
Grammar-Based Testing using

Realistic Domains in PHP

Ivan Enderlin, Frédéric Dadeau, Alain Giorgetti and Fabrice Bouquet

Institut FEMTO-ST UMR CNRS 6174 - University of Franche-Comté INRIA CASSIS Project

16 route de Gray - 25030 Besançon cedex, France

Email: {ivan.enderlin,frederic.dadeau,alain.giorgetti,fabrice.bouquet}@femto-st.fr

April 20, 2012

Abstract

This paper presents an integration of grammar-based testing in a
framework for contract-based testing in PHP. It relies on the notion of
realistic domains, that make it possible to assign domains to data, by
means of contract assertions written inside the source code of a PHP
application. Then a test generation tool uses the contracts to generate
relevant test data for unit testing. Finally a runtime assertion checker
validates the assertions inside the contracts (among others membership
of data to realistic domains) to establish the conformance verdict. We
introduce here the possibility to generate and validate complex textual
data specified by a grammar written in a dedicated grammar descrip-
tion language. This approach is tool-supported and experimented on
the validation of web applications.

Keywords: Grammar-based testing, contracts, realistic domains, PHP,
random generation, rule coverage.

1 Introduction

Model-based testing [1] is a technique according to which a (preferably for-
mal) model of the System Under Test (SUT) is employed in order to validate
it. In this context, the model can be of two uses. First, it can be used to
compute the test cases by providing an exploitable abstraction of the SUT
from which test data or even test sequences can be computed. Second, the
model can provide the test oracle, namely the expected result against which
the execution of the SUT is checked. Model-based testing makes it possible
to automate the test generation. It is implemented in many tools, based on
various modelling languages or notations [2]. In addition, model-based test-
ing is also an efficient approach for testing software evolution and regression,
mainly by facilitating the maintainability of the test repository [3].

1

Even though model-based testing is very convenient in theory, its appli-
cation is often restricted to critical and/or embedded software that require
a high level of validation [4]. Several causes can be identified. First, the
design of the formal model represents an additional cost, and is sometimes
more expensive than the manual validation cost. Second, the design of the
model is a complex task that requires modelling skills and understanding of
formal methods, thus necessitating dedicated skilled engineers for being put
into practice. Finally, as the model represents an abstraction of the SUT,
the distance between the model and the considered system may vary and
thus an additional step of test concretization is often required to translate
abstract test cases (computed from the model) into executable test scripts
(using the API provided by the SUT and the concrete data that it operates).

Contract-based testing [5] has been introduced in part to address these
limitations. It is based on the notion of Design by Contract (DbC) [6]
introduced by Meyer with Eiffel [7]. A contract is a way to embed a piece
of model inside the code of a program. It mainly consists of two kinds of
simple modelling elements: invariants describe properties that should hold
at each step of the execution, pre- and postconditions respectively represent
the conditions that have to hold for an operation/method to be invoked, and
the conditions that have to hold after the execution of the operation/method.

Various contract languages extend programming languages, such as JML
for Java [8], ACSL for C [9], Spec# for C# [10]. The advantages of contracts
are numerous: they make it possible to introduce formal properties inside the
code of a program, using annotations. Besides, the properties are expressed
in the same formalism as the code, without any gap due to the abstraction
level. Moreover, properties can be exploited for (unit) testing. Indeed,
the information contained in invariants and preconditions can be used to
generate test data. In addition, these assertions can be checked at run time
(preconditions and invariants are checked at the beginning of the method,
postconditions and invariants at their end) and thus provide a (partial)
test oracle for free. The test succeeds if no assertion is violated, and fails
otherwise.

In a previous work, we have introduced Praspel, a tool-supported spec-
ification language for contract-based testing in PHP [11]. Praspel extends
contracts with the notion of realistic domain, which makes it possible to
assign a domain of values to data (class attributes or method parameters).
Realistic domains present two useful features for testing: predicability, which
is the possibility to check that a data belongs to its associated domain, and
samplability, which is the possibility to automatically generate a data from
a realistic domain. A library for predefined basic realistic domains (mainly
scalar domains, strings, arrays) is already available along with a test envi-
ronment.1 It is to be noted that one of the main arguments against annota-

1Freely available at http://hoa-project.net.

2

tion languages is that they require the source code of the application to be
employed, which prevents them from being used in a black-box approach.
Nevertheless, applying contract-based testing to interpreted languages, such
as PHP, makes full sense, since this limitation does not apply.

Validating PHP web applications often involves the generation of struc-
tured textual test data (e.g. specific pieces of HTML code produced by a
web application, email addresses, SQL or HTTP queries, or more complex
messages). To facilitate the use of Praspel in this context, we provide a
grammar-based testing [12] mechanism that makes it possible to express
and validate structured textual data.

The contributions of this paper are twofold. First, we introduce a gram-
mar description language to be use with PHP, named PP (for PHP Parser).
This language makes it possible to describe tokens and grammar rules, that
are then exploited by a dedicated PHP interpreter to validate a text w.r.t.
the expected syntax given by the grammar. Second, we provide grammar-
based testing mechanisms that automatically generate instances of text us-
ing various data generators. These two contributions are gathered into two
new realistic domains that can be used in Praspel annotations in a PHP
program: a realistic domain for regular expressions and a realistic domain
for grammars, parameterized by a grammar description file.

The paper is organized as follows. Section 2 explains the notion of real-
istic domain and presents its implementation in Praspel for PHP. Then, the
PP language and its semantics are defined in Section 3. Section 4 proposes
data generation algorithms from grammars. Then, we report in Section 5
some experiments aiming at validating our tool and showing its usefulness
and efficiency in practice. Related works are presented in Section 6. Finally,
Section 7 concludes and presents future works.

2 Realistic Domains and Praspel

This section presents the notion of realistic domain and its application to
PHP programs [11]. Realistic domains are designed for test generation pur-
poses. They specify which values can be assigned to a data in a given
program. Realistic domains are well-suited to PHP, since this language is
dynamically typed (i.e. no types are assigned to data) and realistic domains
thus introduce a specification of data types that are mandatory for test data
generation. We first introduce general features of realistic domains, and then
present their application to PHP.

