datatracker.ietf.org
Sign in
Version 5.4.0, 2014-04-22
Report a bug

LISP ITR Graceful Restart
draft-saucez-lisp-itr-graceful-03

Document type: Active Internet-Draft (individual)
Document stream: No stream defined
Last updated: 2013-12-20
Intended RFC status: Unknown
Other versions: plain text, pdf, html

Stream State:No stream defined
Document shepherd: No shepherd assigned

IESG State: I-D Exists
Responsible AD: (None)
Send notices to: No addresses provided

Network Working Group                                          D. Saucez
Internet-Draft                                                     INRIA
Intended status: Experimental                             O. Bonaventure
Expires: June 23, 2014                                         UCLouvain
                                                              L. Iannone
                                                       Telecom ParisTech
                                                             C. Filsfils
                                                           Cisco Systems
                                                       December 20, 2013

                       LISP ITR Graceful Restart
                 draft-saucez-lisp-itr-graceful-03.txt

Abstract

   The Locator/ID Separation Protocol (LISP) is a map-and-encap
   mechanism to enable communications between hosts identified with
   their Endpoint IDentifier (EID) over the Internet where EIDs are not
   routable.  To do so, packets toward EIDs are encapsulated in packets
   with routing locators (RLOCs) to form dynamic tunnels.  An Ingress
   Tunnel Router (ITR) that encapsulates EID packets determines tunnel
   endpoints via mappings that associate EIDs to RLOCs.  Before
   encapsulating a packet, the ITR queries the mapping system to obtain
   the mapping associated to the EID of the packet it must encapsulate.
   Such mapping is cached by the ITR in its local EID-to-RLOC cache for
   any subsequent encapsulation for the same EID.  LISP is scalable
   because EID-to-RLOC mappings are cached on ITRs.  Initially, the
   cache is empty and is populated progressively according to the
   traffic traversing the ITR.  However, after an ITR is restarted,
   e.g., for maintenance reason, its cache is empty which means that all
   packets that are re-routed to the freshly restarted ITR will cause
   cache misses and a potentially high loss rate.  In this draft, we
   present mechanisms to reduce the negative impact on traffic caused by
   the restart of an ITR in a LISP network.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any

Saucez, et al.            Expires June 23, 2014                 [Page 1]
Internet-Draft            LISP Graceful Restart            December 2013

   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on June 23, 2014.

Copyright Notice

   Copyright (c) 2013 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  Definition of terms . . . . . . . . . . . . . . . . . . . . .   3
     2.1.  LISP Definition of Terms  . . . . . . . . . . . . . . . .   4
   3.  Problem Statement . . . . . . . . . . . . . . . . . . . . . .   6
   4.  ITR Graceful Restart  . . . . . . . . . . . . . . . . . . . .   7
   5.  Security Considerations . . . . . . . . . . . . . . . . . . .   8
   6.  Conclusion  . . . . . . . . . . . . . . . . . . . . . . . . .   9
   7.  Acknowledgments . . . . . . . . . . . . . . . . . . . . . . .   9
   8.  References  . . . . . . . . . . . . . . . . . . . . . . . . .   9
     8.1.  Normative References  . . . . . . . . . . . . . . . . . .   9
     8.2.  Informative References  . . . . . . . . . . . . . . . . .   9
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  10

1.  Introduction

   The Locator/ID Separation Protocol (LISP) [RFC6830] relies on two
   principles.  First, Endpoint Identifiers (EIDs) are allocated to
   hosts while Routing Locators (RLOCs) are allocated to LISP Ingress
   Tunnel Routers (ITR) and Egress Tunnel Routers (ETR).  EIDs are not

[include full document text]