Creating and Initializing Arrays
Java offers several ways of defining and initializing arrays, including literal and constructor notation. When declaring arrays without explicit values, the contents will be initialized with default values:
0
or the equivalent value for primitive numerical types likebyte
,short
,int
,char
,long
,float
, anddouble
.false
for theboolean
type.\u0000
for thechar
type.null
for reference types.
The size of an array is fixed
It cannot be changed after initialization. If you don't know the size at initialization time, you may want to use another Collection class such as ArrayList
. This is different from C and C++, whose array sizes need to be constant values that are determined at compile time, as opposed to array size initializations at runtime for Java.
Examples of creating and initializing primitive type arrays:
int[] array1 = new int[] { 1, 2, 3 }; // create an array with new operator and
// array initializer
int[] array2 = { 1, 2, 3 }; // shortcut syntax with array initializer
int[] array3 = new int[0]; // 0-length array
int[] array4 = new int[3]; // { 0, 0, 0 }
int[] array5 = null; // null
When declaring an array, []
may appear as part of the type at the beginning of the declaration, or as part of the declarator for a particular variable, or both.
int array4[]; /* equivalent to */ int[] array4;
int a, b[], c[][]; /* equivalent to */ int a; int[] b; int[][] c;
int[] a, b[]; /* equivalent to */ int[] a; int[][] b;
Although both are correct, and compile and run without any problems, the Java Coding Convention discourages this form; the brackets identify the array type and should appear with the type designation.
float array[]; // discouraged
float[] array; // encouraged
The discouraged type is meant to accommodate transitioning C users, whose correct syntax has the brackets after the variable name.
Examples of creating and initializing reference type arrays:
String[] array5 = new String[] { "Laurel", "Hardy" }; // create an array with new
// operator and array initializer
String[] array6 = { "Laurel", "Hardy" }; // shortcut syntax with array
// initializer
String[] array7 = new String[0]; // 0-length array
String[] array8 = new String[3]; // { null, null, null }
String[] array9 = null; // null
In both primitive and reference types, an empty array initialization (for example String[] array8 = new String[3];)
will initialize the array with the default value for each data type.
Arrays.fill()
method can be used to fill an array with the same value after the array is initialized:
Arrays.fill(array8, "abc"); // { "abc", "abc", "abc" }
You can also use fill()
to assigns a value to each element of the specified range of the array.
Arrays.fill(array8, 1, 2, "aaa"); // placing aaa from index 1 to 2
The method setAll
, and its equivalent parallelSetAll
running in parallel, can be used to set every element of an array to a specific value. The following example creates an integer array and sets for all of its element its index value:
int[] array = new int[5];
Arrays.setAll(array, i -> i); // the array is "{ 0, 1, 2, 3, 4 }"
Examples of separate declaration and initialization of arrays:
int[] array9; // array declaration - uninitialized
array9 = new int[3]; // initialize array - { 0, 0, 0 }
array9[0] = 10; // set index 0 value - { 10, 0, 0 }
array9[1] = 20; // set index 1 value - { 10, 20, 0 }
array9[2] = 30; // set index 2 value - { 10, 20, 30 }
The value of an index for an array element needs to be a non-negative integer (0, 1, 2, 3, 4, ...) and less than the length of the array (indexes are zero-based); otherwise an ArrayIndexOutOfBoundsException will be thrown.
Arrays are covariant
It means that it's not necessary for all of the array elements to share the same type, as long as they are a subclass of the array's type:
interface I {}
class A implements I {}
class B implements I {}
class C implements I {}
I[] array10 = new I[] { new A(), new B(), new C() }; // create an array with new
// operator and array initializer
I[] array11 = { new A(), new B(), new C() }; // shortcut syntax with array
// initializer
I[] array12 = new I[3]; // { null, null, null }
I[] array13 = new A[] { new A(), new A() }; // works because A implements I
Object[] array14 = new Object[] { "Hello, World!", 3.14159, 42 }; // create an array
// with new operator and array initializer
Object[] array15 = { new A(), 64, "My String" }; // shortcut syntax
// with array initializer
Anonymous array
An anonymous array is an array without a name.
float avg(int[] arr) {
int sum = 0;
for(int i = 0; i < arr.length; i++){
sum += arr[i];
}
return (float)sum / arr.length;
}
float average = avg(new int[]{2, 4, 6, 7});
The argument passed in avg is anonymous array.