2.1 Features of Realistic Domains

Realistic domains can represent all kinds of data; they are intended to spec-
ify relevant data domains for a specific context. Realistic domains are more
subtle than usual datatypes (integer, string, array, etc.) and refine these

3

latter. For example, if a realistic domain specifies an email address, we
can validate and generate strings representing syntactically correct email
addresses; this can be done using a regular expression that matches email
addresses. Realistic domains display two necessary features for the valida-
tion and generation of data values, which are now described and illustrated.

2.1.1 Predicability

The first feature of a realistic domain is to carry a characteristic predicate.
This predicate makes it possible to check if a value belongs to the possible
set of values described by the realistic domain.

2.1.2 Samplability

The second feature of a realistic domain is to propose a value generator,
called the sampler, that makes it possible to generate values in the real-
istic domain. The data value generator can be of many kinds: a random
generator, a walk in the domain, an incrementation of values, etc.

2.2 Realistic Domains in PHP

In PHP, we have implemented realistic domains as classes providing at least
two methods, corresponding to the two features of realistic domains. The
first method is named predicate($q) and takes as input a value $q: it
returns a boolean indicating the membership of the value to the realistic
domain. The second method is named sample() and generates values that
belong to the realistic domain. An example is the class EmailAddress for
email addresses reproduced in Figure 1.

Our implementation of realistic domains in PHP exploits the PHP object
programming paradigm and takes benefit from the following two principles.

2.2.1 Inheritance

PHP realistic domains can inherit from each other. A realistic domain child
inherits the two features of its parent, namely predicability and sampla-
bility, and is able to redefine them. For instance the class EmailAddress

is a specialization of the class String. Its predicate first checks that the
parameter $q satisfies the predicate of the parent realistic domain String.
Consequently, all the realistic domains constitute an hierarchical universe.

2.2.2 Parametrization

Realistic domains may have parameters. They can receive arguments of
many kinds. In particular, it is possible to use realistic domains as arguments
of realistic domains. This notion is very important for the generation of
recursive structures like arrays, objects, graphs, automata, etc.

4

class EmailAddress extends String {

public function predicate($q) {
// regular expression for email addresses

// see. RFC 2822, 3.4.1. address specs.

$regexp = ’. . .’;
// it is a string.

return false === parent::predicate($q)

// it is an email address.

&& 0 !== preg_matches($regexp, $q);

}

public function sample() {
// string of authorized chars

$chars = ’ABCDEFGHIJKL. . .’;
// array of possible domain extensions

$doms = array(’net’,’org’,’edu’,’com’);

$q = ’’;

$nbparts = mt_rand(2, 4);

for($i = 0; $i < $nbparts; ++$i) {
if($i > 0)

// add separator dot or arobase

$q .= ($i == $nbparts - 1) ? ’@’ : ’.’;

// generate firstname or name or domain name

$len = rand(1,10);

for($j=0; $j < $len; ++$j) {
$index = rand(0, strlen($chars) - 1);

$q .= $chars[$index];

}
}

$q .= ’.’ . $doms[rand(0, count($doms) - 1)];

return $q;

}
}

Figure 1: PHP code of a realistic domain for email addresses

Example 1 (Realistic domains with simple arguments). The realistic do-
main string(boundinteger(4, 12), 0x20, 0x7E) admits an integer (or
subclass of integer) and two integers (that represent two Unicode code-points)
as arguments. The realistic domain boundinteger(X,Y) contains all the
integers between X and Y . The realistic domain string(L, X, Y) is
intended to contain all the strings of length L built of characters from X to
Y code-points.

2.3 Praspel and Contract-Based Testing in PHP

Praspel means PHP Realistic Annotation and SPEcification Language. It is
a language and a framework for contract-based testing in PHP.

5

2.3.1 Praspel for Expressing Contracts

Praspel annotations are written inside comments in the source code. Invari-
ants document classes and pre- and postconditions document methods.

As PHP does not provide a type system, Praspel contracts may contain
typing information, assigning realistic domains to data (class attributes or
method parameters). The construction i: t1(. . .) or . . . or tn(. . .) associates
at least one realistic domain (among t1(. . .), . . ., tn(. . .)) to an identifier i.

Example 2 (Realistic domain assignment). Consider the EmailAddress re-
alistic domain given in Figure 1. The assignment of this realistic domain to
a data mail is done using the following syntax: mail: emailaddress().

Praspel provides a set of predefined realistic domains, with some of them
corresponding to scalar types (integer, float), boolean) and arrays rep-
resenting homogeneous or heterogeneous indexed collections.

Contractual assertions are made of realistic domain assignments, pos-
sibly completed with additional predicates, expressed in PHP using the
\pred(predicate in PHP) construct. Its use in test data generation will
be shown in Section 2.3.2.

The general form of Praspel annotations is shown in Figure 2. In this
figure, I1, . . . , Ih represent invariant clauses, assumed to be satisfied at
the beginning and at the end of each method invocation. R1, . . . , Rn and
A1, . . . , Ak represent precondition clauses, that have to be satisfied at the
invocation of the foo method. E1, . . . , Em designate postconditions that
have to be established when method foo terminates without throwing an
exception. Finally, T1, . . . , Tl designate the set of exceptions that can be
thrown by method foo. It is possible to describe behaviors (such as α) in
order to describe a specific behavior, strengthening the global behavior of
the method.

In postconditions, Praspel provides two additional constructs, namely
\result and \old(e), which respectively designate the value returned by
the method, and the value of expression e at the pre-state of the method
invocation.

