Part 3 - Hadoop Data Processing using Hadoop Tools and ODI12c
Upcoming SlideShare
Loading in...5
×

Like this? Share it with your network

Share

Part 3 - Hadoop Data Processing using Hadoop Tools and ODI12c

  • 253 views
Uploaded on

Delivered as a one-day seminar at the SIOUG and HROUG Oracle User Group Conferences, October 2014. ...

Delivered as a one-day seminar at the SIOUG and HROUG Oracle User Group Conferences, October 2014.

Data within a Hadoop cluster is typically analysed and processed using technologies such as Pig, Hive and Spark before being made available for wider use using products like Oracle Big Data SQL and Oracle Business Intelligence. In this presentation, we’ll introduce Pig and Hive as key analysis tools for working with Hadoop data using MapReduce, and then move on to Spark as the next-generation analysis platform typically being used on Hadoop clusters today. We’ll also look at the role of Oracle’s R technologies in this scenario, using Oracle R Enterprise and Oracle R Advanced Analytics for Hadoop to analyse and understand larger datasets than we could normally accommodate with desktop analysis environments

More in: Software
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this

Views

Total Views
253
On Slideshare
239
From Embeds
14
Number of Embeds
2

Actions

Shares
Downloads
21
Comments
0
Likes
0

Embeds 14

https://twitter.com 13
http://www.slideee.com 1

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. Lesson 3 : Hadoop Data Processing using Hadoop Tools and ODI12c Mark Rittman, CTO, Rittman Mead SIOUG and HROUG Conferences, Oct 2014 T : +44 (0) 1273 911 268 (UK) or (888) 631-1410 (USA) or +61 3 9596 7186 (Australia & New Zealand) or +91 997 256 7970 (India) E : [email protected] W : www.rittmanmead.com
  • 2. Moving Data In, Around and Out of Hadoop •Three stages to Hadoop data movement, with dedicated Apache / other tools ‣Load : receive files in batch, or in real-time (logs, events) ‣Transform : process & transform data to answer questions ‣Store / Export : store in structured form, or export to RDBMS using Sqoop RDBMS Imports T : +44 (0) 1273 911 268 (UK) or (888) 631-1410 (USA) or +61 3 9596 7186 (Australia & New Zealand) or +91 997 256 7970 (India) Loading Stage !!!! Processing Stage E : [email protected] W : www.rittmanmead.com !!!! Store / Export Stage !!!! Real-Time Logs / Events File / Unstructured Imports File Exports RDBMS Exports
  • 3. Discovery vs. Exploitation Project Phases •Discovery and monetising steps in Big Data projects have different requirements •Discovery phase ‣Unbounded discovery ‣Self-Service sandbox ‣Wide toolset •Promotion to Exploitation ‣Commercial exploitation ‣Narrower toolset ‣Integration to operations ‣Non-functional requirements ‣Code standardisation & governance T : +44 (0) 1273 911 268 (UK) or (888) 631-1410 (USA) or +61 3 9596 7186 (Australia & New Zealand) or +91 997 256 7970 (India) E : [email protected] W : www.rittmanmead.com
  • 4. Introducing the “Discovery Lab” T : +44 (0) 1273 911 268 (UK) or (888) 631-1410 (USA) or +61 3 9596 7186 (Australia & New Zealand) or +91 997 256 7970 (India) E : [email protected] W : www.rittmanmead.com Actionable Events Event Engine Data Reservoir Data Factory Enterprise Information Store Reporting Discovery Lab Actionable Information Actionable Insights Input Events Execution Innovation Discovery Output Events & Data Structured Enterprise Data Other Data
  • 5. Design Pattern : Discovery Lab •Specific focus on identifying commercial value for exploitation •Small group of highly skilled individuals (aka Data Scientists) •Iterative development approach – data oriented NOT development oriented •Wide range of tools and techniques applied ‣Searching and discovering unstructured data ‣Finding correlations and clusters ‣Filtering, aggregating, deriving and enhancing data •Data provisioned through Data Factory or own ETL •Typically separate infrastructure but could also be unified Reservoir if resource managed effectively T : +44 (0) 1273 911 268 (UK) or (888) 631-1410 (USA) or +61 3 9596 7186 (Australia & New Zealand) or +91 997 256 7970 (India) E : [email protected] W : www.rittmanmead.com
  • 6. Lesson 3 : Hadoop Data Processing Hadoop Data Processing / Analysis Fundamentals T : +44 (0) 1273 911 268 (UK) or (888) 631-1410 (USA) or +61 3 9596 7186 (Australia & New Zealand) or +91 997 256 7970 (India) E : [email protected] W : www.rittmanmead.com
  • 7. Core Apache Hadoop Tools •Apache Hadoop, including MapReduce and HDFS ‣Scaleable, fault-tolerant file storage for Hadoop ‣Parallel programming framework for Hadoop •Apache Hive ‣SQL abstraction layer over HDFS ‣Perform set-based ETL within Hadoop •Apache Pig, Spark ‣Dataflow-type languages over HDFS, Hive etc ‣Extensible through UDFs, streaming etc •Apache Flume, Apache Sqoop, Apache Kafka ‣Real-time and batch loading into HDFS ‣Modular, fault-tolerant, wide source/target coverage T : +44 (0) 1273 911 268 (UK) or (888) 631-1410 (USA) or +61 3 9596 7186 (Australia & New Zealand) or +91 997 256 7970 (India) E : [email protected] W : www.rittmanmead.com
  • 8. Other Tools Typically Used… •Python, Scala, Java and other programming languages ‣For more complex and procedural transformations •Shell scripts, sed, awk, regexes etc •R and R-on-Hadoop ‣Typically at the “discovery” phase •And down the line - ETL tools to automate the process ‣ODI, Pentaho Data Integrator etc T : +44 (0) 1273 911 268 (UK) or (888) 631-1410 (USA) or +61 3 9596 7186 (Australia & New Zealand) or +91 997 256 7970 (India) E : [email protected] W : www.rittmanmead.com
