
http://www.tutorialspoint.com/postgresql/postgresql_quick_guide.htm Copyright © tutorialspoint.com

POSTGRESQL - QUICK GUIDEPOSTGRESQL - QUICK GUIDE

POSTGRESQL OVERVIEWPOSTGRESQL OVERVIEW
PostgreSQL is a powerful, open source object-relational database system. It has more than 15
years of active development and a proven architecture that has earned it a strong reputation for
reliability, data integrity, and correctness.

This tutorial will give you quick start with PostgreSQL and make you comfortable with PostgreSQL
programming.

What is PostgreSQL?
PostgreSQL (pronounced as post-gress-Q-L) is an open source relational database management
system DBMS developed by a worldwide team of volunteers. PostgreSQL is not controlled by any
corporation or other private entity and the source code is available free of charge.

Key features of PostgreSQL
PostgreSQL runs on all major operating systems, including Linux, UNIX
AIX, BSD, HP − UX, SGIIRIX, MacOSX, Solaris, Tru64, and Windows. It supports text, images, sounds, and
video, and includes programming interfaces for C / C++ , Java , Perl , Python , Ruby, Tcl and Open
Database Connectivity ODBC.

PostgreSQL supports a large part of the SQL standard and offers many modern features including
the following:

Complex SQL queries

SQL Sub-selects

Foreign keys

Trigger

Views

Transactions

Multiversion concurrency control MVCC

Streaming Replication asof9.0

Hot Standby asof9.0

You can check official documentation of PostgreSQL to understand above-mentioned features.
PostgreSQL can be extended by the user in many ways, for example by adding new:

Data types

Functions

Operators

Aggregate functions

Index methods

Procedural Languages Support
PostgreSQL supports four standard procedural languages which allows the users to write their own
code in any of the languages and it can be executed by PostgreSQL database server. These
procedural languages are - PL/pgSQL, PL/Tcl, PL/Perl and PL/Python. Besides, other non-standard
procedural languages like PL/PHP, PL/V8, PL/Ruby, PL/Java, etc., are also supported.

http://www.tutorialspoint.com/postgresql/postgresql_quick_guide.htm

POSTGRESQL ENVIRONMENT SETUPPOSTGRESQL ENVIRONMENT SETUP
To start understanding the PostgreSQL basics, first let's install the PostgreSQL. This chapter
explains about installing the PostgreSQL on Linux, Windows and Mac OS platforms.

Installing PostgreSQL on Linux/Unix
Follow the following steps to install PostgreSQL on your Linux machine. Make sure you are logged
in as root before your proceed for the installation.

Pick the version number of PostgreSQL you want and, as exactly as possible, the platform you
want from a EnterpriseDB

I downloaded postgresql-9.2.4-1-linux-x64.run for my 64 bit CentOS-6 machine. Now,
let's execute it as follows:

[root@host]# chmod +x postgresql-9.2.4-1-linux-x64.run
[root@host]# ./postgresql-9.2.4-1-linux-x64.run
--
Welcome to the PostgreSQL Setup Wizard.

--
Please specify the directory where PostgreSQL will be installed.

Installation Directory [/opt/PostgreSQL/9.2]:

Once you launch the installer, it asks you few basic questions like location of the installation,
password of the user, who will use database, port number, etc. So keep all of them at their
default values except password, which you can provide password as per your choice. It will
install PostgreSQL at your Linux machine and will display the following message:

Please wait while Setup installs PostgreSQL on your computer.

 Installing
 0% ______________ 50% ______________ 100%
 ###

Setup has finished installing PostgreSQL on your computer.

Follow the following post-installation steps to create your database:

[root@host]# su - postgres
Password:
bash-4.1$ createdb testdb
bash-4.1$ psql testdb
psql (8.4.13, server 9.2.4)

test=#

You can start/restart postgres server in case it is not running using the following command:

[root@host]# service postgresql restart
Stopping postgresql service: [OK]
Starting postgresql service: [OK]

If your installation was correct, you will have PotsgreSQL prompt test=# shown above.

Installing PostgreSQL on Windows
Follow the following steps to install PostgreSQL on your Windows machine. Make sure you have
turned Third Party Antivirus off while installing.

Pick the version number of PostgreSQL you want and, as exactly as possible, the platform you

http://www.enterprisedb.com/products-services-training/pgdownload

want from a EnterpriseDB

I download postgresql-9.2.4-1-windows.exe for my Windows PC running in 32 bit mode, so lets
run postgresql-9.2.4-1-windows.exe as administrator to install PostgreSQL. Select the
location where you want to install it. By default it is installed within Program Files folder.

The next step of the installation process would be to select the directory where data would be
stored, by default it is stored under "data" directory

The next step, setup asks for password, so you can use your favorite password

http://www.enterprisedb.com/products-services-training/pgdownload#windows

The next step, keep the port as default

The next step, when asked for "Locale", I have selected "English, United States".

It takes a while to install PostgreSQL on your system. On completion of the installation
process, you will get the following screen. Uncheck the checkbox and click on Finish button.

After the installation process is completed, you can access pgAdmin III, StackBuilder and
PostgreSQL shell from your Program Menu under PostgreSQL 9.2.

Installing PostgreSQL on Mac
Follow the following steps to install PostgreSQL on your Mac machine. Make sure you are logged in
as administrator before your proceed for the installation.

Pick the latest version number of PostgreSQL for Mac OS available at EnterpriseDB

I downloaded postgresql-9.2.4-1-osx.dmg for my Mac OS running with OS X version
10.8.3. Now, let's open the dmg image in finder and just double click it which will give you
PostgreSQL installer in the following window:

Next, click on postgres-9.2.4-1-osx icon which will give a warning message, just accept the
warning and proceed for further installation. It will ask for administrator password using the
following window:

Enter the password and proceed for the installation and after this step, restart your Mac

http://www.enterprisedb.com/products-services-training/pgdownload

machine, if you do not see following window and after restarting start your installation once
again.

Once you launch the installer, it asks you few basic questions like location of the installation,
password of the user who will use database, port number etc. So keep all of them at their
default values except password, which you can provide password as per your choice. It will
instal PostgreSQL at your Mac machine in Application folder which you can check:

Now, you can launch any of the program to start with. Let's start with SQL Shell. When you
launch SQL Shell, just use all the default values it displays except, enter your password which
you had selected at the time of installation. If everything goes fine, then you will be inside
postgres database and you will be given a postgress# prompt as shown below:

POSTGRESQL POSTGRESQL - SYNTAX- SYNTAX
Here is a list of the PostgreSQL SQL commands, followed by the precise syntax rules for each of
these commands. This set of commands is taken from the psql command-line tool. Now that you
have Postgres installed, open the psql as:

Program Files > PostgreSQL 9.2 > SQL Shellpsql.

Using psql, you can generate the complete list of commands by using the \help command. For the
syntax of a specific command, use the following command:

 postgres-# \help <command_name>

The SQL Statement
An SQL statement is comprised of tokens where each token can represent either a keyword,
identifier, quoted identifier, constant, or special character symbol. The table below uses a simple
SELECT statement to illustrate a basic, but complete, SQL statement and its components.

SELECT id, name FROM states

Token Type Keyword Identifiers Keyword Identifier

Description Command Id and name columns Clause Table name

PostgreSQL SQL commands

ABORT
Abort the current transaction.

ABORT [WORK | TRANSACTION]

ALTER AGGREGATE
Change the definition of an aggregate function.

ALTER AGGREGATE name (type) RENAME TO new_name
ALTER AGGREGATE name (type) OWNER TO new_owner

ALTER CONVERSION
Change the definition of a conversion.

ALTER CONVERSION name RENAME TO new_name
ALTER CONVERSION name OWNER TO new_owner

ALTER DATABASE
Change a database specific parameter.

ALTER DATABASE name SET parameter { TO | = } { value | DEFAULT }
ALTER DATABASE name RESET parameter
ALTER DATABASE name RENAME TO new_name
ALTER DATABASE name OWNER TO new_owner

ALTER DOMAIN
Change the definition of a domain specific parameter.

ALTER DOMAIN name { SET DEFAULT expression | DROP DEFAULT }
ALTER DOMAIN name { SET | DROP } NOT NULL
ALTER DOMAIN name ADD domain_constraint
ALTER DOMAIN name DROP CONSTRAINT constraint_name [RESTRICT | CASCADE]
ALTER DOMAIN name OWNER TO new_owner

ALTER FUNCTION
Change the definition of a function.

ALTER FUNCTION name ([type [, ...]]) RENAME TO new_name
ALTER FUNCTION name ([type [, ...]]) OWNER TO new_owner

ALTER GROUP
Change a user group.

ALTER GROUP groupname ADD USER username [, ...]
ALTER GROUP groupname DROP USER username [, ...]
ALTER GROUP groupname RENAME TO new_name

ALTER INDEX
Change the definition of an index.

ALTER INDEX name OWNER TO new_owner
ALTER INDEX name SET TABLESPACE indexspace_name
ALTER INDEX name RENAME TO new_name

ALTER LANGUAGE
Change the definition of a procedural language.

