word-embedding
Here are 101 public repositories matching this topic...
-
Updated
Apr 15, 2019 - Jupyter Notebook
-
Updated
Nov 21, 2019 - Python
-
Updated
Jan 29, 2020 - Python
-
Updated
May 21, 2020 - Python
-
Updated
Jul 9, 2019 - Python
-
Updated
Sep 29, 2018 - HTML
-
Updated
Jan 25, 2020 - Python
-
Updated
May 31, 2020 - Python
-
Updated
Jul 4, 2020
-
Updated
May 15, 2018 - Python
-
Updated
Sep 21, 2017 - Jupyter Notebook
-
Updated
Jan 22, 2019 - C
-
Updated
Jun 1, 2020 - Python
-
Updated
Nov 6, 2019 - Python
-
Updated
Mar 31, 2020 - Python
-
Updated
Aug 24, 2018 - Python
-
Updated
Feb 14, 2019 - Jupyter Notebook
Given that the accuracy of an OCR system depends on the following (not limited to) factors:
- Distribution of text in the image
- Quality of image
It doesn't result in a correct word detection all the times. For example, a word Shoe on screen might result in Shot for a distorted image.
We can experiment with the spell correction to see if that can help in such situations by using the h
-
Updated
Jul 13, 2018 - Python
-
Updated
Oct 9, 2019 - Python
-
Updated
Nov 26, 2017 - Python
-
Updated
Jun 4, 2019 - Jupyter Notebook
-
Updated
May 27, 2020
현재 document vector inference 는 학습 데이터에 존재하는 단어만을 이용한다. word vector inference 이후 word representation 을 append 할 때, transformer 에도 이 정보를 함께 append 하면 이후 새로운 단어도 이용되어 doc vec inference 가 가능하다.
doc vec inference 함수에 입력되는 (doc, term) matrix 에 새로운 단어가 포함되어 있을 경우, 이 단어들에 대하여 word vector inference 를 먼저 수행한 뒤, doc vec inference 를 할 수도 있다
Improve this page
Add a description, image, and links to the word-embedding topic page so that developers can more easily learn about it.
Add this topic to your repo
To associate your repository with the word-embedding topic, visit your repo's landing page and select "manage topics."
Prerequisites
bert-as-service?README.md?README.md](https://github.com/hanxiao/bert-as-se