  • 9. Techniques and Tools We’ll Cover in this Seminar •Apache Hive (and Cloudera Impala) •Apache Pig •Apache Spark •R, and Oracle R Advanced Analytics for Hadoop •Automating this processing using ODI12c T : +44 (0) 1273 911 268 (UK) or (888) 631-1410 (USA) or +61 3 9596 7186 (Australia & New Zealand) or +91 997 256 7970 (India) E : [email protected] W : www.rittmanmead.com
  • 10. In the Beginning, There Was … MapReduce •Programming model for processing large data sets in parallel on a cluster •Not specific to a particular language, but usually written in Java •Inspired by the map and reduce functions commonly used in functional programming ‣Map() performs filtering and sorting ‣Reduce() aggregates the output of mappers ‣and a Shuffle() step to redistribute output by keys •Resolved several complications of distributed computing: ‣Allows unlimited computations on unlimited data ‣Map and reduce functions can be easily distributed ‣Combined with Hadoop, very network and rack aware, minimising network traffic and inherently fault-tolerant T : +44 (0) 1273 911 268 (UK) or (888) 631-1410 (USA) or +61 3 9596 7186 (Australia & New Zealand) or +91 997 256 7970 (India) E : [email protected] W : www.rittmanmead.com Mapper Filter, Project Mapper Filter, Project Mapper Filter, Project Reducer Aggregate Reducer Aggregate Output One HDFS file per reducer, in a directory
  • 11. … But writing MapReduce Code is Hard •Typically written in Java •Requires programming skills (though Hadoop takes care of parallelism, fault tolerance) package net.pascalalma.hadoop; T : +44 (0) 1273 911 268 (UK) or (888) 631-1410 (USA) or +61 3 9596 7186 (Australia & New Zealand) or +91 997 256 7970 (India) E : [email protected] W : www.rittmanmead.com import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Reducer; import java.io.IOException; public class AllTranslationsReducer extends Reducer<Text, Text, Text, Text> { private Text result = new Text(); @Override protected void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException { String translations = ""; for (Text val : values) { translations += "|" + val.toString(); } result.set(translations); context.write(key, result); } }
  • 12. Hive as the Hadoop SQL Access Layer •Hive can make generating MapReduce easier •A query environment over Hadoop/MapReduce to support SQL-like queries •Hive server accepts HiveQL queries via HiveODBC or HiveJDBC, automatically creates MapReduce jobs against data previously loaded into the Hive HDFS tables •Approach used by ODI and OBIEE to gain access to Hadoop data •Allows Hadoop data to be accessed just like any other data source (sort of...) T : +44 (0) 1273 911 268 (UK) or (888) 631-1410 (USA) or +61 3 9596 7186 (Australia & New Zealand) or +91 997 256 7970 (India) E : [email protected] W : www.rittmanmead.com
  • 13. How Hive Provides SQL Access over Hadoop •Hive uses a RBDMS metastore to hold table and column definitions in schemas •Hive tables then map onto HDFS-stored files ‣Managed tables ‣External tables •Oracle-like query optimizer, compiler, executor •JDBC and OBDC drivers, plus CLI etc T : +44 (0) 1273 911 268 (UK) or (888) 631-1410 (USA) or +61 3 9596 7186 (Australia & New Zealand) or +91 997 256 7970 (India) E : [email protected] W : www.rittmanmead.com Hive Driver (Compile Optimize, Execute) Managed Tables /user/hive/warehouse/ External Tables /user/oracle/ /user/movies/data/ HDFS HDFS or local files loaded into Hive HDFS area, using HiveQL CREATE TABLE command HDFS files loaded into HDFS using external process, then mapped into Hive using CREATE EXTERNAL TABLE command Metastore
  • 14. T : +44 (0) 1273 911 268 (UK) or (888) 631-1410 (USA) or +61 3 9596 7186 (Australia & New Zealand) or +91 997 256 7970 (India) E : [email protected] W : www.rittmanmead.com Typical Hive Interactions •CREATE TABLE test ( product_id int, product_desc string); ! •SHOW TABLES; ! •CREATE TABLE test2 AS SELECT * FROM test; ! •SELECT SUM(sales) FROM sales_summary; ! •LOAD DATA INPATH ‘/user/mrittman/logs’ INTO TABLE log_entries;
  • 15. An example Hive Query Session: Connect and Display Table List [oracle@bigdatalite ~]$ hive Hive history file=/tmp/oracle/hive_job_log_oracle_201304170403_1991392312.txt hive> show tables; OK dwh_customer dwh_customer_tmp i_dwh_customer ratings src_customer src_sales_person weblog weblog_preprocessed weblog_sessionized Time taken: 2.925 seconds T : +44 (0) 1273 911 268 (UK) or (888) 631-1410 (USA) or +61 3 9596 7186 (Australia & New Zealand) or +91 997 256 7970 (India) E : [email protected] W : www.rittmanmead.com Hive Server lists out all “tables” that have been defined within the Hive environment
  • 16. An example Hive Query Session: Display Table Row Count T : +44 (0) 1273 911 268 (UK) or (888) 631-1410 (USA) or +61 3 9596 7186 (Australia & New Zealand) or +91 997 256 7970 (India) E : [email protected] W : www.rittmanmead.com hive> select count(*) from src_customer;! Total MapReduce jobs = 1 Launching Job 1 out of 1 Number of reduce tasks determined at compile time: 1 In order to change the average load for a reducer (in bytes): set hive.exec.reducers.bytes.per.reducer= In order to limit the maximum number of reducers: set hive.exec.reducers.max= In order to set a constant number of reducers: set mapred.reduce.tasks= Starting Job = job_201303171815_0003, Tracking URL = http://localhost.localdomain:50030/jobdetails.jsp?jobid=job_201303171815_0003 Kill Command = /usr/lib/hadoop-0.20/bin/ hadoop job -Dmapred.job.tracker=localhost.localdomain:8021 -kill job_201303171815_0003 2013-04-17 04:06:59,867 Stage-1 map = 0%, reduce = 0% 2013-04-17 04:07:03,926 Stage-1 map = 100%, reduce = 0% 2013-04-17 04:07:14,040 Stage-1 map = 100%, reduce = 33% 2013-04-17 04:07:15,049 Stage-1 map = 100%, reduce = 100% Ended Job = job_201303171815_0003 OK ! 25 Time taken: 22.21 seconds Request count(*) from table Hive server generates MapReduce job to “map” table key/value pairs, and then reduce the results to table count MapReduce job automatically run by Hive Server Results returned to user
