Take the 2-minute tour ×
Mathematics Stack Exchange is a question and answer site for people studying math at any level and professionals in related fields. It's 100% free, no registration required.

$$ \mbox{Is it possible to calculate this integral}\quad \int{1 \over \cos^{3}\left(x\right) + \sin^{3}\left(x\right)}\,{\rm d}x\quad {\large ?} $$

I have tried $\dfrac{1}{\cos^3(x)+\sin^3(x)}$=$\dfrac{1}{(\cos(x)+\sin(x))(1-\cos x\sin x)}$ then I made a decomposition. But I'm still stuck. Thank you in advance.

share|improve this question
 
Alpha gets something that looks like it might help. There are some imaginary terms in there, so the initial result is not correct. –  Ross Millikan 3 hours ago
 
Substituting $u=tan(x)$ and with some luck, you need to find a primitive of $$\frac{\sqrt{1+u^2}}{1+u^3}$$ –  Gabriel R. 3 hours ago
add comment

2 Answers

up vote 2 down vote accepted

$\newcommand{\+}{^{\dagger}}% \newcommand{\angles}[1]{\left\langle #1 \right\rangle}% \newcommand{\braces}[1]{\left\lbrace #1 \right\rbrace}% \newcommand{\bracks}[1]{\left\lbrack #1 \right\rbrack}% \newcommand{\ceil}[1]{\,\left\lceil #1 \right\rceil\,}% \newcommand{\dd}{{\rm d}}% \newcommand{\down}{\downarrow}% \newcommand{\ds}[1]{\displaystyle{#1}}% \newcommand{\equalby}[1]{{#1 \atop {= \atop \vphantom{\huge A}}}}% \newcommand{\expo}[1]{\,{\rm e}^{#1}\,}% \newcommand{\fermi}{\,{\rm f}}% \newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}% \newcommand{\half}{{1 \over 2}}% \newcommand{\ic}{{\rm i}}% \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow}% \newcommand{\isdiv}{\,\left.\right\vert\,}% \newcommand{\ket}[1]{\left\vert #1\right\rangle}% \newcommand{\ol}[1]{\overline{#1}}% \newcommand{\pars}[1]{\left( #1 \right)}% \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\pp}{{\cal P}}% \newcommand{\root}[2][]{\,\sqrt[#1]{\,#2\,}\,}% \newcommand{\sech}{\,{\rm sech}}% \newcommand{\sgn}{\,{\rm sgn}}% \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}}% \newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$ \begin{align} &{1 \over \bracks{\cos\pars{x} + \sin\pars{x}}\bracks{1 - \cos\pars{x}\sin\pars{x}}} ={1 \over \bracks{\cos\pars{x} + \tan\pars{\pi/4}\sin\pars{x}} \bracks{1 - \sin\pars{2x}/2}} \\[3mm]&={\root{2} \over \cos\pars{x - \pi/4}\bracks{2 - \sin\pars{2x}}} ={\root{2} \over \cos\pars{x - \pi/4}\braces{2 - \sin\pars{2\bracks{x - \pi/4} + \pi/2}}} \\[3mm]&={\root{2} \over \cos\pars{x - \pi/4}\braces{2 - \cos\pars{2\bracks{x - \pi/4}}}} \end{align}

With $t \equiv x - \pi/4$: \begin{align} &{1 \over \bracks{\cos\pars{x} + \sin\pars{x}}\bracks{1 - \cos\pars{x}\sin\pars{x}}} ={\root{2} \over \cos\pars{t}\bracks{2 - \cos\pars{2t}}} ={\root{2} \over \cos\pars{t}\braces{2 - \bracks{2\cos^2\pars{t} - 1}}} \\[3mm]&={\root{2} \over \cos\pars{t}\bracks{3 - 2\cos^2\pars{t}}} ={\root{2} \over 2}\, {1 \over \cos\pars{t}\bracks{\root{3}/2 - \cos\pars{t}}\bracks{\root{3}/2 + \cos\pars{t}}} \\[3mm]&={\root{2} \over 2}\bracks{% {4/3\over \cos\pars{t}} + {3/2 \over \root{3}/2 - \cos\pars{t}} + {3/2 \over \root{3}/2 + \cos\pars{t}}} \\[3mm]&={2\root{2} \over 3}\,{1 \over \cos\pars{t}} +{3\root{2} \over 4}\bracks{% {1 \over \root{3}/2 - \cos\pars{t}} + {1 \over \root{3}/2 + \cos\pars{t}} } \end{align}

$$ \int{\dd t \over \cos\pars{t}}=\ln\pars{\sec\pars{t} + \tan\pars{t}} +\quad \mbox{a constant} $$

The remaining integrals can be easily performed with $s \equiv \tan\pars{t/2}$.

share|improve this answer
add comment

The substitution $u = \tan(\frac{x}{2})$ converts any integrand that is a rational function in the two variables $\cos x$ and $\sin x$ into a rational function in $u,$ which can then be integrated by standard methods. See p. 56 of Hardy's The Integration of Functions of a Single Variable.

share|improve this answer
add comment

Your Answer

 
discard

By posting your answer, you agree to the privacy policy and terms of service.

Not the answer you're looking for? Browse other questions tagged or ask your own question.