
Ten Quick Tips for Deep Learning in Biology
This manuscript (permalink) was automatically generated from Benjamin-Lee/deep-rules@c573c35 on November 19,

2020.

Authors

Please note the current author order is chronological and does not re�ect the �nal order.

Benjamin D. Lee 
 0000-0002-7133-8397 ·  Benjamin-Lee 

Lab41, In-Q-Tel; School of Engineering and Applied Sciences, Harvard University; Department of Genetics, Harvard
Medical School

Alexander J. Titus 
 0000-0002-0145-9564 ·  AlexanderTitus 

Titus Analytics

Kun-Hsing Yu 
 0000-0001-9892-8218 ·  khyu 

Department of Biomedical Informatics, Harvard Medical School

Marc G. Chevrette 
 0000-0002-7209-0717 ·  chevrm ·  wildtypeMC 

Wisconsin Institute for Discovery and Department of Plant Pathology, University of Wisconsin-Madison

Paul Allen Stewart 
 0000-0003-0882-308X ·  pstew 

Biostatistics and Bioinformatics Shared Resource, Mo�tt Cancer Center

Evan M. Cofer 
 0000-0003-3877-0433 ·  evancofer 

Lewis-Sigler Institute for Integrative Genomics, Princeton University; Graduate Program in Quantitative and
Computational Biology, Princeton University

Sebastian Raschka 
 0000-0001-6989-4493 ·  rasbt 

Department of Statistics, University of Wisconsin-Madison

Finlay Maguire 
 0000-0002-1203-9514 ·  fmaguire 

Faculty of Computer Science, Dalhousie University

Benjamin J. Lengerich 
 0000-0001-8690-9554 ·  blengerich 

Computer Science Department, Carnegie Mellon University

Alexandr A. Kalinin 
 0000-0003-4563-3226 ·  alxndrkalinin 

Department of Computational Medicine and Bioinformatics, University of Michigan

https://benjamin-lee.github.io/deep-rules/v/c573c35844acf79e92effcbfc4afbb10bfd5417d/
https://github.com/Benjamin-Lee/deep-rules/tree/c573c35844acf79e92effcbfc4afbb10bfd5417d
https://orcid.org/0000-0002-7133-8397
https://github.com/Benjamin-Lee
https://orcid.org/0000-0002-0145-9564
https://github.com/AlexanderTitus
https://orcid.org/0000-0001-9892-8218
https://github.com/khyu
https://orcid.org/0000-0002-7209-0717
https://github.com/chevrm
https://twitter.com/wildtypeMC
https://orcid.org/0000-0003-0882-308X
https://github.com/pstew
https://orcid.org/0000-0003-3877-0433
https://github.com/evancofer
https://orcid.org/0000-0001-6989-4493
https://github.com/rasbt
https://orcid.org/0000-0002-1203-9514
https://github.com/fmaguire
https://orcid.org/0000-0001-8690-9554
https://github.com/blengerich
https://orcid.org/0000-0003-4563-3226
https://github.com/alxndrkalinin


Anthony Gitter 
 0000-0002-5324-9833 ·  agitter ·  anthonygitter 

Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison; Morgridge Institute for
Research

Casey S. Greene 
 0000-0001-8713-9213 ·  cgreene 

Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of
Pennsylvania

Simina M. Boca 
 0000-0002-1400-3398 ·  SiminaB 

Innovation Center for Biomedical Informatics, Georgetown University Medical Center; Department of Oncology,
Georgetown University Medical Center; Department of Biostatistics, Bioinformatics and Biomathematics, Georgetown
University Medical Center; Cancer Prevention and Control Program, Lombardi Comprehensive Cancer Center

Timothy J. Triche, Jr. 
 0000-0001-5665-946X ·  ttriche 

Center for Epigenetics, Van Andel Research Institute; Department of Translational Genomics, Keck School of Medicine,
University of Southern California

Thiago Britto-Borges 
 0000-0002-6218-4429 ·  tbrittoborges 

Section of Bioinformatics and Systems Cardiology, Department of Internal Medicine III and Klaus Tschira Institute for
Integrative Computational Cardiology, University Hospital Heidelberg

Elana J. Fertig 
 0000-0003-3204-342X ·  ejfertig 

Department of Oncology, Department of Biomedical Engineering, Department of Applied Mathematics and Statistics,
Johns Hopkins University

Michael D. Kessler 
 0000-0003-1258-5221 ·  mdkessler 

Department of Oncology, Johns Hopkins University

Alexandra J. Lee 
 0000-0002-0208-3730 ·  ajlee21 

Genomics and Computational Biology Graduate Program, University of Pennsylvania; Department of Systems
Pharmacology and Translational Therapeutics, University of Pennsylvania

