10000;

END;

43

Scenario 1: Using a St at enent for a Stored Procedure That Returns No Result

Enter and test the stored procedures manually to ensure that they will be available to your C++
applications. (Select wor | d as the default database before you create them.) You are now ready to start
writing applications using Connector/C++ that call stored procedures.

Scenario 1: Using a St at enent for a Stored Procedure That Returns No
Result

This example shows how to call a stored procedure that returns no result set.

1. Make a copy of the tutorial framework code:

shel |l > cp framewor k. cpp sp_scenari ol. cpp

2. Add the following code to the t r y block of the tutorial framework:

sql::Driver* driver = get_driver_instance();

std::auto_ptr<sql:: Connecti on> con(driver->connect (url, user, pass));
con->set Schema(dat abase) ;

std::auto_ptr<sql:: Statenment> stnt(con->createStatenent());

/1l We need not check the return value explicitly. If it indicates

// an error, Connector/C++ generates an exception.
st nt - >execut e(" CALL add_country(' ATL', 'Atlantis', 'North America')");

3. Compile the program as described in Section 8.1, “Prerequisites and Background Information”.

4. Run the program:

shel | > . /sp_scenari ol

5. Using the mysgl command-line client or other suitable program, check the wor | d database to
determine that it has been updated correctly. You can use this query:

nysql > SELECT Code, Nanme, Continent FROM Country WHERE Code=' ATL';

The code in this application simply invokes the execut e method, passing to it a statement that calls the
stored procedure. The procedure itself returns no value, although it is important to note there is always a
return value from the CALL statement; this is the execut e status. MySQL Connector/C++ handles this
status for you, so you need not handle it explicitly. If the execut e call fails for some reason, it raises an
exception that the cat ch block handles.

Scenario 2: Using a St at enent for a Stored Procedure That Returns an
Output Parameter

This example shows how to handle a stored procedure that returns an output parameter.

1. Make a copy of the tutorial framework code:

44

http://dev.mysql.com/doc/refman/5.6/en/call.html

Scenario 2: Using a St at enent for a Stored Procedure That Returns an Output Parameter

shel |l > cp framewor k. cpp sp_scenari 02. cpp

2. Add the following code to the t r y block of the tutorial framework:

sql ::Driver* driver = get_driver_instance();

std::auto_ptr<sql:: Connecti on> con(driver->connect (url, user, pass));
con->set Schema(dat abase) ;

std::auto_ptr<sql:: Statement> stnt(con->createStatenent());

st nt - >execut e(" CALL get _pop(' Uganda', @op)");
std::auto_ptr<sql:: ResultSet> res(stnt->executeQuery("SELECT @op AS reply"));
whil e (res->next())
cout << "Popul ation of Uganda: " << res->getString(" _reply") << endl;
st nt - >execut e(" CALL get _pop_continent('Asia', @op)");
res.reset (stnt->executeQuery("SELECT @op AS reply"));
whil e (res->next())
cout << "Popul ation of Asia: " << res->getString("_reply") << endl;
st nt - >execut e(" CALL get _pop_wor | d(@op)");
res.reset (stnt->executeQuery("SELECT @op AS reply"));

whil e (res->next())
cout << "Population of Wirld: " << res->getString(" _reply") << endl;

3. Compile the program as described in Section 8.1, “Prerequisites and Background Information”.

4. Run the program:

shell > ./sp_scenari 02
Connector/ C++ tutorial franmework...

Popul ati on of Uganda: 21778000
Popul ati on of Asia: 3705025700
Popul ati on of World: 6078749450
Done.

In this scenario, each stored procedure sets the value of an output parameter. This is not returned directly
to the execut e method, but needs to be obtained using a subsequent query. If you were executing the
SQL statements directly, you might use statements similar to these:

CALL get_pop(' Uganda', @op);

SELECT @op;

CALL get_pop_continent('Asia', @op);
SELECT @op;

CALL get_pop_worl d(@op) ;

SELECT @op;

In the C++ code, a similar sequence is carried out for each procedure call:
» Execute the CALL statement.
» Obtain the output parameter by executing an additional query. The query produces a Resul t Set object.

* Retrieve the data using a whi | e loop. The simplest way to do this is to use a get St r i ng method on
the Resul t Set , passing the name of the variable to access. In this example _repl y is used as a
placeholder for the variable and therefore is used as the key to access the correct element of the result
dictionary.

45

http://dev.mysql.com/doc/refman/5.6/en/call.html

Scenario 3: Using a St at enent for a Stored Procedure That Returns a Result Set

Although the query used to obtain the output parameter returns only a single row, it is important to
use the whi | e loop to catch more than one row, to avoid the possibility of the connection becoming

unstable.

Scenario 3: Using a St at enent for a Stored Procedure That Returns a Result

Set

This example shows how to handle result sets produced by a stored procedure.

Note

This scenario requires MySQL 5.5.3 or higher. The client/server protocol does not
support fetching multiple result sets from stored procedures prior to 5.5.3.

