Intuition
I have been bashing my head with this problem for 3 days straight, not realising that It requires two consecutive uses of dynamic programming logic. My approaches, in contrast to the ones available from topcoder, are bottom up.
To start with, instead of calculating the minimum number of mispaints I can achieve, I will instead calculate the maximum number of cells I can paint with maxStrokes
strokes. The result can easily be calculated by subtracting my findings from the total cells of my matrix. But how can I really do that? The initial observation has to be the fact that each row can yield me some painted cells in exchange for a number of strokes. This does not depend on the rest of the rows. That means that, for each row, I can calculate the maximum number of cells I can paint on that specific row, with a certain number of strokes.
Example
Input=['BBWWB','WBWWW'], maxStrokes=3
Let's now look at the first row BBWWB, and denote C to be the Max number of cells i can paint with Q strokes
Q C
0 0 (I cant paint with 0 strokes)
1 3 (BBWWB)
2 4 (BBWWB)
3 5 (BBWWB)
We could easily represent the above results with an array of length 4 that stores for each index (stroke) the maximum number of cells that can be painted, namely [0,3,4,5]
It's easy to see that the second row in the same manner would have an array [0,4,4,5].
The result can now easily be calculated just by these two arrays alone, as what we're looking for is a combination of two choices, one for each calculated array, that will yield me the highest amount of cells I can paint with 3 strokes. What are my choices though? Each item of my array represents the maximum number of cells i can paint with index strokes. So, for the first array a choice would be to paint 4 cells with 2 strokes.
I could then combine that choice with the second array's 1-st item 4, which means I can paint 4 cells with 1 stroke. My final result would be 4+4=8 cells with 2+1=3 strokes, which happens to be the best I can get. The output would then trivially be 2*5-8=2 minimum mispaints. However, we need to find an optimal way to calculate the different combinations of items from each row and what sums they can yield me.
The Process
The first part of my algorithm populates two very important tables. Let us denote with N, M the dimensions of the matrix I'm given. The first table, dp
is a N*M*maxStrokes matrix. dp[i][j][k]
represents the maximum number of cells I can paint from the 0-th cell up until the j-th cell of the i-th row with k strokes. As for the maxPainted table, that is a N*maxStrokes matrix. maxPainted[i][k]
stores the maximum number of cells I can paint in the i-th row with k strokes and is identical to the arrays calculated in the above example. In order to calculate the latter, I need to calculate dp
first. The formula is the following:
dp[i][j][k]= MAX (1,dp[i][r][k]+1 (if A[i][j]==A[i][r]) ,dp[i][r][k-1]+1 (if A[i][j]!=A[i][r]))
, for every 0<=r<j
Which can be translated as: The maximum number of cells I can paint up to the j-th cell of the i-th row with k strokes is the maximum of:
- 1, because I can just ignore all the previous cells, and paint this cell alone
dp[i][r][k]+1
, because when A[i][j]==A[i][r]
, I can extend that color with no extra strokes
dp[i][r][k-1]+1
, because when A[i][j]==A[i][r]
, I have to use a new stroke to paint A[i][j]
It is now evident, that the dp
table needs to be calculated in order to acquire the best possible scenarios for each row, that is the maximum number of cells I can paint with every possible number of strokes available. But how can I utilize the maxPainted
table once I have calculated it in order to get to my result?
The second part of my approach uses a variation of the 0-1 Knapsack problem in order to calculate the biggest number of cells I can paint with maxStrokes
strokes available. What really made this challenging, is that, in contrast to the classical Knapsack, I am only allowed to pick 1 item out of every row, and then calculate all the possible combinations that do not surpass the required stroke constraint. In order to achieve that, I will firstly create a new array of length N*M +1 , called possSums
. Let us denote with possSums[S]
the MINIMUM number of strokes needed to reach sum S. My goal is to calculate each row's contribution to this array. Let us demonstrate with our previous example.
So I had a 2*5 input, therefore the possSums
array would consist of 10+1 elements, which we set to Infinity, as we re trying to minimize the keystrokes needed to reach said sums.