Beth Signal 
·  betsig 
Climate Change Cluster, University of Technology Sydney

Introduction

Machine learning is a modern approach to problem-solving and task automation. In particular,
machine learning is concerned with the development and applications of algorithms that learn how to
recognize patterns in data and utilize these for predictive modeling, as opposed to having domain
experts developing rules for prediction tasks manually. Arti�cial neural networks are a particular class
of machine learning algorithms and models that evolved into what we now describe as “deep
learning” – that is, neural networks with many layers (and algorithms that make them perform well).
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These neural networks comprise arti�cial neurons arranged into layers and are modeled after the
human brain, even though the building blocks and learning algorithms may di�er [1]. Each layer
receives input from previous layers (the �rst of which represents the input data) and then transmits a
weighted version of its input to the subsequent layer. Thus, the process of “training” a neural network
is the tuning of the layers’ weights to minimize a cost or loss function that serves as a di�erentiable
surrogate of the prediction error. Deep learning utilizes arti�cial neural networks with many layers
(hence the term “deep”). Given the computational advances made in the last decade, it can now be
applied to massive data sets and in innumerable contexts. In many circumstances, deep learning can
learn more complex relationships and make more accurate predictions than other methods.
Therefore, deep learning has become its own sub�eld of machine learning. In the context of biological
research, it has been increasingly used to derive novel insights from high-dimensional biological data
[2]. For example, deep learning has been used to predict protein-drug binding kinetics [3], to identify
the lab-of-origin of synthetic DNA [4], and to uncover the facial phenotypes of genetic disorders [5].

General resources communicating best practices to the scienti�c community broadly and the
biological community speci�cally are scarce, and any resources that do exist are prone to reaching
obsolescence rapidly due to deep learning’s active and specialized nature. In addition, the lack of
established standards or concise recommendations for the application of deep learning to biological
questions further limits newcomers from using state-of-the-art deep learning in their research.

To make deep learning more accessible to biological researchers, we solicited input from a
community of researchers with varied biological and deep learning interests. These individuals
collaboratively contributed to this manuscript’s writing using the GitHub version control platform [6]
and the Manubot manuscript generation toolset [7]. The goal was to articulate a practical, accessible,
and concise set of guidelines and suggestions for biologically oriented researchers to follow when
using deep learning.

In the course of our discussions, several themes became clear: the importance of understanding and
applying machine learning fundamentals [8] as a baseline for utilizing deep learning, the necessity for
extensive model comparisons with careful evaluation, and the need for critical thought in interpreting
results generated by deep learning, among others. The major similarities between deep learning and
traditional computational methods also became apparent. Although deep learning is a distinct
sub�eld of machine learning, it is still a sub�eld. It is subject to the many limitations inherent to
machine learning, and many best practices for machine learning also apply to deep learning. In
addition, as with all computational methods, deep learning should be applied in a systematic manner
that is reproducible and rigorously tested. Ultimately, the tips we collate range from high-level
guidance to best practices for implementation. It is our hope that they will provide actionable, deep
learning-speci�c instruction for both new and experienced deep learning practitioners. By making
deep learning more accessible for use in biological research, we aim to improve the overall usage and
reporting quality of deep learning in the literature and enable increasing numbers of researchers to
e�ectively and accurately utilize these state-of-the-art techniques.

Tip 1: Decide whether deep learning is appropriate for your
problem

In recent years, the number of publications implementing deep learning in biology have risen
tremendously. Given deep learning’s usefulness across a range of scienti�c questions and data
modalities, it may seem as though it is a panacea for nearly all modeling problems. While the neural
networks that underpin deep leanring models are in fact universal function approximators, and are
therefore theoretically capable of learning the functions that relate almost any input and output
variables [9,10], deep learning is actually not suited to every modeling situation. This is largely driven



by the training demands of deep learning models, which require signi�cant amounts of data,
computing power, and expertise.

In the areas of biology where data collection is thoroughly automated, such as DNA sequencing, large
amounts of high quality data may in fact be available. However, areas of biology that rely on manual
data collection may not possess enough data to e�ectively train and apply deep learning models.
Though there are methods that try to increase the amount of training data, such as data
augmentation (in which existing data is slightly manipulated in an attempt to yield “new” samples) and
weak supervision (in which simple labeling heuristics are combined to produce noisy, probabilistic
labels) [11], these methods cannot overcome a complete shortage of data. A general rule of thumb is
that deep learning can be considered for datasets with at least one hundred samples per class [12],
although it is really best suited for use with datasets that contain orders of magnitude more samples.