ALTER LANGUAGE name RENAME TO new_name

ALTER OPERATOR
Change the definition of an operator.

ALTER OPERATOR name ({ lefttype | NONE } , { righttype | NONE })
OWNER TO new_owner

ALTER OPERATOR CLASS
Change the definition of an operator class.

ALTER OPERATOR CLASS name USING index_method RENAME TO new_name
ALTER OPERATOR CLASS name USING index_method OWNER TO new_owner

ALTER SCHEMA
Change the definition of a schema.

ALTER SCHEMA name RENAME TO new_name
ALTER SCHEMA name OWNER TO new_owner

ALTER SEQUENCE
Change the definition of a sequence generator.

ALTER SEQUENCE name [INCREMENT [BY] increment]
[MINVALUE minvalue | NO MINVALUE]
[MAXVALUE maxvalue | NO MAXVALUE]
[RESTART [WITH] start] [CACHE cache] [[NO] CYCLE]

ALTER TABLE
Change the definition of a table.

ALTER TABLE [ONLY] name [*]
action [, ...]
ALTER TABLE [ONLY] name [*]
RENAME [COLUMN] column TO new_column
ALTER TABLE name
RENAME TO new_name

Where action is one of the following lines:

ADD [COLUMN] column_type [column_constraint [...]]
DROP [COLUMN] column [RESTRICT | CASCADE]
ALTER [COLUMN] column TYPE type [USING expression]
ALTER [COLUMN] column SET DEFAULT expression
ALTER [COLUMN] column DROP DEFAULT
ALTER [COLUMN] column { SET | DROP } NOT NULL
ALTER [COLUMN] column SET STATISTICS integer
ALTER [COLUMN] column SET STORAGE { PLAIN | EXTERNAL | EXTENDED | MAIN }
ADD table_constraint
DROP CONSTRAINT constraint_name [RESTRICT | CASCADE]
CLUSTER ON index_name
SET WITHOUT CLUSTER
SET WITHOUT OIDS
OWNER TO new_owner
SET TABLESPACE tablespace_name

ALTER TABLESPACE
Change the definition of a tablespace.

ALTER TABLESPACE name RENAME TO new_name
ALTER TABLESPACE name OWNER TO new_owner

ALTER TRIGGER
Change the definition of a trigger.

ALTER TRIGGER name ON table RENAME TO new_name

ALTER TYPE
Change the definition of a type.

ALTER TYPE name OWNER TO new_owner

ALTER USER
Change a database user account.

ALTER USER name [[WITH] option [...]]
ALTER USER name RENAME TO new_name
ALTER USER name SET parameter { TO | = } { value | DEFAULT }
ALTER USER name RESET parameter

Where option can be:

[ENCRYPTED | UNENCRYPTED] PASSWORD 'password'
| CREATEDB | NOCREATEDB
| CREATEUSER | NOCREATEUSER
| VALID UNTIL 'abstime'

ANALYZE
Collect statistics about a database.

ANALYZE [VERBOSE] [table [(column [, ...])]]

BEGIN
Start a transaction block.

BEGIN [WORK | TRANSACTION] [transaction_mode [, ...]]

Where transaction_mode is one of:

ISOLATION LEVEL { SERIALIZABLE | REPEATABLE READ | READ COMMITTED
| READ UNCOMMITTED }
READ WRITE | READ ONLY

CHECKPOINT
Force a transaction log checkpoint.

CHECKPOINT

CLOSE
Close a cursor.

CLOSE name

CLUSTER

Cluster a table according to an index.

CLUSTER index_name ON table_name
CLUSTER table_name
CLUSTER

COMMENT
Define or change the comment of an object.

COMMENT ON
{
TABLE object_name |
COLUMN table_name.column_name |
AGGREGATE agg_name (agg_type) |
CAST (source_type AS target_type) |
CONSTRAINT constraint_name ON table_name |
CONVERSION object_name |
DATABASE object_name |
DOMAIN object_name |
FUNCTION func_name (arg1_type, arg2_type, ...) |
INDEX object_name |
LARGE OBJECT large_object_oid |
OPERATOR op (left_operand_type, right_operand_type) |
OPERATOR CLASS object_name USING index_method |
[PROCEDURAL] LANGUAGE object_name |
RULE rule_name ON table_name |
SCHEMA object_name |
SEQUENCE object_name |
TRIGGER trigger_name ON table_name |
TYPE object_name |
VIEW object_name
} IS 'text'

COMMIT
Commit the current transaction.

COMMIT [WORK | TRANSACTION]

COPY
Copy data between a file and a table.

COPY table_name [(column [, ...])]
FROM { 'filename' | STDIN }
[[WITH]
[BINARY]
[OIDS]
[DELIMITER [AS] 'delimiter']
[NULL [AS] 'null string']
[CSV [QUOTE [AS] 'quote']
[ESCAPE [AS] 'escape']
[FORCE NOT NULL column [, ...]]
COPY table_name [(column [, ...])]
TO { 'filename' | STDOUT }
[[WITH]
[BINARY]
[OIDS]
[DELIMITER [AS] 'delimiter']
[NULL [AS] 'null string']
[CSV [QUOTE [AS] 'quote']
[ESCAPE [AS] 'escape']
[FORCE QUOTE column [, ...]]

CREATE AGGREGATE
Define a new aggregate function.

CREATE AGGREGATE name (
BASETYPE = input_data_type,
SFUNC = sfunc,
STYPE = state_data_type
[, FINALFUNC = ffunc]
[, INITCOND = initial_condition]
)

CREATE CAST
Define a new cast.

CREATE CAST (source_type AS target_type)
WITH FUNCTION func_name (arg_types)
[AS ASSIGNMENT | AS IMPLICIT]
CREATE CAST (source_type AS target_type)
WITHOUT FUNCTION
[AS ASSIGNMENT | AS IMPLICIT]

CREATE CONSTRAINT TRIGGER
Define a new constraint trigger.

CREATE CONSTRAINT TRIGGER name
AFTER events ON
table_name constraint attributes
FOR EACH ROW EXECUTE PROCEDURE func_name (args)

CREATE CONVERSION
Define a new conversion.

CREATE [DEFAULT] CONVERSION name
FOR source_encoding TO dest_encoding FROM func_name

CREATE DATABASE
Create a new database.

CREATE DATABASE name
[[WITH] [OWNER [=] db_owner]
[TEMPLATE [=] template]
[ENCODING [=] encoding]
[TABLESPACE [=] tablespace]]

CREATE DOMAIN
Define a new domain.

CREATE DOMAIN name [AS] data_type
[DEFAULT expression]
[constraint [...]]

Where constraint is:

[CONSTRAINT constraint_name]
{ NOT NULL | NULL | CHECK (expression) }

CREATE FUNCTION
Define a new function.

CREATE [OR REPLACE] FUNCTION name ([[arg_name] arg_type [, ...]])
RETURNS ret_type
{ LANGUAGE lang_name
| IMMUTABLE | STABLE | VOLATILE
| CALLED ON NULL INPUT | RETURNS NULL ON NULL INPUT | STRICT
| [EXTERNAL] SECURITY INVOKER | [EXTERNAL] SECURITY DEFINER
| AS 'definition'
| AS 'obj_file', 'link_symbol'
} ...
[WITH (attribute [, ...])]

CREATE GROUP
Define a new user group.

CREATE GROUP name [[WITH] option [...]]
Where option can be:
SYSID gid
| USER username [, ...]

CREATE INDEX
Define a new index.

CREATE [UNIQUE] INDEX name ON table [USING method]
({ column | (expression) } [opclass] [, ...])
[TABLESPACE tablespace]
[WHERE predicate]

CREATE LANGUAGE
Define a new procedural language.

CREATE [TRUSTED] [PROCEDURAL] LANGUAGE name
HANDLER call_handler [VALIDATOR val_function]

CREATE OPERATOR
Define a new operator.

CREATE OPERATOR name (
PROCEDURE = func_name
[, LEFTARG = left_type] [, RIGHTARG = right_type]
[, COMMUTATOR = com_op] [, NEGATOR = neg_op]
[, RESTRICT = res_proc] [, JOIN = join_proc]
[, HASHES] [, MERGES]
[, SORT1 = left_sort_op] [, SORT2 = right_sort_op]
[, LTCMP = less_than_op] [, GTCMP = greater_than_op]
)

CREATE OPERATOR CLASS
Define a new operator class.

CREATE OPERATOR CLASS name [DEFAULT] FOR TYPE data_type
USING index_method AS
{ OPERATOR strategy_number operator_name [(op_type, op_type)] [RECHECK]

| FUNCTION support_number func_name (argument_type [, ...])
| STORAGE storage_type
} [, ...]

CREATE RULE
Define a new rewrite rule.

CREATE [OR REPLACE] RULE name AS ON event
TO table [WHERE condition]
DO [ALSO | INSTEAD] { NOTHING | command | (command ; command ...) }

CREATE SCHEMA
Define a new schema.

