The engine used to model and solve a linear program. The example below solves the following linear program:
Two variables, x
and y
:
0 ≤ x ≤ 10
0 ≤ y ≤ 5
Constraints:
0 ≤ 2 * x + 5 * y ≤ 10
0 ≤ 10 * x + 3 * y ≤ 20
Objective:
Maximize x + y
var engine = LinearOptimizationService.createEngine();
// Add variables, constraints and define the objective with addVariable(), addConstraint(), etc
// Add two variables, 0 <= x <= 10 and 0 <= y <= 5
engine.addVariable('x', 0, 10);
engine.addVariable('y', 0, 5);
// Create the constraint: 0 <= 2 * x + 5 * y <= 10
var constraint = engine.addConstraint(0, 10);
constraint.setCoefficient('x', 2);
constraint.setCoefficient('y', 5);
// Create the constraint: 0 <= 10 * x + 3 * y <= 20
var constraint = engine.addConstraint(0, 20);
constraint.setCoefficient('x', 10);
constraint.setCoefficient('y', 3);
// Set the objective to be x + y
engine.setObjectiveCoefficient('x', 1);
engine.setObjectiveCoefficient('y', 1);
// Engine should maximize the objective
engine.setMaximization();
// Solve the linear program
var solution = engine.solve();
if (!solution.isValid()) {
Logger.log('No solution ' + solution.getStatus());
} else {
Logger.log('Value of x: ' + solution.getVariableValue('x'));
Logger.log('Value of y: ' + solution.getVariableValue('y'));
}
Methods
Method | Return type | Brief description |
---|---|---|
addConstraint(lowerBound, upperBound) | LinearOptimizationConstraint | Adds a new linear constraint in the model. |
addVariable(name, lowerBound, upperBound) | LinearOptimizationEngine | Adds a new continuous variable to the model. |
addVariable(name, lowerBound, upperBound, type) | LinearOptimizationEngine | Adds a new variable to the model. |
setMaximization() | LinearOptimizationEngine | Sets the optimization direction to maximizing the linear objective function. |
setMinimization() | LinearOptimizationEngine | Sets the optimization direction to minimizing the linear objective function. |
setObjectiveCoefficient(variableName, coefficient) | LinearOptimizationEngine | Sets the coefficient of a variable in the linear objective function. |
solve() | LinearOptimizationSolution | Solves the current linear program with the default deadline of 30 seconds. |
solve(seconds) | LinearOptimizationSolution | Solves the current linear program. |
Detailed documentation
addConstraint(lowerBound, upperBound)
Adds a new linear constraint in the model. The upper and lower bound of the constraint
are defined at creation time. Coefficients for the variables are defined via calls to
LinearOptimizationConstraint.setCoefficient(variableName, coefficient)
.
var engine = LinearOptimizationService.createEngine();
// Create a linear constraint with the bounds 0 and 10
var constraint = engine.addConstraint(0, 10);
// Create a variable so we can add it to the constraint
engine.addVariable('x', 0, 5);
// Set the coefficient of the variable in the constraint. The constraint is now:
// 0 <= 2 * x <= 5
constraint.setCoefficient('x', 2);
Parameters
Name | Type | Description |
---|---|---|
lowerBound | Number | lower bound of the constraint |
upperBound | Number | upper bound of the constraint |
Return
LinearOptimizationConstraint
— the constraint created
addVariable(name, lowerBound, upperBound)
Adds a new continuous variable to the model. The variable is referenced by its name. The
type is set to VariableType.CONTINUOUS
.
var engine = LinearOptimizationService.createEngine();
var constraint = engine.addConstraint(0, 10);
// Add a boolean variable (integer >= 0 and <= 1)
engine.addVariable('x', 0, 1, LinearOptimizationService.VariableType.INTEGER);
// Add a real (continuous) variable. Notice the lack of type specification.
engine.addVariable('y', 0, 100);
Parameters
Name | Type | Description |
---|---|---|
name | String | unique name of the variable |
lowerBound | Number | lower bound of the variable |
upperBound | Number | upper bound of the variable |
Return
LinearOptimizationEngine
— a linear optimization engine
addVariable(name, lowerBound, upperBound, type)
Adds a new variable to the model. The variable is referenced by its name.
var engine = LinearOptimizationService.createEngine();
var constraint = engine.addConstraint(0, 10);
// Add a boolean variable (integer >= 0 and <= 1)
engine.addVariable('x', 0, 1, LinearOptimizationService.VariableType.INTEGER);
// Add a real (continuous) variable
engine.addVariable('y', 0, 100, LinearOptimizationService.VariableType.CONTINUOUS);
Parameters
Name | Type | Description |
---|---|---|
name | String | unique name of the variable |
lowerBound | Number | lower bound of the variable |
upperBound | Number | upper bound of the variable |
type | VariableType | type of the variable, can be one of VariableType |
Return
LinearOptimizationEngine
— a linear optimization engine
setMaximization()
Sets the optimization direction to maximizing the linear objective function.
var engine = LinearOptimizationService.createEngine();
// Add a real (continuous) variable. Notice the lack of type specification.
engine.addVariable('y', 0, 100);
// Set the coefficient of 'y' in the objective.
// The objective is now 5 * y
engine.setObjectiveCoefficient('y', 5);
// We want to maximize.
engine.setMaximization();
Return
LinearOptimizationEngine
— a linear optimization engine
setMinimization()
Sets the optimization direction to minimizing the linear objective function.
var engine = LinearOptimizationService.createEngine();
// Add a real (continuous) variable. Notice the lack of type specification.
engine.addVariable('y', 0, 100);
// Set the coefficient of 'y' in the objective.
// The objective is now 5 * y
engine.setObjectiveCoefficient('y', 5);
// We want to minimize
engine.setMinimization();
Return
LinearOptimizationEngine
— a linear optimization engine
setObjectiveCoefficient(variableName, coefficient)
Sets the coefficient of a variable in the linear objective function.
var engine = LinearOptimizationService.createEngine();
// Add a real (continuous) variable. Notice the lack of type specification.
engine.addVariable('y', 0, 100);
// Set the coefficient of 'y' in the objective.
// The objective is now 5 * y
engine.setObjectiveCoefficient('y', 5);
Parameters
Name | Type | Description |
---|---|---|
variableName | String | name of variable for which the coefficient is being set |
coefficient | Number | coefficient of the variable in the objective function |
Return
LinearOptimizationEngine
— a linear optimization engine
solve()
Solves the current linear program with the default deadline of 30 seconds. Returns the solution found.
var engine = LinearOptimizationService.createEngine();
// Add variables, constraints and define the objective with addVariable(), addConstraint(), etc
engine.addVariable('x', 0, 10);
// ...
// Solve the linear program
var solution = engine.solve();
if (!solution.isValid()) {
throw 'No solution ' + solution.getStatus();
}
Logger.log('Value of x: ' + solution.getVariableValue('x'));
Return
LinearOptimizationSolution
— solution of the optimization
solve(seconds)
Solves the current linear program. Returns the solution found. and if it is an optimal solution.
var engine = LinearOptimizationService.createEngine();
// Add variables, constraints and define the objective with addVariable(), addConstraint(), etc
engine.addVariable('x', 0, 10);
// ...
// Solve the linear program
var solution = engine.solve(300);
if (!solution.isValid()) {
throw 'No solution ' + solution.getStatus();
}
Logger.log('Value of x: ' + solution.getVariableValue('x'));
Parameters
Name | Type | Description |
---|---|---|
seconds | Number | deadline for solving the problem, in seconds; the maximum deadline is 300 seconds |
Return
LinearOptimizationSolution
— solution of the optimization