1. Make a copy of the tutorial framework code:

shell > cp framewor k. cpp sp_scenari 03. cpp

2. Add the following code to the t r y block of the tutorial framework:

sql ::Driver* driver = get_driver_instance();
std::auto_ptr<sql:: Connecti on> con(driver->connect (url, user,
con->set Schema(dat abase) ;

std::auto_ptr<sql:: Statement> stnt(con->createStatenent());

st nt - >execut e(" CALL get _data()");
std::auto_ptr< sql::ResultSet > res;
do {
res.reset (stnt->getResul tSet());
while (res->next()) {

cout << "Name: " << res->getString("Nanme")
<< " Popul ation: " << res->getlnt("Popul ation")
<< endl;

}
} while (stnt->getMreResults());

pass));

3. Compile the program as described in Section 8.1, “Prerequisites and Background Information”.

4. Run the program:

shell > ./sp_scenari 03
Connector/ C++ tutorial franmework...

Narme: Cocos (Keeling) Islands Popul ation: 600

Narme: Christmas |sland Popul ation: 2500

Narme: Norfol k |sland Popul ati on: 2000

Narme: Ni ue Popul ation: 2000

Narme: Pitcairn Popul ati on: 50

Narme: Tokel au Popul ati on: 2000

Narme: United States M nor Qutlying |Islands Popul ation: 0
Narme: Sval bard and Jan Mayen Popul ation: 3200

Narme: Holy See (Vatican Gty State) Popul ation: 1000
Narme: Angui |l a Popul ati on: 8000

Narme: Atlantis Popul ation: 0

Narme: Saint Pierre and M quel on Popul ati on: 7000
Done.

The code is similar to the examples shown previously. The code of particular interest here is:

46

Calling Stored Procedures with Pr epar edSt at enent Objects

do {
res.reset (stnt->getResultSet());
while (res->next()) {

cout << "Nanme: " << res->getString("Name")
<< " Popul ation: " << res->getlnt("Popul ation")
<< endl;

}
} while (stnt->get MreResults());

The CALL is executed as before, but this time the results are returned into multiple Resul t Set objects
because the stored procedure executes multiple SELECT statements. In this example, the output shows
that three result sets are processed, because there are three SELECT statements in the stored procedure.
Each result set returns more than one row.

The results are processed using this code pattern:

do {
Get Result Set
while (Get Result) {
Process Result
}

} while (Get More Result Sets);

Note

Use this pattern even if the stored procedure executes only a single SELECT and
produces only one result set. This is a requirement of the underlying protocol.

8.3 Calling Stored Procedures with Pr epar edSt at enent Objects

This section shows how to call stored procedures using prepared statements. It is recommended
that, before working through it, you first work through the previous tutorial Section 8.2, “Calling Stored
Procedures with St at enent Objects”. That section shows the stored procedures required by the
applications in this section.

Scenario 1: Using a Pr epar edSt at enent for a Stored Procedure That
Returns No Result

This example shows how to call a stored procedure that returns no result set.

1. Make a copy of the tutorial framework code:

shell > cp framewor k. cpp ps_scenari ol. cpp

2. Add the following code to the t r y block of the tutorial framework:

vector<string> code_vector;

code_vect or. push_back(" SLD") ;
code_vector. push_back("DSN') ;
code_vector. push_back("ATL");

47

http://dev.mysql.com/doc/refman/5.6/en/call.html

Scenario 2: Using a Pr epar edSt at enent for a Stored Procedure That Returns an Output Parameter

vector<string> nane_vector;
name_vect or. push_back(" Seal and") ;
name_vect or. push_back(" Di sneyl and") ;
name_vect or. push_back("Atl antis");

vector<string> cont_vector;

cont _vector. push_back(" Eur ope");

cont _vector. push_back("North America");

cont _vector. push_back(" Cceani a");

sql::Driver * driver = get_driver_instance();

std::auto_ptr< sql:: Connection > con(driver->connect(url, user, pass));
con->set Schema(dat abase) ;

std::auto_ptr< sql::PreparedStatenment > pstnt;
pstnt.reset(con->prepareStatenment ("CALL add_country(?,?,?)"));
for (int i=0; i<3; i++)
{

pstnt->setString(l, code_vector[i])

pstmt->setString(2, name_vector[i]);

pstmt->set String(3,cont_vector[i])

pst mt - >execut e() ;

Also, uncomment #i ncl ude <vect or > near the top of the code, because vectors are used to store
sample data.

3. Compile the program as described in Section 8.1, “Prerequisites and Background Information”.

4. Run the program:

shel | > ./ ps_scenariol

5. You can check whether the database has been updated correctly by using this query:

nmysql > SELECT Code, Nanme, Continent FROM Country
-> WHERE Code IN('DSN ,'ATL','SLD);

dhmcc=os dimccccococco= dimccccccoccccooo +
| Code | Name | Continent [
dhmcc=os dimccccococco= dimccccccoccccooo +
| ATL | Atlantis | Cceania |
| DSN | Disneyland | North Anerica |
| SLD | Seal and | Europe [
dhmcc=os dimccccococco= dimccccccoccccooo +

The code is relatively simple, as no processing is required to handle result sets. The procedure call,

CALL add_country(?, ?,?),is made using placeholders for input parameters denoted by ' ?' . These
placeholders are replaced by the appropriate data values using the Pr epar edSt at enent object's

set St ri ng method. The f or loop is set up to iterate 3 times, as there are three data sets in this example.
The same Pr epar edSt at enent is executed three times, each time with different input parameters.

Scenario 2: Using a Pr epar edSt at enent for a Stored Procedure That
Returns an Output Parameter

This example shows how to handle a stored procedure that returns an output parameter.