CREATE SCHEMA schema_name
[AUTHORIZATION username] [schema_element [...]]
CREATE SCHEMA AUTHORIZATION username
[schema_element [...]]

CREATE SEQUENCE
Define a new sequence generator.

CREATE [TEMPORARY | TEMP] SEQUENCE name
[INCREMENT [BY] increment]
[MINVALUE minvalue | NO MINVALUE]
[MAXVALUE maxvalue | NO MAXVALUE]
[START [WITH] start] [CACHE cache] [[NO] CYCLE]

CREATE TABLE
Define a new table.

CREATE [[GLOBAL | LOCAL] { TEMPORARY | TEMP }] TABLE table_name (
{ column_name data_type [DEFAULT default_expr] [column_constraint [...]]
| table_constraint
| LIKE parent_table [{ INCLUDING | EXCLUDING } DEFAULTS] } [, ...]
)
[INHERITS (parent_table [, ...])]
[WITH OIDS | WITHOUT OIDS]
[ON COMMIT { PRESERVE ROWS | DELETE ROWS | DROP }]
[TABLESPACE tablespace]

Where column_constraint is:
[CONSTRAINT constraint_name]
{ NOT NULL |
NULL |
UNIQUE [USING INDEX TABLESPACE tablespace] |
PRIMARY KEY [USING INDEX TABLESPACE tablespace] |
CHECK (expression) |
REFERENCES ref_table [(ref_column)]
[MATCH FULL | MATCH PARTIAL | MATCH SIMPLE]
[ON DELETE action] [ON UPDATE action] }
[DEFERRABLE | NOT DEFERRABLE] [INITIALLY DEFERRED | INITIALLY IMMEDIATE]

And table_constraint is:

[CONSTRAINT constraint_name]
{ UNIQUE (column_name [, ...]) [USING INDEX TABLESPACE tablespace] |
PRIMARY KEY (column_name [, ...]) [USING INDEX TABLESPACE tablespace] |
CHECK (expression) |

FOREIGN KEY (column_name [, ...])
REFERENCES ref_table [(ref_column [, ...])]
[MATCH FULL | MATCH PARTIAL | MATCH SIMPLE]
[ON DELETE action] [ON UPDATE action] }
[DEFERRABLE | NOT DEFERRABLE] [INITIALLY DEFERRED | INITIALLY IMMEDIATE]

CREATE TABLE AS
Define a new table from the results of a query.

CREATE [[GLOBAL | LOCAL] { TEMPORARY | TEMP }] TABLE table_name
[(column_name [, ...])] [[WITH | WITHOUT] OIDS]
AS query

CREATE TABLESPACE
Define a new tablespace.

CREATE TABLESPACE tablespace_name [OWNER username] LOCATION 'directory'

CREATE TRIGGER
Define a new trigger.

CREATE TRIGGER name { BEFORE | AFTER } { event [OR ...] }
ON table [FOR [EACH] { ROW | STATEMENT }]
EXECUTE PROCEDURE func_name (arguments)

CREATE TYPE
Define a new data type.

CREATE TYPE name AS
(attribute_name data_type [, ...])
CREATE TYPE name (
INPUT = input_function,
OUTPUT = output_function
[, RECEIVE = receive_function]
[, SEND = send_function]
[, ANALYZE = analyze_function]
[, INTERNALLENGTH = { internal_length | VARIABLE }]
[, PASSEDBYVALUE]
[, ALIGNMENT = alignment]
[, STORAGE = storage]
[, DEFAULT = default]
[, ELEMENT = element]
[, DELIMITER = delimiter]
)

CREATE USER
Define a new database user account.

CREATE USER name [[WITH] option [...]]

Where option can be:

SYSID uid
| [ENCRYPTED | UNENCRYPTED] PASSWORD 'password'
| CREATEDB | NOCREATEDB
| CREATEUSER | NOCREATEUSER
| IN GROUP group_name [, ...]

| VALID UNTIL 'abs_time'

CREATE VIEW
Define a new view.

CREATE [OR REPLACE] VIEW name [(column_name [, ...])] AS query

DEALLOCATE
Deallocate a prepared statement.

DEALLOCATE [PREPARE] plan_name

DECLARE
Define a cursor.

DECLARE name [BINARY] [INSENSITIVE] [[NO] SCROLL]
CURSOR [{ WITH | WITHOUT } HOLD] FOR query
[FOR { READ ONLY | UPDATE [OF column [, ...]] }]

DELETE
Delete rows of a table.

DELETE FROM [ONLY] table [WHERE condition]

DROP AGGREGATE
Remove an aggregate function.

DROP AGGREGATE name (type) [CASCADE | RESTRICT]

DROP CAST
Remove a cast.

DROP CAST (source_type AS target_type) [CASCADE | RESTRICT]

DROP CONVERSION
Remove a conversion.

DROP CONVERSION name [CASCADE | RESTRICT]

DROP DATABASE
Remove a database.

DROP DATABASE name

DROP DOMAIN
Remove a domain.

DROP DOMAIN name [, ...] [CASCADE | RESTRICT]

DROP FUNCTION
Remove a function.

DROP FUNCTION name ([type [, ...]]) [CASCADE | RESTRICT]

DROP GROUP
Remove a user group.

DROP GROUP name

DROP INDEX
Remove an index.

DROP INDEX name [, ...] [CASCADE | RESTRICT]

DROP LANGUAGE
Remove a procedural language.

DROP [PROCEDURAL] LANGUAGE name [CASCADE | RESTRICT]

DROP OPERATOR
Remove an operator.

DROP OPERATOR name ({ left_type | NONE } , { right_type | NONE })
[CASCADE | RESTRICT]

DROP OPERATOR CLASS
Remove an operator class.

DROP OPERATOR CLASS name USING index_method [CASCADE | RESTRICT]

DROP RULE
Remove a rewrite rule.

DROP RULE name ON relation [CASCADE | RESTRICT]

DROP SCHEMA
Remove a schema.

DROP SCHEMA name [, ...] [CASCADE | RESTRICT]

DROP SEQUENCE
Remove a sequence.

DROP SEQUENCE name [, ...] [CASCADE | RESTRICT]

DROP TABLE

Remove a table.

DROP TABLE name [, ...] [CASCADE | RESTRICT]

DROP TABLESPACE
Remove a tablespace.

DROP TABLESPACE tablespace_name

DROP TRIGGER
Remove a trigger.

DROP TRIGGER name ON table [CASCADE | RESTRICT]

DROP TYPE
Remove a data type.

DROP TYPE name [, ...] [CASCADE | RESTRICT]

DROP USER
Remove a database user account.

DROP USER name

DROP VIEW
Remove a view.

DROP VIEW name [, ...] [CASCADE | RESTRICT]

END
Commit the current transaction.

END [WORK | TRANSACTION]

EXECUTE
Execute a prepared statement.

EXECUTE plan_name [(parameter [, ...])]

EXPLAIN
Show the execution plan of a statement.

EXPLAIN [ANALYZE] [VERBOSE] statement

FETCH
Retrieve rows from a query using a cursor.

FETCH [direction { FROM | IN }] cursor_name

Where direction can be empty or one of:

NEXT
PRIOR
FIRST
LAST
ABSOLUTE count
RELATIVE count
count
ALL
FORWARD
FORWARD count
FORWARD ALL
BACKWARD
BACKWARD count
BACKWARD ALL

GRANT
Define access privileges.

GRANT { { SELECT | INSERT | UPDATE | DELETE | RULE | REFERENCES | TRIGGER }
[,...] | ALL [PRIVILEGES] }
ON [TABLE] table_name [, ...]
TO { username | GROUP group_name | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { { CREATE | TEMPORARY | TEMP } [,...] | ALL [PRIVILEGES] }
ON DATABASE db_name [, ...]
TO { username | GROUP group_name | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { CREATE | ALL [PRIVILEGES] }
ON TABLESPACE tablespace_name [, ...]
TO { username | GROUP group_name | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { EXECUTE | ALL [PRIVILEGES] }
ON FUNCTION func_name ([type, ...]) [, ...]
TO { username | GROUP group_name | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { USAGE | ALL [PRIVILEGES] }
ON LANGUAGE lang_name [, ...]
TO { username | GROUP group_name | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { { CREATE | USAGE } [,...] | ALL [PRIVILEGES] }
ON SCHEMA schema_name [, ...]
TO { username | GROUP group_name | PUBLIC } [, ...] [WITH GRANT OPTION]

INSERT
Create new rows in a table.

INSERT INTO table [(column [, ...])]
{ DEFAULT VALUES | VALUES ({ expression | DEFAULT } [, ...]) | query }

LISTEN
Listen for a notification.

LISTEN name

LOAD
Load or reload a shared library file.

LOAD 'filename'

LOCK
Lock a table.

LOCK [TABLE] name [, ...] [IN lock_mode MODE] [NOWAIT]

Where lock_mode is one of:

ACCESS SHARE | ROW SHARE | ROW EXCLUSIVE | SHARE UPDATE EXCLUSIVE
| SHARE | SHARE ROW EXCLUSIVE | EXCLUSIVE | ACCESS EXCLUSIVE

MOVE
Position a cursor.