Note: It is not possible to re-initialize an array via a shortcut syntax with array initializer since an array initializer can only be specified in a field declaration or local variable declaration, or as a part of an array creation expression. To re-initialize an array, a new operator can be used with array initializer:
int[] array = new int[] { 1, 2, 3 };
// prints "1 2 3 "
for (int i : array) {
System.out.print(i + " ");
}
// re-initializes array to a new int[] array
arr = new int[] { 4, 5, 6 };
// prints "4 5 6 "
for (int i : array) {
System.out.print(i + " ");
}
array = { 1, 2, 3, 4 }; // Error! Can't re-initialize an array via shortcut syntax
// with array initializer
When array
is assigned to a new int[]
array, the memory allocated for the previous int[]
array may be reclaimed by the Garbage Collector.
Creating a List from an Array
The Arrays.asList()
method can be used to return a fixed-size List
containing the elements of the given array. The resulting List
will be of the same type as the array.
String[] stringArray = new String[] {"foo", "bar", "baz"};
List<String> stringList = Arrays.asList(stringArray);
Note that this list is backed by (a view of the) array, meaning any changes to the list change the initial array and vice versa.
To create a copy of the list, use the constructor of java.util.ArrayList
taking a Collection
:
String[] stringArray = new String[] {"foo", "bar", "baz"};
List<String> stringList = new ArrayList<String>(stringArray.length);
Collections.addAll(stringList, stringArray);
In Java SE 7 and later, a pair of angle brackets <>
(empty set of type arguments) can be used, which is called the Diamond Operator. The compiler can determine the type arguments from the context. That means we can leave out the type when calling the constructor of ArrayList
and it will be inferred automatically during compilation. This is called Type Inference which is a part of Java Generics.
String[] stringArray = new String[] {"foo", "bar", "baz"};
List<String> stringList = new ArrayList<>(stringArray.length);
Collections.addAll(stringList, stringArray);
An important thing to note about the Diamond Operator is that, although it comes in handy, it cannot be used with Anonymous Classes.
Important Notes related to using Arrays.asList() method
-
Changes to the
List
affect the array, and vice-versa:String[] stringArray = new String[] {"very", "related", "strings"}; List<String> stringList = Arrays.asList(stringArray); System.out.println(stringArray[0]); // "very" stringList.set(0, "boo"); System.out.println(stringArray[0]); // "boo" System.out.println(stringArray[2]); // "strings" stringArray[2] = "faz"; System.out.println(stringList.get(2)); // "faz"
-
The resulting
List
is fixed-size. That means, adding or removing elements is not supported and will throw anUnsupportedOperationException
:stringList.add("something"); // throws java.lang.UnsupportedOperationException
-
A new
List
can be created by passing the array-backedList
to the constructor of a new one. This creates a new copy of the data, which is not fixed-size anymore, but also not backed by the array:List<String> modifiableList = new ArrayList<>(Arrays.asList("foo", "bar"));
-
Calling
<T> List<T> asList(T... a)
on a primitive array, such as anint[]
, will produce aList<int[]>
whose only element is the source primitive array instead of the actual elements of the source array.The reason for that behaviour is that primitive types cannot be used in place of generic type parameters, so the entire primitive array replaces the generic type parameter in this case. In order to convert a primitive array to a
List
, first convert the primitive array to an array of the corresponding wrapper type (i.e. callArrays.asList
on anInteger[]
instead of anint[]
). Therefore:int[] arr = {1, 2, 3}; // primitive array of int System.out.println(Arrays.asList(arr).contains(1));
will print
false
, while on the other hand:Integer[] arr = {1, 2, 3}; // object array of Integer (wrapper for int) System.out.println(Arrays.asList(arr).contains(1));
will print
true
.