  • 17. Hive SerDes - Process Semi-Structured Data •Plug-in technology to Hive that allows it to parse data, and access alternatives to HDFS for data storage •Distributed as JAR file, gives Hive ability to parse semi-structured formats •We can use the RegEx SerDe to parse the Apache CombinedLogFormat file into columns CREATE EXTERNAL TABLE apachelog ( T : +44 (0) 1273 911 268 (UK) or (888) 631-1410 (USA) or +61 3 9596 7186 (Australia & New Zealand) or +91 997 256 7970 (India) E : [email protected] W : www.rittmanmead.com host STRING, identity STRING, user STRING, time STRING, request STRING, status STRING, size STRING, referer STRING, agent STRING) ROW FORMAT SERDE 'org.apache.hadoop.hive.contrib.serde2.RegexSerDe' WITH SERDEPROPERTIES ( "input.regex" = "([^ ]*) ([^ ]*) ([^ ]*) (-|[[^]]*]) ([^ "]*|"[^"]*") (-|[0-9]*) (-|[0-9]*)(?: ([^ "]*|"[^"]*") ([^ "]*|"[^"]*"))?", "output.format.string" = "%1$s %2$s %3$s %4$s %5$s %6$s %7$s %8$s %9$s" ) STORED AS TEXTFILE LOCATION '/user/root/logs';
  • 18. Hive and HDFS File Storage •Hive tables can either map to a single HDFS file, or a directory of files ‣Entire contents of directory becomes source for table •Directories can have sub-directories, to provide “partitioning” feature for Hive ‣Only scan and process those subdirectories relevant to query •Combined with SerDes, a useful way to process and parse lots of separate log files [root@cdh51-node1 ~]# hadoop fs -ls /user/flume/rm_logs/apache_access_combined Found 278 items -rw-r--r-- 3 root root 672480 2014-10-06 14:31 /user/flume/rm_logs/apache_access_combined/FlumeData.1412601698996 -rw-r--r-- 3 root root 727711 2014-10-06 14:41 /user/flume/rm_logs/apache_access_combined/FlumeData.1412602299095 -rw-r--r-- 3 root root 707441 2014-10-06 14:51 /user/flume/rm_logs/apache_access_combined/FlumeData.1412602915327 -rw-r--r-- 3 root root 807375 2014-10-06 15:02 /user/flume/rm_logs/apache_access_combined/FlumeData.1412603531022 -rw-r--r-- 3 root root 785963 2014-10-06 15:12 /user/flume/rm_logs/apache_access_combined/FlumeData.1412604138450 -rw-r--r-- 3 root root 534005 2014-10-06 15:22 /user/flume/rm_logs/apache_access_combined/FlumeData.1412604744386 -rw-r--r-- 3 root root 634051 2014-10-06 15:32 /user/flume/rm_logs/apache_access_combined/FlumeData.1412605344622 -rw-r--r-- 3 root root 737031 2014-10-06 15:42 /user/flume/rm_logs/apache_access_combined/FlumeData.1412605968231 -rw-r--r-- 3 root root 670881 2014-10-06 15:53 /user/flume/rm_logs/apache_access_combined/FlumeData.1412606584235 -rw-r--r-- 3 root root 800607 2014-10-06 16:03 /user/flume/rm_logs/apache_access_combined/FlumeData.1412607185371 -rw-r--r-- 3 root root 684562 2014-10-06 16:13 /user/flume/rm_logs/apache_access_combined/FlumeData.1412607794366 -rw-r--r-- 3 root root 846410 2014-10-06 16:23 /user/flume/rm_logs/apache_access_combined/FlumeData.1412608398806 -rw-r--r-- 3 root root 576884 2014-10-06 16:33 /user/flume/rm_logs/apache_access_combined/FlumeData.1412608999875 -rw-r--r-- 3 root root 601540 2014-10-06 16:43 /user/flume/rm_logs/apache_access_combined/FlumeData.1412609607071 -rw-r--r-- 3 root root 559014 2014-10-06 16:53 /user/flume/rm_logs/apache_access_combined/FlumeData.1412610215067 T : +44 (0) 1273 911 268 (UK) or (888) 631-1410 (USA) or +61 3 9596 7186 (Australia & New Zealand) or +91 997 256 7970 (India) E : [email protected] W : www.rittmanmead.com
  • 19. Hive Storage Handlers - Access NoSQL Databases •MongoDB Hadoop connector allows MongoDB to be accessed via Hive tables T : +44 (0) 1273 911 268 (UK) or (888) 631-1410 (USA) or +61 3 9596 7186 (Australia & New Zealand) or +91 997 256 7970 (India) CREATE TABLE tweet_data( interactionId string, username string, content string, author_followers int) ROW FORMAT SERDE 'com.mongodb.hadoop.hive.BSONSerDe' STORED BY 'com.mongodb.hadoop.hive.MongoStorageHandler' WITH SERDEPROPERTIES ( 'mongo.columns.mapping'='{"interactionId":"interactionId", "username":"interaction.interaction.author.username", "content":"interaction.interaction.content", "author_followers_count":"interaction.twitter.user.followers_ count"}' ) TBLPROPERTIES ( 'mongo.uri'='mongodb://cdh51-node1:27017/ datasiftmongodb.rm_tweets' ) E : [email protected] W : www.rittmanmead.com
  • 20. Hive Extensibility through UDFs and UDAFs •Extend Hive by adding new computation and aggregation capabilities •UDFs (row-based), UDAFs (aggregation) and UDTFs (table functions) T : +44 (0) 1273 911 268 (UK) or (888) 631-1410 (USA) or +61 3 9596 7186 (Australia & New Zealand) or +91 997 256 7970 (India) add jar target/JsonSplit-1.0-SNAPSHOT.jar; create temporary function json_split as 'com.pythian.hive.udf.JsonSplitUDF'; ! create table json_example (json string); load data local inpath 'split_example.json' into table json_example; ! SELECT ex.* FROM json_example LATERAL VIEW explode(json_split(json_example.json)) ex; E : [email protected] W : www.rittmanmead.com public class JsonSplitUDF extends GenericUDF { private StringObjectInspector stringInspector; ! @Override public Object evaluate(DeferredObject[] arguments) throws HiveException { try { String jsonString = this.stringInspector. getPrimitiveJavaObject(arguments[0].get()); ! ObjectMapper om = new ObjectMapper(); ArrayList<Object> root = (ArrayList<Object>) om.readValue(jsonString, ArrayList.class); ArrayList<Object[]> json = new ArrayList<Object[]> (root.size()); for (int i=0; i<root.size(); i++){ json.add(new Object[]{i, om.writeValueAsString(root.get(i))}); } return json;}}