MOVE [direction { FROM | IN }] cursor_name

NOTIFY
Generate a notification.

NOTIFY name

PREPARE
Prepare a statement for execution.

PREPARE plan_name [(data_type [, ...])] AS statement

REINDEX
Rebuild indexes.

REINDEX { DATABASE | TABLE | INDEX } name [FORCE]

RELEASE SAVEPOINT
Destroy a previously defined savepoint.

RELEASE [SAVEPOINT] savepoint_name

RESET
Restore the value of a runtime parameter to the default value.

RESET name
RESET ALL

REVOKE
Remove access privileges.

REVOKE [GRANT OPTION FOR]
{ { SELECT | INSERT | UPDATE | DELETE | RULE | REFERENCES | TRIGGER }
[,...] | ALL [PRIVILEGES] }
ON [TABLE] table_name [, ...]
FROM { username | GROUP group_name | PUBLIC } [, ...]
[CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
{ { CREATE | TEMPORARY | TEMP } [,...] | ALL [PRIVILEGES] }
ON DATABASE db_name [, ...]
FROM { username | GROUP group_name | PUBLIC } [, ...]
[CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
{ CREATE | ALL [PRIVILEGES] }
ON TABLESPACE tablespace_name [, ...]
FROM { username | GROUP group_name | PUBLIC } [, ...]
[CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
{ EXECUTE | ALL [PRIVILEGES] }
ON FUNCTION func_name ([type, ...]) [, ...]
FROM { username | GROUP group_name | PUBLIC } [, ...]
[CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
{ USAGE | ALL [PRIVILEGES] }
ON LANGUAGE lang_name [, ...]
FROM { username | GROUP group_name | PUBLIC } [, ...]
[CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
{ { CREATE | USAGE } [,...] | ALL [PRIVILEGES] }
ON SCHEMA schema_name [, ...]
FROM { username | GROUP group_name | PUBLIC } [, ...]
[CASCADE | RESTRICT]

ROLLBACK
Abort the current transaction.

ROLLBACK [WORK | TRANSACTION]

ROLLBACK TO SAVEPOINT
Roll back to a savepoint.

ROLLBACK [WORK | TRANSACTION] TO [SAVEPOINT] savepoint_name

SAVEPOINT
Define a new savepoint within the current transaction.

SAVEPOINT savepoint_name

SELECT
Retrieve rows from a table or view.

SELECT [ALL | DISTINCT [ON (expression [, ...])]]
* | expression [AS output_name] [, ...]
[FROM from_item [, ...]]
[WHERE condition]
[GROUP BY expression [, ...]]
[HAVING condition [, ...]]
[{ UNION | INTERSECT | EXCEPT } [ALL] select]
[ORDER BY expression [ASC | DESC | USING operator] [, ...]]
[LIMIT { count | ALL }]
[OFFSET start]
[FOR UPDATE [OF table_name [, ...]]]

Where from_item can be one of:
[ONLY] table_name [*] [[AS] alias [(column_alias [, ...])]]
(select) [AS] alias [(column_alias [, ...])]
function_name ([argument [, ...]])
[AS] alias [(column_alias [, ...] | column_definition [, ...])]
function_name ([argument [, ...]]) AS (column_definition [, ...])
from_item [NATURAL] join_type from_item
[ON join_condition | USING (join_column [, ...])]

SELECT INTO
Define a new table from the results of a query.

SELECT [ALL | DISTINCT [ON (expression [, ...])]]
* | expression [AS output_name] [, ...]
INTO [TEMPORARY | TEMP] [TABLE] new_table
[FROM from_item [, ...]]
[WHERE condition]
[GROUP BY expression [, ...]]
[HAVING condition [, ...]]
[{ UNION | INTERSECT | EXCEPT } [ALL] select]
[ORDER BY expression [ASC | DESC | USING operator] [, ...]]
[LIMIT { count | ALL }]
[OFFSET start]
[FOR UPDATE [OF table_name [, ...]]]

SET
Change a runtime parameter.

SET [SESSION | LOCAL] name { TO | = } { value | 'value' | DEFAULT }
SET [SESSION | LOCAL] TIME ZONE { time_zone | LOCAL | DEFAULT }

SET CONSTRAINTS
Set constraint checking modes for the current transaction.

SET CONSTRAINTS { ALL | name [, ...] } { DEFERRED | IMMEDIATE }

SET SESSION AUTHORIZATION
Set the session user identifier and the current user identifier of the current session.

SET [SESSION | LOCAL] SESSION AUTHORIZATION username
SET [SESSION | LOCAL] SESSION AUTHORIZATION DEFAULT
RESET SESSION AUTHORIZATION

SET TRANSACTION
Set the characteristics of the current transaction.

SET TRANSACTION transaction_mode [, ...]
SET SESSION CHARACTERISTICS AS TRANSACTION transaction_mode [, ...]

Where transaction_mode is one of:

ISOLATION LEVEL { SERIALIZABLE | REPEATABLE READ | READ COMMITTED
| READ UNCOMMITTED }
READ WRITE | READ ONLY

SHOW

Show the value of a runtime parameter.

SHOW name
SHOW ALL

START TRANSACTION
Start a transaction block.

START TRANSACTION [transaction_mode [, ...]]

Where transaction_mode is one of:

ISOLATION LEVEL { SERIALIZABLE | REPEATABLE READ | READ COMMITTED
| READ UNCOMMITTED }
READ WRITE | READ ONLY

TRUNCATE
Empty a table.

TRUNCATE [TABLE] name

UNLISTEN
Stop listening for a notification.

UNLISTEN { name | * }

UPDATE
Update rows of a table.

UPDATE [ONLY] table SET column = { expression | DEFAULT } [, ...]
[FROM from_list]
[WHERE condition]

VACUUM
Garbage-collect and optionally analyze a database.

VACUUM [FULL] [FREEZE] [VERBOSE] [table]
VACUUM [FULL] [FREEZE] [VERBOSE] ANALYZE [table [(column [, ...])]]

POSTGRESQL - DATA TYPEPOSTGRESQL - DATA TYPE
While creating table, for each column, you specify a data type, i.e., what kind of data you want to
store in the table fields.

This enables several benefits:

Consistency: Operations against columns of same data type give consistent results, and are
usually the fastest.

Validation: Proper use of data types implies format validation of data and rejection of data
outside the scope of data type.

Compactness: As a column can store a single type of value, it is stored in a compact way.

Performance: Proper use of data types gives the most efficient storage of data. The values

stored can be processed quickly, which enhances the performance.

PostgreSQL supports a wide set of Data Types. Besides, users can create their own custom data
type using CREATE TYPE SQL command. There are different categories of data types in
PostgreSQL. They are discussed as below:

Numeric Types
Numeric types consist of two-byte, four-byte, and eight-byte integers, four-byte and eight-byte
floating-point numbers, and selectable-precision decimals. Table below lists the available types.

Name Storage
Size

Description Range

smallint 2 bytes small-range integer -32768 to +32767

integer 4 bytes typical choice for
integer

-2147483648 to +2147483647

bigint 8 bytes large-range integer -9223372036854775808 to
9223372036854775807

decimal variable user-specified
precision,exact

up to 131072 digits before the decimal
point; up to 16383 digits after the decimal
point

numeric variable user-specified
precision,exact

up to 131072 digits before the decimal
point; up to 16383 digits after the decimal
point

real 4 bytes variable-
precision,inexact

6 decimal digits precision

double
precision

8 bytes variable-
precision,inexact

15 decimal digits precision

smallserial 2 bytes small autoincrementing
integer

1 to 32767

serial 4 bytes autoincrementing
integer

1 to 2147483647

bigserial 8 bytes large autoincrementing
integer

1 to 9223372036854775807

Monetary Types
The money type stores a currency amount with a fixed fractional precision. Values of the numeric,
int, and bigint data types can be cast to money. Using Floating point numbers is not recommended
to handle money due to the potential for rounding errors.

Name Storage
Size

Description Range

money 8 bytes currency
amount

-92233720368547758.08 to
+92233720368547758.07

Character Types
The table below lists general-purpose character types available in PostgreSQL.

Name Description

character varyingn, varcharn variable-length with limit

charactern, charn fixed-length, blank padded

text variable unlimited length

Binary Data Types
The bytea data type allows storage of binary strings as in the table below.

Name Storage Size Description

bytea 1 or 4 bytes plus the actual binary string variable-length binary string

Date/Time Types
PostgreSQL supports the full set of SQL date and time types, as shown in table below. Dates are
counted according to the Gregorian calendar. Here, all the types have resolution of 1
microsecond / 14 digits except date type, whose resolution is day.