Using Java SE 8:
int[] ints = {1, 2, 3};
List<Integer> list = Arrays.stream(ints).boxed().collect(Collectors.toList());
Creating an Array from a Collection
There are two methods of creating an Array
from a collection provided in java.util.Collection
:
Object[] toArray()
can be used as follows:
Set<Integer> set = new HashSet<Integer>();
set.add(0);
set.add(1);
Object[] objectArray = set.toArray();
<T> T[] toArray(T[] a)
can be used as follows:
Set<Integer> set = new HashSet<Integer>();
set.add(0);
set.add(1);
/**
* Note that the array does not need to be created up front with the correct size.
*/
Integer[] integerArray = set.toArray(new Integer[0]);
List<String> list = new ArrayList<String>();
list.add("android");
list.add("apple");
String[] stringArray = list.toArray(new String[list.size()]);
The difference between them is more than just having untyped vs typed results. There are also performance considerations:
Object[] toArray()
uses vectorized array copy, which is much faster than the type-checked array copy inT[] toArray(T[] a)
.T[] toArray(new T[non-zero-size])
needs to zero-out the array, whileT[] toArray(new T[0])
does not. Such avoidance makes the latter call faster than the former.
An alternative of converting ArrayList
to Array
is to use the Arrays.copyOf
method:
List<String> arrayList = new ArrayList<String>();
Object[] objectList = arrayList.toArray();
String[] stringArray = Arrays.copyOf(objectList, objectList.length, String[].class);
With Java SE 8+, this is also possible via:
String[] strings = list.stream().toArray(String[]::new);
Examples taken from answers here and here to the question "Converting 'ArrayList to 'String[]'" on Stack Overflow.
Multidimensional and Jagged Arrays
It is possible to define an array with more than one dimension. Instead of being accessed linearly, a multidimensional array is accessed by specifying an index for each dimension.
To do this, we repeat the declaration of an array. For instance, to make a 2-dimensional int
array, add another set of brackets to the declaration, such as int[][]
. This continues for 3-dimensional arrays (int[][][]
) and so forth.
Below, we define a 2-dimensional array with three rows and three columns.
int rows = 3;
int columns = 3;
int[][] table = new int[rows][columns];
With this construct, we can index into the array and assign values. Note that the unassigned values are the default values for the type of an array, in this case 0
for int
.
table[0][0] = 0;
table[0][1] = 1;
table[0][2] = 2;
While not as common, you can also instantiate one dimension at a time, and even make non-rectangular arrays. These are more commonly referred to as jagged arrays.
int[][] nonRect = new int[4][];
It is important to note that you can define any dimension of jagged array; However, it's preceding level must be defined.
// valid
String[][] employeeGraph = new String[30][];
// invalid
int[][] unshapenMatrix = new int[][10];
// also invalid
int[][][] misshapenGrid = new int[100][][10];
Multidimensional arrays can also be initialized with a literal expression. The following declares and populates a 2x3 int
array:
int[][] table = {
{1, 2, 3},
{4, 5, 6}
};
ArrayIndexOutOfBoundsException
The ArrayIndexOutOfBoundsException
is thrown when attempting to access an index of the array that doesn't exist.
Remember that the smallest array index is 0
and the largest is 1 less than the number of elements in the array. Thus, any request to an array, like array[i]
, where i < 0 || i > array.length - 1
will throw an ArrayIndexOutOfBoundsException.
The following code is a simple example where an ArrayIndexOutOfBoundsException
is thrown.
String[] people = new String[] { "Carol", "Andy" };
System.out.println(people[2]); //throws an ArrayIndexOutOfBoundsException.