Training deep learning models is also very demanding, and often requires extensive computing
infrastructure and patience to achieve state-of-the-art performance [13]. In some deep learning
contexts, such as generating human-like text, state-of-the-art models have over one hundred billion
parameters [14] and require very costly and time-consuming training [15]. Though deep learning
applications in biology rarely require this much training, they can require computational resources
beyond those available on consumer-grade devices such as laptops or o�ce desktops. Specialized
hardware such as discrete graphics processing units (GPUs) and custom deep learning accelerators
can dramatically reduce the time and cost required to train models, but this hardware is not
universally accessible and cloud-based rentals add additional cost and complexity. Despite these
limiting factors, these specialized hardware solutions are likely to be more broadly available as deep
learning becomes more popular (for example, recent-generation iPhones already have such
hardware). In contrast to these large scale computational demands of deep learning, traditional
machine learning models can often be trained on a laptop (or even on a $5 computer [16]) in seconds
to minutes. Therefore, due to this enormous disparity in resource demand alone, traditional machine
learning approaches may still prove desirable in a variety of biological applications.

Beyond requiring more data and computational capacity, building and training deep learning models
often requires more expertise than training traditional machine learning models. There are currently
several competing programming frameworks for deep learning, such as Tensor�ow [17] and PyTorch
[18], that are widely used across academic research �elds and industrial application sets. While these
frameworks allow users to create and deploy entirely novel model architectures, this �exibility
combined with the rapid development of the deep learning �eld has resulted in large and complex
frameworks that can be daunting to new users. For readers new to software development but
experienced in biology, gaining computational skills while interfacing with such complex industrial-
grade tools can be a prohibitive challenge. Conversely, traditional machine learning methods are
generally more straightforward to implement, and there are currently more tools for automating the
model selection and training process for traditional machine learning models than there are for deep
learning models. For example, automated machine learning (AutoML) tools, such as TPOT [19] and
Turi Create [20], are able to automatically test and optimize multiple machine learning models, and
can allow users to achieve competitive performance with only a few lines of code. Thankfully, there
are e�orts underway to extend these and other automation frameworks in order to reduce the
expertise required to build and use deep learning models as well. For example, TPOT, Turi Create and
AutoKeras [21], are already capable of abstracting away much of the programming required for
“standard” deep learning tasks, and high level interfaces such as Keras [22], make it increasingly
straightforward to design and test custom deep learning architectures In the future, projects such as
these are likely to make deep learning increasingly accessible to a much wider swatch of researchers.

Despite these limitations, deep learning is strongly indicated over traditional machine learning for
certain research questions and problems. In general, these include problems that feature hidden
patterns across the data, complex relationships, and interrelated variables. Problems in computer



vision and natural language processing often exhibit exhibit these very features, which helps to
explain why these areas were some of the �rst to experience signi�cant breakthroughs during the
recent deep learning revolution [23]. As long as large amounts of accurate and labeled data are
available, applications to areas of biology with related data characteristics, such as genetic medicine
[24], radiology [25], microscopy [26], and pharmacovigilance [27], are similarly likely to bene�t from
deep learning techniques. For example, Ferreira et al. used deep learning to recognize individual birds
from images [28] despite this problem being very di�cult historicallly. By combining automatic data
collection using RFID tags with data augmentation and transfer learning (explained in Tip 5), the
authors were able to use deep learning to achieve 90% accuracy in several species. Other research
areas where deep learning excels are generative modeling, in which new samples are able to be
created based on the training data, and reinforcement learning, in which agents are trained to interact
with their environments. On the whole, initial evaluation as to whether similar problems (including
analogous ones in other domains) have been solved successfully using deep learning can inform
researchers as to the potential for deep learning to address their needs.

On the other hand, depending on the amount and type of data available and the nature of the
problem set, deep learning may not always be able to outperform conventional methods, As an
illustration, Rajkomar et al. [29] found that simpler baseline models achieved performance
comparable with that of deep learning in a number of clinical prediction tasks using electronic health
records. Another example is provided by Koutsoukas et al., who benchmarked several traditional
machine learning approaches against deep neural networks for modeling bioactivity data on
moderately sized datasets [30]. The researchers found that while well tuned deep learning
approaches generally tend to outperform conventional classi�ers, simple methods such as Naive
Bayes classi�cation tend to outperform deep learning as the noise in the dataset increases. Similarly,
Chen et al. [31] tested deep learning and a variety of traditional machine learning methods such as
logistic regression and random forests on �ve di�erent clinical datasets, and found that traditional
methods matched or exceeded the accuracy of the deep learning model in all cases despite requiring
an order of magnitude less training time.

Therefore, in conclusion, deep learning should only be used after a robust consideration of its
strengths and weaknesses for the problem at hand. Once choosing deep learning as a potential
solution, practitioners should use the scienti�c method to compare the performance of deep learning
to that of traditional methods, as outlined in the following tips.

