If I wanted to generate a sequence that follows the pattern
$$x_{n}=x_{n-1}+\dfrac{1}{2}\left(\sqrt{1-y_{n-1}\ ^{2}}-x_{n-1}\right)\\ y_{n}=y_{n-1}+\dfrac{1}{2}\left(\sqrt{1-x_{n}\ ^{2}}-y_{n-1}\right)$$
rather than writing the whole thing out:
x0 = N[0 + 1/2 (Sqrt[1 - 0^2] - 0)];
y0 = N[0 + 1/2 (Sqrt[1 - x0^2] - 0)];
x1 = N[x0 + 1/2 (Sqrt[1 - y0^2] - x0)];
y1 = N[y0 + 1/2 (Sqrt[1 - x1^2] - y0)];
... etc. What is the best way to do it?