Output:
Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 2 at your.package.path.method(YourClass.java:15)
To avoid this, simply check that the index is within the limits of the array:
int index = 2;
if (index >= 0 && index < people.length) {
System.out.println(people[index]);
}
Arrays to a String
Arrays and multi-dimensional arrays:
int[] arr = {1, 2, 3, 4, 5};
System.out.println(Arrays.toString(arr)); // [1, 2, 3, 4, 5]
int[][] arr = { {1, 2, 3},
{4, 5, 6},
{7, 8, 9} };
System.out.println(Arrays.deepToString(arr)); // [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
Since Arrays.toString()
method uses Object.toString()
method to produce String
values of every item in the array, beside primitive type array, it can be used for all type of arrays. For instance:
public class Cat { /* implicitly extends Object */
@Override
public String toString() {
return "CAT!";
}
}
Cat[] arr = { new Cat(), new Cat() };
System.out.println(Arrays.toString(arr)); // [CAT!, CAT!]
If no overridden toString()
exists for the class, then the inherited toString()
from Object
will be used. Usually the output is then not very useful, for example:
public class Dog { /* implicitly extends Object */
}
Dog[] arr = { new Dog() };
System.out.println(Arrays.toString(arr)); // [Dog@17ed40e0]
Arrays to Stream
Convert array of objects to Stream
String[] arr = new String[]{"str1", "str2", "str3"};
Stream<String> stream = Arrays.stream(arr);
Convert array of primitives to Stream
using Arrays.stream
will transform array to primitive specialization of Stream.
int[] intArr = new int[]{1, 2, 3};
IntStream intStream = Arrays.stream(intArr);
You can also limit the Stream
to a range of elements in the array, the start index is inclusive and the end index is exclusive:
int[] values = { 1, 2, 3, 4 };
IntStream intStream = Arrays.stream(values, 2, 4);
A similar method to Arrays.stream()
appears in the Stream
class, Stream.of()
. The difference is that Stream.of()
uses a varargs parameter, so you can write something like:
Stream<Integer> intStream = Stream.of(1, 2, 3);
Stream<String> stringStream = Stream.of("1", "2", "3");
Stream<Double> doubleStream = Stream.of(new Double[]{1.0, 2.0});
Accessing Contents of an Array
The content in an array is referenced by its index, starting from 0.
int[] primes = { 2, 3, 5, 7 };
int firstPrime = primes[0]; //retrieves the first item from the array. now firstPrime contains int value 2
int secondPrime = primes[1]; //retrieves the second item from the array. now secondPrime contains int value 3
You can access the content iterating it in a C-Style for-loop :
for (int i = 0; i < primes.length; i++) {
int currenVal = primes[i];
}
Or for-each loop using auto-created iterator:
for (int prime : primes) {
int currentVal = prime;
}
Array Covariance
Object arrays are covariant, which means that just as Integer
is a subclass of Number
, Integer[]
is a subclass of Number[]
. This may seem intuitive, but can result in surprising behavior:
Integer[] integerArray = {1, 2, 3};
Number[] numberArray = integerArray; // valid
Number firstElement = numberArray[0]; // valid
numberArray[0] = 4L; // throws ArrayStoreException at runtime
Although Integer[]
is a subclass of Number[]
, it can only hold Integer
s, and trying to assign a Long
element throws a runtime exception.
Note that this behavior is unique to arrays, and can be avoided by using a generic List
instead:
List<Integer> integerList = Arrays.asList(1, 2, 3);
//List<Number> numberList = integerList; // compile error
List<? extends Number> numberList = integerList;
Number firstElement = numberList.get(0);
//numberList.set(0, 4L); // compile error
Iterating over arrays
You can iterate over arrays either by using extended for (aka foreach) or by using array indices:
int[] array = new int[10];
//using indices: read and write
for (int i = 0; i < array.length; i++) {
array[i] = i;
}
//extended for: read only
for (int e : array) {
System.out.println(e);
}
It is worth noting here that there is no direct way to use an Iterator on an Array, but through the Arrays library it can be easily converted to a list with Arrays.asList to obtain an Iterable object.
In two-dimensional arrays or more, both techniques can be used in a slightly more complex fashion.