  • 21. Hive Extensibility through Streaming •TRANSFORM function streams query columns through arbitrary script •Use Python, Java etc to transform Hive data when UDFs etc not sufficient T : +44 (0) 1273 911 268 (UK) or (888) 631-1410 (USA) or +61 3 9596 7186 (Australia & New Zealand) or +91 997 256 7970 (India) add FILE weekday_mapper.py; ! INSERT OVERWRITE TABLE u_data_new SELECT TRANSFORM (userid, movieid, rating, unixtime) USING 'python weekday_mapper.py' AS (userid, movieid, rating, weekday) FROM u_data; E : [email protected] W : www.rittmanmead.com import sys import datetime ! for line in sys.stdin: line = line.strip() userid, movieid, rating, unixtime = line.split('t') weekday = datetime.datetime.fromtimestamp(float(unixtime)).isoweekday() print 't'.join([userid, movieid, rating, str(weekday)])
  • 22. Distributing SerDe JAR Files for Hive across Cluster •Hive SerDe and UDF functionality requires additional JARs to be made available to Hive •Following steps must be performed across ALL Hadoop nodes: ‣Add JAR reference to HIVE_AUX_JARS_PATH in /usr/lib/hive/conf/hive.env.sh ! ! ! ‣Add JAR file to /usr/lib/hadoop ! ! ! ‣Restart YARN / MR1 TaskTrackers across cluster export HIVE_AUX_JARS_PATH=/usr/lib/hive/lib/hive-contrib-0.12.0-cdh5.0.1.jar:$ (echo $HIVE_AUX_JARS_PATH… [root@bdanode1 hadoop]# ls /usr/lib/hadoop/hive-* /usr/lib/hadoop/hive-contrib-0.12.0-cdh5.0.1.jar T : +44 (0) 1273 911 268 (UK) or (888) 631-1410 (USA) or +61 3 9596 7186 (Australia & New Zealand) or +91 997 256 7970 (India) E : [email protected] W : www.rittmanmead.com
  • 23. Hive Data Processing Example : Find Top Referers •Return the top 5 website URLs linking to the Rittman Mead website •Exclude links from our own website select referer, count(*) as cnt from apachelog where substr(referer,1,28) <> '"http://www.rittmanmead.com/' group by referer order by cnt desc limit 5 T : +44 (0) 1273 911 268 (UK) or (888) 631-1410 (USA) or +61 3 9596 7186 (Australia & New Zealand) or +91 997 256 7970 (India) E : [email protected] W : www.rittmanmead.com
  • 24. How Hive Turns HiveQL into MapReduce + Hadoop Tasks •Two step process; first step filters and groups the data, second sorts and returns top 5 1 2 T : +44 (0) 1273 911 268 (UK) or (888) 631-1410 (USA) or +61 3 9596 7186 (Australia & New Zealand) or +91 997 256 7970 (India) E : [email protected] W : www.rittmanmead.com
  • 25. SQL Considerations : Using Hive vs. Regular Oracle SQL •Not all join types are available in Hive - joins must be equality joins •No sequences, no primary keys on tables •Generally need to stage Oracle or other external data into Hive before joining to it •Hive latency - not good for small microbatch-type work ‣But other alternatives exist - Spark, Impala etc •Hive is INSERT / APPEND only - no updates, deletes etc ‣But HBase may be suitable for CRUD-type loading •Don’t assume that HiveQL == Oracle SQL ‣Test assumptions before committing to platform T : +44 (0) 1273 911 268 (UK) or (888) 631-1410 (USA) or +61 3 9596 7186 (Australia & New Zealand) or +91 997 256 7970 (India) E : [email protected] W : www.rittmanmead.com vs.
  • 26. Apache Pig : Set-Based Dataflow Language •Alternative to Hive, defines data manipulation as dataflow steps (like an execution plan) •Start with one or more data sources, add steps to apply filters, group, project columns •Generates MapReduce to execute data flow, similar to Hive; extensible through UDFs a = load '/user/oracle/pig_demo/marriott_wifi.txt'; b = foreach a generate flatten(TOKENIZE((chararray)$0)) as word; c = group b by word; d = foreach c generate COUNT(b), group; store d into '/user/oracle/pig_demo/pig_wordcount'; [oracle@bigdatalite ~]$ hadoop fs -ls /user/oracle/pig_demo/pig_wordcount Found 2 items -rw-r--r-- 1 oracle oracle 0 2014-10-11 11:48 /user/oracle/pig_demo/pig_wordcount/_SUCCESS -rw-r--r-- 1 oracle oracle 1965 2014-10-11 11:48 /user/oracle/pig_demo/pig_wordcount/part-r-00000 [oracle@bigdatalite ~]$ hadoop fs -cat /user/oracle/pig_demo/pig_wordcount/part-r-00000 2 . 1 I 6 a ... T : +44 (0) 1273 911 268 (UK) or (888) 631-1410 (USA) or +61 3 9596 7186 (Australia & New Zealand) or +91 997 256 7970 (India) E : [email protected] W : www.rittmanmead.com 2 1 3
  • 27. Apache Pig Characteristics vs. Hive •Ability to load data into a defined schema, or use schema-less (access fields by position) •Fields can contain nested fields (tuples) •Grouping records on a key doesn’t aggregate them, it creates a nested set of rows in column •Uses “lazy execution” - only evaluates data flow once final output has been requests •Makes Pig an excellent language for interactive data exploration T : +44 (0) 1273 911 268 (UK) or (888) 631-1410 (USA) or +61 3 9596 7186 (Australia & New Zealand) or +91 997 256 7970 (India) E : [email protected] W : www.rittmanmead.com vs.
  • 28. Pig Data Processing Example : Count Page Request Totals raw_logs =LOAD '/user/oracle/rm_logs/' USING TextLoader AS (line:chararray); logs_base = FOREACH raw_logs GENERATE FLATTEN T : +44 (0) 1273 911 268 (UK) or (888) 631-1410 (USA) or +61 3 9596 7186 (Australia & New Zealand) or +91 997 256 7970 (India) E : [email protected] W : www.rittmanmead.com ( REGEX_EXTRACT_ALL ( line, '^(S+) (S+) (S+) [([w:/]+s[+-]d{4})] "(.+?)" (S+) (S+) "([^"]*)" "([^"]*)"' ) ) AS ( remoteAddr: chararray, remoteLogname: chararray, user: chararray, time: chararray, request: chararray, status: chararray, bytes_string: chararray, referrer: chararray, browser: chararray ); page_requests = FOREACH logs_base GENERATE SUBSTRING(time,3,6) as month, FLATTEN(STRSPLIT(request,' ',5)) AS (method:chararray, request_page:chararray, protocol:chararray); page_requests_short = FOREACH page_requests GENERATE $0,$2; page_requests_short_filtered = FILTER page_requests_short BY (request_page is not null AND SUBSTRING(request_page,0,3) == '/20'); page_request_group = GROUP page_requests_short_filtered BY request_page; page_request_group_count = FOREACH page_request_group GENERATE $0, COUNT(page_requests_short_filtered) as total_hits; page_request_group_count_sorted = ORDER page_request_group_count BY $1 DESC; page_request_group_count_limited = LIMIT page_request_group_count_sorted 10;