1. Make a copy of the tutorial framework code:

48

Scenario 2: Using a Pr epar edSt at enent for a Stored Procedure That Returns an Output Parameter

shel |l > cp framewor k. cpp ps_scenari 02. cpp

2. Add the following code to the t r y block of the tutorial framework:

vector<string> cont_vector;

cont _vector. push_back(" Eur ope");

cont _vector. push_back("North America");
cont _vector. push_back(" Cceani a");

sql::Driver * driver = get_driver_instance();

std::auto_ptr< sql:: Connection > con(driver->connect(url, user, pass));
con->set Schema(dat abase) ;

std::auto_ptr< sql::Statement > stnt(con->createStatenent());
std::auto_ptr< sql::PreparedStatenment > pstnt;
std::auto_ptr< sql::ResultSet > res;

pstnt . reset(con->prepareStatement (" CALL get _pop_conti nent (?, @op)"));

for (int i=0; i<3; i++)
{
pstmt->setString(l, cont_vector[i]);
pst nt - >execut e() ;
res.reset (stnt->executeQuery("SELECT @op AS _popul ation"));
whi l e (res->next())
cout << "Popul ation of
<< cont_vector[i]
<< " is "
<< res->get String("_popul ati on") << endl;

Also, uncomment #i ncl ude <vect or > near the top of the code, because vectors are used to store

sample data.
3. Compile the program as described in Section 8.1, “Prerequisites and Background Information”.
4. Run the program:

shell > ./ ps_scenari 02

Connect or/ C++ tutorial framework...

Popul ati on of Europe is 730074600

Popul ation of North America is 482993000

Popul ati on of Cceania is 30401150
Done.

In this scenario a Pr epar edSt at enent object is created that calls the get _pop_cont i nent stored
procedure. This procedure takes an input parameter, and also returns an output parameter. The approach
used is to create another statement that can be used to fetch the output parameter using a SELECT query.

Note that when the Pr epar edSt at enent is created, the input parameter to the stored procedure is

denoted by ?'. Prior to execution of the prepared statement, it is necessary to replace this placeholder by

an actual value. This is done using the set St ri ng method:

pstnt->setString(l, cont_vector[i]);

Although the query used to obtain the output parameter returns only a single row, it is important to use the

whi | e loop to catch more than one row, to avoid the possibility of the connection becoming unstable.

49

Scenario 3: Using a Pr epar edSt at enent for a Stored Procedure That Returns a Result Set

Scenario 3: Using a Pr epar edSt at enent for a Stored Procedure That
Returns a Result Set

This example shows how to handle result sets produced by a stored procedure.

1.

2.

5.

Note

This scenario requires MySQL 5.5.3 or higher. The client/server protocol does not
support fetching multiple result sets from stored procedures prior to 5.5.3.

Make a copy of the tutorial framework code:

shell > cp framewor k. cpp ps_scenari 03. cpp

Add the following code to the t r y block of the tutorial framework:

sql::Driver * driver = get_driver_instance();

std::auto_ptr< sqgl:: Connection > con(driver->connect(url, user,

con->set Schema(dat abase) ;

std::auto_ptr< sql::PreparedStatenment > pstnt;
std::auto_ptr< sql::ResultSet > res;

pstnt.reset(con->prepareStatenent ("CALL get _data()"));
res.reset (pstnt->executeQuery());

do {
res.reset (pstnt->getResultSet());
while (res->next()) {

cout << "Nanme: " << res->getString("Name")
<< " Popul ation: " << res->getlnt("Popul ation")
<< endl;

}
} while (pstnt->getMreResults());

pass));

Compile the program as described in Section 8.1, “Prerequisites and Background Information”.

Run the program:

shel | > ./ ps_scenari 03

Make a note of the output generated.

The code executes the stored procedure using a Pr epar edSt at enent object. The standard do/whi | e
construct is used to ensure that all result sets are fetched. The returned values are fetched from the result
sets using the get | nt and get St ri ng methods.

50

Chapter 9 MySQL Connector/C++ Debug Tracing

Although a debugger can be used to debug your application, you may find it beneficial to turn on the debug
traces of the connector. Some problems happen randomly which makes them difficult to debug using a
debugger. In such cases, debug traces and protocol files are more useful because they allow you to trace
the activities of all instances of your program.

DTrace is a very powerful technology to trace any application without having to develop an extra trace
module for your application. Unfortunately, DTrace is currently only available on Solaris, Mac OS X 10.5,
and FreeBSD.

MySQL Connector/C++ can write two trace files:
1. Trace file generated by the MySQL client library
2. Trace file generated internally by MySQL Connector/C++

The first trace file can be generated by the underlying MySQL client library (I i brmysqgl cl i ent). To enable
this trace, the connector will call the mysql _debug() C API function internally. Because only debug
versions of the MySQL client library are capable of writing a trace file, compile MySQL Connector/C++
against a debug version of the library to use this trace. The trace shows the internal function calls and the
addresses of internal objects as shown here:

>mysql _stmt _init
| > nmynmal | oc

| | enter: Size: 816

| | exit: ptr: O0x68e7b8

| < nmymalloc | >init_alloc_root
| | enter: root: 0x68e7hb8

| | >_nymalloc

| | | enter: Size: 2064

| | | exit: ptr: O0x68eb28

[-..]