Tip 2: Use traditional methods to establish performance
baselines

Deep learning requires practitioners to consider a larger number and variety of tuning parameters
(that is, algorithmic settings) than more traditional machine learning methods. These settings are
often called hyperparameters, and their extensiveness can make it easy to fall into the trap of
performing an unnecessarily convoluted analysis. Hence, before applying deep learning to a given
problem, we highly recommend implementing a simpler model with fewer hyperparameters at the
beginning of each study. Such models include logistic regression, random forests, k-nearest
neighbors, naive Bayes, and support vector machines, and using them can help to establish baseline
performance expectations. While performance baselines available from existing literature can also
serve as helpful guides, an implementation of a simpler model that uses the same software
framework as planned for deep learning can greatly help with assessing the correctness of data
processing steps, performance evaluation pipelines, resource requirement estimates, and
computational performance estimates. Furthermore, in some cases, it can even be useful to combine
simpler baseline models with deep neural networks, as such hybrid models can improve
generalization performance, model interpretability, and con�dence estimation [32,33].



Another potential pitfall arises from comparing the performance of baseline conventional models
trained with default settings with the performance of deep learning models that have undergone
rigorous tuning and optimization. Since conventional o�-the-shelf machine learning algorithms (for
example, support vector machines and random forests) are also likely to bene�t from
hyperparameter tuning, such incongruity prevents the comparison of equally optimized models and
can lead to false conclusions about model e�cacy. Hu and Greene [34] discuss this under the
umbrella of what they call the “Continental Breakfast Included” e�ect, and they describe how the
unequal tuning of hyperparameters across di�erent learning algorithms can especially skew
evaluation when the performance of an algorithm varies substantially with modest changes to its
hyperparameters. Therefore, practitioners should tune the settings of both traditional machine and
deep learning-based methods before making claims about relative performance di�erences, as
performance comparisons among machine learning and deep learning models are only informative
when the models are equally well optimized.

To sum this tip up, practitioners are encouraged to create and fully tune several traditional models
and standard pipelines before implementing a deep learning model.

Tip 3: Understand the complexities of training deep neural
networks

Correctly training deep neural networks is a non-trivial process, as there are many di�erent options
and potential pitfalls at every stage. To get good results, you must expect to train many networks
across a range of di�erent parameter and hyperparameter settings. Such training can be made more
di�cult by the demanding nature of these deep networks, which often require extensive computing
infrastructure and optimization in order to achieve state-of-the-art performance [13]. Furthermore,
this experimentation is often noisy, which necessitates increased repetition and exacerbates the
organizational challenges inherent to deep learning. On the whole, all code, random seeds,
parameters, and results must be carefully corralled using general good coding practices (e.g. version
control [35], continuous integration etc.) in order to be e�ective and interpretable. This organization
is also fundamental to the e�cient sharing and reproducibility of research work [36,37], and to the
ability to keep models up to date as new data becomes available.

One speci�c reproducibility pitfall that is often missed in the application of deep learning is the default
use of non-deterministic algorithms by CUDA/CuDNN backends when using GPUs. That is, the
CUDA/CuDNN architectures that facilitate the parallelized computing that power state-of-the-art DL
often use algorithms by default that produce di�erent outcomes from iteration to iteration.
Therefore, achieving reproducibility in this context requires explicitly specifying the use of
deterministic algorithms (which are typically available within your deep learning library), which is
distinct from the setting of random seeds that typically achieve reprocubility by controlling
pseudorandom deterministic procedures such as shu�ing and initialization [38].

Similar to the suggestions in Tip 2 about starting with simpler models, try to start with a relatively
small network and then increase the size and complexity as needed. This can help to prevent
practitioners from wasting sign�cant time and resources on running highly complex models that
feature numerous unresolved problems. Again, beware of the choices that are being made implicitly
(that is, by default settings) by your framework of choice (for example, choice of optimization
algorithm), as these seemingly trivial speci�cs can actually have sign�cant e�ects on model
performance. For example, adaptive methods often lead to faster convergence during training, but
may lead to worse generalization performance on independent datasets [39]). These nuanced
elements are easy to overlook, but it is critical to carefully consider them and to evaluate their
potential impact (see Tip 6).



In short, use smaller and simpler networks to enable faster prototyping and follow general software
development best practices to maximize reproducibility.

