Skip to content
master
Go to file
Code

Latest commit

### What changes were proposed in this pull request?

Added a new `dropFields` method to the `Column` class.
This method should allow users to drop a `StructField` in a `StructType` column (with similar semantics to the `drop` method on `Dataset`).

### Why are the changes needed?

Often Spark users have to work with deeply nested data e.g. to fix a data quality issue with an existing `StructField`. To do this with the existing Spark APIs, users have to rebuild the entire struct column.

For example, let's say you have the following deeply nested data structure which has a data quality issue (`5` is missing):
```
import org.apache.spark.sql._
import org.apache.spark.sql.functions._
import org.apache.spark.sql.types._

val data = spark.createDataFrame(sc.parallelize(
      Seq(Row(Row(Row(1, 2, 3), Row(Row(4, null, 6), Row(7, 8, 9), Row(10, 11, 12)), Row(13, 14, 15))))),
      StructType(Seq(
        StructField("a", StructType(Seq(
          StructField("a", StructType(Seq(
            StructField("a", IntegerType),
            StructField("b", IntegerType),
            StructField("c", IntegerType)))),
          StructField("b", StructType(Seq(
            StructField("a", StructType(Seq(
              StructField("a", IntegerType),
              StructField("b", IntegerType),
              StructField("c", IntegerType)))),
            StructField("b", StructType(Seq(
              StructField("a", IntegerType),
              StructField("b", IntegerType),
              StructField("c", IntegerType)))),
            StructField("c", StructType(Seq(
              StructField("a", IntegerType),
              StructField("b", IntegerType),
              StructField("c", IntegerType))))
          ))),
          StructField("c", StructType(Seq(
            StructField("a", IntegerType),
            StructField("b", IntegerType),
            StructField("c", IntegerType))))
        )))))).cache

data.show(false)
+---------------------------------+
|a                                |
+---------------------------------+
|[[1, 2, 3], [[4,, 6], [7, 8, 9]]]|
+---------------------------------+
```
Currently, to drop the missing value users would have to do something like this:
```
val result = data.withColumn("a",
  struct(
    $"a.a",
    struct(
      struct(
        $"a.b.a.a",
        $"a.b.a.c"
      ).as("a"),
      $"a.b.b",
      $"a.b.c"
    ).as("b"),
    $"a.c"
  ))

result.show(false)
+---------------------------------------------------------------+
|a                                                              |
+---------------------------------------------------------------+
|[[1, 2, 3], [[4, 6], [7, 8, 9], [10, 11, 12]], [13, 14, 15]]|
+---------------------------------------------------------------+
```
As you can see above, with the existing methods users must call the `struct` function and list all fields, including fields they don't want to change. This is not ideal as:
>this leads to complex, fragile code that cannot survive schema evolution.
[SPARK-16483](https://issues.apache.org/jira/browse/SPARK-16483)

In contrast, with the method added in this PR, a user could simply do something like this to get the same result:
```
val result = data.withColumn("a", 'a.dropFields("b.a.b"))
result.show(false)
+---------------------------------------------------------------+
|a                                                              |
+---------------------------------------------------------------+
|[[1, 2, 3], [[4, 6], [7, 8, 9], [10, 11, 12]], [13, 14, 15]]|
+---------------------------------------------------------------+

```

This is the second of maybe 3 methods that could be added to the `Column` class to make it easier to manipulate nested data.
Other methods under discussion in [SPARK-22231](https://issues.apache.org/jira/browse/SPARK-22231) include `withFieldRenamed`.
However, this should be added in a separate PR.

### Does this PR introduce _any_ user-facing change?

Only one minor change. If the user submits the following query:
```
df.withColumn("a", $"a".withField(null, null))
```
instead of throwing:
```
java.lang.IllegalArgumentException: requirement failed: fieldName cannot be null
```
it will now throw:
```
java.lang.IllegalArgumentException: requirement failed: col cannot be null
```
I don't believe its should be an issue to change this because:
- neither message is incorrect
- Spark 3.1.0 has yet to be released

but please feel free to correct me if I am wrong.

### How was this patch tested?

New unit tests were added. Jenkins must pass them.

### Related JIRAs:
More discussion on this topic can be found here:
- https://issues.apache.org/jira/browse/SPARK-22231
- https://issues.apache.org/jira/browse/SPARK-16483

Closes #29322 from fqaiser94/SPARK-32511.

Lead-authored-by: [email protected] <[email protected]>
Co-authored-by: fqaiser94 <[email protected]>
Signed-off-by: Wenchen Fan <[email protected]>
0c850c7

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time

README.md

Apache Spark

Spark is a unified analytics engine for large-scale data processing. It provides high-level APIs in Scala, Java, Python, and R, and an optimized engine that supports general computation graphs for data analysis. It also supports a rich set of higher-level tools including Spark SQL for SQL and DataFrames, MLlib for machine learning, GraphX for graph processing, and Structured Streaming for stream processing.

https://spark.apache.org/

Jenkins Build AppVeyor Build PySpark Coverage

Online Documentation

You can find the latest Spark documentation, including a programming guide, on the project web page. This README file only contains basic setup instructions.

Building Spark

Spark is built using Apache Maven. To build Spark and its example programs, run:

./build/mvn -DskipTests clean package

(You do not need to do this if you downloaded a pre-built package.)

More detailed documentation is available from the project site, at "Building Spark".

For general development tips, including info on developing Spark using an IDE, see "Useful Developer Tools".

Interactive Scala Shell

The easiest way to start using Spark is through the Scala shell:

./bin/spark-shell

Try the following command, which should return 1,000,000,000:

scala> spark.range(1000 * 1000 * 1000).count()

Interactive Python Shell

Alternatively, if you prefer Python, you can use the Python shell:

./bin/pyspark

And run the following command, which should also return 1,000,000,000:

>>> spark.range(1000 * 1000 * 1000).count()

Example Programs

Spark also comes with several sample programs in the examples directory. To run one of them, use ./bin/run-example <class> [params]. For example:

./bin/run-example SparkPi

will run the Pi example locally.

You can set the MASTER environment variable when running examples to submit examples to a cluster. This can be a mesos:// or spark:// URL, "yarn" to run on YARN, and "local" to run locally with one thread, or "local[N]" to run locally with N threads. You can also use an abbreviated class name if the class is in the examples package. For instance:

MASTER=spark://host:7077 ./bin/run-example SparkPi

Many of the example programs print usage help if no params are given.

Running Tests

Testing first requires building Spark. Once Spark is built, tests can be run using:

./dev/run-tests

Please see the guidance on how to run tests for a module, or individual tests.

There is also a Kubernetes integration test, see resource-managers/kubernetes/integration-tests/README.md

A Note About Hadoop Versions

Spark uses the Hadoop core library to talk to HDFS and other Hadoop-supported storage systems. Because the protocols have changed in different versions of Hadoop, you must build Spark against the same version that your cluster runs.

Please refer to the build documentation at "Specifying the Hadoop Version and Enabling YARN" for detailed guidance on building for a particular distribution of Hadoop, including building for particular Hive and Hive Thriftserver distributions.

Configuration

Please refer to the Configuration Guide in the online documentation for an overview on how to configure Spark.

Contributing

Please review the Contribution to Spark guide for information on how to get started contributing to the project.

You can’t perform that action at this time.