The second trace is the MySQL Connector/C++ internal trace. It is available with debug and nondebug
builds of the connector as long as you have enabled the tracing module at compile time using cnake -
DVIYSQLCPPCONN_TRACE_ENABLE: BOOL=1. By default, tracing functionality is not available and calls to
trace functions are removed by the preprocessor.

Compiling the connector with tracing functionality enabled causes two additional tracing function calls per
each connector function call. For example:

| INF: Tracing enabl ed
<MySQL_Connection::setdient Opti on
>MySQ._Prepar ed_St at enent : : set | nt

| INF: this=0x69a2e0

| >MySQ._Prepared_Statenent:: checkC osed
| <MySQ._Prepared_Statenent::checkC osed
| <MySQL_Prepared_Statenent:: setlnt

[...]

Run your own benchmark to find out how much this will impact the performance of your application.

A simple test using a loop running 30,000 | NSERT SQL statements showed no significant real-time impact.
The two variants of this application using a trace enabled and trace disabled version of the connector
performed equally well. The runtime measured in real time was not significantly impacted as long as writing
a debug trace was not enabled. However, there will be a difference in the time spent in the application.
When writing a debug trace, the 1/0 subsystem may become a bottleneck.

51

http://dev.mysql.com/doc/refman/5.6/en/mysql-debug.html
http://dev.mysql.com/doc/refman/5.6/en/insert.html

In summary, use connector builds with tracing enabled carefully. Trace-enabled versions may cause higher
CPU usage even if the overall runtime of your application is not impacted significantly.

The example from exanpl es/ debug_out put . cpp demonstrates how to activate the debug traces in
your program. Currently they can only be activated through API calls. The traces are controlled on a per-
connection basis. You can use the set Cl i ent Opt i ons() method of a connection object to activate
and deactivate trace generation. The MySQL client library trace is always written to a file, whereas the
connector's protocol messages are printed to the standard output.

sql ::Driver *driver;
int on_off = 1;

/* Using the Driver to create a connection */
driver = get_driver_instance();
std::auto_ptr< sql:: Connection > con(driver->connect(host, user, pass));

/*

Activate debug trace of the MySQL client library (C API)

Only available with a debug build of the MySQL client |ibrary!
*/

con->setClientQoption("libmysqgl _debug”, "d:t: O client.trace");

/*

Connector/C++ tracing is available if you have conpiled the
driver using crmake - DMYSQLCPPCONN _TRACE_ENABLE: BOOL=1

*/

con->setClientOption("client_trace", &on_off);

52

Chapter 10 MySQL Connector/C++ Usage Notes

MySQL Connector/C++ is compatible with the JDBC 4.0 API. See the JDBC overview for information on
JDBC 4.0. Please also check the exanpl es/ directory of the download package.

» The MySQL Connector/C++ sql : : Dat aType class defines the following JDBC standard data types:
UNKNOWN, BI T, TI NYI NT, SMALLI NT, MEDI UM NT, | NTEGER, Bl G NT, REAL, DOUBLE, DECI MAL,
NUMERI C, CHAR, BI NARY, VARCHAR, VARBI NARY, LONGVARCHAR, LONGVARBI NARY, TI MESTAMP,
DATE, Tl ME, GEOVETRY, ENUM SET, SQLNULL.

MySQL Connector/C++ does not support the following JDBC standard data types: ARRAY, BLOB, CLOB,
DI STI NCT, FLOAT, OTHER, REF, STRUCT.

» Dat abaseMet abDat a: : support sBat chUpdat es() returnst r ue because MySQL supports batch
updates in general. However, the MySQL Connector/C++ API provides no API calls for batch updates.

* Two non-JDBC methods let you fetch and set unsigned integers: get Ul nt 64() and get Ul nt ().
These are available for Resul t Set and Pr epared_St at enent :

e Resul t Set:: get U nt64()

Resul t Set: : get Ul nt ()

e Prepared_Statenent::setU nt64()

e Prepared_Statenent::setU nt()

The corresponding get Long() and set Long() methods have been removed.

e The Dat abaseMet aDat a: : get Col urms() method has 23 columns in its result set, rather than the
22 columns defined by JDBC. The first 22 columns are as described in the JDBC documentation, but
column 23 is new:

23.1 S_AUTO NCREMENT: A string which is “YES” if the column is an auto-increment column, “NO”
otherwise.

* MySQL Connector/C++ may return different metadata for the same column, depending on the method
you call.

Suppose that you have a column that accepts a character set and a collation in its specification and you
specify a binary collation, such as:

VARCHAR(20) CHARACTER SET utf8 COLLATE utf8_bin

The server sets the Bl NARY flag in the result set metadata of this column. The
Resul t Set Met adat a: : get Col umTypeNane() method uses the metadata and will report, due to
the BI NARY flag, that the column type name is Bl NARY. This is illustrated here:

nysql > CREATE TABLE varbin (a VARCHAR(20) CHARACTER SET utf8 COLLATE utf8_bin);
Query OK, 0 rows affected (0.00 sec)

nmysql > sel ect * from varbi n;
Field 1. “a

Cat al og: “def”
Dat abase: “test®
Tabl e: “varbin®

O g_table: “varbin

53

http://www.oracle.com/technetwork/java/overview-141217.html

Type: VAR_STRI NG

Col lation: latinl_swedish_ci (8)
Lengt h: 20

Max_| ength: O

Deci mal s: 0

Fl ags: Bl NARY

0 rows in set (0.00 sec)

nysql > SELECT * FROM | NFORVATI ON_SCHEVA. COLUWNS WHERE TABLE_NAME=' var bi n'\ G

ARKKK KKK KKK K Kk kR R KKk hkkkkk*] [OWY % % % % ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok kR ok kK kK