Tip 4: Know your data and your question

Having a well de�ned scienti�c question and a clear analysis plan is crucial for carrying out a
successful deep learning project. Just like it would be inadvisable to set foot in a laboratory and begin
experiments without having a de�ned endpoint, a deep learning project should not be undertaken
without de�ned goals. Foremost, it is important to assess if a dataset exists that can answer the
biological question of interest using a deep learning-based approach. If so, obtaining this data (and
associated metadata), and reviewing the study protocol, should be pursued as early on in the project
as possible. This can help to ensure that data is as expected and can prevent the wasted time and
e�ort that occur when issues are discovered later on in the analytic process. For example, a
publication or resource might purportedly o�er an appropriate dataset that is found to be inadequate
upon acquisition. The data may be unstructured when it is supposed to be structured, crucial
metadata such as sample strati�cation might be missing, or the usable sample size may be di�erent
than expected. Any of these data issues might limit a researcher’s ability to use DL to address the
biological question at hand, or might otherwise require adjustment before DL can be used. Data
collection should also be carefully documented, or a data collection protocol should be created and
speci�ed in the project documentation. Information about the resources used, download dates, and
dataset versions are critical to preserve. Doing so will help to minimize operational confusion and will
increase the reproducibility of the analysis.

Once the dataset is obtained, it is important to learn why and how the data were collected before
beginning analysis. The standardized metadata that exist in many �elds can help with this (for
example, see [40]), but if at all possible, seek out a subject matter expert who has experience with the
type of data you are using. Doing so will minimize guesswork and is likely to increase the success rate
of a deep learning project. For example, one might presume that data collected to test the impact of
an intervention derives from a randomized controlled trial. However, this is not always the case, as
ethical or practical concerns often necessitate an observational study design that features
prospectively or retrospectively collected data. In order to ensure similar distributions of important
characteristics across study groups in the absence of randomization, such a study may have selected
individuals in a fashion that best matches attributes such as age, gender, or weight. Passively collected
datasets can have their own peculiarities, and other study designs can include samples that originate
from the same study site, the oversampling of ethnic groups or zip codes, or sample processing
di�erences. Such information is critical to accurate data analysis, and so it is imperative that
practitioners learn about study design assumptions and data speci�cities prior to performing
modeling. Other study design considerations that should not be overlooked include knowing whether
a study involves biological or technical replicates or both. For example, the existence in a dataset of
samples collected from the same individuals at di�erent time points can have signi�cant e�ects on
analyses that make assumptions about sample size and independence (that is, non-independence can
lower the e�ective sample size). Another potential issue is the existence of systematic biases, which
can be induced by confounding variables and can lead to artifacts or so-called “batch e�ects.” As a
consequence, models may learn to rely on the correlations that these systematic biases underpin,
even though they are irrelevant to the scienti�c context of the study. This can lead to misguided
predictions and misleading conclusions [41]. As described in Tip 1, unsupervised learning and other
exploratory analyses can help to identify such biases in these datasets prior to applying a deep
learning model.

Overall, practitioners should make sure to thoroughly study their data and understand its context and
peculiarities before moving on to performing deep learning.



Tip 5: Choose an appropriate data representation and neural
network architecture

While certain best practices have been established by the research community [42], architecture
design choices remain largely problem-speci�c and are vastly empirical e�orts requiring extensive
experimentation. Furthermore, as deep learning is a quickly evolving �eld, many recommendations
are often short-lived, and are frequently replaced by newer insights supported by recent empirical
results. This is further complicated by the fact that many recommendations do not generalize well
across di�erent problems and datasets. Therefore, unfortunately, choosing how to represent your
data and design your architecture is closer to an art than a science. That said, there are some general
principles that are useful to follow when experimenting.

First and foremost, use your knowledge of the available data and your question (see Tip 4) to inform
your data representation and architectural design choices. For example, if your dataset is an array of
measurements with no natural ordering of inputs (such as gene expression data), multilayer
perceptrons (MLPs) may be e�ective. These are the most basic type of neural network, and they are
able to learn complex non-linear relationships across the input data despite their relative simplicity.
Similarly, if your dataset is comprised of images, convolutional neural networks (CNNs) are a good
choice because they emphasize local structures and adjacency within the data. CNNs may also be a
good choice for learning on sequences, as recent empirical evidence suggests that they can
outperform canonical sequence learning techniques such as recurrent neural networks (RNNs) and
the closely related long short-term memory (LSTM) networks [43].