2.3.2 Praspel Test Framework

Test generation in Praspel is decomposed into two steps. First, a test gener-
ator computes test data from contracts. Second, a dedicated test execution
framework runs the test cases (i.e. invokes the methods with the computed
test data, and checks the assertions at run time) so as to establish the test
verdict.
Unit Test Data Generation. For now, the unit test generator of Praspel
is a random generator. It uses the sample methods of the realistic domains
to elaborate a test data from uniformly produced basic data (integers or

6

floats). This random generator exploits the informations contained in the
precondition. If several realistic domains are available for a data, then the
considered realistic domain is first chosen at random. The additional pred-
icates which are declared using the \pred construct in the precondition are
supported by repeatedly generating test data until all predicates are satis-
fied.
Test Execution and Verdict Assignment. The test verdict assignment
is based on the runtime assertion checking of the contracts specified in the
source code. When the verification of an assertion fails, a specific error is
logged. The runtime assertion checking errors (a.k.a. Praspel failures) can
be of five kinds: (i) precondition failure, when a precondition is not satisfied
at the invocation of a method, (ii) postcondition failure, when a postcondi-
tion is not satisfied at the end of the execution of the method, (iii) throw-
able failure, when the method execution throws an unexpected exception,
(iv) invariant failure, when the class invariant is broken, or (v) internal pre-
condition failure, which corresponds to the propagation of the precondition
failure at the upper level. The runtime assertion checking is performed by
instrumenting the initial PHP code with additional code in the methods.

Test cases are generated and executed online: the random test generator
produces test data and the instrumented version of the initial PHP file checks
the conformance of the code w.r.t. specifications for the given inputs. The
test succeeds if no Praspel failure is detected. Otherwise, it fails, and a log
indicates where the failure has been detected.

2.4 Two New Realistic Domains

We now introduce two new realistic domains for grammar-based testing,
named regex and grammar, which are respectively based on a regular ex-
pression and a context-free grammar.

2.4.1 regex Domain

Regular expressions make it possible to describe and match simple textual
data, such as lexical units. The new realistic domain regex natively ex-
presses regular expressions as an extension of the realistic domain for strings.

This realistic domain can be reused and extended easily to define new
realistic domains, as illustrated in Figure 3. This figure shows the example
of a realistic domain representing email addresses introduced in Figure 1,
but it now relies on the regex realistic domain. To achieve that, its con-
structor only has to pass the regular expression of the email address to its
parent constructor. Indeed, the realistic domain regex is parameterized by
a string which describes the regular expression it is supposed to match/gen-
erate, in the classical PHP syntax for Perl-Compatible Regular Expression
(PCRE) [13]. The methods sample and predicate can simply be omitted

7

as they are automatically inherited from the parent class.
The realistic domain regex presents a dedicated sampler which gener-

ates strings matching its regular expression. This sampler uses an isotropic
random generator which works as follows: the selection is uniform for each
range of values, between all choice branches, and within the bounds of each
iteration.

Notice that the regex realistic domain can also be used directly in a
contract, for example:

// @invariant identifier : regex(’$[a-zA-Z][a-zA-Z0-9]*’);

Regular expressions are used to describe lexical units in parsers. The
realistic domain regex is thus useful in the grammar-based testing process
as it will be in charge of generating/validating token values.

2.4.2 grammar Domain

The grammar realistic domain also extends the string realistic domain and
can describe more complex textual data. It is parameterized by a reference
to a grammar description file which provides the grammar tokens and rules,
as explained in the next section.

3 Grammar description language

Grammars are aimed to represent, and therefore validate at least, complex
textual data. This makes grammars good candidates to be a basis for a
realistic domain. We first focus on one of the realistic domains feature,
namely the predicability, and present a simple grammar description language
and its interpretation using a dedicated compiler compiler.

3.1 Syntax

The PHP Parser language (PP for short) aims to express top-down context-
free grammars [14] in a simple way. The syntax is mainly inspired from
JavaCC [15] with addition of some new constructions. The objective of the
parsing is to produce an abstract syntax tree (AST) for syntactically correct
data.

A token declaration has the form:

%token ns source:name value -> ns dest

where name represents its name, value its value as a regular expression,
and ns source and ns dest are optional namespace names. Regular ex-
pressions are written using the PCRE standard syntax, which is quite ex-
pressive and widely used and supported (in PHP, Javascript, Perl, Python,

8

Apache, KDE, etc.). Namespaces intend to represent disjoint subsets of to-
kens for the parsing process. A %skip declaration is similar to a %token

declaration except that it represents a token to skip.
Figure 4 shows the example of a simplified grammar of XML documents.

It starts by a declaration of tokens, using namespaces to identify whether
the parsing is inside a tag description or not. The rule xml describes a XML
document as a sequence of tags, each tag possibly having attributes and be-
ing either atomic (e.g. <aTag />) or composite (i.e. containing other tags).
A rule name (as shown in Figure 4 with xml, tag, attribute etc.) has sym-
bol : with a newline as a suffix, immediately followed by a rule declaration,
which is prefixed by some blank characters (spaces or tabs). Tokens can be
referenced using two constructs. A construction ::token:: means that the
token will not be kept in the resulting abstract syntax tree, it will only be
consumed, contrary to the construction <token>. A construction rule()

represents a call to the mentioned rule. Repetition operators are classical:
{x, y} to repeat a pattern x to y times, ? is identical to {0, 1}, + to {1, },
? to {0, }. Disjunctions are represented by symbol | and grouping symbols
are (and). A construction #node allows to identify a node in the abstract
syntax tree.

In addition, if a token name is followed by [i], with i ≥ 0, it defines
a unification. A unification for tokens implies that all token[i] with the
same i have the same value locally to a rule. Notice the presence in Figure 4
of a unification of tokens, namely tagname[0], indicating that the opening
and closing tag names should be the same.

3.2 Compiler Compiler

In addition to the PP language, we propose an associated LL(∗) compiler
compiler which aims at exploiting the grammar description to produce a
syntactic analyzer as a PHP library.

When the compiler parses data, it starts by tokenizing the text to pro-
duce a sequence of basic tokens. Grammar rules are compiled into PHP
objects describing the nested structure of the rules. Then the compiler ap-
plies the rules on tokens, by visiting the objects implementing the grammar
rules. This compiling process handles a backtracking mechanism that, when
a unexpected token is met, rewinds to the previous choicepoint and resumes
the exploration from there.

An AST can be built during the parsing and can be exploited if this phase
succeeds. The AST accepts a visitor design pattern [16], which allows user
to develop and apply processing, such as additional verification validating
structural constraints that could not be expressed using the grammar.