TABLE_CATALOG NULL
TABLE_SCHEMA: test
TABLE_NAME: var bi n
COLUVN_NAME: a
ORDI NAL_PCSI TION: 1
COLUMN_DEFAULT: NULL
I S_NULLABLE: YES
DATA _TYPE: var char
CHARACTER_MAXI MUM _LENGTH: 20
CHARACTER _OCTET_LENGTH: 60
NUMERI C_PRECI SI ON: NULL
NUMERI C_SCALE: NULL
CHARACTER _SET_NAME: utf8
COLLATI ON_NAME: utf8_bin
COLUWN_TYPE: var char (20)
COLUMN_KEY:
EXTRA:
PRI VI LEGES: sel ect,insert, update, references
COLUMN_COMVENT:
1 rowin set (0.01 sec)

However, | NFORVATI ON_SCHEMA gives no hint in its COLUNMNS table that metadata will contain the
Bl NARY flag. Dat abaseMet aDat a: : get Col unms () uses | NFORMATI ON_SCHEMA and will report the
type name VARCHAR for the same column. It also returns a different type code.

When inserting or updating BLOB or TEXT columns, MySQL Connector/C++ developers are advised not
touse set String() . Instead, use the dedicated set Bl ob() API function.

The use of set St ri ng() can cause a Packet too large error message. The error occurs if the length of
the string passed to the connector using set Stri ng() exceeds nax_al | owed packet (minus a few
bytes reserved in the protocol for control purposes). This situation is not handled in MySQL Connector/C
++, because it could lead to security issues, such as extremely large memory allocation requests due to
malevolently long strings.

If set Bl ob() is used, this problem does not arise because set Bl ob() takes a streaming approach
based on st d: : i st r eam When sending the data from the stream to MySQL Server, MySQL
Connector/C++ splits the stream into chunks appropriate for MySQL Server using the current

max_al | owed packet setting.

Caution
When using set St ri ng(), itis not possible to set max_al | owed_packet to
a value large enough for the string prior to passing it to MySQL Connector/C++.

That configuration option cannot be changed within a session.

This difference from the JDBC specification ensures that MySQL Connector/C++ is not vulnerable to
memory flooding attacks.

54

http://dev.mysql.com/doc/refman/5.6/en/packet-too-large.html
http://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_max_allowed_packet
http://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_max_allowed_packet
http://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_max_allowed_packet

 In general, MySQL Connector/C++ works with MySQL 5.0, but it is not completely supported. Some
methods may not be available when connecting to MySQL 5.0. This is because the Information Schema
is used to obtain the requested information. There are no plans to improve the support for 5.0 because
the current GA version of MySQL Server is 5.6. MySQL Connector/C++ is primarily targeted at the
MySQL Server GA version that is available on its release.

The following methods throw a sql : : Met hodNot | npl enent ed exception when you connect to a
MySQL server earlier than 5.1:

« Dat abaseMet adat a: : get Cr ossRef erence()
« Dat abaseMet adat a: : get Expor t edKeys()
* MySQL Connector/C++ includes a Connect i on: : get Cl i ent Opti on() method that is not included in
the JDBC API specification. The prototype is:
void getdientOption(const std::string & opti onName, void * optionVal ue)

The method can be used to check the value of connection properties set when establishing a database
connection. The values are returned through the opt i onVal ue argument passed to the method with the
type voi d *.

Currently, get C i ent Opti on() supports fetching the opt i onVal ue of the following options:
* net adat aUsel nf oSchena
e def aul t St at enent Resul t Type

e defaul t PreparedSt at enent Resul t Type
The net adat aUsel nf oSchena connection option controls whether to use the
I nf or mat i on_Schemat a for returning the metadata of SHOWstatements:

e For net adat aUsel nf oSchenm, interpret the opt i onVal ue argument as a boolean upon return.

e Fordef aul t St at ement Resul t Type and def aul t Prepar edSt at enent Resul t Type, interpret
the opt i onVal ue argument as an integer upon return.

The connection property can be set either when establishing the connection through the connection
property map, or using voi d Connecti on::setCient Option(const std::string &
opti onName, const void * optionVal ue) where opti onNane is assigned the value

nmet adat aUsel nf oSchena.

Some examples:

bool i sl nfoSchemaUsed;

conn->get Cl i ent Opti on(" et adat aUsel nf oSchema", (void *) & slnfoSchemaUsed);

i nt defaultStntResType;

i nt defaul t PSt nt ResType;

conn->get d i ent Opti on("def aul t St at enent Resul t Type", (void *) &defaul t St nt ResType);
conn->get d i ent Opti on("def aul t Prepar edSt at ement Resul t Type", (void *) &defaul t PSt nt ResType) ;

* MySQL Connector/C++ supports the following methods not found in the JDBC API standard:

std::string MySQL_Connecti on: : get Sessi onVari abl e(const std::string & varnane)

55

voi d MySQ._Connecti on: : set Sessi onVari abl e(const std::string & varnane, const std::string & val ue)

These methods get and set MySQL session variables. Both are members of the MySQL_Connect i on
class.

get Sessi onVar i abl e() is equivalent to executing the following and fetching the first return value:

SHOW SESSI ON VARI ABLES LI KE " <var nane>"
You can use the “%” and “_" SQL pattern characters in <varname>.

set Sessi onVari abl e() is equivalent to executing:

SET SESSI ON <var name> = <val ue>

Fetching the value of a column can sometimes return different values depending on whether the call is
made from a Statement or Prepared Statement. This is because the protocol used to communicate with
the server differs depending on whether a Statement or Prepared Statement is used.

