I'm trying to move a few Matlab libraries that I've built to the python environment. So far, the biggest issue I faced is the dynamic allocation of arrays based on index specification. For example, using Matlab, typing the following:
x = [1 2];
x(5) = 3;
would result in:
x = [ 1 2 0 0 3]
In other words, I didn't know before hand the size of (x), nor its content. The array must be defined on the fly, based on the indices that I'm providing.
In python, trying the following:
from numpy import *
x = array([1,2])
x[4] = 3
Would result in the following error: IndexError: index out of bounds. On workaround is incrementing the array in a loop and then assigned the desired value as :
from numpy import *
x = array([1,2])
idx = 4
for i in range(size(x),idx+1):
x = append(x,0)
x[idx] = 3
print x
It works, but it's not very convenient and it might become very cumbersome for n-dimensional arrays.I though about subclassing ndarray to achieve my goal, but I'm not sure if it would work. Does anybody knows of a better approach?
Thanks for the quick reply. I didn't know about the setitem method (I'm fairly new to Python). I simply overwritten the ndarray class as follows:
import numpy as np
class marray(np.ndarray):
def __setitem__(self, key, value):
# Array properties
nDim = np.ndim(self)
dims = list(np.shape(self))
# Requested Index
if type(key)==int: key=key,
nDim_rq = len(key)
dims_rq = list(key)
for i in range(nDim_rq): dims_rq[i]+=1
# Provided indices match current array number of dimensions
if nDim_rq==nDim:
# Define new dimensions
newdims = []
for iDim in range(nDim):
v = max([dims[iDim],dims_rq[iDim]])
newdims.append(v)
# Resize if necessary
if newdims != dims:
self.resize(newdims,refcheck=False)
return super(marray, self).__setitem__(key, value)
And it works like a charm! However, I need to modify the above code such that the setitem allow changing the number of dimensions following this request:
a = marray([0,0])
a[3,1,0] = 0
Unfortunately, when I try to use numpy functions such as
self = np.expand_dims(self,2)
the returned type is numpy.ndarray instead of main.marray. Any idea on how I could enforce that numpy functions output marray if a marray is provided as an input? I think it should be doable using array_wrap, but I could never find exactly how. Any help would be appreciated.
append
-in-loop algorithm takes quadratic time, so it'll become very slow for large arrays. – larsmans Jul 13 '12 at 14:44