  • 29. Demo Running Pig using the Hue Pig Editor in CDH5 T : +44 (0) 1273 911 268 (UK) or (888) 631-1410 (USA) or +61 3 9596 7186 (Australia & New Zealand) or +91 997 256 7970 (India) E : [email protected] W : www.rittmanmead.com
  • 30. Pig Data Processing Example : Join to Post Titles, Authors •Pig allows aliases (datasets) to be joined to each other •Example below adds details of post names, authors; outputs top pages dataset to file raw_posts = LOAD '/user/oracle/pig_demo/posts_for_pig.csv' USING TextLoader AS (line:chararray); posts_line = FOREACH raw_posts GENERATE FLATTEN ( STRSPLIT(line,';',10) ) AS ( post_id: chararray, title: chararray, post_date: chararray, type: chararray, author: chararray, post_name: chararray, url_generated: chararray ); posts_and_authors = FOREACH posts_line GENERATE title,author,post_name,CONCAT(REPLACE(url_generated,'"',''),'/') AS (url_generated:chararray); pages_and_authors_join = JOIN posts_and_authors BY url_generated, page_request_group_count_limited BY group; pages_and_authors = FOREACH pages_and_authors_join GENERATE url_generated, post_name, author, total_hits; top_pages_and_authors = ORDER pages_and_authors BY total_hits DESC; STORE top_pages_and_authors into '/user/oracle/pig_demo/top-pages-and-authors.csv' USING PigStorage(‘,'); T : +44 (0) 1273 911 268 (UK) or (888) 631-1410 (USA) or +61 3 9596 7186 (Australia & New Zealand) or +91 997 256 7970 (India) E : [email protected] W : www.rittmanmead.com
  • 31. Pig Extensibility through UDFs and Streaming •Similar to Apache Hive, Pig can be programatically extended through UDFs •Example below uses Function defined in Python script to geocode IP addresses T : +44 (0) 1273 911 268 (UK) or (888) 631-1410 (USA) or +61 3 9596 7186 (Australia & New Zealand) or +91 997 256 7970 (India) E : [email protected] W : www.rittmanmead.com #!/usr/bin/python import sys sys.path.append('/usr/lib/python2.6/site-packages/') import pygeoip @outputSchema("country:chararray") def getCountry(ip): gi = pygeoip.GeoIP('/home/nelio/GeoIP.dat') country = gi.country_name_by_addr(ip) return country register 'python_geoip.py' using jython as pythonGeoIP; raw_logs =LOAD '/user/root/logs/' USING TextLoader AS (line:chararray); logs_base = FOREACH raw_logs GENERATE FLATTEN ( REGEX_EXTRACT_ALL ( line, '^(S+) (S+) (S+) [([w:/]+s[+-]d{4})] "(.+?)" (S+) (S+) "([^"]*)" "([^"]*)"' ) ) AS ( remoteAddr: chararray, remoteLogname: chararray, user: chararray, time: chararray, request: chararray, status: int, bytes_string: chararray, referrer: chararray, browser: chararray ); ipaddress = FOREACH logs_base GENERATE remoteAddr; clean_ip = FILTER ipaddress BY (remoteAddr matches '^.*?((?:d{1,3}.){3}d{1,3}).*?$'); country_by_ip = FOREACH clean_ip GENERATE pythonGeoIP.getCountry(remoteAddr);
  • 32. MapReduce and Hadoop 1.0 Limitations •MapReduce, and the original Hadoop framework, worked well for batch-type analysis ‣Made it possible to load, process and analyse at scale, economically •But MapReduce is not well suited to interactive, ad-hoc analysis type work ‣Each step in the process requires JVMs to be started, and data typically resides on disk •Hadoop 1.0 was also tightly bound to MapReduce ‣API, framework and resource management all assumed MapReduce only ‣Limits usefulness as new processing types come into use T : +44 (0) 1273 911 268 (UK) or (888) 631-1410 (USA) or +61 3 9596 7186 (Australia & New Zealand) or +91 997 256 7970 (India) E : [email protected] W : www.rittmanmead.com
  • 33. T : +44 (0) 1273 911 268 (UK) or (888) 631-1410 (USA) or +61 3 9596 7186 (Australia & New Zealand) or +91 997 256 7970 (India) E : [email protected] W : www.rittmanmead.com MR2 and YARN •MapReduce 2 (MR2) splits the functionality of the JobTracker by separating resource management and job scheduling/monitoring •Introduces YARN (Yet Another Resource Manager) •Permits other processing frameworks to MR ‣For example, Apache Spark •Maintains backwards compatibility with MR1 •Introduced with CDH5+
  • 34. T : +44 (0) 1273 911 268 (UK) or (888) 631-1410 (USA) or +61 3 9596 7186 (Australia & New Zealand) or +91 997 256 7970 (India) E : [email protected] W : www.rittmanmead.com Apache Tez •Runs on top of YARN, provides a faster execution engine than MapReduce for Hive, Pig etc •Models processing as an entire data flow graph (DAG), rather than separate job steps ‣DAG (Directed Acyclic Graph) is a new programming style for distributed systems ‣Dataflow steps pass data between them as streams, rather than writing/reading from disk •Supports in-memory computation, enables Hive on Tez (Stinger) and Pig on Tez •Favoured In-memory / Hive v2 route by Hortonworks Pig/Hive - MR Pig/Hive - Tez
  • 35. T : +44 (0) 1273 911 268 (UK) or (888) 631-1410 (USA) or +61 3 9596 7186 (Australia & New Zealand) or +91 997 256 7970 (India) E : [email protected] W : www.rittmanmead.com Apache Spark •Another DAG execution engine running on YARN •More mature than TEZ, with richer API and more vendor support •Uses concept of an RDD (Resilient Distributed Dataset) ‣RDDs like tables or Pig relations, but can be cached in-memory ‣Great for in-memory transformations, or iterative/cyclic processes •Spark jobs comprise of a DAG of tasks operating on RDDs •Access through Scala, Python or Java APIs •Related projects include ‣Spark SQL ‣Spark Streaming