To illustrate this, consider the case where a column has been defined as type Bl G NT. The most
negative Bl G NT value is then inserted into the column. If a Statement and Prepared Statement are
created that perform a Get Ul nt 64() call, then the results will be different in each case. The Statement
returns the maximum positive value for Bl G NT. The Prepared Statement returns O.

The difference results from the fact that Statements use a text protocol, and Prepared Statements use
a binary protocol. With the binary protocol in this case, a binary value is returned from the server that
can be interpreted as an i nt 64. In the preceding scenario, a very large negative value is fetched with
Get Ul nt 64(), which fetches unsigned integers. Because the large negative value cannot be sensibly
converted to an unsigned value, 0 is returned.

In the case of the Statement, which uses the text protocol, values are returned from the server as
strings, and then converted as required. When a string value is returned from the server in the preceding
scenario, the large negative value must be converted by the runtime library function st r t oul (), which
Get Ul nt 64() calls. The behavior of st rt oul () is dependent upon the specific runtime and host
operating system, so the results can be platform dependent. In the case, given a large positive value
was actually returned.

Although it is very rare, there are some cases where Statements and Prepared Statements can
return different values unexpectedly, but this usually only happens in extreme cases such as the one
mentioned.

The JDBC documentation lists many fields for the Dat abaseMet aDat a class. JDBC also appears to
define certain values for those fields. However, MySQL Connector/C++ does not define certain values
for those fields. Internally enumerations are used and the compiler determines the values to assign to a
field.

To compare a value with the field, use code such as the following, rather than making assumptions
about specific values for the attribute:

/] dbrmeta is an instance of DatabaseMet aDat a
i f (nmyvalue == dbneta->attributeNoNulls) {

}

56

http://docs.oracle.com/javase/7/docs/api/java/sql/DatabaseMetaData.html
http://docs.oracle.com/javase/7/docs/api/java/sql/DatabaseMetaData.html#attributeNoNulls

Usually nyval ue will be a column from a result set holding metadata information. MySQL Connector/C+
+ does not guarantee that at t ri but eNoNul | s is 0. It can be any value.

* When programming stored procedures, JDBC has available an extra class, an extra abstraction layer for
callable statements, the Cal | abl eSt at enent class. As this class is not present in MySQL Connector/
C++, use the methods from the St at enent and Pr epar edSt at enent classes to execute a stored
procedure using CALL.

57

http://dev.mysql.com/doc/refman/5.6/en/call.html

58

Chapter 11 MySQL Connector/C++ Known Bugs and Issues

Please report bugs through the MySQL Bug System. See How to Report Bugs or Problems.

For release notes detailing the changes in each release of Connector/C++, see MySQL Connector/C++
Release Notes.

* When linking against a static library for 1.0.3 on Windows, define CPPDBC_PUBLI C_FUNC either in the
compiler options (preferable) or with / D " CPPCONN_PUBLI C_FUNC=". You can also explicitly define it
in your code by placing #def i ne CPPCONN_PUBLI C_FUNC before the header inclusions.

» Generally speaking, C++ library binaries are less portable than C library binaries. Issues can be caused
by name mangling, different Standard Template Library (STL) versions, and using different compilers
and linkers for linking against the libraries than were used for building the library itself.

Even a small change in the compiler version can cause problems. If you obtain error messages that you
suspect are related to binary incompatibilities, build MySQL Connector/C++ from source, using the same
compiler and linker that you will use to build and link your application.

Due to the variations between Linux distributions, compiler and linker versions and STL versions, it is not
possible to provide binaries for each and every possible configuration. However, the MySQL Connector/

C++ binary distributions contain a READVE file that describes the environment and settings used to build

the binary versions of the libraries.

» To avoid potential crashes, the build configuration of MySQL Connector/C++ should match the build
configuration of the application using it. For example, do not use the release build of MySQL Connector/
C++ with a debug build of the client application.

59

http://dev.mysql.com/doc/refman/5.6/en/bug-reports.html
http://dev.mysql.com/doc/relnotes/connector-cpp/en/
http://dev.mysql.com/doc/relnotes/connector-cpp/en/

60

Chapter 12 MySQL Connector/C++ Support

For general discussion of the MySQL Connector/C++ please use the C/C++ community forum or join the
MySQL Connector/C++ mailing list.

Bugs can be reported at the MySQL bug Web site.

For release notes detailing the changes in each release of MySQL Connector/C++, see MySQL Connector/
C++ Release Notes.

