Biicode-logo
  • Explore
  • Plans
  • Learn
    • Get Started
    • Downloads
    • Docs
    • Blog
    • Forum
  • Log in
C/C++ Arduino Raspberry Pi (cross compiling) Node.js
  • Biicode
    • Installation
      • Install Biicode
      • Install C/C++ tools
      • Debian based distributions
      • Arch based distributions
      • Run biicode from source
      • Install C/C++ tools manually
        • Verify your installation
      • Connect through a proxy server
    • Getting started
      • Basics
      • Create your first project
        • [optional] Keeping #includes short
      • Using an IDE
      • Build and run
      • Publishing
    • Dependencies
      • Dependencies
      • Modifying the version you depend on
        • Depending on a block track
    • Publishing
      • Tag a version
      • Private blocks
    • Custom build configuration
      • CMake basics
      • Where is biicode´s “magic”?
      • Define and prepare targets
        • Which source code files are part of the block’s library
        • Choose STATIC or SHARED library
        • Modify which executable targets are made
        • Which source code files are part of each executable
        • Modify which test targets are made
      • Configure targets
        • Configure library target
        • Configure executable target
      • Select build type: Debug or Release
      • Complete variable reference
    • Adapt your library
      • Concepts to understand
        • Key facts
      • Without a previous CMakeLists.txt
        • 1. Look for unresolved dependencies with bii deps
        • 2. Execute bii build
        • 3. Test the libary’s reusability
      • With a previous CMakeLists.txt
        • Option 1: Let biicode do its job in an isolated file
        • Option 2: Build your own target library and link them to BII_LIB_TARGET
        • Option 3: Adapt your CMakeLists.txt filtering files
    • Advanced Usage
      • Custom Layouts
        • Simple Layout
        • TMP Layout
        • Classic Layout
        • CLion Layout
      • Tests
      • Open multiple blocks
        • Working with your own blocks
        • Opening your block
        • Publishing updated code
        • Closing edited block
        • Working with any published block
        • Open a block
        • Publish the changes
        • Close the block
        • Depend on the block you’ve just published
      • Toolchains
      • Override a dependency
        • Override a dependency with block tracks
      • Advanced build configuration
        • Publish, share and reuse CMake scripts
        • Overriding dependencies build options and configuration
      • Publish a block track
        • Publish a new block Track
      • Private blocks
    • Examples
      • Basic Compression Library
        • Simple Huffman Compression - Uncompression
        • Open and build
      • Boost Libraries
        • Boost.Lambda
        • Boost.Coroutine
        • Alternative setup call
        • Extra configuration variables
        • Contribute to the setup scripts
      • Box2D
        • Bounces of a circle falling
        • Open and build
      • C++ challenge
        • Create a new project
        • Copy the code
        • Find and retrieve dependencies
        • Build and run
      • CImg
        • Tron game
        • Open and build
      • Crypto++
        • Encrypt a message
        • Open and build
      • CSparse
        • Read a matrix and solve a linear system
        • Create a new project
        • Open and build
      • cURL
        • HTML page gatherer
        • Open and build
      • Eigen
        • Middle rows from a matrix
        • Open and build
      • Expression Parser
        • Simple form of mathematical expression parsing
        • Open and build
      • fit
        • Tests
      • Flatbuffers
        • Charge a *.fbs file and generate a C++ header
      • Freeglut
        • 1. Create a new project
        • 2. Creating reusable code
        • 3. Find dependencies
        • 4. Build and run
      • GLFW
        • Running the examples
      • GLUI User Interface Library
        • GLUI Window Template
      • Google Mock (GMock)
        • GMock Examples
        • Mocking a simple function
      • Google Test (GTest)
        • Testing a factorial function: Simple test
        • Testing a factorial function: Test suites
        • Open and build
      • HTTP Server
        • How does it work?
        • How can I use it?
        • The code
        • Supported Operating Systems
        • More information
        • List of dependencies
      • json11
        • Simple convert data to json and vice versa
      • json++
        • Simple parser and converter from JSON to XML
      • Miniutf
      • Multivariate Splines
      • libuv
        • Http client/server application
        • Change libuv’s version
      • Little CMS
        • ICC Profile Examples
        • Open and build
      • Log4z
        • Fast stream log strings test
      • lwan Web Server
        • Hello World Example
      • MiLi
      • MuParser
      • OpenCV
        • Showing an image and detecting faces
        • Open and build
      • OpenSSL
        • Encrypting with MD5 and SHA1
        • Develop your project
        • Open and build
      • POCO
        • PDF example
        • Using NetSSL_OpenSSL or NetSSL_Win library
      • PTypes
      • SDL
        • Graphical window interface
        • Open and build
      • SQLite
        • Shopping list database
        • SQLite++ Wrapper
        • Open and build
      • TinyThread++
        • Open and build the examples
        • Simple Hello World with a thread
        • Draw a fractal
      • Zlib
        • Usage example (difficulty: medium)
      • ZMQ
        • Simple client-server with C++ binding
      • ZMQ with Google Protocol Buffers Serialization
    • Integrations
      • Generators and IDEs
        • Eclipse CDT
        • Visual Studio
        • CLion
      • IDEs and VCS
      • Git (GitHub, Bitbucket, etc.)
        • With a new repository