Deep learning models typically bene�t from increasing the amount of labeled data with which to train
on. Large amounts of data help to avoid over�tting (see Tip 7), and increase the likelihood of
achieving top performance on a given task. In the event that there is not enough data available to
train your model, consider using transfer learning. In transfer learning, a model whose weights were
generated by training on another dataset is used as the starting point for training [44]. Transfer
learning is most useful when the pre-training and target datasets are of similar nature [44]. For this
reason, it is important to search for similar datasets that are already available. These can potentially
be used to increase the size of the training set or for pre-training and subsequent �ne-tuning on the
target data. However, even when this assumption does not hold, transferring features still can still
improve model performance compared with random feature initialization. For example Rojkomar et
al. showed advantages of ImageNet-pretraining [45] for a model that is applied to grayscale medical
image classi�cation [46]. In addition, or as an alternative to pre-training models on larger datasets for
transfer learning yourself, you may also be able to obtain pre-trained models from public repositories,
such as Kipoi [47] for genomics models. Moreover, learned features can be helpful even when a pre-
training task is di�erent from a target task [48]. Another related approach is multi-task learning,
which consists of simultaneously training a network for multiple separate tasks that share features. In
fact, multi-task learning can be used separately or even in combination with transfer learning [49].

This tip can be distilled into two main action points: �rst, base your network’s architecture on your
knowledge of the problem and, second, take advantage of similar existing data or pre-trained deep
learning models.

Tip 6: Tune your hyperparameters extensively and
systematically

Given at least one hidden layer, a non-linear activation function, and a large number of hidden units
[10], multi-layer neural networks can approximate arbitrary continuous functions that relate input



and output variables. Deeper architectures that feature additonal hidden layers and an increasing
number of overall hidden units and learnable weight parameters (the so-called increasing “capacity”
of neural networks) allow for solving increaingly complex problems. However, this increased capacity
results in many more parameters to tune, which can pose additional challenges during model
training. In general, one should expect to systematically evaluate the impact of numerous
hyperparameters when applying deep neural networks to new data or challenges. Hyperparameters
typically manifest as choices of optimization algorithms, learning rate, activation functions, number of
hidden layers and hidden units, size of the training batches, weight initialization schemes, and seeds
for pseudo-random number generators used for dataset shu�ing and weight initialization. Moreover,
additional hyperparameters are introduced by common techniques that facilitate the training of
deeper architectures. These include norm penalties (typically in the form of  regularization),
dropout [50], and batch normalization [51], which can reduce the e�ect of the so-called vanishing or
exploding gradient problem when working with deep neural networks.

This wide array of potential parameters can make it di�cult to evaluate the extent to which neural
network methods are well suited to solving a task, as it can be unclear to practitioners whether
previous successful applications were the result of interactions between unique data attributes and
speci�c parameter sets. Similar to the Continental Breakfast Included e�ect that we discussed in Tip
2, a lack of clarity on how extensive arrays of hyperparameters were tested and/or chosen can a�ect
methods developers as they attempt to compare techniques. This e�ect also has implications for
those seeking to use existing deep learning methods, as performance estimates from deep neural
networks are often provided after tuning. The implication of this e�ect on users of deep neural
networks is that attaining performance numbers that match those reported in publications is likely to
require sign�cant e�ort towards temporally expensive hyperparameter optimization.

Ultimately, to get the best performance of your model, be sure to systematically optimize your
hyperparameters on your training dataset, as introduced in the next section.

Tip 7: Address deep neural networks’ increased tendency to
over�t the dataset

Over�tting is a challenge inherent to machine learning in general, and is one of the most signi�cant
challenges you’ll face when applying deep learning speci�cally. Over�tting occurs when a model �ts
patterns in the training data so closely that it is including non-generalizable noise or non-scienti�cally
relevant perturbations in the relationships it is learning. In other words, the model �ts patterns that
are overly speci�c to the data it is training on rather than learning general relationships that hold
across similar datasets. This subtle distinction is made clearer by seeing what happens when a model
is tested on data to which it was not exposed during training: just as a student who memorizes exam
materials struggles to correctly answer questions for which they have not studied, a machine learning
model that has over�t to its training data will perform poorly on unseen test data. Deep learning
models are particularly susceptible to over�tting due to their relatively large number of parameters
and associated representational capacity. Just as some students may have greater potential for
memorization, deep learning models seem more prone to over�tting than machine learning models
with fewer parameters.

L2



Figure 1:  A visual example of over�tting and failure to generalize. While a high-degree polynomial achieves high
accuracy on its training data, it performs poorly on data with speci�cities that have not been seen before. That is, the
model has learned the training dataset speci�cally rather than learning a generalizable pattern that represents data of
this type. In contrast, a simple linear regression works well on both datasets. The greater representational capacity of
the polynomial is analogous to using a larger or deeper neural network.

In general, one of the most e�ective ways to combat over�tting is to detect it in the �rst place. One
way to do this is to split the main dataset being worked on into three independent parts: a training
set, a tuning set (also commonly called a validation set in the machine learning literature), and a test
set. These three partitions allow us to optimize models by iterating between model learning on the
training set and hyperparameter evaluation on the tuning set without a�ecting the �nal model
assessment on the test set. That is, the data used for testing should be “locked away” and used only
once to evaluate the �nal model after all training and tuning steps are completed. A researcher can
then use the model’s performance on the independent test data as a measure of how over�t (i.e. non-
generalizable) the model is. This type of approach is necessary for evaluating the generalizability of
models without the biases that can arise from learning and testing on the same data [52,53]. While a
slight drop in performance from the training set to the test set is normal, a signi�cant drop is a clear
sign of over�tting (see Figure 1 for a visual demonstration of an over�t model that performs poorly on
test data).

