Code Review Stack Exchange is a question and answer site for peer programmer code reviews. Join them; it only takes a minute:

Sign up
Here's how it works:
  1. Anybody can ask a question
  2. Anybody can answer
  3. The best answers are voted up and rise to the top

Here is my code for Tarjan's strongly connected component algorithm. Please point out any bugs, performance/space (algorithm time/space complexity) optimization or code style issues.

from collections import defaultdict
class SccGraph:
    def __init__(self, vertex_size):
        self.out_neighbour = defaultdict(list)
        self.vertex = set()
        self.visited = set()
        self.index = defaultdict(int)
        self.low_index = defaultdict(int)
        self.global_index = 0
        self.visit_stack = []
        self.scc = []
    def add_edge(self, from_node, to_node):
        self.vertex.add(from_node)
        self.vertex.add(to_node)
        self.out_neighbour[from_node].append(to_node)
    def dfs_graph(self):
        for v in self.vertex:
            if v not in self.visited:
                self.dfs_node(v)
    def dfs_node(self, v):
        # for safe protection
        if v in self.visited:
            return
        self.index[v] = self.global_index
        self.low_index[v] = self.global_index
        self.global_index += 1
        self.visit_stack.append(v)
        self.visited.add(v)
        for n in self.out_neighbour[v]:
            if n not in self.visited:
                self.dfs_node(n)
                self.low_index[v] = min(self.low_index[v], self.low_index[n])
            elif n in self.visit_stack:
                self.low_index[v] = min(self.low_index[v], self.index[n])
        result = []
        if self.low_index[v] == self.index[v]:
            w = self.visit_stack.pop(-1)
            while w != v:
                result.append(w)
                w = self.visit_stack.pop(-1)
            result.append(v)
            self.scc.append(result)

if __name__ == "__main__":
    g = SccGraph(5)
    # setup a graph 1->2->3 and 3 -> 1 which forms a scc
    # setup another two edges 3->4 and 4->5
    g.add_edge(1,2)
    g.add_edge(2,3)
    g.add_edge(3,1)
    g.add_edge(3,4)
    g.add_edge(4,5)
    g.dfs_graph()
    print g.scc
share|improve this question

Your Answer

 
discard

By posting your answer, you agree to the privacy policy and terms of service.

Browse other questions tagged or ask your own question.