Name Storage
Size

Description Low Value High
Value

timestamp [p] [without
time zone]

8 bytes both date and time
notimezone

4713 BC 294276 AD

timestamp [p] with time
zone

8 bytes both date and time, with
time zone

4713 BC 294276 AD

date 4 bytes date notimeofday 4713 BC 5874897
AD

time [p] [without time
zone]

8 bytes time of day nodate 00:00:00 24:00:00

time [p] with time zone 12 bytes times of day only, with
time zone

00:00:00+1459 24:00:00-
1459

interval [fields] [p] 12 bytes time interval -178000000
years

178000000
years

Boolean Type
PostgreSQL provides the standard SQL type boolean. The boolean type can have several states:
true, false, and a third state, unknown, which is represented by the SQL null value.

Name Storage Size Description

boolean 1 byte state of true or false

Enumerated Type
Enumerated enum types are data types that comprise a static, ordered set of values. They are
equivalent to the enum types supported in a number of programming languages.

Unlike other types, Enumerated Types need to be created using CREATE TYPE command. This type
is used to store a static, ordered set of values; for example, compass directions, i.e., NORTH,
SOUTH, EAST, and WEST or days of the week as below:

CREATE TYPE week AS ENUM ('Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun');

Enumerated once created, they can be used like any other types.

Geometric Type
Geometric data types represent two-dimensional spatial objects. The most fundamental type, the
point, forms the basis for all of the other types.

Name Storage Size Representation Description

point 16 bytes Point on a plane x, y

line 32 bytes Infinite line notfullyimplemented (x1, y1,x2, y2)

lseg 32 bytes Finite line segment (x1, y1,x2, y2)

box 32 bytes Rectangular box (x1, y1,x2, y2)

path 16+16n bytes Closed path similartopolygon (x1, y1,...)

path 16+16n bytes Open path [x1, y1,...]

polygon 40+16n Polygon similartoclosedpath (x1, y1,...)

circle 24 bytes Circle <x, y,r> centerpointandradius

Network Address Type
PostgreSQL offers data types to store IPv4, IPv6, and MAC addresses. It is better to use these types
instead of plain text types to store network addresses, because these types offer input error
checking and specialized operators and functions.

Name Storage Size Description

cidr 7 or 19 bytes IPv4 and IPv6 networks

inet 7 or 19 bytes IPv4 and IPv6 hosts and networks

macaddr 6 bytes MAC addresses

Bit String Type
Bit String Types are used to store bit masks. They are either 0 or 1. There are two SQL bit types:
bitn and bit varyingn, where n is a positive integer.

Text Search Type
This type supports full text search, which is the activity of searching through a collection of natural-
language documents to locate those that best match a query. There are two Data Types for this :

Name Description

tsvector This is a sorted list of distinct words that have been normalized to merge different
variants of the same word, called as "lexemes".

tsquery This stores lexemes that are to be searched for, and combines them honoring the
Boolean operators & AND, | OR, and ! NOT. Parentheses can be used to enforce
grouping of the operators.

UUID Type
A UUID UniversallyUniqueIdentifiers is written as a sequence of lower-case hexadecimal digits, in
several groups separated by hyphens, specifically a group of 8 digits followed by three groups of 4
digits followed by a group of 12 digits, for a total of 32 digits representing the 128 bits.

An example of a UUID is: 550e8400-e29b-41d4-a716-446655440000

XML Type
The xml data type can be used to store XML data. For storing XML data, first you create XML values
using function xmlparse as follows:

XMLPARSE (DOCUMENT '<?xml version="1.0"?>
<tutorial>
<title>PostgreSQL Tutorial </title>
 <topics>...</topics>
</tutorial>')

XMLPARSE (CONTENT 'xyz<foo>bar</foo><bar>foo</bar>')

JSON Type
The json data type can be used to store JSON JavaScriptObjectNotation data. Such data can also be
stored as text, but the json data type has the advantage of checking that each stored value is a
valid JSON value. There are also related support functions available which can be used directly to
handle JSON data type as follows:

Example Example Result

array_to_json ′1, 5, 99, 100 ′ :: int[] [[1,5],[99,100]]

row_to_jsonrow(1, ′foo ′) {"f1":1,"f2":"foo"}

Array Type
PostgreSQL gives opportunity to define a column of a table as a variable length multidimensional
array. Arrays of any built-in or user-defined base type, enum type, or composite type can be
created.

Declaration of Arrays
Array type can be declared as :

CREATE TABLE monthly_savings (
 name text,
 saving_per_quarter integer[],
 scheme text[][]
);

or by using keyword "ARRAY" as:

CREATE TABLE monthly_savings (
 name text,
 saving_per_quarter integer ARRAY[4],
 scheme text[][]
);

Inserting values
Array values can be inserted as a literal constant, enclosing the element values within curly braces
and separating them by commas. An example is as below:

INSERT INTO monthly_savings
VALUES ('Manisha',
'{20000, 14600, 23500, 13250}',
'{{"FD", "MF"}, {"FD", "Property"}}');

Accessing Arrays
An example for accessing Arrays is shown below. The command below will select persons whose
savings are more in second quarter than fourth quarter.

SELECT name FROM monhly_savings WHERE saving_per_quarter[2] > saving_per_quarter[4];

Modifying Arrays
An example of modifying arrays is as shown below.

UPDATE monthly_savings SET saving_per_quarter = '{25000,25000,27000,27000}'
WHERE name = 'Manisha';

or using the ARRAY expression syntax:

UPDATE monthly_savings SET saving_per_quarter = ARRAY[25000,25000,27000,27000]
WHERE name = 'Manisha';

Searching Arrays
An example of searching arrays is as shown below.

SELECT * FROM monthly_savings WHERE saving_per_quarter[1] = 10000 OR
saving_per_quarter[2] = 10000 OR
saving_per_quarter[3] = 10000 OR
saving_per_quarter[4] = 10000;

If the size of array is known, above search method can be used. Else, the following example shows
how to search when size is not known.

SELECT * FROM monthly_savings WHERE 10000 = ANY (saving_per_quarter);

Composite Types
This type represents a list of field names and their data types, i.e., structure of a row or record of a
table.

Declaration of Composite Types
The following example shows how to declare a composite type:

CREATE TYPE inventory_item AS (
 name text,
 supplier_id integer,
 price numeric
);

This data type can be used in the create tables as below:

CREATE TABLE on_hand (
 item inventory_item,
 count integer
);

Composite Value Input
Composite values can be inserted as a literal constant, enclosing the field values within
parentheses and separating them by commas. An example is as below:

INSERT INTO on_hand VALUES (ROW('fuzzy dice', 42, 1.99), 1000);

This is valid for the inventory_item defined above. The ROW keyword is actually optional as long as
you have more than one field in the expression.

Accessing Composite Types
To access a field of a composite column, use a dot followed by the field name, much like selecting
a field from a table name. For example, to select some subfields from our on_hand example table,
the query would be as shown below:

SELECT (item).name FROM on_hand WHERE (item).price > 9.99;

you can even use the table name as well forinstanceinamultitablequery, like this:

SELECT (on_hand.item).name FROM on_hand WHERE (on_hand.item).price > 9.99;

Range Types
Range types represent data type that uses a range of data. Range type can be discrete ranges
e. g. , allintegervalues1to10 or continuous ranges e. g. , anypointintimebetween10: 00amand11: 00am.

The built-in range types available include ranges:

int4range - Range of integer

int8range - Range of bigint

numrange - Range of numeric

tsrange - Range of timestamp without time zone

tstzrange - Range of timestamp with time zone

daterange - Range of date

Custom range types can be created to make new types of ranges available, such as IP address
ranges using the inet type as a base, or float ranges using the float data type as a base.

Range types support inclusive and exclusive range boundaries using the [] and characters,
respectively, e.g., '[4,9]' represents all integers starting from and including 4 up to but not
including 9.

Object Identifier Types
Object identifiers OIDs are used internally by PostgreSQL as primary keys for various system tables.
If WITH OIDS is specified or default_with_oids configuration variable is enabled, only in such cases
OIDs are added to user-created tables.The following table lists several alias types. The OID alias
types have no operations of their own except for specialized input and output routines.

Name References Description Value Example

oid any numeric object identifier 564182

regproc pg_proc function name sum

regprocedure pg_proc function with argument types sumint4

regoper pg_operator operator name +

regoperator pg_operator operator with argument types *integer, integer or -NONE, integer

regclass pg_class relation name pg_type

regtype pg_type data type name integer

regconfig pg_ts_config text search configuration english

regdictionary pg_ts_dict text search dictionary simple

Pseudo Types
The PostgreSQL type system contains a number of special-purpose entries that are collectively
called pseudo-types. A pseudo-type cannot be used as a column data type, but it can be used to
declare a function's argument or result type. The table below lists the existing pseudo-types.

Name Description

any Indicates that a function accepts any input data type.

anyelement Indicates that a function accepts any data type.

anyarray Indicates that a function accepts any array data type.

anynonarray Indicates that a function accepts any non-array data type.

anyenum Indicates that a function accepts any enum data type.

anyrange Indicates that a function accepts any range data type.

cstring Indicates that a function accepts or returns a null-terminated C string.

internal Indicates that a function accepts or returns a server-internal data type.

language_handler A procedural language call handler is declared to return language_handler.

fdw_handler A foreign-data wrapper handler is declared to return fdw_handler.

record Identifies a function returning an unspecified row type.

trigger A trigger function is declared to return trigger.

void Indicates that a function returns no value.