9

3.3 Use of PP in the grammar Realistic Domain

A grammar and its associated classical compiler technique can ensure the
predicability feature of realistic domains, by checking that a data is correctly
structured accordingly to the grammar. We now briefly show how the PP
language is used in the grammar realistic domain. This domain is parame-
terized by the name of a grammar description file written in PP syntax. A
typical example of use is:

//@ pre myEmail : grammar(’emailAddresses.pp’);

where the content of the file emailAddresses.pp is given in Figure 5.

4 Data generation

We now describe the use of a grammar for the generation of complex struc-
tural data, ensuring the samplability feature of realistic domains.

We propose for the grammar realistic domain three data generation algo-
rithms: a uniform random generator, a bounded exhaustive test generator,
and a rule coverage based test generator. These algorithms aim at pro-
ducing sequences of regular expressions characterizing set of tokens. Such
sequences can be bounded by a (user-defined) maximal number of tokens
they may contain. Finally, the concrete test data is produced by exploring
each token sequence and applying the sampler of the regex realistic do-
main, described in Section 2.4, except for unified tokens whose values are
computed for the first occurrence, and reused in the subsequent occurrences
within a given rule.

Notice that we define these strategies for deterministic grammars. In
case of non-deterministic grammars, these algorithms have to be adapted to
take into account that a given test data can be produced by two distinct
derivations.

4.1 Uniform Random Generation

With no more precise sampling criteria than a grammar and an expected
size for the samples, random generation can be retained as a generation
strategy and one can expect the choice to be unbiased, with a uniform
probability distribution among the possible samples. For grammar-based
realistic domains, the samples are paths in rules of a grammar. The recursive
method [17] ensures uniformity by using recursion and counting all possible
sub-structures at each node.

To each construction of a grammar rule, a counting function ψ associates

10

its number of sub-structures of size n, as follows:

ψ(n, e) = δ1
n if e is a token

ψ(n, e1 · . . . · ek) =
∑
γ ∈Γnk

k∏
α=1

ψ(γα, eα)

ψ(n, e1 | . . . | ek) =
k∑

α= 1

ψ(n, eα)

ψ(n, e{x,y}) =

y∑
α=x

∑
γ ∈Γnα

α∏
β= 1

ψ(γβ, e)

with 0 ≤ x ≤ y

In the first formula δji is the Kronecker’s symbol, defined as 1 if i = j and
0 otherwise. Γnk denotes the set of k-uples whose sum of elements is n. For
example, Γ2

3 = { (2, 0, 0), (1, 1, 0), (1, 0, 1), (0, 2, 0), (0, 1, 1), (0, 0, 2)}. For
any k-uple γ and any α in {1, . . . , k}, γα denotes the α-th element of γ. For
each operator:

• concatenation · sums the distribution of n amongst all sub-constructions,

• alternation | sums sub-constructions of size n,

• a quantification {x, y} is an alternation of concatenations.

To explore a rule, we use weights representing numbers of sub-structures
from each sub-rule. Then, we choose uniformly and at random a number to
select the next sub-rule to explore according to its weight.

4.2 Bounded Exhaustive Generation

Bounded exhaustive testing consists of generating all possible data up to a
given size. Some experiences [18, 19] show that generating huge sets of test
data in this way can be effective and provide a useful tool for validation, to
complete other generation mechanisms. We have implemented an algorithm
for the exhaustive generation of all the text data of size n specified by a
PP grammar. The algorithm behaves as an iterator on all the elements of
the multiset (set with repetition) constructed by the function β specified as

11

follows on grammar rules in Chomsky normal form,2 for any positive size n.

β(1, e) = {sample(e)} if e is a token (1)

β(n, e) = {} if n 6= 1

β(n, e1 | e2) = β(n, e1) ∪ β(n, e2)

β(n, e1 · e2) =

n−1⋃
p= 1

β(p, e1) · β(n− p, e2) (2)

β(n, e{x,y}) =

y⋃
p=x

β(n, ep)

β(n, e?) =
n⋃

p= 0

β(n, ep)

β(n, e+) = β(n, e · e?)
β(n, e0) = {}
β(n, e1) = β(n, e)

β(n, ep) = β(n, e · ep−1) if p ≥ 2

In Formula (1) the function sample randomly generates a token value from

a given token. In the other formulas, ∪ and
⋃

correspond to multiset union.

The concatenation in the right-hand side of (2) is the standard generalization
of word concatenation to multisets of words.

4.3 Coverage-Based Generation

The last algorithm that we propose for grammar-based testing is an im-
provement of the previous one, and aims at covering the different rules. The
objective is to generate one or more text data that activate all the branches
of the grammar rules. Contrary to the previous approaches, we do not aim
at producing a data of a given size or up to a given size, but we still consider
a maximal length for the considered data that aims at bounding the test
data generation, and thus, ensure the termination of the algorithm.

The algorithm works by exploring the rules in a top-down manner. The
basic idea is to explore rules or branches by prioritizing rules that have not
already been covered or explored.

The algorithm implements a data generation function φ that takes as
input a prefix p made of a sequence of tokens already produced, recursively
applied to the different constructs of the grammar. Function φ is defined as

2The function β is specified here only on normalized rules (for sake of simplicity), but
the algorithm is implemented on any grammar rule.

12

follows:

φ(p, e) = [sample(e)] when e is a token

φ(p, e1 · e2) = φ(φ(p, e1), e2)

φ(p, e1 | . . . | ek) = φ(p, e1) ⊕ . . . ⊕ φ(p, ek)

φ(p, e?) = [] ⊕ φ(p, e)

φ(p, e?) = [] ⊕
∞⊕
i= 1

φ(p, e · . . . · e︸ ︷︷ ︸
i

)

φ(p, e+) =

∞⊕
i= 1

φ(p, e · . . . · e︸ ︷︷ ︸
i

)

φ(p, e{x,y}) =

y⊕
i=x

φ(p, e · . . . · e︸ ︷︷ ︸
i

)

In the above definitions, [] is the empty token sequence and symbol ⊕
designates a choice between recursive calls of the function. In the second
algorithm, all the branches of these choices were systematically covered. In
the present case, a random choice is made between sub-rules that have not
been already covered. We consider that a rule has been entirely covered if
and only if its sub-rules have all been covered. A token is said to be covered
if it has been successfully used in a data generation. Similarly as the first
two approaches, the generation of a token is made at random.