If over�tting is an issue, there are a variety of techniques to reduce over�tting, including data
augmentation and various regularization techniques [54,55]. Another way to reduce over�tting, as
described by Chuang and Keiser, is to identify the baseline level of memorization that is occuring by
training on data that has its labels randomly shu�ed. By comparing the model performance with the
shu�ed data to that achieved with the actual data [56], a practitioner can identify over�tting as a
model that performs no better on real data, as this suggest that any predictive capacity is not due to
data-driven signal. One important caveat when working with partitioned data is the need to apply



transformation and normalization procedures equally to all datasets. The parameters required for
such procedures (for example, quantile normalization, a common standardization method when
analyzing gene-expression data) should only be derived from the training data, and not from the
tuning or test data. Additionally, many conventional metrics for classi�cation (e.g. area under the
receiver operating characteristic curve or AUROC) have limited utility in cases of extreme class
imbalance [57]. Therefore, model performance should be evaluated with a carefully picked panel of
relevant metrics that make minimal assumptions about the composition of the testing data [58].

When working with biological and medical data, one must also carefully consider potential sources of
bias and/or non-independence when de�ning training and test sets. For example, a deep learning
model for pneumonia detection in chest X-rays appeared to performed well within the hospitals
providing the training data, but then failed to generalize to other hospitals [59]. This resulted from the
deep learning model picking up on signal related to which hospital the images were from, and
represents a type of artifact or “batch e�ect” that practitioners must be vigilant towards. When dealing
with sequence data, holding out test data that are evolutionarily related or that share structural
homology to the training data can result in over�tting that is hard to detect due to the inherent
relatedness of the partitioned data (cite?). In such situations, simply holding out test data selected
from a random partition of the training data can be insu�cient. Again, the best remedy for identifying
confounding variables is to know your data and to test models on truly independent data.

In essence, practitioners should split data into training, tuning, and single-use testing sets to assess
the performance of the model on data that can provide a reliable estimate of its generalization
performance. Futhermore, be cognizant of the danger of skewed or biased data arti�cially in�ating
accuracy.

Tip 8: Deep learning models can be made more transparent

While model interpretability is a broad concept, in much of the machine learning literature (including
in our guidelines), it refers to the ability to identify the discriminative features that in�uence or sway
the predictions. In certain cases, the goal behind interpretation is to understand the underlying data
generating processes while in other cases the goal is to understand why a model made the prediction
that it did for a speci�c example or set of examples. Machine learning models vary widely in terms of
interpretability: some are fully transparent while others are considered to be “black-boxes” that make
predictions with little ability to examine why. Logistic regression and decision tree models are
generally considered interpretable, while deep neural networks are often considered among the most
di�cult to interpret because they can have many parameters and non-linear relationships. 

Knowing which of the input variables are in�uencing the outputted predictions, and potentially in
what ways, can help with the application or extrapolation of machine learning models. This is
particularly important in biomedicine, where subsequent decision making often requires human
input, and where models are employed with the hope of better understanding why relationships exist
in the �rst place. Furthermore, while prediction rules can be derived from high-throughput molecular
datasets, most a�ordable clinical tests still rely on lower dimensional measurements of a limited
number of biomarkers. Therefore, it is often still unclear how to translate the predictive capacity of
deep learning models that encompassing non-linear relationships between countless input variables
into clinically digestible terms. As a result, selecting which biomarkers to use for decision making
remains an important modeling and interpretation challenge. In fact, many authors attribute a lower
uptake of deep learning tools in healthcare to interpretability challenges [60,61].  Nonetheless,
strategies to interpret both machine learning and deep learning models are rapidly emerging, and the
literature on the topic is growing at an exponential rate [62]. Instead of recommending speci�c
methods for either deep learning-speci�c or general-purpose model interpretation, we suggest
consulting [63], which is freely available and continually updated.