Example:
int[][] array = new int[10][10];
for (int indexOuter = 0; indexOuter < array.length; indexOuter++) {
for (int indexInner = 0; indexInner < array[indexOuter].length; indexInner++ ) {
array[indexOuter][indexInner] = indexOuter + indexInner;
}
}
for (int[] numbers : array) {
for (int value : numbers) {
System.out.println(value);
}
}
It is impossible to set an Array to any non-uniform value without using an index based loop.
Of course you can also use while or do-while loops when iterating using indices.
One note of caution: when using array indices, make sure the index is between 0 and array.length - 1 (both inclusive). Don't make hard coded assumptions on the array length otherwise you might break your code if the array length changes but your hard coded values don't.
Example:
int[] numbers = {1,2,3,4};
public void incrementNumbers() {
//DO
for (int i = 0; i < numbers.length; i++) {
numbers[i] += 1; //or this: numbers[i] = numbers[i] + 1; or numbers[i]++;
}
//DON'T
for (int i = 0; i < 4; i++) {
numbers[i] += 1;
}
}
It's also best if you don't use fancy calculations to get the index but use the index to iterate and if you need different values calculate those.
Example:
public void fillArrayWithDoubleIndex( int[] array ) {
//DO
for (int i = 0; i < array.length; i++) {
array[i] = i * 2;
}
//DON'T
int doubleLength = array.length * 2;
for (int i = 0; i < doubleLength; i += 2) {
array[i/2] = i;
}
}
How to access array elements backwards?
int[] array = {0, 1, 1, 2, 3, 5, 8, 13};
for (int i = array.length-1; i >= 0; i--) {
System.out.println(array[i]);
}
Remove an element from an array
Java doesn't provide a direct method in java.util.Arrays
to remove an element from an array. To perform it, you can either copy the original array to a new one without the element to remove or convert your array to another structure allowing the removal.
Using ArrayList
You can convert the array to a java.util.List
, remove the element and convert the list back to an array as follows:
String[] array = new String[]{"foo", "bar", "baz"};
List<String> list = new ArrayList<>(Arrays.asList(array));
list.remove("foo");
// Creates a new array with the same size as the list and copies the list
// elements to it.
array = list.toArray(new String[list.size()]);
System.out.println(Arrays.toString(array)); //[bar, baz]
Using System.arraycopy
System.arraycopy()
can be used to make a copy of the original array and remove the element you want. Below an example:
int[] array = new int[] { 1, 2, 3, 4 }; // Original array.
int[] result = new int[array.length - 1]; // Array which will contain the result.
int index = 1; // Remove the value "2".
// Copy the elements at the left of the index.
System.arraycopy(array, 0, result, 0, index);
// Copy the elements at the right of the index.
System.arraycopy(array, index + 1, result, index, array.length - index - 1);
System.out.println(Arrays.toString(result)); //[1, 3, 4]
Using Apache Commons Lang
To easily remove an element, you can use the Apache Commons Lang library and especially the static method removeElement()
of the class ArrayUtils
. Below an example:
int[] array = new int[]{1,2,3,4};
array = ArrayUtils.removeElement(array, 2); //remove first occurrence of 2
System.out.println(Arrays.toString(array)); //[1, 3, 4]
Test if an array contains an element
Non-primitive array
If your array doesn't contain primitive elements, then you can use
String[] array = new String[]{"foo", "bar", "baz"};
Arrays.asList(array).contains("foo"); // true
Primitive array
Since primitives are not generic, you cannot use Arrays.asList(array).contains()
. Instead, you can perform the check as below:
int[] array = {4, 1, 3, 2};
boolean anyMatch = IntStream.of(array).anyMatch(x -> x == 4); // true
There is no native Java utility to do this, so you have to manually loop over the array to check if it contains the element.
int[] array = {4, 1, 3, 2};
boolean contains = false;
for(int arrayValue : array) {
if(arrayValue == 4) {
contains = true;
break;
}
}
You can also use org.apache.commons library to easily perform the check:
int[] array = {4, 1, 3, 2};
org.apache.commons.lang3.ArrayUtils.ArrayUtils.contains(array, 4); // true
Sorted arrays
If your array is already sorted, the fastest way is by using the appropriate Arrays.binarySearch
method:
int[] array = { 4, 1, 3, 2 };
boolean found1 = Arrays.binarySearch(array, 1) >= 0;
Copying arrays
Java provides several ways to copy an array.
for loop
int[] a = { 4, 1, 3, 2 };
int[] b = new int[a.length];
for (int i = 0; i < a.length; i++)
{
b[i] = a[i];
}
Note that using this option with an Object array instead of primitive array will fill the copy with reference to the original content instead of copy of it.