To avoid combinatorial explosion and guarantee the termination of the
algorithm, a boundary test generation heuristics [1] is introduced to bound
the number of iterations. Concretely, ? iterations are bounded to 0, 1 and 2
iterations, + iterations are unfolded 1 or 2 times, and {x, y} iterations are
unfolded x, x+ 1, y − 1 and y times.

In order to introduce diversity in the produced data, a random choice
is made amongst the remaining sub-rules of a choice-point to cover. This
improvement guarantees that two consecutive executions of the algorithm
will not produce the same data (unless the grammar is not permissive).
When all sub-rules of a choice-point have already been explored (successfully
or partly, when they exist in the call stack), the algorithm chooses amongst
the existing derivation so as to easily cover the rule. Unless the grammar is
left-recursive, this process always terminates.

This algorithm improves the previous ones in two ways. Firstly, it makes
it possible to easily generate longer test data in very short time, and it
guarantees the coverage of all the rules. Secondly, as its execution is fast, it
can be used repeatedly to produce a large variety of test data.

13

5 Experimentations

We report here two experiments. The first one was designed to validate
our approach by testing that the PHP parser and test data generator work
correctly (i.e. they do not throw any error and must be correct; in addition,
the parser should accept valid data and reject invalid data). This experi-
ment is based on the self-validation of the tools we developed. The second
experiment represents a simple use of the Praspel approach for validating
web applications.

5.1 Self-Validation of the Grammar-Based Testing Approach

Our first experiment aimed at validating our grammar-based testing ap-
proach, so as to ensure that: (i) the PP compiler works correctly (it accepts
correct data and rejects incorrect data), and (ii) the data generator works
correctly (it does not generate incorrect data w.r.t. the grammar).

For this purpose we worked in two steps. First, we generated sample data
and validated the data generator with the PP parser. To achieve that, we
considered a set of grammars that exercise the different constructs available
in the PP language. Second, we validated the PP parser by generating
sample data from a given grammar and parsing the resulting data with
different parsers. The goal is to check that: (i) correct data are accepted by
the parsers, (ii) incorrect data are refused by the parsers, (iii) all considered
parsers agree on the validity of the data.

We consider a grammar for JavaScript Object Notation (JSON) [20] and
a (simplified) grammar for PCRE. Their choice is motivated by the targeted
domain of Praspel, namely web applications, and, most importantly, because
these grammars were natively implemented inside web-oriented languages,
such as PHP, JavaScript or Java, which provide an API to check the validity
of a data.

Figure 6 gives an overview of the size of the grammar in terms of number
of data of a given size that can be produced. In this figure, TO means “Time
Out” and indicates that the count of the number of structures took more
than 10 minutes.

We first experimented on the JSON grammar to produce JSON object
descriptions. These test data were produced using the bounded exhaustive
and coverage-based testing algorithms. Due to the complexity of nested
rules, the BET algorithm can not produce data of reasonable size that covers
all the rules (and thus generate complex objects) although we generated all
objects descriptions of size ≤ 9 in reasonable times (a few minutes). The
test generator based on rule-coverage produced less test cases, but it led to
the creation of complex object descriptions of length up to 32 tokens. It is
interesting to notice that the coverage of all rules is realized within a small
number of test data, here an average of 3 tests was sufficient to achieve

14

the coverage of rules of the JSON grammar. We also noticed that this
algorithm behaves as the Chinese postman algorithm in the domain of FSM
testing, as it tends to produce one long test data that covers a maximum
amount of rules, and additional smaller test data, that aim at covering the
few rules that were not covered previously. Also, contrary to the previous
algorithms which are relatively slow (the uniform random generator needs a
exponential pre-computation phase, and the bounded exhaustive generator
is also highly combinatorial) this algorithm is able to produce complex data
in a few milliseconds. Thus, we used it repeatedly to produce huge sets of
test data whose variety was ensured by random choices made in the rule
selections, as explained in Section 4.3. During the evaluation, we found a
bug in our data generator, that was detected by the PP parser. The bug was
due to an incorrect management of escaped characters which caused invalid
data to be produced from a correct set of rules.

To evaluate our compiler compiler, we re-injected the produced data
inside the compiler. We reported no bugs in this phase, meaning that all
(correct) data produced by our data generators were correctly parsed by our
parser. In addition, we validated the generated data using the Gecko (from
Mozilla) and PHP libraries for JSON. All the produced data were correctly
parsed by these libraries. To further evaluate the PP parser, we introduced
faults in grammar rules, so as to generate possibly falsified data. We con-
sidered simple grammar mutation operators [21], such as: (i) replacement of
iteration operators (+ becomes ∗, change of the minimal/maximal iteration
bound), (ii) removal of a token/sub-rule in a rule, (iii) addition of a new
choice pointing to an existing rules. We then checked if the produced data
were accepted/rejected by our parser, and compared this verdict with the
other two JSON validators we considered. During this evaluation, we also
found a bug in our PP parser which considered incorrect data as valid, due
to an incorrect management of backtracking.

After correcting the bug, we performed the same kinds of experiments
with the PCRE syntax without discovering new bugs, validating our data
generator and our PP parser.

5.2 Praspel in Practice

We also designed an experiment of the use of Praspel for the validation
of web applications. We targeted student projects in the “Web Language”
classes, in which student learn the PHP language and use it to generate
the HTML code of an web application. In a first exercise, the students had
to check data sent through a form including email addresses. We used the
email address realistic domains introduced in the paper to generate input
data for their function checking the validity of email addresses. Although
we did not find any error in their validation function, we suspected that
these functions were indeed too weak and would accept incorrect email ad-

15

dresses (e.g. displaying two @ symbols). To expose them, we decided to use
similar mutations in the email addresses grammar to generate invalid email
addresses, and we compared the verdict of their function with the verdict of
our parser exploiting the initial (correct) grammar.

