The game engines will Sleep() or do something similar like pend on an event to not consume 100% cpu. Here is a Windows specific example that runs at a fixed frequency. On Windows XP, a Sleep(1) can take up to 2ms, so the loop takes that into account. The variables uPrev, uWait, and uRem are based on an original reading of a high speed counter, to prevent drift over time. dwLateStep is a debugging aid that is incremented every time a step has taken too long.
typedef unsigned long long UI64; /* unsigned 64 bit int */
#define FREQ 400 /* frequency */
DWORD dwLateStep; /* late step count */
LARGE_INTEGER liPerfFreq; /* 64 bit frequency */
LARGE_INTEGER liPerfTemp; /* used for query */
UI64 uFreq = FREQ; /* process frequency */
UI64 uOrig; /* original tick */
UI64 uWait; /* tick rate / freq */
UI64 uRem = 0; /* tick rate % freq */
UI64 uPrev; /* previous tick based on original tick */
UI64 uDelta; /* current tick - previous */
UI64 u2ms; /* 2ms of ticks */
UI64 i;
/* ... */ /* wait for some event to start thread */
QueryPerformanceFrequency(&liPerfFreq);
u2ms = ((UI64)(liPerfFreq.QuadPart)+499) / ((UI64)500);
timeBeginPeriod(1); /* set period to 1ms */
Sleep(128); /* wait for it to stabilize */
QueryPerformanceCounter((PLARGE_INTEGER)&liPerfTemp);
uOrig = uPrev = liPerfTemp.QuadPart;
for(i = 0; i < (uFreq*30); i++){
/* update uWait and uRem based on uRem */
uWait = ((UI64)(liPerfFreq.QuadPart) + uRem) / uFreq;
uRem = ((UI64)(liPerfFreq.QuadPart) + uRem) % uFreq;
/* wait for uWait ticks */
while(1){
QueryPerformanceCounter((PLARGE_INTEGER)&liPerfTemp);
uDelta = (UI64)(liPerfTemp.QuadPart - uPrev);
if(uDelta >= uWait)
break;
if((uWait - uDelta) > u2ms)
Sleep(1);
}
if(uDelta >= (uWait*2))
dwLateStep += 1;
uPrev += uWait;
/* fixed frequency code goes here */
/* along with some type of break when done */
}
timeEndPeriod(1); /* restore period */