POSTGRESQL - PHP INTERFACE

Installation

The PostgreSQL extension is enabled by default in the latest releases of PHP 5.3.x. It's possible to
disable it by using --without-pgsql at compile time. Still you can use yum command to install PHP
-PostgreSQL interface:

yum install php-pgsql

Before you start using PHP PostgreSQL interface, find pg_hba.conf file in your PostgreSQL
installation directory and add the following line:

IPv4 local connections:
host all all 127.0.0.1/32 md5

You can start/restart postgres server in case itis not running using the following command:

[root@host]# service postgresqgl restart
Stopping postgresql service: [OK]
Starting postgresgl service: [OK]

Windows users must enable php_pgsql.dll in order to use this extension. This DLL is included with
Windows distributions in the latest releases of PHP 5.3.x

For detailed installation instructions, kindly check our PHP tutorial and its official website.

PHP Interface APIs

Following are important PHP routines which can suffice your requirement to work with PostgreSQL
database from your PHP program. If you are looking for a more sophisticated application, then you
can look into PHP official documentation.

S.N. APl & Description

1 resource pg_connect (string $connection_string [, int $connect_type])
This opens a connection to a PostgreSQL database specified by the connection_string.
If PGSQL_CONNECT_FORCE_NEW is passed as connect_type, then a new connection is
created in case of a second call to pg_connect() , even if the connection_string is identical
to an existing connection.

2 bool pg_connection_reset (resource $connection)
This routine resets the connection. It is useful for error recovery. Returns TRUE on
success or FALSE on failure.

3 int pg_connection_status (resource $connection)
This routine returns the status of the specified connection. Returns
PGSQL_CONNECTION_OK or PGSQL_CONNECTION_BAD.

4 string pg _dbname ([resource $connection])

This routine returns the name of the database that the given PostgreSQL connection
resource.

http://www.tutorialspoint.com/postgresql/postgresql_php.htm

5 resource pg_prepare ([resource $connection], string $stmtname , string
$query)

This submits a request to create a prepared statement with the given parameters and
waits for completion.

6 resource pg_execute ([resource $connection], string $stmtname, array
$params)
This routine sends a request to execute a prepared statement with given parameters and
waits for the result.

7 resource pg_query ([resource $connection], string $query)

This routine executes the query on the specified database connection.

8 array pg_fetch_row (resource $result [, int $row])
This routine fetches one row of data from the result associated with the specified result
resource.

9 array pg_fetch_all (resource $result)

This routine returns an array that contains all rows (records) in the result resource.

10 int pg_affected_rows (resource $result)
This routine returns the number of rows affected by INSERT, UPDATE, and DELETE
queries.

11 int pg num_rows (resource $result)
This routine returns the number of rows in a PostgreSQL result resource for example
number of rows returned by SELECT statement.

12 bool pg_close ([resource $connection])
This routine closes the non-persistent connection to a PostgreSQL database associated
with the given connection resource.

13 string pg_last_error ([resource $connection])

This routine returns the last error message for a given connection.

14 string pg_escape _literal ([resource $connection], string $data)

This routine escapes a literal for insertion into a text field.

15 string pg_escape_string ([resource $connection], string $data)

This routine escapes a string for querying the database.

Connecting To Database

Following PHP code shows how to connect to an existing database on a local machine and finally a
database connection object will be returned.

<?php

$host = "host=127.0.0.1";

$port = "port=5432",;

$dbname = "dbname=testdb";

$credentials = "user=postgres password=pass123";

$db = pg_connect("$host $port $dbname $credentials");
if(!'$db){
echo "Error : Unable to open database\n";
} else {
echo "Opened database successfully\n";
}

2>

Now, let's run above program to open our database testdb, if database is successfully opened,
then it will give the following message:

Opened database successfully

Create a Table
Following PHP program will be used to create a table in previously created database:

<?php

$host = "host=127.0.0.1";

$port = "port=5432";

$dbname = "dbname=testdb";

$credentials = '"user=postgres password=passl23";

$db = pg_connect("$host $port $dbname $credentials");
if(!1$db){
echo "Error : Unable to open database\n";
} else {
echo "Opened database successfully\n";
}

$sql =<<<EOF
CREATE TABLE COMPANY

(ID INT PRIMARY KEY NOT NULL,
NAME TEXT NOT NULL,
AGE INT NOT NULL,
ADDRESS CHAR(50),
SALARY REAL);
EOF;

$ret = pg_query($db, $sql);

if(1$ret){
echo pg_last_error($db);

} else {

echo "Table created successfully\n";

}
pg_close($db);
?>

When above program is executed, it will create COMPANY table in your testdb and it will display
the following messages:

Opened database successfully
Table created successfully

INSERT Operation

Following PHP program shows how we can create records in our COMPANY table created in above
example:

<?php

$host = "host=127.0.0.1";

$port = "port=5432";

$dbname = "dbname=testdb";

$credentials = "user=postgres password=passi23";

$db = pg_connect("$host $port $dbname $credentials");
if(!$db){
echo "Error : Unable to open database\n";
} else {
echo "Opened database successfully\n";
}

$sql =<<<EOF
INSERT INTO COMPANY (ID, NAME, AGE, ADDRESS, SALARY)
VALUES (1, 'Paul', 32, 'California', 20000.00);

INSERT INTO COMPANY (ID,NAME, AGE, ADDRESS, SALARY)
VALUES (2, 'Allen', 25, 'Texas', 15000.00);