POSTGRESQL CREATE DATABASEPOSTGRESQL CREATE DATABASE
This chapter discusses about how to create a new database in your PostgreSQL. PostgreSQL
provides two ways of creating a new database:

Using CREATE DATABASE, an SQL command.

Using createdb a command-line executable.

Using CREATE DATABASE
This command will create a database from PostgreSQL shell prompt, but you should have
appropriate privilege to create database. By default, the new database will be created by cloning

the standard system database template1.

Syntax
The basic syntax of CREATE DATABASE statement is as follows:

CREATE DATABASE dbname;

where dbname is the name of a database to create.

Example
Following is a simple example, which will create testdb in your PostgreSQL schema:

postgres=# CREATE DATABASE testdb;
postgres-#

Using createdb Command
PostgreSQL command line executable createdb is a wrapper around the SQL command CREATE
DATABASE. The only difference between this command and SQL command CREATE DATABASE is
that the former can be directly run from the command line and it allows a comment to be added
into the database, all in one command.

Syntax
The syntax for createdb is as shown below:

createdb [option...] [dbname [description]]

Parameters
Table below lists the parameters with their descriptions.

Parameter Description

dbname The name of a database to create.

description Specifies a comment to be associated with the newly created database.

options command-line arguments, which createdb accepts.

Options
The following table lists the command-line arguments createdb accepts:

Option Description

-D tablespace Specifies the default tablespace for the database.

-e Echo the commands that createdb generates and sends to the server.

-E encoding Specifies the character encoding scheme to be used in this database.

-l locale Specifies the locale to be used in this database.

-T template Specifies the template database from which to build this database.

--help Show help about dropdb command line arguments, and exit.

-h host Specifies the host name of the machine on which the server is running.

-p port Specifies the TCP port or the local Unix domain socket file extension on
which the server is listening for connections.

-U username User name to connect as.

-w Never issue a password prompt.

-W Force createdb to prompt for a password before connecting to a
database.

Open the command prompt and go to the directory where PostgreSQL is installed. Go to the bin
directory and execute the following command to create a database.

createdb -h localhost -p 5432 -U postgress testdb
password ******

Above command will prompt you for password of the PostgreSQL admin user which is postgres by
default so provide password and proceed to create your new dataabse.

Once a database is created using either of the above-mentioned methods, you can check it in the
list of databases using \l ie backslash el command as follows:

postgres-# \l
 List of databases
 Name | Owner | Encoding | Collate | Ctype | Access privileges
-----------+----------+----------+---------+-------+-----------------------
 postgres | postgres | UTF8 | C | C |
 template0 | postgres | UTF8 | C | C | =c/postgres +
 | | | | | postgres=CTc/postgres
 template1 | postgres | UTF8 | C | C | =c/postgres +
 | | | | | postgres=CTc/postgres
 testdb | postgres | UTF8 | C | C |
(4 rows)

postgres-#

POSTGRESQL - SELECT DATABASEPOSTGRESQL - SELECT DATABASE
This chapter explains various methods of accessing the database. Assume that we have already
created a database in our previous chapter. You can select database using either of the following
methods:

Database SQL Prompt

OS Command Prompt

Database SQL Prompt
Assume you already have launched your PostgreSQL client and you have landed at the following
SQL prompt:

postgres=#

You can check available database list using \l, i.e., backslash el command as follows:

postgres-# \l
 List of databases
 Name | Owner | Encoding | Collate | Ctype | Access privileges
-----------+----------+----------+---------+-------+-----------------------
 postgres | postgres | UTF8 | C | C |
 template0 | postgres | UTF8 | C | C | =c/postgres +
 | | | | | postgres=CTc/postgres

 template1 | postgres | UTF8 | C | C | =c/postgres +
 | | | | | postgres=CTc/postgres
 testdb | postgres | UTF8 | C | C |
(4 rows)

postgres-#

Now, type the below command to connect/select a desired database, here we will connect to the
testdb database:

postgres=# \c testdb;
psql (9.2.4)
Type "help" for help.
You are now connected to database "testdb" as user "postgres".
testdb=#

OS Command Prompt
You can select your database from command prompt itself at the time when you login to your
database. Following is the simple example:

psql -h localhost -p 5432 -U postgress testdb
Password for user postgress: ****
psql (9.2.4)
Type "help" for help.
You are now connected to database "testdb" as user "postgres".
testdb=#

You are now logged into PostgreSQL testdb and ready to execute your commands inside testdb. To
exit from the database, you can use the command \q.

POSTGRESQL - DROP DATABASEPOSTGRESQL - DROP DATABASE
In this chapter we will discuss how to delete the database in PostgreSQL. They are two options to
delete a database:

1. Using DROP DATABASE, an SQL command.

2. Using dropdb a command-line executable.

Be careful before using this operation because by deleting an existing database
would result in loss of complete information stored in the database.

Using DROP DATABASE
This command drops a database. It removes the catalog entries for the database and deletes the
directory containing the data. It can only be executed by the database owner. This command
cannot be executed while you or anyone else is connected to the target database
connecttopostgresoranyotherdatabasetoissuethiscommand.

Syntax
The syntax for DROP DATABASE is as below:

DROP DATABASE [IF EXISTS] name

Parameters
Table below lists the parameters with their descriptions.

Parameter Description

IF EXISTS Do not throw an error if the database does not exist. A notice is issued in this case.

name The name of the database to remove.

We cannot drop a database that has any open connections, including our own
connection from psql or pgAdmin III. We must switch to another database or
template1 if we want to delete the database we are currently connected to. Thus, it
might be more convenient to use the program dropdb instead which is a wrapper
around this command.

Example
Following is a simple example, which will delete testdb from your PostgreSQL schema:

postgres=# DROP DATABASE testdb;
postgres-#

Using dropdb Command
PostgresSQL command line executable dropdb is command-line wrapper around the SQL
command DROP DATABASE. There is no effective difference between dropping databases via this
utility and via other methods for accessing the server. dropdb destroys an existing PostgreSQL
database. The user, who executes this command must be a database superuser or the owner of
the database.

Syntax
The syntax for createdb is as shown below:

dropdb [option...] dbname

Parameters
Table below lists the parameters with their descriptions.

Parameter Description

dbname The name of a database to be deleted.

option command-line arguments, which dropdb accepts.

Options
The following table lists the command-line arguments dropdb accepts:

Option Description

-e Shows the commands being sent to the server.

-i Issues a verification prompt before doing anything destructive.

-V Print the dropdb version and exit.

--if-exists Do not throw an error if the database does not exist. A notice is issued in
this case.

--help Show help about dropdb command-line arguments, and exit.

-h host Specifies the host name of the machine on which the server is running.

-p port Specifies the TCP port or the local UNIX domain socket file extension on
which the server is listening for connections.

-U username User name to connect as.

-w Never issue a password prompt.

-W Force dropdb to prompt for a password before connecting to a database.

--maintenance-
db=dbname

Specifies the name of the database to connect to in order to drop the
target database.

Example
Following example demonstrates deleting a database from OS command prompt:

dropdb -h localhost -p 5432 -U postgress testdb
Password for user postgress: ****

The above command drops database testdb. Here, I've used the postgres
foundunderthepgrolesoftemplate1 user name to drop the database.

POSTGRESQL POSTGRESQL - CREATE TABLE- CREATE TABLE
The PostgreSQL CREATE TABLE statement is used to create a new table in any of the given
database.

Syntax
Basic syntax of CREATE TABLE statement is as follows:

CREATE TABLE table_name(
 column1 datatype,
 column2 datatype,
 column3 datatype,

 columnN datatype,
 PRIMARY KEY(one or more columns)
);

CREATE TABLE is the keyword telling the database system to create a new table. The unique name
or identifier for the table follows the CREATE TABLE statement. Initially empty table in the current
database and will be owned by the user issuing the command.

Then in brackets comes the list defining each column in the table and what sort of data type it is.
The syntax becomes clearer with an example below.

Examples
Following is an example, which creates a COMPANY table with ID as primary key and NOT NULL are
the constraints showing that these fields can not be NULL while creating records in this table:

CREATE TABLE COMPANY(
 ID INT PRIMARY KEY NOT NULL,
 NAME TEXT NOT NULL,
 AGE INT NOT NULL,
 ADDRESS CHAR(50),
 SALARY REAL
);

Let us create one more table, which we will use in our exercises in subsequent chapters:

CREATE TABLE DEPARTMENT(
 ID INT PRIMARY KEY NOT NULL,
 DEPT CHAR(50) NOT NULL,
 EMP_ID INT NOT NULL
);

You can verify if your table has been created successfully using \d command, which will be used to
list down all the tables in an attached database.

testdb-# \d

Above PostgreSQL statement will produce the following result:

 List of relations
 Schema | Name | Type | Owner
--------+------------+-------+----------
 public | company | table | postgres
 public | department | table | postgres
(2 rows)

Use \d tablename to describe each table as shown below:

testdb-# \d company

Above PostgreSQL statement will produce the following result:

 Table "public.company"
 Column | Type | Modifiers
-----------+---------------+-----------
 id | integer | not null
 name | text | not null
 age | integer | not null
 address | character(50) |
 salary | real |
 join_date | date |
Indexes:
 "company_pkey" PRIMARY KEY, btree (id)

POSTGRESQL - DROP TABLEPOSTGRESQL - DROP TABLE
The PostgreSQL DROP TABLE statement is used to remove a table definition and all associated
data, indexes, rules, triggers, and constraints for that table.

