
http://www.tutorialspoint.com/postgresql/postgresql_with_clause.htm Copyright © tutorialspoint.com

POSTGRESQL - WITH CLAUSEPOSTGRESQL - WITH CLAUSE

In PostgreSQL, the WITH query provides a way to write auxiliary statements for use in a larger
query. It helps in breaking down complicated and large queries into simpler forms, which are
easily readable. These statements, which are often referred to as Common Table Expressions or
CTEs, can be thought of as defining temporary tables that exist just for one query.

The WITH query being CTE query, is particularly useful when subquery is executed multiple times.
It is equally helpful in place of temporary tables. It computes the aggregation once and allows us
to reference it by its name (may be multiple times) in the queries.

The WITH clause must be defined before it is used in the query.

Syntax:
The basic syntax of WITH query is as follows:

WITH
 name_for_summary_data AS (
 SELECT Statement)
 SELECT columns
 FROM name_for_summary_data
 WHERE conditions <=> (
 SELECT column
 FROM name_for_summary_data)
 [ORDER BY columns]

Where name_for_summary_data is the name given to the WITH clause. The
name_for_summary_data can be the same as an existing table name and will take precedence.

You can use data-modifying statements (INSERT, UPDATE or DELETE) in WITH. This allows you to
perform several different operations in the same query.

Recursive WITH
Recursive WITH or Hierarchical queries, is a form of CTE where a CTE can reference to itself, i.e., a
WITH query can refer to its own output, hence the name recursive.

Example
Consider the table COMPANY having records as follows:

testdb# select * from COMPANY;
 id | name | age | address | salary
----+-------+-----+-----------+--------
 1 | Paul | 32 | California| 20000
 2 | Allen | 25 | Texas | 15000
 3 | Teddy | 23 | Norway | 20000
 4 | Mark | 25 | Rich-Mond | 65000
 5 | David | 27 | Texas | 85000
 6 | Kim | 22 | South-Hall| 45000
 7 | James | 24 | Houston | 10000
(7 rows)

Now, let us write a query using the WITH clause to select the records from the above table, as
follows:

With CTE AS
(Select
 ID
, NAME
, AGE

http://www.tutorialspoint.com/postgresql/postgresql_with_clause.htm
/postgresql/company.sql

, ADDRESS
, SALARY
FROM COMPANY)
Select * From CTE;

Above PostgreSQL statement will produce the following result:

id | name | age | address | salary
----+-------+-----+-----------+--------
 1 | Paul | 32 | California| 20000
 2 | Allen | 25 | Texas | 15000
 3 | Teddy | 23 | Norway | 20000
 4 | Mark | 25 | Rich-Mond | 65000
 5 | David | 27 | Texas | 85000
 6 | Kim | 22 | South-Hall| 45000
 7 | James | 24 | Houston | 10000
(7 rows)

Now, let us write a query using the RECURSIVE keyword along with the WITH clause, to find the sum
of the salaries less than 20000, as follows:

WITH RECURSIVE t(n) AS (
 VALUES (0)
 UNION ALL
 SELECT SALARY FROM COMPANY WHERE SALARY < 20000
)
SELECT sum(n) FROM t;

Above PostgreSQL statement will produce the following result:

 sum

 25000
(1 row)

Let us write a query using data modifying statements along with the WITH clause, as follows. First
create a table COMPANY1 similar to the table COMPANY. The query in the example, effectively
moves rows from COMPANY to COMPANY1. The DELETE in WITH deletes the specified rows from
COMPANY, returning their contents by means of its RETURNING clause; and then the primary query
reads that output and inserts it into COMPANY1 TABLE:

CREATE TABLE COMPANY1(
 ID INT PRIMARY KEY NOT NULL,
 NAME TEXT NOT NULL,
 AGE INT NOT NULL,
 ADDRESS CHAR(50),
 SALARY REAL
);

WITH moved_rows AS (
 DELETE FROM COMPANY
 WHERE
 SALARY >= 30000
 RETURNING *
)
INSERT INTO COMPANY1 (SELECT * FROM moved_rows);

Above PostgreSQL statement will produce the following result:

INSERT 0 3

Now, the records in the tables COMPANY and COMPANY1 are as follows:

testdb=# SELECT * FROM COMPANY;
 id | name | age | address | salary

----+-------+-----+------------+--------
 1 | Paul | 32 | California | 20000
 2 | Allen | 25 | Texas | 15000
 3 | Teddy | 23 | Norway | 20000
 7 | James | 24 | Houston | 10000
(4 rows)

testdb=# SELECT * FROM COMPANY1;
 id | name | age | address | salary
----+-------+-----+-------------+--------
 4 | Mark | 25 | Rich-Mond | 65000
 5 | David | 27 | Texas | 85000
 6 | Kim | 22 | South-Hall | 45000
(3 rows)