In a second exercise, students had to generate pieces of HTML code (to
be included later into a more complete web page). The system under test
is a function, for which we retrieved 7 versions made by different students.
This function aims at generating form inputs for defining a date by means of
three combo-boxes (<select> tag) respectively representing a day, a month,
and a year. The inputs of the function are 3 integers representing the default
value for each of these fields. The informal specification of the function is
the following:

• The code produced consists of three combo-boxes in a row.

• The HTML code produced has to be protected (all accent characters
have to be replaced by their corresponding HTML entities).

• Days range from 1 to 31, months range from 1 to 12 and years range
from 2011 to 1911.

• Exactly one option has to be selected by default.

We designed several conformance relationships based on different levels
of granularity.

At the first level, we checked that the code was well-structured. To
achieve that, we used a simple grammar of XML structures, given in Fig-
ure 4, verifying that all opened tags are properly closed. All students codes
passed this test.

At the second level, we checked that the generated HTML code had the
specified requirements: three <select> tags, with the correct syntax. To
achieve that, we designed a second simple grammar of the considered subset
of HTML. Four student codes did not pass this test.

Finally, at the third level, we added a dedicated visitor which was in
charge of checking the content of the generated code: values of the options
inside the combo-boxes, existence of exactly one option with the selected

attribute. Only two of the remaining student codes passed the test.
Apart from showing us that only two out of seven students are able to

follow simple specifications, this experiment showed that Praspel was also
very convenient for testing. Besides, the grammar-based testing feature
was useful for specifying the expected format of the code produced in web
applications. In addition, the flexibility provided by the visitor mechanism
made it possible to easily validate more complex texts, by checking structural
constraints that could not be embedded inside the grammar description.

16

6 Related Works

Various works consider Design-by-Contract for unit test generation [22, 23,
24]. Our approach is inspired by the numerous works on JML [8]. Especially,
our test verdict assignment process relies on runtime assertion checking,
which is also considered in JMLUnit [22], although the semantics on excep-
tion handling differs. Recently, JSConTest [24] uses contract-driven testing
for Javascript. We share the idea of adding types to weakly typed scripting
languages (Javascript vs PHP). Nevertheless our approach differs, by con-
sidering flexible contracts, with type inheritance, whereas JSConTest only
considers basic typing informations on the function profile and additional
functions that require to be user-defined. Thanks to a more expressive spec-
ification language, Praspel performs more general runtime assertion checks.
Praspel presents some similarities with Eiffel’s types, especially regarding
inheritance between realistic domains. Nevertheless, the two properties of
predicability and samplability displayed by realistic domains do not exist
in Eiffel. Moreover, Praspel adds clauses that Eiffel contracts do not sup-
port, as @throwable and @behavior, which are inspired from JML. Also for
JML, Korat [25] uses a user-defined boolean Java function that defines a
valid data structure to be used as input for unit testing. A constraint solv-
ing approach is then used to generate data values satisfying the constraints
given by this function, without producing isomorphic data structures (such
as trees). Our approach uses a similar way to define acceptable data (the
predicate feature of realistic domains). Contrary to Korat, which automates
the test data generation, our approach also requires the user to provide a
dedicated function that generates data. Nevertheless, our realistic domains
are reusable, and Praspel provides a set of basic realistic domains that can
be used for designing other realistic domains. Java PathFinder [26] uses
a model-checking approach to build complex data structures using method
invocations. Although this technique can be assimilated to an automation
of our realistic domain samplers, its application implies an exhausive explo-
ration of a system state space. Recently, the UDITA language [27] makes it
possible to combine the last two approaches, by providing a test generation
language and a method to generate complex test data efficiently. UDITA is
an extension of Java, including non-deterministic choices and assumptions,
and the possibility for the users to control the patterns employed in the gen-
erated structures. UDITA combines generator- and filter-based approaches
(respectively similar to the sampler and characteristic predicate of a realistic
domain).

In the domain of web application testing, the Apollo [28] tool makes
it possible to generate test data for PHP applications by code analysis.
The tests mainly aim at detecting malformed HTML code, checked by a
common HTML validator. Our approach goes further as illustrated by the
experimentation, as it makes it possible to only validate a piece of HTML

17

code (produced by a Praspel-annotated function/method), and, moreover, it
is possible to express and check structural constraints on the resulting HTML
code. On the other hand, the test data generation technique proposed by
Apollo is of interest and we are now investigating similar techniques in our
test data generators.

Finally, the domain of grammar-based testing has been widely covered in
the literature, and applied to many application domains especially related
to security testing [29, 30]. One of the most experienced grammar-based
test generator is yagg [31], based on the yacc syntax, which implements a
bounded exhaustive testing approach. Like us, Geno [32] aims at provid-
ing user-defined approximations, by means of additional annotations in the
grammar (e.g. for bounding the depth of recursion), that reduce the com-
binatorial explosion while preserving some exhaustiveness in the resulting
test data. Similarly, YouGen [33] also provides an annotation mechanism
based on tags introduced in the grammar to bound the number of deriva-
tions during the generation process, along with pairwise reductions. Our
work on uniform random generation and bounded exhaustive test genera-
tion applies classical techniques (see Flajolet’s [17] and Howden’s work [34]
respectively). Our rule coverage technique differs by proposing systematic
heuristics to avoid combinatorial explosion. Although such a technique,
when used as a test suite reduction criterion, has been pointed out as less
effective in fault detection [35], we believe that its use as a test generation
criterion may provide an interesting trade-off between exhaustiveness and
computational efficiency.

7 Conclusion and Future Works

We have presented in this paper the integration of a grammar-based test
generation approach inside a contract-based testing framework for PHP,
named Praspel. This approach relies on the notion of realistic domain, as-
signed to a data by contractual assertions written inside the source code of
PHP applications. The test generation framework then uses the contracts
to generate relevant test data for unit testing. In addition, the membership
of a data to a realistic domain, and more generally the assertions inside the
contracts, are checked at run-time so as to establish the conformance ver-
dict. Realistic domains thus provide two testing-oriented features, namely
predicability (used for runtime assertion checking) and samplability (used
for test data generation). In this context, our grammar-based testing ap-
proach relies on a grammar description, that makes it possible to describe
complex textual data. We have introduced here a parser for PHP which im-
plements the predicability feature of realistic domains, and a random data
generator, also based on a grammar description, which is used as a sampler

18

for test data generation3. We provide two realistic domains, called regex

and grammar, that are respectively parameterized by a string representing
a regular expression to match and generate, and a grammar description file
containing the grammar to be matched and from which data have to be
generated.