For Licensing questions, and to purchase MySQL Products and Services, please see http://
www.mysgl.com/buy-mysql/

61

http://forums.mysql.com/list.php?167
http://lists.mysql.com
http://bugs.mysql.com
http://dev.mysql.com/doc/relnotes/connector-cpp/en/
http://dev.mysql.com/doc/relnotes/connector-cpp/en/

62

Appendix A Licenses for Third-Party Components

Table of Contents

N A = Yo To 1o I o = Y o= 1 -
A.2 OPENSSL V1.0 LICENSE ...ouiiiiiiiieii et et e e e et e e e e et e e e e e e e e et e et e et eanaeanaas

MySQL Connector/C++

» Section A.1, “Boost Library License”

» Section A.2, “OpenSSL v1.0 License”

A.l1 Boost Library License

The following software may be included in this product:
Boost C++ Libraries

Use of any of this software is governed by the terms of the license below:

Boost Software License - Version 1.0 - August 17th, 2003

Perm ssion is hereby granted, free of charge, to any person or
organi zati on obtaining a copy of the software and acconpanyi ng
docunent ati on covered by this license (the "Software") to use
reproduce, display, distribute, execute, and transmt the Software
and to prepare derivative works of the Software, and to permt
third-parties to whomthe Software is furnished to do so, al
subject to the follow ng:

The copyright notices in the Software and this entire statenent,
includi ng the above license grant, this restriction and the
followi ng disclainmer, nmust be included in all copies of the
Software, in whole or in part, and all derivative works of the

Sof twar e, unl ess such copies or derivative works are solely in the
form of nachi ne- execut abl e obj ect code generated by a source

| anguage processor

THE SOFTWARE |S PROVIDED "AS |S', W THOUT WARRANTY OF ANY KI ND,
EXPRESS OR | MPLI ED, | NCLUDI NG BUT NOT LI M TED TO THE WARRANTI ES OF
MERCHANTABI LI TY, FI TNESS FOR A PARTI CULAR PURPOSE, TI TLE AND

NON- | NFRI NGEMENT. | N NO EVENT SHALL THE COPYRI GHT HOLDERS OR ANYONE
DI STRI BUTI NG THE SOFTWARE BE LI ABLE FOR ANY DAMAGES OR OTHER

LI ABI LI TY, WHETHER | N CONTRACT, TORT OR OTHERW SE, ARI SI NG FROM OUT
OF OR I N CONNECTI ON W TH THE SOFTWARE OR THE USE OR OTHER DEALI NGS
I'N THE SOFTWARE

A.2 OpenSSL v1.0 License

The following software may be included in this product:

NOTE: Does not apply to GPL |icensed server (OpenSSL is not shipped with it)
OpenSSL v1.0

LI CENSE | SSUES

The OpenSSL tool kit stays under a dual license, i.e. both the conditions of

63

OpenSSL v1.0 License

the OpenSSL License and the original SSLeay |icense apply to the toolkit. See
bel ow for the actual |icense texts. Actually both |icenses are BSD style Open
Source licenses. In case of any |license issues related to OpenSSL pl ease

cont act openssl - core@penssl . org.

OpenSSL Li cense

Copyright (c) 1998-2008 The OpenSSL Proj ect.

Al rights reserved.

Redi stri bution and use in source and binary fornms, with or w thout

nmodi fication, are permtted provided that the follow ng conditions are net:

1. Redistributions of source code nust retain the above copyright notice,
this list of conditions and the foll ow ng disclaimer.

2. Redistributions in binary form nust reproduce the above copyright notice,
this list of conditions and the foll ow ng disclainmer in the documentation
and/or other materials provided with the distribution.

3. Al advertising materials nentioning features or use of this software nust
di splay the foll owi ng acknow edgnment: "This product includes software

devel oped by the OpenSSL Project for use in the OpenSSL Tool kit. (Link1 /)"

4. The nanes "OpenSSL Tool kit" and "OpenSSL Project" nust not be used to
endorse or pronote products derived fromthis software without prior witten
perm ssion. For witten perm ssion, please contact openssl-core@penssl.org.

5. Products derived fromthis software may not be called "OpenSSL" nor may
"OpenSSL" appear in their nanes w thout prior witten permni ssion of the
OpenSSL Proj ect .

6. Redistributions of any form whatsoever nust retain the follow ng
acknow edgnent: "This product includes software devel oped by the OpenSSL
Project for use in the OpenSSL Tool kit (Link2 /)"

TH S SOFTWARE | S PROVI DED BY THE OpenSSL PROJECT " "AS |S'' AND ANY EXPRESSED

OR | MPLI ED WARRANTI ES, | NCLUDI NG, BUT NOT LIMTED TO, THE | MPLI ED WARRANTI ES

OF MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR PURPGCSE ARE DI SCLAI MED. | N
NO EVENT SHALL THE OpenSSL PRQJECT OR | TS CONTRI BUTORS BE LI ABLE FOR ANY

DI RECT, | NDI RECT, | NCI DENTAL, SPECI AL, EXEMPLARY, OR CONSEQUENTI AL DAMVAGES

(I'NCLUDI NG, BUT NOT LIM TED TO, PROCUREMENT OF SUBSTI TUTE GOODS OR SERVI CES;
LOSS OF USE, DATA, OR PRCFITS; OR BUSI NESS | NTERRUPTI ON) HOWEVER CAUSED AND

ON ANY THEORY OF LIABILITY, WHETHER I N CONTRACT, STRICT LIABILITY, OR TORT

(I NCLUDI NG NEGLI GENCE OR OTHERW SE) ARI SI NG | N ANY WAY QUT OF THE USE OF

TH S SOFTWARE, EVEN I F ADVI SED COF THE PGSSI Bl LI TY OF SUCH DAVAGE.