You have to be careful while using this command because once a table is deleted
then all the information available in the table would also be lost forever.

Syntax
Basic syntax of DROP TABLE statement is as follows.

DROP TABLE table_name;

Example
We had created the tables DEPARTMENT and COMPANY in the previous chapter. First verify these
tables (use \d to list the tables):

testdb-# \d

This would produce the following result:

 List of relations
 Schema | Name | Type | Owner
--------+------------+-------+----------
 public | company | table | postgres
 public | department | table | postgres
(2 rows)

This means DEPARTMENT and COMPANY tables are present. So let us drop them as follows:

testdb=# drop table department, company;

This would produce the following result:

DROP TABLE
testdb=# \d
 relations found.
testdb=#

The message returned DROP TABLE indicates that drop command had been executed
successfully.

POSTGRESQL SCHEMAPOSTGRESQL SCHEMA
A schema is a named collection of tables. A schema can also contain views, indexes, sequences,
data types, operators, and functions. Schemas are analogous to directories at the operating
system level, except that schemas cannot be nested. PostgreSQL statement CREATE SCHEMA
creates a schema.

Syntax
The basic syntax CREATE SCHEMA is as follows:

CREATE SCHEMA name;

Where name is the name of the schema.

Syntax to Create table in Schema
The basic syntax to create table in schema is as follows:

CREATE TABLE myschema.mytable (
...
);

Example
Let us see an example for creating a schema. Connect to the database testdb and create a
schema myschema as follows:

testdb=# create schema myschema;
CREATE SCHEMA

The message "CREATE SCHEMA" signifies that the schema is created successfully.

Now, let us create a table in the above schema as follows:

testdb=# create table myschema.company(
 ID INT NOT NULL,
 NAME VARCHAR (20) NOT NULL,
 AGE INT NOT NULL,

 ADDRESS CHAR (25) ,
 SALARY DECIMAL (18, 2),
 PRIMARY KEY (ID)
);

This will create an empty table. You can verify the table created with the command below:

testdb=# select * from myschema.company;

This would produce the following result:

 id | name | age | address | salary
----+------+-----+---------+--------
(0 rows)

Syntax to Drop schema
To drop a schema if it's empty allobjectsinithavebeendropped, then use:

DROP SCHEMA myschema;

To drop a schema including all contained objects, use:

DROP SCHEMA myschema CASCADE;

Advantages of using a Schema
It allows many users to use one database without interfering with each other.

It organizes database objects into logical groups to make them more manageable.

Third-party applications can be put into separate schemas so they do not collide with the
names of other objects.

POSTGRESQL - INSERT QUERYPOSTGRESQL - INSERT QUERY
The PostgreSQL INSERT INTO statement allows one to insert new rows into a table. One can insert
a single row at a time or several rows as a result of a query.

Syntax
Basic syntax of INSERT INTO statement is as follows.

INSERT INTO TABLE_NAME (column1, column2, column3,...columnN)]
VALUES (value1, value2, value3,...valueN);

Here, column1, column2,...columnN are the names of the columns in the table into which you
want to insert data.

The target column names can be listed in any order. The values supplied by the VALUES
clause or query are associated with the explicit or implicit column list left-to-right.

You may not need to specify the columns name in the SQL query if you are adding values for all
the columns of the table. But make sure the order of the values is in the same order as the
columns in the table. The SQL INSERT INTO syntax would be as follows:

INSERT INTO TABLE_NAME VALUES (value1,value2,value3,...valueN);

Output
The following table summarizes the output messages and their meaning:

Output
Message

Description

INSERT oid 1 Message returned if only one row was inserted. oid is the numeric OID of the
inserted row.

INSERT 0 # Message returned if more than one rows were inserted. # is the number of
rows inserted.

Examples
Let us create COMPANY table in testdb as follows:

CREATE TABLE COMPANY(
 ID INT PRIMARY KEY NOT NULL,
 NAME TEXT NOT NULL,
 AGE INT NOT NULL,
 ADDRESS CHAR(50),
 SALARY REAL,
 JOIN_DATE DATE
);

Following example inserts a row into the COMPANY table:

INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY,JOIN_DATE) VALUES (1, 'Paul', 32,
'California', 20000.00 ,'2001-07-13');

Following example is to insert a row; here salary column is omitted and therefore it will have the
default value:

INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,JOIN_DATE) VALUES (2, 'Allen', 25, 'Texas',
'2007-12-13');

Following example uses the DEFAULT clause for the ADDRESS columns rather than specifying a
value:

INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY,JOIN_DATE) VALUES (3, 'Teddy', 23,
'Norway', 20000.00, DEFAULT);

Following example inserts multiple rows using the multirow VALUES syntax:

INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY,JOIN_DATE) VALUES (4, 'Mark', 25, 'Rich-
Mond ', 65000.00, '2007-12-13'), (5, 'David', 27, 'Texas', 85000.00 , '2007-12-13');

All the above statements would create the following records in COMPANY table. Next chapter will
teach you how to display all these records from a table.

ID NAME AGE ADDRESS SALARY JOIN_DATE
---- ---------- ----- ---------- ------- --------
1 Paul 32 California 20000.0 2001-07-13
2 Allen 25 Texas 2007-12-13
3 Teddy 23 Norway 20000.0
4 Mark 25 Rich-Mond 65000.0 2007-12-13
5 David 27 Texas 85000.0 2007-12-13

POSTGRESQL - SELECT QUERYPOSTGRESQL - SELECT QUERY
PostgreSQL SELECT statement is used to fetch the data from a database table which returns data
in the form of result table. These result tables are called result-sets.

Syntax:
The basic syntax of SELECT statement is as follows:

SELECT column1, column2, columnN FROM table_name;

Here, column1, column2...are the fields of a table whose values you want to fetch. If you want to
fetch all the fields available in the field then you can use the following syntax:

SELECT * FROM table_name;

Example:
Consider the table COMPANY having records as follows:

 id | name | age | address | salary
----+-------+-----+-----------+--------
 1 | Paul | 32 | California| 20000
 2 | Allen | 25 | Texas | 15000
 3 | Teddy | 23 | Norway | 20000
 4 | Mark | 25 | Rich-Mond | 65000
 5 | David | 27 | Texas | 85000
 6 | Kim | 22 | South-Hall| 45000
 7 | James | 24 | Houston | 10000
(7 rows)

Following is an example, which would fetch ID, Name and Salary fields of the customers available
in CUSTOMERS table:

testdb=# SELECT ID, NAME, SALARY FROM COMPANY ;

This would produce the following result:

 id | name | salary
 ----+-------+--------
 1 | Paul | 20000
 2 | Allen | 15000
 3 | Teddy | 20000
 4 | Mark | 65000
 5 | David | 85000
 6 | Kim | 45000
 7 | James | 10000
(7 rows)

If you want to fetch all the fields of CUSTOMERS table, then use the following query:

testdb=# SELECT * FROM COMPANY;

This would produce the following result:

 id | name | age | address | salary
----+-------+-----+-----------+--------
 1 | Paul | 32 | California| 20000
 2 | Allen | 25 | Texas | 15000
 3 | Teddy | 23 | Norway | 20000
 4 | Mark | 25 | Rich-Mond | 65000
 5 | David | 27 | Texas | 85000
 6 | Kim | 22 | South-Hall| 45000
 7 | James | 24 | Houston | 10000
(7 rows)

POSTGRESQL - WHERE CLAUSEPOSTGRESQL - WHERE CLAUSE

/postgresql/company.sql

The PostgreSQL WHERE clause is used to specify a condition while fetching the data from single
table or joining with multiple tables.

If the given condition is satisfied only then it returns specific value from the table. You can filter out
rows that you don't want included in the result-set by using the WHERE clause.

The WHERE clause not only is used in SELECT statement, but it is also used in UPDATE, DELETE
statement, etc., which we would examine in subsequent chapters.

Syntax
The basic syntax of SELECT statement with WHERE clause is as follows:

SELECT column1, column2, columnN
FROM table_name
WHERE [search_condition]

You can specify a search_condition using comparison or logical operators. like >, <, =, LIKE, NOT,
etc. Below examples would make this concept clear.

