#
wasserstein
Here are 24 public repositories matching this topic...
Annotated, understandable, and visually interpretable PyTorch implementations of: VAE, BIRVAE, NSGAN, MMGAN, WGAN, WGANGP, LSGAN, DRAGAN, BEGAN, RaGAN, InfoGAN, fGAN, FisherGAN
python
machine-learning
pytorch
discriminator
generative-adversarial-network
gan
infogan
autoencoder
vae
wasserstein
wgan
lsgan
began
generative-models
dragan
fishergan
mmgan
nsgan
ragan
fgan
-
Updated
Nov 19, 2018 - Jupyter Notebook
Tensorflow implementation of Wasserstein GAN - arxiv: https://arxiv.org/abs/1701.07875
-
Updated
Feb 13, 2017 - Python
Code for Supervised Word Mover's Distance (SWMD)
-
Updated
Jan 7, 2018 - MATLAB
Wasserstein Introspective Neural Networks (CVPR 2018 Oral)
-
Updated
Apr 11, 2018 - Jupyter Notebook
DCGAN and WGAN implementation on Keras for Bird Generation
-
Updated
Dec 29, 2017 - Python
Torch implementation of Wasserstein GAN https://arxiv.org/abs/1701.07875
-
Updated
Apr 24, 2017 - Lua
A Python implementation of Monge optimal transportation
clustering
wasserstein-barycenters
wasserstein
optimal-transport
variational-method
monge
wasserstein-means
transshipment
-
Updated
Jun 21, 2020 - Python
GANs Implementations in Keras
-
Updated
Mar 14, 2018 - Python
Code for the article "Learning to solve inverse problems using Wasserstein loss"
-
Updated
Oct 30, 2017 - Python
Tensorflow Implementation of Stochastic Wasserstein Autoencoder for Probabilistic Sentence Generation (NAACL 2019).
tensorflow
text
dialog
stochastic
autoencoder
vae
sentence
generation
seq2seq
reconstruction
wasserstein
wae
-
Updated
Jan 28, 2020 - Python
code for "Determining Gains Acquired from Word Embedding Quantitatively Using Discrete Distribution Clustering" ACL 2017
-
Updated
Nov 21, 2018 - Python
FML (Francis' Machine-Learnin' Library) - A collection of utilities for machine learning tasks
machine-learning
point-cloud
pytorch
wasserstein
optimal-transport
chamfer
sinkhorn
earth-mover-distance
sinkhorn-distance
regularized-optimal-transport
-
Updated
Mar 21, 2019 - Python
Source code for "Training Generative Adversarial Networks Via Turing Test".
pytorch
generative-adversarial-network
gan
mnist
wasserstein
cifar10
optimal-transport
wasserstein-gan
turing-test
fashion-mnist
lipschitz-functions
turing-gans
-
Updated
May 29, 2020
Source code for the ICML2019 paper "Subspace Robust Wasserstein Distances"
pca-analysis
pca
dimensionality-reduction
wasserstein
optimal-transport
wasserstein-barycenter
wasserstein-discriminant-analysis
wasserstein-metric
wasserstein-distance
subspace-robust-wasserstein
-
Updated
Jun 14, 2019 - Jupyter Notebook
Optimal Transport and Optimization related experiments.
-
Updated
Jul 22, 2018 - Jupyter Notebook
Variational Optimal Transportation
-
Updated
Jan 8, 2019 - C++
Pytorch Implementation for Topic Modeling with Wasserstein Autoencoders
-
Updated
May 13, 2020 - Jupyter Notebook
MXNet/Gluon implementation of Wasserstein Auto-Encoders (WAE)
-
Updated
Dec 11, 2017
Demonstration of Wasserstein GAN. Using Earth Mover's distance to measure similarity between two distributions
-
Updated
Mar 30, 2017 - Python
Wasserstein barycenter research for images
-
Updated
Oct 13, 2018 - Python
Generating Atari Images with WGANs in PyTorch
python
google
jupyter
notebook
network
jupyter-notebook
openai-gym
pytorch
generative-adversarial-network
gan
openai
colab
image-generator
generative
adversarial
wasserstein
wgan
wasserstein-gan
google-colab
google-colab-notebook
-
Updated
Mar 30, 2020 - Jupyter Notebook
Improve this page
Add a description, image, and links to the wasserstein topic page so that developers can more easily learn about it.
Add this topic to your repo
To associate your repository with the wasserstein topic, visit your repo's landing page and select "manage topics."
I tried to use
ot.gpu.sinkhornusing CUDA and I got this traceback: