$\newcommand{\+}{^{\dagger}}%
\newcommand{\angles}[1]{\left\langle #1 \right\rangle}%
\newcommand{\braces}[1]{\left\lbrace #1 \right\rbrace}%
\newcommand{\bracks}[1]{\left\lbrack #1 \right\rbrack}%
\newcommand{\ceil}[1]{\,\left\lceil #1 \right\rceil\,}%
\newcommand{\dd}{{\rm d}}%
\newcommand{\down}{\downarrow}%
\newcommand{\ds}[1]{\displaystyle{#1}}%
\newcommand{\equalby}[1]{{#1 \atop {= \atop \vphantom{\huge A}}}}%
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}%
\newcommand{\fermi}{\,{\rm f}}%
\newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}%
\newcommand{\half}{{1 \over 2}}%
\newcommand{\ic}{{\rm i}}%
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}%
\newcommand{\isdiv}{\,\left.\right\vert\,}%
\newcommand{\ket}[1]{\left\vert #1\right\rangle}%
\newcommand{\ol}[1]{\overline{#1}}%
\newcommand{\pars}[1]{\left( #1 \right)}%
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\pp}{{\cal P}}%
\newcommand{\root}[2][]{\,\sqrt[#1]{\,#2\,}\,}%
\newcommand{\sech}{\,{\rm sech}}%
\newcommand{\sgn}{\,{\rm sgn}}%
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}%
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$
\begin{align}
&{1 \over \bracks{\cos\pars{x} + \sin\pars{x}}\bracks{1 - \cos\pars{x}\sin\pars{x}}}
={1 \over \bracks{\cos\pars{x} + \tan\pars{\pi/4}\sin\pars{x}}
\bracks{1 - \sin\pars{2x}/2}}
\\[3mm]&={\root{2} \over \cos\pars{x - \pi/4}\bracks{2 - \sin\pars{2x}}}
={\root{2} \over \cos\pars{x - \pi/4}\braces{2 - \sin\pars{2\bracks{x - \pi/4} + \pi/2}}}
\\[3mm]&={\root{2} \over \cos\pars{x - \pi/4}\braces{2 - \cos\pars{2\bracks{x - \pi/4}}}}
\end{align}
With $t \equiv x - \pi/4$:
\begin{align}
&{1 \over \bracks{\cos\pars{x} + \sin\pars{x}}\bracks{1 - \cos\pars{x}\sin\pars{x}}}
={\root{2} \over \cos\pars{t}\bracks{2 - \cos\pars{2t}}}
={\root{2} \over \cos\pars{t}\braces{2 - \bracks{2\cos^2\pars{t} - 1}}}
\\[3mm]&={\root{2} \over \cos\pars{t}\bracks{3 - 2\cos^2\pars{t}}}
={\root{2} \over 2}\,
{1 \over \cos\pars{t}\bracks{\root{3}/2 - \cos\pars{t}}\bracks{\root{3}/2 + \cos\pars{t}}}
\\[3mm]&={\root{2} \over 2}\bracks{%
{4/3\over \cos\pars{t}} + {3/2 \over \root{3}/2 - \cos\pars{t}} +
{3/2 \over \root{3}/2 + \cos\pars{t}}}
\\[3mm]&={2\root{2} \over 3}\,{1 \over \cos\pars{t}}
+{3\root{2} \over 4}\bracks{%
{1 \over \root{3}/2 - \cos\pars{t}} + {1 \over \root{3}/2 + \cos\pars{t}}
}
\end{align}
$$
\int{\dd t \over \cos\pars{t}}=\ln\pars{\sec\pars{t} + \tan\pars{t}} +\quad \mbox{a constant}
$$
The remaining integrals can be easily performed with $s \equiv \tan\pars{t/2}$.