While active research into model interpretability is enabling increased interpretation of models with
many parameters and non-linear relationships, simpler traditional machine learning models often
remain substantially easier to interpret. When deciding on a machine learning approach and model
architecture, consider an interpretability versus accuracy tradeo�. A challenge in considering this
tradeo� is that the extent to which one trades interpretability for accuracy depends on the problem
itself. When the features provided to the model are already highly relevant to the task at hand, a
simpler and more interpretable model that gives up only a little performance is often more useful. On
the other hand, if features must be combined in complex ways to be meaningful for the task, the
performance di�erence of a model capable of capturing that structure may outweigh the
interpretability costs. An appropriate choice can only be made after careful consideration, which often
includes estimating the performance of a simple linear model that serves as a baseline. In cases
where models are learned from high-throughput datasets, a small subset of features in the dataset
may be strongly correlated with the complex combination of the larger feature set de�ned from the
deep learning model. In this case, this more limited number of features can themselves be used in the
subsequent simpli�ed model to further enhance interpretability of the model. This feature reduction
can be essential when de�ning biomarker panels for use in clinical applications.

Tip 9: Don’t over-interpret predictions

Once we have trained an accurate deep learning model, we often want to use it to deduce
relationships and inform scienti�c �ndings. However, in doing this, we need to be careful to correctly
interpret the model’s predictions. Given that deep learning models can be di�cult to interpret
intuitively, there is often a temptation to overinterpret the predictions in indulgent and/or inaccurate
ways. As the classic statistical saying “correlation doesn’t mean causation” implies, predictions by deep
learning models don’t necessarily speak to certain causual relationships. While we generally know this,
and understand that accurately predicting an outcome doesn’t imply the learning of any causal
mechanism, it can be easy to forget this lesson when the predictions are extremely accurate. A
poignant example of this lesson is from work where authors evaluated the capacities of several
models to predict the probability of death for patients with pneumonia admitted to an intensive care
unit [64,65]. Unsurprisingly, the neural network model achieved the best predictive accuracy.
However, after �tting a rule-based model in order to better understand the relationships inherent to
their data, the authors discovered that the hospital data implied the rule HasAsthma(x) => 
LowerRisk(x) . This rule contradicts medical understanding, as having asthma doesn’t make
pneumonia better! Nonetheless, this rule was supported by the data, as pneumonia patients with a
history of asthma tended to receive more aggressive care. The neural network had therefore also
learned to make predictions according to this rule despite the fact that it has nothing to do with
causality or mechanism. Guiding treatment decisions according to the predictions of the neural
network would have been disastrous, even though the neural network had high predictive accuracy.

To trust deep learning models, we must combine knowledge of the training data (Tip 4) with
inspection of the model (Tip 8). To move beyond �tting predictive models and towards the building of
an understanding that can inform scienti�c deduction, we suggest working to disentangle a model’s
internal logic by comparing data domains where models succeeds to those in which they fail. By doing
so, we can avoid overinterpreting models and view them for what they are: complex statistical models
trained on high dimensional data.

Tip 10: Don’t share models trained on sensitive data

Practitioners may encounter datasets that cannot be shared, such as ones for which there would be
signi�cant ethical or legal issues associated with release [66]. Examples of such data include classi�ed
or con�dential data, biological data related to trade secrets, and medical records or other personally



identi�able information [67]. While deep learning models can capture information-rich abstractions of
multiple features of the data during the training process (which represents one of its great strengths),
these features may be more prone to leak the data that they were trained over if the model is shared
or allowed to be queried with arbitrary inputs [68,69]. In other words, the complex relationships
learned about the input data can potentially be used to infer characteristics about the original
dataset. This means that the strengths that imbue deep learnings with its great predictive capacity
also raise the level of risk surrounding data privacy. Therefore, while there is tremendous promise for
deep learning techniques to extract information that cannot readily be captured by traditional
methods [70], it is imperative not to share models trained on sensitive data. This also holds true for
certain traditional machine learning methods that learn by capturing speci�c details of the full training
data (for example, k-nearest neighbors models).

Techniques to train deep neural networks without sharing unencrypted access to data are being
advanced through implementations of homomorphic encryption, which serves to enable equivalent
prediction on data that is encrypted end to end [71,72]. Privacy preserving techniques [73], such as
di�erential privacy [74,75,76], can help to mitigate risks as long as the assumptions underlying these
techniques are met. These methods provide a path towards a future where trained models and their
predictions can be shared, but more software development and theoretical advances will be required
to make these techniques easy to apply correctly in many settings. Unless you use these techniques,
don’t share the weights or arbitrary access to the predictions of models trained on sensitive data.

Conclusion

Deep learning techniques have the potential for wide use in biology and the capacity to meet or
exceed the performance of both humans and the current state-of-the art algorithms across a wide
range of tasks. Beyond simply achieving good predictive performance, deep learning has the potential
to inform novel biological insights to fundamentally drive high value research. To realize this potential,
the use of deep learning as a research tool must be approached as any other tool would be:
scienti�cally and thoughtfully. We hope that our tips for applying deep learning to the biological
sciences will serve as a starting point for discussion and not as an ending point.
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