Object.clone()
Since Array is considered as an Object
in Java, you can use Object.clone()
.
int[] a = { 4, 1, 3, 2 };
int[] b = a.clone(); // [4, 1, 3, 2]
Note that the clone
method returns a reference to a new array which references the same elements as the source array.
Arrays.copyOf()
java.util.Arrays
provides a easy way to perform the copy of an array to another. Here is the basic usage:
int[] a = {4, 1, 3, 2};
int[] b = Arrays.copyOf(a, a.length); // [4, 1, 3, 2]
System.arraycopy()
public static void arraycopy(Object src, int srcPos, Object dest, int destPos, int length)
Copies an array from the specified source array, beginning at the specified position, to the specified position of the destination array.
Below an example of use
int[] a = { 4, 1, 3, 2 };
int[] b = new int[a.length];
System.arraycopy(a, 0, b, 0, a.length); // [4, 1, 3, 2]
Arrays.copyOfRange()
Mainly used to copy a part of an Array, you can also use it to copy whole array to another as below:
int[] a = { 4, 1, 3, 2 };
int[] b = Arrays.copyOfRange(a, 0, a.length); // [4, 1, 3, 2]
Finding an element in the Array
Java offers several ways to find the location of a value in an array:
-
Using
Arrays.binarySearch
(for sorted arrays only):String[] array = new String[] { "A", "B", "C" }; int index = Arrays.binarySearch(array, "A"); System.out.println(index); // If non-negative, this is the index of the element.
-
Using a
List
(for non-primitive arrays only)String[] array = new String[] { "A", "B", "C" }; int index = Arrays.asList(array).indexOf("A"); System.out.println(index);
-
Using a
stream
String[] array = new String[] { "A", "B", "C" };
int index = IntStream.range(0, array.length)
.filter(i -> "A".equals(array[i]))
.findFirst()
.orElse(-1); // If not present, gives us -1.
System.out.println(index);
-
Direct search on array using linear search
String[] array = new String[] { "A", "B", "C" }; int index = -1; for (int i = 0; i < array.length; i++) { if ("A".equals(array[i])) { index = i; break; } } System.out.println(index);
Note: Using a direct linear search is more efficient than wrapping in a list.
Getting the Length of an Array
Arrays are objects which provide space to store up to its size of elements of specified type. An array's size can not be modified after the array is created.
int[] arr1 = new int[0];
int[] arr2 = new int[]{1, 2, 3, 4};
int[] arr3 = {1, 2, 3, 4, 5, 6, 7};
int len1 = arr1.length; // 0
int len2 = arr2.length; // 4
int len3 = arr3.length; // 7
The length
field in an array stores the size of an array. It is a final
field and cannot be modified.
This code shows the difference between the length of an array and amount of objects an array stores.
public static void main(String[] args) {
Integer arr[] = new Integer[] {1,2,3,null,5,null,7,null,null,null,11,null,13};
int arrayLength = arr.length;
int nonEmptyElementsCount = 0;
for (int i=0; i<arrayLength; i++) {
Integer arrElt = arr[i];
if (arrElt != null) {
nonEmptyElementsCount++;
}
}
System.out.println("Array 'arr' has a length of "+arrayLength+"\n"
+ "and it contains "+nonEmptyElementsCount+" non-empty values");
}
Result:
Array 'arr' has a length of 13
and it contains 7 non-empty values
Arrays as method parameter
You can use the varargs syntax sugar to make passing an array to a method easier for the caller.