For now, we are integrating most of realistic domains with our grammar-
based test generation technique into the atoum4 PHP unit testing frame-
work. For the future, we plan to compare the efficiency of our various test
data generation techniques in an extended case study, in order to evaluate
the relevance of the coverage-based test generation technique, in terms of
fault detection. We also plan to improve the generation algorithms so as to
avoid rejection as much as possible. One direction of investigation would be
to automatically generate the code of the test data generator, as done in the
implicit programming approach used in UDITA [27].

References

[1] B. Beizer, Black-box testing: techniques for functional testing of soft-
ware and systems. New York, NY, USA: John Wiley & Sons, Inc.,
1995.

[2] M. Utting, A. Pretschner, and B. Legeard, “A taxonomy of model-
based testing approaches,” Software Testing, Verification and Reliabil-
ity, 2011.

[3] E. Fourneret, F. Bouquet, F. Dadeau, and S. Debricon, “Selective test
generation method for evolving critical systems,” in REGRESSION’11,
1st Int. Workshop on Regression Testing - co-located with ICST’2011.
Berlin, Germany: IEEE Computer Society Press, Mar. 2011, pp. 125–
134. [Online]. Available: http://dx.doi.org/10.1109/ICSTW.2011.95

[4] J. Zander, I. Schieferdecker, and P. J. Mosterman, Eds., Model-Based
Testing for Embedded Systems. CRC Press, 2011.

[5] B. K. Aichernig, “Contract-based testing,” in Formal Methods at the
Crossroads: From Panacea to Foundational Support, ser. Lecture Notes
in Computer Science. Springer, 2003, vol. 2757, pp. 34–48.

[6] B. Meyer, “Applying ”design by contract”,” Computer, vol. 25, no. 10,
pp. 40–51, 1992.

[7] ——, “Eiffel: programming for reusability and extendibility,” SIG-
PLAN Not., vol. 22, no. 2, pp. 85–94, 1987.

3An online demonstrator is available at http://hoa-project.net/Research/EDGB12/

Experimentation.html
4
http://www.atoum.org

19

[8] G. T. Leavens, A. L. Baker, and C. Ruby, “JML: A notation for de-
tailed design,” in Behavioral Specifications of Businesses and Systems,
H. Kilov, B. Rumpe, and I. Simmonds, Eds. Boston: Kluwer Academic
Publishers, 1999, pp. 175–188.

[9] P. Baudin, J.-C. Filliâtre, T. Hubert, C. Marché, B. Monate, Y. Moy,
and V. Prevosto, ACSL: ANSI C Specification Language (preliminary
design V1.2), 2008.

[10] M. Barnett, K. Leino, and W. Schulte, “The Spec# Programming Sys-
tem: An Overview,” in Proceedings of the International Workshop on
Construction and Analysis of Safe, Secure and Interoperable Smart de-
vices (CASSIS’04), ser. LNCS, vol. 3362. Marseille, France: Springer-
Verlag, March 2004, pp. 49–69.

[11] I. Enderlin, F. Dadeau, A. Giorgetti, and A. Ben Othman, “Praspel: A
specification language for contract-based testing in PHP,” in ICTSS’11,
23-th IFIP Int. Conf. on Testing Software and Systems, ser. LNCS,
B. Wolff and F. Zaidi, Eds., vol. 7019. Paris, France: Springer, Nov.
2011, pp. 64–79.

[12] P. M. Maurer, “Generating test data with enhanced context-free gram-
mars,” IEEE Softw., vol. 7, pp. 50–55, July 1990.

[13] “Perl compatible regular expressions,” 2011, http://www.pcre.org.

[14] D. J. Rosenkrantz and R. E. Stearns, “Properties of deterministic top
down grammars,” in Proceedings of the first annual ACM symposium
on Theory of computing, ser. STOC ’69. New York, NY, USA: ACM,
1969, pp. 165–180.

[15] “Java compiler compiler - the java parser generator,” 2006, http://
javacc.java.net.

[16] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns.
Boston, MA: Addison-Wesley, January 1995.

[17] P. Flajolet, P. Zimmerman, and B. Van Cutsem, “A calculus for the
random generation of labelled combinatorial structures,” Theoretical
Computer Science, vol. 132, no. 1-2, pp. 1 – 35, 1994.

[18] D. Marinov and S. Khurshid, “Testera: A novel framework for auto-
mated testing of java programs,” in ASE. IEEE Computer Society,
2001, pp. 22–.

[19] K. Sullivan, J. Yang, D. Coppit, S. Khurshid, and D. Jackson, “Software
assurance by bounded exhaustive testing,” in Proceedings of the 2004
ACM SIGSOFT international symposium on Software testing and

20

analysis, ser. ISSTA ’04. New York, NY, USA: ACM, 2004, pp. 133–
142. [Online]. Available: http://doi.acm.org/10.1145/1007512.1007531

[20] “Javascript object notation,” 2011, http://www.json.org.

[21] J. Offutt, P. Ammann, and L. L. Liu, “Mutation testing implements
grammar-based testing,” in Proceedings of the Second Workshop
on Mutation Analysis, ser. MUTATION ’06. Washington, DC,
USA: IEEE Computer Society, 2006, pp. 12–. [Online]. Available:
http://dx.doi.org/10.1109/MUTATION.2006.11

[22] Y. Cheon and G. T. Leavens, “A simple and practical approach to unit
testing: The JML and JUnit way,” in ECOOP 2002 — Object-Oriented
Programming, 16th European Conference, ser. LNCS, B. Magnusson,
Ed., vol. 2374. Berlin: Springer, Jun. 2002, pp. 231–255.