So, possSums
=[0,�?�,�?�,�?�,�?�,�?�,�?�,�?�,�?�,�?�,�?�], with the first item being 0 because I can paint 0 cells with 0 strokes. What we re now looking to do is calculate each row's contribution to possSums. That means that for every row of my maxPainted
array, each element needs to make a specific sum available, which will simulate it being chosen. As we have previously demostrated, maxPainted[0]
=[0,3,4,5]. This row's contribution would have to allow 0,3,4 and 5 as achievable sums in my possSums array with used strokes 0,1,2,3 respectively. possSums would then be transformed to possSums
=[0,�?�,�?�,1,2,3,�?�,�?�,�?�,�?�,�?�]. The next row was maxPainted[1]
=[0,4,4,5], which now has to once again alter the possSums to allow the combinations made possible with the selection of each item. Notice that each alterations needs to be irrelevant to the others in the same row. For example, if we first allow the sum=4 which can happen by picking the 1st item of maxPainted[1]
, sum=9 cannot be allowed by furtherly picking the 3d item of that same array, essentially meaning that combinations of items in the same row cannot be considered. In order to ensure that no such cases are considered, for each row I create a clone of my possSums
array to which I will be making the necessary modifications instead of my original array. After considering all of the items within maxPainted[1]
, possSums would look like this possSums
=[0,�?�,�?�,1,1,3,�?�,2,3,4,6], giving me a maximum number of cells that can be painted with up to 3 strokes on the 8th index (sum=8). Therefore my output would be 2*5-8=2
var minipaint=(A,maxStrokes)=>{
let n=A.length,m=A[0].length
, maxPainted=[...Array(n)].map(d=>[...Array(maxStrokes+1)].map(d=>0))
, dp=[...Array(n)].map(d=>[...Array(m)].map(d=>[...Array(maxStrokes+1)].map(d=>0)))
for (let k = 1; k <=maxStrokes; k++)
for (let i = 0; i <n; i++)
for (let j = 0; j <m; j++) {
dp[i][j][k]=1 //i can always just paint the damn thing alone
//for every previous cell of this row
//consider painting it and then painting my current cell j
for (let p = 0; p <j; p++)
if(A[i][p]===A[i][j]) //if the cells are the same, i dont need to use an extra stroke
dp[i][j][k]=Math.max(dp[i][p][k]+1,dp[i][j][k])
else//however if they are,im using an extra stroke( going from k-1 to k)
dp[i][j][k]=Math.max(dp[i][p][k-1]+1,dp[i][j][k])
maxPainted[i][k]=Math.max(maxPainted[i][k],dp[i][j][k])//store the maximum cells I can paint with k strokes
}
//this is where the knapsack VARIANT happens:
// Essentially I want to maximize the sum of my selection of strokes
// For each row, I can pick maximum of 1 item. Thing is,I have a constraint of my total
// strokes used, so I will create an array of possSums whose index represent the sum I wanna reach, and values represent the MINIMUM strokes needed to reach that very sum.
// so possSums[k]=min Number of strokes needed to reach sum K
let result=0,possSums=[...Array(n*m+1)].map(d=>Infinity)
//basecase, I can paint 0 cells with 0 strokes
possSums[0]=0
for (let i = 0; i < n; i++) {
let curr=maxPainted[i],
temp=[...possSums]// I create a clone of my possSums,
// where for each row, I intend to alter It instead of the original array
// in order to avoid cases where two items from the same row contribute to
// the same sum, which of course is incorrect.
for (let stroke = 0; stroke <=maxStrokes; stroke++) {
let maxCells=curr[stroke]
//so the way this happens is :
for (let sum = 0; sum <=n*m-maxCells; sum++) {
let oldWeight=possSums[sum]//consider if UP until now, the sum was possible
if(oldWeight==Infinity)// if it wasnt possible, i cant extend it with my maxCells
continue;
// <GAME CHANGER THAT ALLOWS 1 PICK PER ROW
let minWeight=temp[sum+maxCells]//now, consider extending it by sum+maxCells
// ALTERING THE TEMP ARRAY INSTEAD SO MY POTENTIAL RESULTS ARE NOT AFFECTED BY THE
// SUMS THAT WERE ALLOWED DURING THE SAME ROW
temp[sum+maxCells]=Math.min(minWeight,oldWeight+stroke)
if(temp[sum+maxCells]<=maxStrokes)
result=Math.max(result,sum+maxCells)
}
}
possSums=temp
}
return n*m-result // returning the total number of cells minus the maximum I can paint with maxStrokes
}