Example:
Consider the table COMPANY having records as follows:

testdb# select * from COMPANY;
 id | name | age | address | salary
----+-------+-----+-----------+--------
 1 | Paul | 32 | California| 20000
 2 | Allen | 25 | Texas | 15000
 3 | Teddy | 23 | Norway | 20000
 4 | Mark | 25 | Rich-Mond | 65000
 5 | David | 27 | Texas | 85000
 6 | Kim | 22 | South-Hall| 45000
 7 | James | 24 | Houston | 10000
(7 rows)

Here are simple examples showing usage of PostgreSQL Logical Operators. Following SELECT
statement will list down all the records where AGE is greater than or equal to 25 AND salary is
greater than or equal to 65000.00:

testdb=# SELECT * FROM COMPANY WHERE AGE >= 25 AND SALARY >= 65000;

Above PostgreSQL statement will produce the following result:

 id | name | age | address | salary
----+-------+-----+------------+--------
 4 | Mark | 25 | Rich-Mond | 65000
 5 | David | 27 | Texas | 85000
(2 rows)

Following SELECT statement lists down all the records where AGE is greater than or equal to 25 OR
salary is greater than or equal to 65000.00:

testdb=# SELECT * FROM COMPANY WHERE AGE >= 25 OR SALARY >= 65000;

Above PostgreSQL statement will produce the following result:

 id | name | age | address | salary
----+-------+-----+-------------+--------
 1 | Paul | 32 | California | 20000
 2 | Allen | 25 | Texas | 15000
 4 | Mark | 25 | Rich-Mond | 65000
 5 | David | 27 | Texas | 85000

/postgresql/postgresql_operators.htm
/postgresql/company.sql

(4 rows)

Following SELECT statement lists down all the records where AGE is not NULL which means all the
records because none of the record is having AGE equal to NULL:

testdb=# SELECT * FROM COMPANY WHERE AGE IS NOT NULL;

Above PostgreSQL statement will produce the following result:

 id | name | age | address | salary
 ----+-------+-----+------------+--------
 1 | Paul | 32 | California | 20000
 2 | Allen | 25 | Texas | 15000
 3 | Teddy | 23 | Norway | 20000
 4 | Mark | 25 | Rich-Mond | 65000
 5 | David | 27 | Texas | 85000
 6 | Kim | 22 | South-Hall | 45000
 7 | James | 24 | Houston | 10000
(7 rows)

Following SELECT statement lists down all the records where NAME starts with 'Pa', does not matter
what comes after 'Pa'.

testdb=# SELECT * FROM COMPANY WHERE NAME LIKE 'Pa%';

Above PostgreSQL statement will produce the following result:

 id | name | age |address | salary
----+------+-----+-----------+--------
 1 | Paul | 32 | California| 20000

Following SELECT statement lists down all the records where AGE value is either 25 or 27:

testdb=# SELECT * FROM COMPANY WHERE AGE IN (25, 27);

Above PostgreSQL statement will produce the following result:

 id | name | age | address | salary
----+-------+-----+------------+--------
 2 | Allen | 25 | Texas | 15000
 4 | Mark | 25 | Rich-Mond | 65000
 5 | David | 27 | Texas | 85000
(3 rows)

Following SELECT statement lists down all the records where AGE value is neither 25 nor 27:

testdb=# SELECT * FROM COMPANY WHERE AGE NOT IN (25, 27);

Above PostgreSQL statement will produce the following result:

 id | name | age | address | salary
----+-------+-----+------------+--------
 1 | Paul | 32 | California | 20000
 3 | Teddy | 23 | Norway | 20000
 6 | Kim | 22 | South-Hall | 45000
 7 | James | 24 | Houston | 10000
(4 rows)

Following SELECT statement lists down all the records where AGE value is in BETWEEN 25 AND 27:

testdb=# SELECT * FROM COMPANY WHERE AGE BETWEEN 25 AND 27;

Above PostgreSQL statement will produce the following result:

 id | name | age | address | salary
----+-------+-----+------------+--------
 2 | Allen | 25 | Texas | 15000
 4 | Mark | 25 | Rich-Mond | 65000
 5 | David | 27 | Texas | 85000
(3 rows)

Following SELECT statement makes use of SQL sub-query where sub-query finds all the records
with AGE field having SALARY > 65000 and later WHERE clause is being used along with EXISTS
operator to list down all the records where AGE from the outside query exists in the result returned
by sub-query:

testdb=# SELECT AGE FROM COMPANY
 WHERE EXISTS (SELECT AGE FROM COMPANY WHERE SALARY > 65000);

Above PostgreSQL statement will produce the following result:

 age

 32
 25
 23
 25
 27
 22
 24
(7 rows)

Following SELECT statement makes use of SQL sub-query where subquery finds all the records with
AGE field having SALARY > 65000 and later WHERE clause is being used along with > operator to
list down all the records where AGE from outside query is greater than the age in the result
returned by sub-query:

testdb=# SELECT * FROM COMPANY
 WHERE AGE > (SELECT AGE FROM COMPANY WHERE SALARY > 65000);

Above PostgreSQL statement will produce the following result:

 id | name | age | address | salary
----+------+-----+------------+--------
 1 | Paul | 32 | California | 20000

POSTGRESQL - UPDATE QUERYPOSTGRESQL - UPDATE QUERY
The PostgreSQL UPDATE Query is used to modify the existing records in a table. You can use
WHERE clause with UPDATE query to update selected rows otherwise all the rows would be
updated.

Syntax:
The basic syntax of UPDATE query with WHERE clause is as follows:

UPDATE table_name
SET column1 = value1, column2 = value2...., columnN = valueN
WHERE [condition];

You can combine N number of conditions using AND or OR operators.

Example:
Consider the table COMPANY having records as follows:

/postgresql/company.sql

testdb# select * from COMPANY;
 id | name | age | address | salary
----+-------+-----+-----------+--------
 1 | Paul | 32 | California| 20000
 2 | Allen | 25 | Texas | 15000
 3 | Teddy | 23 | Norway | 20000
 4 | Mark | 25 | Rich-Mond | 65000
 5 | David | 27 | Texas | 85000
 6 | Kim | 22 | South-Hall| 45000
 7 | James | 24 | Houston | 10000
(7 rows)

Following is an example, which would update ADDRESS for a customer, whose ID is 6:

testdb=# UPDATE COMPANY SET SALARY = 15000 WHERE ID = 3;

Now, COMPANY table would have the following records:

 id | name | age | address | salary
----+-------+-----+------------+--------
 1 | Paul | 32 | California | 20000
 2 | Allen | 25 | Texas | 15000
 4 | Mark | 25 | Rich-Mond | 65000
 5 | David | 27 | Texas | 85000
 6 | Kim | 22 | South-Hall | 45000
 7 | James | 24 | Houston | 10000
 3 | Teddy | 23 | Norway | 15000
(7 rows)

If you want to modify all ADDRESS and SALARY column values in COMPANY table, you do not need
to use WHERE clause and UPDATE query would be as follows:

testdb=# UPDATE COMPANY SET ADDRESS = 'Texas', SALARY=20000;

Now, COMPANY table will have the following records:

 id | name | age | address | salary
----+-------+-----+---------+--------
 1 | Paul | 32 | Texas | 20000
 2 | Allen | 25 | Texas | 20000
 4 | Mark | 25 | Texas | 20000
 5 | David | 27 | Texas | 20000
 6 | Kim | 22 | Texas | 20000
 7 | James | 24 | Texas | 20000
 3 | Teddy | 23 | Texas | 20000
(7 rows)

POSTGRESQL - DELETE QUERYPOSTGRESQL - DELETE QUERY
The PostgreSQL DELETE Query is used to delete the existing records from a table. You can use
WHERE clause with DELETE query to delete selected rows, otherwise all the records would be
deleted.

Syntax:
The basic syntax of DELETE query with WHERE clause is as follows:

DELETE FROM table_name
WHERE [condition];

You can combine N number of conditions using AND or OR operators.

Example:

Consider the table COMPANY having records as follows:

select * from COMPANY;
 id | name | age | address | salary
----+-------+-----+-----------+--------
 1 | Paul | 32 | California| 20000
 2 | Allen | 25 | Texas | 15000
 3 | Teddy | 23 | Norway | 20000
 4 | Mark | 25 | Rich-Mond | 65000
 5 | David | 27 | Texas | 85000
 6 | Kim | 22 | South-Hall| 45000
 7 | James | 24 | Houston | 10000
(7 rows)

Following is an example which would DELETE a customer, whose ID is 7:

testdb=# DELETE FROM COMPANY WHERE ID = 2;

Now COMPANY table will have following records:

 id | name | age | address | salary
----+-------+-----+-------------+--------
 1 | Paul | 32 | California | 20000
 3 | Teddy | 23 | Norway | 20000
 4 | Mark | 25 | Rich-Mond | 65000
 5 | David | 27 | Texas | 85000
 6 | Kim | 22 | South-Hall | 45000
 7 | James | 24 | Houston | 10000
(6 rows)

If you want to DELETE all the records from COMPANY table, you do not need to use WHERE clause
with DELETE queries, which would be as follows:

testdb=# DELETE FROM COMPANY;

Now, COMPANY table does not have any record because all the records have been deleted by
DELETE statement.
Processing math: 100%

/postgresql/company.sql