Thi s product includes cryptographic software witten by Eric Young
(eay@ryptsoft.con). This product includes software witten by Ti m Hudson
(tjh@ryptsoft.conj.

Origi nal SSLeay License

| Copyright (C) 1995-1998 Eric Young (eay@ryptsoft.com

Al rights reserved.

Thi s package is an SSL i npl enentation witten by Eric Young
(eay@ryptsoft.con). The inplenentation was witten so as to conformw th
Net scapes SSL. This library is free for comercial and non-commrerci al use
as long as the followi ng conditions are aheared to. The foll ow ng conditions
apply to all code found in this distribution, be it the RC4, RSA, | hash,
DES, etc., code; not just the SSL code. The SSL docunentation included with
this distribution is covered by the sane copyright ternms except that the

hol der is Tim Hudson (tjh@ryptsoft.comn. Copyright remains Eric Young's,
and as such any Copyright notices in the code are not to be renoved. |If this
package is used in a product, Eric Young should be given attribution as the
aut hor of the parts of the library used. This can be in the formof a
textual nessage at program startup or in docunentation (online or textual)
provided with the package. Redi stri bution and use in source and binary
forms, with or without nodification, are permitted provided that the
following conditions are net: 1. Redistributions of source code nust retain

64

OpenSSL v1.0 License

the copyright notice, this list of conditions and the foll ow ng disclainer.
2. Redistributions in binary form nust reproduce the above copyright notice,
this list of conditions and the foll ow ng disclainmer in the documentation
and/or other materials provided with the distribution. 3. Al advertising
materials nentioning features or use of this software nust display the

foll owi ng acknow edgenent: "“This product includes cryptographic software
witten by Eric Young (eay@ryptsoft.conm)” The word 'cryptographic' can be
left out if the routines fromthe library being used are not cryptographic
related :-). 4. If you include any Wndows specific code (or a derivative
thereof) fromthe apps directory (application code) you nust include an
acknow edgenent: "This product includes software witten by Ti m Hudson
(tjh@ryptsoft.com" THI S SOFTWARE | S PROVI DED BY ERIC YOUNG ""AS IS'' AND
ANY EXPRESS OR | MPLI ED WARRANTI ES, | NCLUDI NG, BUT NOT LIM TED TO, THE | MPLI ED
WARRANTI ES OF MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR PURPCSE ARE

DI SCLAI MED. I N NO EVENT SHALL THE AUTHOR OR CONTRI BUTORS BE LI ABLE FOR ANY
DI RECT, | NDI RECT, | NCI DENTAL, SPECI AL, EXEMPLARY, OR CONSEQUENTI AL DAMAGES
(I'NCLUDI NG BUT NOT LIM TED TO, PROCUREMENT OF SUBSTI TUTE GOODS OR SERVI CES;
LOSS OF USE, DATA, OR PROFITS; OR BUSI NESS | NTERRUPTI ON) HOWEVER CAUSED AND
ON ANY THEORY OF LI ABILITY, WHETHER | N CONTRACT, STRICT LIABILITY, OR TORT
(1 NCLUDI NG NEGLI GENCE OR OTHERW SE) ARI SI NG I N ANY WAY QUT OF THE USE OF

TH S SOFTWARE, EVEN | F ADVI SED OF THE PCSSI BI LI TY OF SUCH DAMAGE. The
license and distribution terms for any publically avail abl e version or
derivative of this code cannot be changed. i.e. this code cannot sinply be
copi ed and put under another distribution Iicense [including the GNU Public
Li cense.]

65

66

	MySQL Connector/C++ Developer Guide
	Table of Contents
	Preface and Legal Notices
	Chapter 1 Introduction to MySQL Connector/C++
	Chapter 2 How to Get MySQL Connector/C++
	Chapter 3 Installing MySQL Connector/C++ from a Binary Distribution
	Chapter 4 Installing MySQL Connector/C++ from Source
	4.1 Building MySQL Connector/C++ from Source on Unix, Solaris, and Mac OS X
	4.2 Building MySQL Connector/C++ from Source on Windows
	4.3 Dynamically Linking MySQL Connector/C++ Against the MySQL Client Library

	Chapter 5 Building MySQL Connector/C++ Windows Applications with Microsoft Visual Studio
	Chapter 6 Building MySQL Connector/C++ Linux Applications with NetBeans
	Chapter 7 MySQL Connector/C++ Getting Started: Usage Examples
	7.1 MySQL Connector/C++ Connecting to MySQL
	7.2 MySQL Connector/C++ Running a Simple Query
	7.3 MySQL Connector/C++ Fetching Results
	7.4 MySQL Connector/C++ Using Prepared Statements
	7.5 MySQL Connector/C++ Complete Example 1
	7.6 MySQL Connector/C++ Complete Example 2

	Chapter 8 MySQL Connector/C++ Tutorials
	8.1 Prerequisites and Background Information
	8.2 Calling Stored Procedures with Statement Objects
	8.3 Calling Stored Procedures with PreparedStatement Objects

	Chapter 9 MySQL Connector/C++ Debug Tracing
	Chapter 10 MySQL Connector/C++ Usage Notes
	Chapter 11 MySQL Connector/C++ Known Bugs and Issues
	Chapter 12 MySQL Connector/C++ Support
	Appendix A Licenses for Third-Party Components
	A.1 Boost Library License
	A.2 OpenSSL v1.0 License