  • 36. Apache Spark Example : Simple Log Analysis •Load logfile into RDD, do row count ! scala> val logfile = sc.textFile("logs/access_log") 14/! 05/12 21:18:59 INFO MemoryStore: ensureFreeSpace(77353) called with curMem=234759, maxMem=309225062 14/05/12 21:18:59 INFO MemoryStore: Block broadcast_2 stored as values to memory (estimated size 75.5 KB, free 294.6 MB) logfile: ! org.apache.spark.rdd.RDD[String] = MappedRDD[31] at textFile at <console>:15 scala> logfile.count() 14/! 05/12 21:19:06 INFO FileInputFormat: Total input paths to process : 1 14/05/12 21:19:06 INFO SparkContext: Starting job: count at <console>:1 ... ! 14/05/12 21:19:06 INFO SparkContext: Job finished: count at <console>:18, took 0.192536694 s res7: ! Long = 154563 •Load logfile into RDD and cache it, create another RDD from it filtered on /biapps11g/ scala> val logfile = sc.textFile("logs/access_log").cache scala> val biapps11g = logfile.filter(line => line.contains("/biapps11g/")) biapps11g: org.apache.spark.rdd.RDD[String] = FilteredRDD[34] at filter at <console>:17 scala> biapps11g.count() ... 14/05/12 21:28:28 INFO SparkContext: Job finished: count at <console>:20, took 0.387960876 s res9: Long = 403 T : +44 (0) 1273 911 268 (UK) or (888) 631-1410 (USA) or +61 3 9596 7186 (Australia & New Zealand) or +91 997 256 7970 (India) E : [email protected] W : www.rittmanmead.com
  • 37. Apache Spark Example : Simple Log Analysis •Import a log parsing library, then use it to generate a list of URIs creating 404 errors scala> import com.alvinalexander.accesslogparser._ ! val p = new AccessLogParser def getStatusCode(line: Option[AccessLogRecord]) = { T : +44 (0) 1273 911 268 (UK) or (888) 631-1410 (USA) or +61 3 9596 7186 (Australia & New Zealand) or +91 997 256 7970 (India) E : [email protected] W : www.rittmanmead.com line match { case Some(l) => l.httpStatusCode case None => "0" } } def getRequest(rawAccessLogString: String): Option[String] = { val accessLogRecordOption = p.parseRecord(rawAccessLogString) accessLogRecordOption match { case Some(rec) => Some(rec.request) case None => None } } def extractUriFromRequest(requestField: String) = requestField.split(" ")(1) log.filter(line => getStatusCode(p.parseRecord(line)) == "404").map(getRequest(_)).count val recs = log.filter(line => getStatusCode(p.parseRecord(line)) == "404").map(getRequest(_)) val distinctRecs = log.filter(line => getStatusCode(p.parseRecord(line)) == "404") .map(getRequest(_)) .collect { case Some(requestField) => requestField } .map(extractUriFromRequest(_)) .distinct distinctRecs.count distinctRecs.foreach(println)
  • 38. Lesson 3 : Hadoop Data Processing Automating the Data Processing Step using ODI12c T : +44 (0) 1273 911 268 (UK) or (888) 631-1410 (USA) or +61 3 9596 7186 (Australia & New Zealand) or +91 997 256 7970 (India) E : [email protected] W : www.rittmanmead.com
  • 39. Current Status of Web Server Log Analysis Scenario •We’ve now landed log activity from the Rittman Mead website into Hadoop, using Flume •Data arrives as Apache Webserver log files, is then loaded into a Hive table and parsed •Supplemented by social media activity (Twitter) accessed through a MongoDB database •Now we can start processing, analysing, supplementing and working with the dataset… RDBMS Imports T : +44 (0) 1273 911 268 (UK) or (888) 631-1410 (USA) or +61 3 9596 7186 (Australia & New Zealand) or +91 997 256 7970 (India) Loading Stage File Exports ✓ !!!! Processing Stage E : [email protected] W : www.rittmanmead.com !!!! Store / Export Stage !!!! Real-Time Logs / Events File / Unstructured Imports RDBMS Exports
  • 40. Planned ETL & Data Flow through BDA System •Five-step process to load, transform, aggregate and filter incoming log data •Leverage ODI’s capabilities where possible •Make use of Hadoop power + scalability Flume Agent T : +44 (0) 1273 911 268 (UK) or (888) 631-1410 (USA) or +61 3 9596 7186 (Australia & New Zealand) or +91 997 256 7970 (India) Sqoop extract ! posts (Hive Table) IKM Hive Control Append (Hive table join & load into target hive table) categories_sql_ extract (Hive Table) E : [email protected] W : www.rittmanmead.com hive_raw_apache_ access_log (Hive Table) Flume Agent !!!!!! Apache HTTP Server Log Files (HDFS) Flume Messaging TCP Port 4545 (example) IKM File to Hive 1 using RegEx SerDe log_entries_ and post_detail (Hive Table) IKM Hive Control Append (Hive table join & load into target hive table) hive_raw_apache_ access_log (Hive Table) 2 3 Geocoding IP>Country list (Hive Table) IKM Hive Transform (Hive streaming through Python script) 4 5 hive_raw_apache_ access_log (Hive Table) IKM File / Hive to Oracle (bulk unload to Oracle DB)
  • 41. Join to Additional Hive Tables, Transform using HiveQL •IKM Hive to Hive Control Append can be used to perform Hive table joins, filtering, agg. etc. •INSERT only, no DELETE, UPDATE etc •Not all ODI12c mapping operators supported, but basic functionality works OK •Use this KM to join to other Hive tables, adding more details on post, title etc •Perform DISTINCT on join output, load into summary Hive table T : +44 (0) 1273 911 268 (UK) or (888) 631-1410 (USA) or +61 3 9596 7186 (Australia & New Zealand) or +91 997 256 7970 (India) E : [email protected] W : www.rittmanmead.com 2
  • 42. T : +44 (0) 1273 911 268 (UK) or (888) 631-1410 (USA) or +61 3 9596 7186 (Australia & New Zealand) or +91 997 256 7970 (India) E : [email protected] W : www.rittmanmead.com Joining Hive Tables •Only equi-joins supported •Must use ANSI syntax •More complex joins may not produce valid HiveQL (subqueries etc)
  • 43. Filtering, Aggregating and Transforming Within Hive •Aggregate (GROUP BY), DISTINCT, FILTER, EXPRESSION, JOIN, SORT etc mapping operators can be added to mapping to manipulate data •Generates HiveQL functions, clauses etc T : +44 (0) 1273 911 268 (UK) or (888) 631-1410 (USA) or +61 3 9596 7186 (Australia & New Zealand) or +91 997 256 7970 (India) E : [email protected] W : www.rittmanmead.com