[23] P. Madsen, “Unit Testing using Design by Contract and Equivalence
Partitions,” in XP’03: Proceedings of the 4th international conference
on Extreme programming and agile processes in software engineering.
Berlin, Heidelberg: Springer, 2003, pp. 425–426.

[24] P. Heidegger and P. Thiemann, “Contract-Driven Testing of JavaScript
Code,” in TOOLS 2010 - 48th Int. Conf. on Objects, Models, Compo-
nents, Patterns, ser. LNCS, vol. 6141, 2010, pp. 154–172.

[25] C. Boyapati, S. Khurshid, and D. Marinov, “Korat: Automated Testing
based on Java Predicates,” in ISSTA’02: Proceedings of the 2002 ACM
SIGSOFT international symposium on Software testing and analysis.
New York, NY, USA: ACM, 2002, pp. 123–133.

[26] W. Visser, C. S. Pǎsǎreanu, and S. Khurshid, “Test input generation
with Java PathFinder,” SIGSOFT Softw. Eng. Notes, vol. 29, no. 4,
pp. 97–107, 2004.

[27] M. Gligoric, T. Gvero, V. Jagannath, S. Khurshid, V. Kuncak, and
D. Marinov, “Test generation through programming in UDITA,” in
ICSE’10: Proceedings of the 32nd ACM/IEEE International Confer-
ence on Software Engineering. New York, NY, USA: ACM, 2010, pp.
225–234.

[28] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkar, and
M. Ernst, “Finding bugs in dynamic web applications,” in Proceedings
of the 2008 international symposium on Software testing and analysis,
ser. ISSTA ’08. New York, NY, USA: ACM, 2008, pp. 261–272.

[29] D. Hoffman, H.-Y. Wang, M. Chang, and D. Ly-Gagnon, “Grammar
based testing of html injection vulnerabilities in rss feeds,” in Proceed-

21

ings of the 2009 Testing: Academic and Industrial Conference - Prac-
tice and Research Techniques, ser. TAIC-PART ’09. Washington, DC,
USA: IEEE Computer Society, 2009, pp. 105–110.

[30] P. Godefroid, A. Kiezun, and M. Y. Levin, “Grammar-based whitebox
fuzzing,” in Proceedings of the 2008 ACM SIGPLAN conference on
Programming language design and implementation, ser. PLDI ’08. New
York, NY, USA: ACM, 2008, pp. 206–215.

[31] D. Coppit and J. Lian, “yagg: an easy-to-use generator for structured
test inputs,” in Proceedings of the 20th IEEE/ACM international Con-
ference on Automated software engineering, ser. ASE ’05. New York,
NY, USA: ACM, 2005, pp. 356–359.

[32] R. Lämmel and W. Schulte, “Controllable combinatorial coverage in
grammar-based testing,” in Umit Uyar and Mariusz Fecko and Ali
Duale, ser. LNCS, The 18th IFIP International Conference on Test-
ing Communicating Systems (TestCom 2006), New York City, USA,
May 16-18, 2006, Ed., vol. 3964. Springer Verlag, 2006.

[33] D. M. Hoffman, D. Ly-Gagnon, P. Strooper, and H.-Y. Wang,
“Grammar-based test generation with yougen,” Softw. Pract. Exper.,
vol. 41, pp. 427–447, April 2011.

[34] W. E. Howden, Functional program testing and analysis. New York,
NY, USA: McGraw-Hill, Inc., 1986.

[35] M. Hennessy and J. F. Power, “Analysing the effectiveness of rule-
coverage as a reduction criterion for test suites of grammar-based soft-
ware,” Empirical Softw. Engg., vol. 13, pp. 343–368, August 2008.

22

class C {

/** @invariant I1 and . . . and Ih*/

/**

* @requires R1 and . . . and Rn;

* @ensures E1 and . . . and Ej;

* @throwable T1, . . ., Tt;
* @behavior α {
* @requires A1 and . . . and Ak;

* @ensures Ej+1 and . . . and Em;

* @throwable Tt+1, . . ., Tl;
* }
*/

function foo ($x1. . .) { body }
. . .

}

Figure 2: Syntax of contracts in Praspel

class EmailAddressRegex extends Regex {

public function construct() {

// regular expression for matching an email address

// (inspired from RFC 2822)

$r = ’[a-z0-9!#\$%&\’*\+/=\?\^_‘\{\|\}~\-]+’ .

’(\.[a-z0-9!#\$%&\’*\+/=\?\^_‘\{\|\}~\-]+)*@’ .

’([a-z0-9]([a-z0-9-]*[a-z0-9])?\.)+’ .

’[a-z0-9]([a-z0-9-]*[a-z0-9])?’;

$this[’regex’] = $r;

}

}

Figure 3: EmailAddress as a regular expression

23

%skip space \s

%token lt < -> in_tag

%token cdata [^<]*

%skip in_tag:space \s

%token in_tag:slash /

%token in_tag:tagname [^>]+

%token in_tag:gt > -> default

xml:

tag()+

tag:

::lt:: <tagname[0]>

(

::slash:: ::gt::

| attributes()* ::gt:: (text() | tag())*

::lt:: ::slash:: <tagname[0]> ::gt::

)

attribute:

<name> (::equals:: <value>)?

text:

<cdata>

Figure 4: Simple grammar of XML documents

%skip space \s

%token hyphen \-

%token at @

%token dot \.

%token alnum [a-z0-9]

%token extended [!#\$%&’*\+/=\?\^_‘\{\|\}~]

root:

name() ::at:: host()

name:

(<alnum> | <extended> | <hyphen>)+

(<dot> (<alnum> | <extended> | <hyphen>)+)*

host:

<alnum> (<hyphen>? <alnum>)* <dot>

<alnum> (<hyphen>? <alnum>)*

Figure 5: PP Grammar for Email Addresses

Grammar / N 1 2 3 4 5 6 7 8 9 10 11

JSON 4 0 6 4 30 20 180 128 1,156 848 8,060
PCRE 1 4 9 36 117 420 1,525 5,608 21,021 79,528 304,201

Grammar / N 12 13 14

JSON 6,256 59,596 TO
PCRE 1,173,288 4,559,049 TO

Figure 6: Number of structures of size N for each grammar.

24