        • Create a block from a git repository
        • Publish from git commit
      • Continuous Integration
        • AppVeyor
        • Travis CI
      • Koding
      • Doxygen
        • Create a Doxyfile template
        • Edit your Doxyfile
        • Generate the Documentation
    • Reference
      • biicode.conf: configure your biicode projects
        • [requirements]
        • [parent]
        • [paths]
        • [dependencies]
        • [mains]
        • [tests]
        • [hooks]
        • [includes]
        • [data]
      • Commands
        • bii build: build your project
        • bii buzz: init, find and build
        • bii clean: delete meta-information
        • bii close: finish editing published blocks
        • bii configure: configure your project
        • bii deps: show block dependencies
        • bii diff: compare block versions
        • bii find: find your external dependencies
        • bii init: creates a new project
        • bii new: creates new blocks
        • bii open: edit published blocks
        • bii publish: publish your blocks
        • bii setup: install necessary tools
        • bii test: test your code
        • bii update: update a block
        • bii user: specify your username
      • Configuration Files
        • layout.bii: define your project layout
        • policies.bii: defining the policies for the code you want to reuse
        • ignore.bii: filtering your files
        • settings.bii: defining your tools and preferences
        • types.bii: configuring non-standard file extensions
    • Release notes
    • FAQs
      • Is biicode free?
      • Is biicode an editor in the cloud?
      • Is biicode a VCS?
      • Can I use biicode with my favourite VCS?
      • Which languages are supported?
      • How does biicode relate to Maven, NPM, PyPI...?
    • Troubleshooting
      • Eclipse projects: “Launch failed. Binary not found” (OS X)
      • g++ doesn’t compile simple code, using thread header
      • Default Build Configuration with bii build not working
  • Arduino
    • Installation
      • Install Biicode
      • Install Arduino tools
      • Install Arduino tools manually
        • Install Arduino SDK manually
    • Getting started
      • Installing biicode and Arduino tools
      • Create your project
      • Define your board
      • Build and upload your program
      • Depending on Fenix Blink
      • Build and upload
    • Arduino commands
      • bii configure -t arduino: configure your project
      • bii build: build your project
      • bii arduino:upload: send your code into the Arduino
      • bii arduino:settings: configure your Arduino settings
      • bii arduino:monitor: start a serial monitor
      • bii configure –toolchain=arduino: enable, disable or change the Arduino cross compilation
    • How to
      • Eclipse IDE configuration
        • How to import your project
        • How to fix “Unresolved inclusion: Arduino.h”
      • Configure your SDK, port and board
        • I changed my Arduino’s port, what happens now?
        • How can I change my Arduino project properties?
        • bii arduino:settings options
      • How to adapt your code
        • 1. Projects with one single .ino file
        • 2. Projects with multiple .ino files
      • How to use the Arduino Yun
        • Download Arduino 1.5
        • Configure your settings
    • Examples
      • Arduino Serial Monitor
        • C++ code
        • Turn ON/OFF one LED
      • Servo and LCD 2x16
        • What do we need?
        • Scheme
        • The code: Display the servo angle into a LCD
        • Build and upload the code
      • Arduino Serial Interface
        • How does it work?
        • How do I use it?
        • C++ code
        • Arduino code
        • Build and run!
    • Troubleshooting
      • Launching Arduino IDE, I get an error ./arduino: 22: ./arduino: java: not found in Ubuntu
  • Raspberry Pi Cross Compilation
    • Installation
      • Install Biicode
      • Install RPI tools
      • Install RPI cross-compiling tools manually
        • C++ tools installation
        • Raspberry Pi tools installation
    • Getting started
      • 1. Installing biicode and C/C++ cross-building tools
      • 2. Create your project
      • 3. Build and run your program (cross-compiling)
      • 4. Send your executable to your Raspberry Pi
      • 5. Depending on WiringPi
    • RPi commands
      • bii rpi:send: send a bin folder
      • bii rpi:settings: configure your Raspberry Pi settings
      • bii rpi:ssh: connect by ssh with the Raspberry Pi
      • bii configure –toolchain=rpi: enable, disable or change the Raspberry Pi cross compilation.
    • How to
      • Installing the biicode package from downloads page is too slow
      • Output selection and volume control
      • Raspberry Pi GPIO Pin Layout
    • Examples
      • WiringPi: C GPIO library
        • How to make a LED blink with Raspberry Pi
        • How to use the RPi PWM output to control a motor
        • How to use softServo to control a Servo
      • HTTP Server: how to control a led by web
        • How can i use it?
      • A funny moving doll with Raspberry PI and biicode
        • You just need paper, scissors, a servo, a Raspberry Pi and biicode!
        • Choose the paper doll you like most
        • Putting it all together!
        • Stick the head to the servo and put the servo in the body
        • Connect the servo to the 5v, GPIO17 and 0v pins
    • Troubleshooting
      • Is it possible to change the version of gcc used for cross-compiling to the Raspberry Pi?
  • Node.js
    • Getting started
      • 1. Installing biicode and node.js
      • 2. Create your project
      • 3. Run your program
      • 4. Depending on redis
    • How to
      • Run your node programs
Read the Docs v: latest
Versions
latest
stable
Downloads
pdf
htmlzip
epub
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.
  • biicode docs
  • Arduino
  • How to
  • Eclipse IDE configuration
  • Edit on GitHub
How to
Configure your SDK, port and board