  • 44. Executing Second Mapping •ODI IKM Hive to Hive Control Append generates HiveQL to perform data loading •In the background, Hive on BDA creates MapReduce job(s) to load and transform HDFS data •Automatically runs across the cluster, in parallel and with fault tolerance, HA T : +44 (0) 1273 911 268 (UK) or (888) 631-1410 (USA) or +61 3 9596 7186 (Australia & New Zealand) or +91 997 256 7970 (India) E : [email protected] W : www.rittmanmead.com
  • 45. Demo Joining Datasets in Hive using ODI12c T : +44 (0) 1273 911 268 (UK) or (888) 631-1410 (USA) or +61 3 9596 7186 (Australia & New Zealand) or +91 997 256 7970 (India) E : [email protected] W : www.rittmanmead.com
  • 46. Bring in Reference Data from Oracle Database •In this third step, additional reference data from Oracle Database needs to be added •In theory, should be able to add Oracle-sourced datastores to mapping and join as usual •But … Oracle / JDBC-generic LKMs don’t get work with Hive T : +44 (0) 1273 911 268 (UK) or (888) 631-1410 (USA) or +61 3 9596 7186 (Australia & New Zealand) or +91 997 256 7970 (India) E : [email protected] W : www.rittmanmead.com 3
  • 47. Options for Importing Oracle / RDBMS Data into Hadoop •Could export RBDMS data to file, and load using IKM File to Hive •Oracle Big Data Connectors only export to Oracle, not import to Hadoop •Best option is to use Apache Sqoop, and new IKM SQL to Hive-HBase-File knowledge module •Hadoop-native, automatically runs in parallel •Uses native JDBC drivers, or OraOop (for example) •Bi-directional in-and-out of Hadoop to RDBMS •Run from OS command-line T : +44 (0) 1273 911 268 (UK) or (888) 631-1410 (USA) or +61 3 9596 7186 (Australia & New Zealand) or +91 997 256 7970 (India) E : [email protected] W : www.rittmanmead.com
  • 48. Loading RDBMS Data into Hive using Sqoop •First step is to stage Oracle data into equivalent Hive table •Use special LKM SQL Multi-Connect Global load knowledge module for Oracle source ‣Passes responsibility for load (extract) to following IKM •Then use IKM SQL to Hive-HBase-File (Sqoop) to load the Hive table T : +44 (0) 1273 911 268 (UK) or (888) 631-1410 (USA) or +61 3 9596 7186 (Australia & New Zealand) or +91 997 256 7970 (India) E : [email protected] W : www.rittmanmead.com
  • 49. Join Oracle-Sourced Hive Table to Existing Hive Table •Oracle-sourced reference data in Hive can then be joined to existing Hive table as normal •Filters, aggregation operators etc can be added to mapping if required •Use IKM Hive Control Append as integration KM T : +44 (0) 1273 911 268 (UK) or (888) 631-1410 (USA) or +61 3 9596 7186 (Australia & New Zealand) or +91 997 256 7970 (India) E : [email protected] W : www.rittmanmead.com
  • 50. ODI Static and Flow Control : Data Quality and Error Handling •CKM Hive can be used with IKM Hive to Hive Control Append to filter out erroneous data •Static controls can be used to create “data firewalls” •Flow control used in Physical mapping view to handle errors, exceptions •Example: Filter out rows where IP address is from a test harness T : +44 (0) 1273 911 268 (UK) or (888) 631-1410 (USA) or +61 3 9596 7186 (Australia & New Zealand) or +91 997 256 7970 (India) E : [email protected] W : www.rittmanmead.com
  • 51. Enabling Flow Control in IKM Hive to Hive Control Append •Check the ENABLE_FLOW_CONTROL option in KM settings •Select CKM Hive as the check knowledge module •Erroneous rows will get moved to E_ table in Hive, not loaded into target Hive table T : +44 (0) 1273 911 268 (UK) or (888) 631-1410 (USA) or +61 3 9596 7186 (Australia & New Zealand) or +91 997 256 7970 (India) E : [email protected] W : www.rittmanmead.com
  • 52. Using Hive Streaming and Python for Geocoding Data •Another requirement we have is to “geocode” the webserver log entries •Allows us to aggregate page views by country •Based on the fact that IP ranges can usually be attributed to specific countries •Not functionality normally found in Hive etc, but can be done with add-on APIs T : +44 (0) 1273 911 268 (UK) or (888) 631-1410 (USA) or +61 3 9596 7186 (Australia & New Zealand) or +91 997 256 7970 (India) E : [email protected] W : www.rittmanmead.com 4
  • 53. How GeoIP Geocoding Works •Uses free Geocoding API and database from Maxmind •Convert IP address to an integer •Find which integer range our IP address sits within •But Hive can’t use BETWEEN in a join… T : +44 (0) 1273 911 268 (UK) or (888) 631-1410 (USA) or +61 3 9596 7186 (Australia & New Zealand) or +91 997 256 7970 (India) E : [email protected] W : www.rittmanmead.com
  • 54. Solution : IKM Hive Transform •IKM Hive Transform can pass the output of a Hive SELECT statement through a perl, python, shell etc script to transform content •Uses Hive TRANSFORM … USING … AS functionality hive> add file file:///tmp/add_countries.py; Added resource: file:///tmp/add_countries.py hive> select transform (hostname,request_date,post_id,title,author,category) > using 'add_countries.py' > as (hostname,request_date,post_id,title,author,category,country) > from access_per_post_categories; T : +44 (0) 1273 911 268 (UK) or (888) 631-1410 (USA) or +61 3 9596 7186 (Australia & New Zealand) or +91 997 256 7970 (India) E : [email protected] W : www.rittmanmead.com
