A numerical library for High-Dimensional option Pricing problems, including Fourier transform methods, Monte Carlo methods and the Deep Galerkin method
Characterization of intra-individual variability using physiologically relevant measurements provides important insights into fundamental biological questions ranging from cell type identity to tumor development. For each individual, the data measurements can be written as a matrix with the different subsamples of the individual recorded in the columns and the different phenotypic units recorded in the rows. Datasets of this type are called high-dimensional transposable data. The HDTD package provides functions for conducting statistical inference for the mean relationship between the row and column variables and for the covariance structure within and between the row and column variables.
A fast, accurate, and modularized dimensionality reduction approach based on diffusion harmonics and graph layouts. Escalates to millions of samples on a personal laptop. Adds high-dimensional big data intrinsic structure to your clustering and data visualization workflow.