Eclipse IDE configuration¶

Biicode offers integration with Eclipse for Arduino.

First of all, you need to configure your project for arduino and Eclipse IDE for C/C++:

$ bii arduino:settings
Enter SDK path (/../biicode_env/arduino-1.0.6): [ENTER]
Enter board (/o list supported options): uno
Arduino detected on port COM14
$ bii configure -G "Eclipse CDT4 - Unix Makefiles"
...
A new Eclipse project has been generated for you.
Open eclipse, select "File > Import > General > Existing project into Workspace" and select folder "YOUR_PROJECT_FOLDER"

Depending on your OS and desired compiler you can use different Eclipse generators:

  • "Eclipse CDT4 - MinGW Makefiles" Generate with MinGW Makefiles.
  • "Eclipse CDT4 - Unix Makefiles" Generate with Unix Makefiles.

Now you are ready to import your project into the Eclipse IDE. It is important that you use a version of Eclipse that contains the C/C++ Toolkit. So we recommend using Eclipse IDE for C/C++ Developers.

How to import your project¶

  1. From the main Eclipse menu choose: File > import...
  2. Now, select general > Existing Projects into Workspace, and clic next.
  3. Select the root directory as the root folder of your project.
  4. You should see a project already selected in the projects box. Click finish.

If you want to add new files to your block, just right-click on the folder of your block and create a new file.

Note: If you add new dependencies to your project you’ll need to manually invoke bii find.

You can build your application in Project > Build project if you don’t have automated builds set.

If you are using Mac as developing platform, you will need some aditional setup:

  1. Right-click on your project and select Properties.
  2. Select C/C++ Make project and click on the Binary Parser subsection tab.
  3. Unselect Mach-O Parser (deprecated).
  4. Select Mach-O 64 Parser.
  5. Click OK.

How to fix “Unresolved inclusion: Arduino.h”¶

  1. Open the project settings and go to C/C++ General -> Paths and Symbols
  2. Click “Add external include path” and add:
  • For Arduino IDE installed with biicode:

    • MAC: ~/.biicode_env/arduino-1.0.6/Arduino.app/Contents/Resources/Java/hardware/arduino/cores/arduino
    • Linux: ~/.biicode_env/arduino-1.0.6/hardware/arduino/cores/arduino
    • Windows: C:\biicode_env\arduino-1.0.6\hardware\arduino\cores\arduino
  • For manually installed Arduino IDE, just add the equivalent route.

And this is all you need to work as usual with the Eclipse IDE. Any doubts? Do not hesitate to contact us visit our forum and feel free to ask any questions.

How to
Configure your SDK, port and board

© Copyright 2014, biicode.