INSERT INTO COMPANY (ID, NAME, AGE, ADDRESS, SALARY)
VALUES (3, 'Teddy', 23, 'Norway', 20000.00);

INSERT INTO COMPANY (ID, NAME, AGE, ADDRESS, SALARY)
VALUES (4, 'Mark', 25, 'Rich-Mond ', 65000.00);

4

EOF;
$ret = pg_query($db, $sql);
if(!$ret){
echo pg_last_error($db);
} else {
echo "Records created successfully\n";
}
pg_close($db);
2>

When above program is executed, it will create given records in COMPANY table and will display
the following two lines:

Opened database successfully
Records created successfully

SELECT Operation

Following PHP program shows how we can fetch and display records from our COMPANY table
created in above example:

<?php
$host = "host=127.0.0.1";
$port = "port=5432";
$dbname = "dbname=testdb";
$credentials = '"user=postgres password=passl23";

$db = pg_connect("$host $port $dbname $credentials");
if(!'$db){
echo "Error : Unable to open database\n";
} else {
echo "Opened database successfully\n";
}

$sql =<<<EOF
SELECT * from COMPANY;
EOF;

$ret = pg_query($db, $sql);
if(!$ret){
echo pg_last_error($db);
exit;

}
while($row = pg_fetch _row($ret)){

echo "ID = ". $row[O] . "\n";

echo "NAME = ". $row[1] ."\n";
echo "ADDRESS = ". $row[2] ."\n";
echo "SALARY = ".$row[4] ."\n\n";

}

echo "Operation done successfully\n";

pg_close($db);
?>

When above program is executed, it will produce the following result. Keep a note that fields are
returned in the sequence they were used while creating table.

Opened database successfully
ID = 1

NAME = Paul

ADDRESS = California

SALARY = 20000

ID = 2

NAME = Allen
ADDRESS = Texas
SALARY = 15000

D = 3

NAME = Teddy
ADDRESS = Norway
SALARY = 20000

ID = 4

NAME = Mark
ADDRESS = Rich-Mond
SALARY = 65000

Operation done successfully

UPDATE Operation

Following PHP code shows how we can use UPDATE statement to update any record and then fetch
and display updated records from our COMPANY table:

<?php
$host = "host=127.0.0.1";
$port = "port=5432",;
$dbname = "dbname=testdb";
$credentials = "user=postgres password=passi23";

$db = pg_connect("$host $port $dbname $credentials");
if(!$db){
echo "Error : Unable to open database\n";
} else {
echo "Opened database successfully\n";
}

$sql =<<<EOF
UPDATE COMPANY set SALARY = 25000.00 where ID=1;
EOF;
$ret = pg_query($db, $sql);
if(!'$ret){
echo pg_last _error($db);
exit;
1} else {
echo "Record updated successfully\n";
}

$sql =<<<EOF
SELECT * from COMPANY;
EOF,

$ret = pg_query($db, $sql);
if(1$ret){
echo pg_last_error($db);

exit;

}
while($row = pg_fetch_row($ret)){
$row[O] . "\n";

echo
echo
echo
echo

IIID = n .

"NAME = ".

"ADDRESS
"SALARY =

=", $row[2]
" $row[4]

$row[1] ."\n";

. Il\nll ;
S\n\n";

}

echo "Operation done successfully\n";

pg_close($db);
?>

When above program is executed, it will produce the following result:

Opened database successfully
Record updated successfully
ID = 2

NAME = Allen

ADDRESS = 25

SALARY = 15000

D = 3

NAME = Teddy
ADDRESS = 23
SALARY = 20000

ID = 4

NAME = Mark
ADDRESS = 25
SALARY = 65000
ID = 1

NAME = Paul
ADDRESS = 32
SALARY = 25000

Operation done successfully

DELETE Operation

Following PHP code shows how we can use DELETE statement to delete any record and then fetch
and display remaining records from our COMPANY table:

<?php
$host = "host=127.0.0.1";
$port = "port=5432";
$dbname = "dbname=testdb";
$credentials = "user=postgres password=passl23";

$db = pg_connect("$host $port $dbname $credentials");
if(!sdb){

echo "Error
} else {

echo "Opened database successfully\n";
¥

$sql =<<<EOF
DELETE from COMPANY where ID=2;

: Unable to open database\n";

EOF;
$ret = pg_query($db, $sql);
if(!$ret){
echo pg_last_error($db);
exit;
} else {
echo "Record deleted successfully\n";

}

$sql =<<<EOF
SELECT * from COMPANY;

EOF;
$ret = pg_query($db, $sql);
if(!'$ret){
echo pg_last _error($db);
exit;

}
while($row = pg_fetch_row($ret)){

echo "ID = ". $row[0] . "\n";

echo "NAME = ". $row[1] ."\n";
echo "ADDRESS = ". $row[2] ."\n";
echo "SALARY = ".$row[4] ."\n\n";

}

echo "Operation done successfully\n";
pg_close($db);
?>

When above program is executed, it will produce the following result:

Opened database successfully
Record deleted successfully
ID = 3

NAME = Teddy

ADDRESS = 23

SALARY = 20000

ID = 4

NAME = Mark
ADDRESS = 25
SALARY = 65000

ID = 1

NAME = Paul
ADDRESS = 32
SALARY = 25000

Operation done successfully