  • 55. Creating the Python Script for Hive Streaming •Solution requires a Python API to be installed on all Hadoop nodes, along with geocode DB wget ! https://raw.github.com/pypa/pip/master/contrib/get-pip.py python ! get-pip.py pip install pygeoip ! •Python script then parses incoming stdin lines using tab-separation of fields, outputs same (but with extra field for the country) #!/usr/bin/python import sys sys.path.append('/usr/lib/python2.6/site-packages/') import pygeoip gi = pygeoip.GeoIP('/tmp/GeoIP.dat') for line in sys.stdin: line = line.rstrip() hostname,request_date,post_id,title,author,category = line.split('t') country = gi.country_name_by_addr(hostname) print hostname+'t'+request_date+'t'+post_id+'t'+title+'t'+author T : +44 (0) 1273 911 268 (UK) or (888) 631-1410 (USA) or +61 3 9596 7186 (Australia & New Zealand) or +91 997 256 7970 (India) E : [email protected] W : www.rittmanmead.com +'t'+country+'t'+category
  • 56. T : +44 (0) 1273 911 268 (UK) or (888) 631-1410 (USA) or +61 3 9596 7186 (Australia & New Zealand) or +91 997 256 7970 (India) E : [email protected] W : www.rittmanmead.com Setting up the Mapping •Map source Hive table to target, which includes column for extra “country” column ! ! ! ! ! ! ! •Copy script + GeoIP.dat file to every node’s /tmp directory •Ensure all Python APIs and libraries are installed on each Hadoop node
  • 57. Configuring IKM Hive Transform •TRANSFORM_SCRIPT_NAME specifies name of script, and path to script •TRANSFORM_SCRIPT has issues with parsing; do not use, leave blank and KM will use existing one •Optional ability to specify sort and distribution columns (can be compound) •Leave other options at default T : +44 (0) 1273 911 268 (UK) or (888) 631-1410 (USA) or +61 3 9596 7186 (Australia & New Zealand) or +91 997 256 7970 (India) E : [email protected] W : www.rittmanmead.com
  • 58. T : +44 (0) 1273 911 268 (UK) or (888) 631-1410 (USA) or +61 3 9596 7186 (Australia & New Zealand) or +91 997 256 7970 (India) E : [email protected] W : www.rittmanmead.com Executing the Mapping •KM automatically registers the script with Hive (which caches it on all nodes) •HiveQL output then runs the contents of the first Hive table through the script, outputting results to target table
  • 59. Demo Using Hive Streaming in ODI12c T : +44 (0) 1273 911 268 (UK) or (888) 631-1410 (USA) or +61 3 9596 7186 (Australia & New Zealand) or +91 997 256 7970 (India) E : [email protected] W : www.rittmanmead.com
  • 60. Adding the Twitter Data from MongoDB •Previous steps exposed the Twitter data, in MongoDB, through a Hive table •RM_RELATED_TWEETS Hive table now included in ODI Topology + Model T : +44 (0) 1273 911 268 (UK) or (888) 631-1410 (USA) or +61 3 9596 7186 (Australia & New Zealand) or +91 997 256 7970 (India) E : [email protected] W : www.rittmanmead.com hive> describe rm_related_tweets; OK id string from deserializer interactionid string from deserializer username string from deserializer author_name string from deserializer created_at string from deserializer content string from deserializer twitter_link string from deserializer language string from deserializer sentiment int from deserializer author_tweet_count int from deserializer author_followers_co int from deserializer author_profile_img_u string from deserializer author_timezone string from deserializer normalized_url string from deserializer mentions string from deserializer hashtags string from deserializer Time taken: 0.109 seconds, Fetched: 16 row(s)
  • 61. Filter Log Entries to Only Leave Blog Post Views •We’re only interested in Twitter activity around blog posts •Create an additional Hive table to contain just blog post views, to then join to tweets T : +44 (0) 1273 911 268 (UK) or (888) 631-1410 (USA) or +61 3 9596 7186 (Australia & New Zealand) or +91 997 256 7970 (India) E : [email protected] W : www.rittmanmead.com
  • 62. Filter Tweets Down to Just Those Linking to RM Website •Filter the list of tweets down to just those that link to RM blog T : +44 (0) 1273 911 268 (UK) or (888) 631-1410 (USA) or +61 3 9596 7186 (Australia & New Zealand) or +91 997 256 7970 (India) E : [email protected] W : www.rittmanmead.com
  • 63. Join Twitter Data to Page View Data •Create summary table showing twitter activity per page on the blog T : +44 (0) 1273 911 268 (UK) or (888) 631-1410 (USA) or +61 3 9596 7186 (Australia & New Zealand) or +91 997 256 7970 (India) E : [email protected] W : www.rittmanmead.com
  • 64. Demo Joining Twitter Data to Log Data in ODI12c T : +44 (0) 1273 911 268 (UK) or (888) 631-1410 (USA) or +61 3 9596 7186 (Australia & New Zealand) or +91 997 256 7970 (India) E : [email protected] W : www.rittmanmead.com
  • 65. Create ODI Package for Processing Steps, and Execute •Create ODI Package or Load Plan to run steps in sequence ‣With load plan, can also add exceptions and recoverability •Execute package to load data into final Hive tables T : +44 (0) 1273 911 268 (UK) or (888) 631-1410 (USA) or +61 3 9596 7186 (Australia & New Zealand) or +91 997 256 7970 (India) E : [email protected] W : www.rittmanmead.com
  • 66. Summary : Data Processing Phase •We’ve now processed the incoming data, filtering it and transforming to required state •Joined (“mashed-up”) datasets from website activity, and social media mentions •Discovery phase and the load/processing stages are now complete •Now we want to make the Hadoop output available to a wider, non-technical audience… RDBMS Imports T : +44 (0) 1273 911 268 (UK) or (888) 631-1410 (USA) or +61 3 9596 7186 (Australia & New Zealand) or +91 997 256 7970 (India) Loading Stage File Exports ✓ ✓ !!!! Processing Stage E : [email protected] W : www.rittmanmead.com !!!! Store / Export Stage !!!! Real-Time Logs / Events File / Unstructured Imports RDBMS Exports
  • 67. Lesson 3 : Hadoop Data Processing using Hadoop Tools and ODI12c Mark Rittman, CTO, Rittman Mead SIOUG and HROUG Conferences, Oct 2014 T : +44 (0) 1273 911 268 (UK) or (888) 631-1410 (USA) or +61 3 9596 7186 (Australia & New Zealand) or +91 997 256 7970 (India) E : [email protected] W : www.rittmanmead.com