void varargs(String... arguments) {
if (arguments == null) { // guard for null arrays
return;
}
if (arguments.length >= 1) { // guard for empty arrays
String first = arguments[0]; // Access like a normal array
}
}
void main() {
varargs("First", "Second"); // call without explicitly creating the array
varargs(); // or even without any parameters at all (creates empty, non-null array)
// or directly with given array
String[] givenArray = {"Third", "Forth"};
varargs(givenArray)
// null arrays are also supported
String[] nullArray = null;
varargs(nullArray);
varargs((String[]) null);
}
Casting Arrays
Arrays are objects, but their type is defined by the type of the contained objects. Therefore, one cannot just cast A[]
to T[]
, but each A member of the specific A[]
must be cast to a T
object. Generic example:
public static <T, A> T[] castArray(T[] target, A[] array) {
for (int i = 0; i < array.length; i++) {
target[i] = (T) array[i];
}
return target;
}
Thus, given an A[] array:
T[] target = new T[array.Length];
target = castArray(target, array);
You can just use Arrays.copyOf(original, newLength, newType)) as well.
Comparing arrays for equality
Array types inherit their equals()
(and hashCode()
) implementations from java.lang.Object, so equals()
will only return true when comparing against the exact same array object. To compare arrays for equality based on their values, use java.util.Arrays.equals
, which is overloaded for all array types.
int[] a = new int[]{1, 2, 3};
int[] b = new int[]{1, 2, 3};
System.out.println(a.equals(b)); //prints "false" because a and b refer to different objects
System.out.println(Arrays.equals(a, b)); //prints "true" because the elements of a and b have the same values
When the element type is a reference type, Arrays.equals()
calls equals()
on the array elements to determine equality. In particular, if the element type is itself an array type, identity comparison will be used. To compare multidimensional arrays for equality, use Arrays.deepEquals()
instead as below:
int a[] = { 1, 2, 3 };
int b[] = { 1, 2, 3 };
Object[] aObject = { a }; // aObject contains one element
Object[] bObject = { b }; // bObject contains one element
System.out.println(Arrays.equals(aObject, bObject)); // false
System.out.println(Arrays.deepEquals(aObject, bObject));// true
Because sets and maps use equals()
and hashCode()
, arrays are generally not useful as set elements or map keys. Either wrap them in a helper class that implements equals()
and hashCode()
in terms of the array elements, or convert them to List
instances and store the lists.
Resizing an array to add more elements
Once an array is initialized, you cannot resize the array if you want to add more elements to it.
String[] listOfCities = new String[3];
listOfCities[0] = "New York";
listOfCities[1] = "London";
listOfCities[2] = "Berlin";
If a new element needs to be added to above listOfCities
, you have a create a new array with size 4 and copy above 3 elements to it (may be using an iterator) and then add the new element at the end (or whatever position you may need).
String[] newArray = new String[4];
System.arraycopy( listOfCities, 0, newArray, 0, listOfCities.length );
In such scenario, it is best to use a List
implementation like an ArrayList
.
See this example on creating ArrayList
and add elements to it.
Reversing an array
It happens quite often, that the necessity of reversing an array in a program arises.This example illustrates how to do so, by reversing a String array.(You can change the data type from Object to primitive like int, float etc. to reverse arrays of primitive types as well.)
public class ReversingAnArrayExample
{
public static void main(String[] args)
{
String[] names={"1-Apricot","2-Banana","3-Coconut","4-Date","5-Elderberry","6-Fig"};
System.out.println("Original array is:");
for(String s:names)
{
System.out.println(s);
}
reverseArray(names);
System.out.println("\nReversed array is:");
for(String s:names)
{
System.out.println(s);
}
}
static void reverseArray(Object[] array)
{
for(int i=0;i<array.length/2;i++)
{
Object temp=array[i];
array[i]=array[array.length-i-1];
array[array.length-i-1]=temp;
}
}
}
It is to be noted that this function is not creating any extra copy of array, thus it returns nothing and saves memory as well!