I have been trying to understand the following definition and just needed some clarification.
For each bounded sequence $(a_n)_{n=1}^{\infty}$ we define the sequences ($\overline{a}_n)_{n=1}^{\infty}$ and ($\underline{a}_n)_{n=1}^{\infty}$ in the following way:
\begin{eqnarray*} \overline{a}_n&=& \sup\left\{a_n,a_{n+1},\dots \right\},\\ \underline{a}_n&=&\inf\left\{a_n,a_{n+1},\dots\right\}. \end{eqnarray*}
How does this definition imply that $\overline{a}_n$ is decreasing and $\underline{a}_n$ is increasing?