
geobeam
Release 0.4.6

traviswebb@google.com

Jun 07, 2022

CONTENTS:

1 module documentation 1
1.1 geobeam package . 1

1.1.1 Subpackages . 1
1.1.1.1 geobeam.examples package . 1

1.1.2 Submodules . 2
1.1.3 geobeam.fn module . 2
1.1.4 geobeam.io module . 3
1.1.5 geobeam.util module . 7
1.1.6 Module contents . 8

2 README 9
2.1 What does geobeam do? . 9

2.1.1 Requirements . 9
2.1.2 Supported input types . 9
2.1.3 Included libraries . 9

2.2 How to Use . 10
2.2.1 1. Install the module . 10
2.2.2 2. Write your pipeline . 10
2.2.3 3. Run . 10

2.2.3.1 Run locally . 10
2.2.3.2 Run in Dataflow . 10
2.2.3.3 Start the Dataflow job . 11

2.3 Examples . 11
2.3.1 Shapefile Example . 12
2.3.2 Raster Example . 13

2.4 Included Transforms . 13
2.5 Execution parameters . 14
2.6 License . 14

3 Examples 15

4 geobeam Examples 16
4.1 shapefile_parcel . 16

4.1.1 Run locally . 16
4.1.2 Run in Dataflow . 16

4.2 geodatabase_frd . 17
4.2.1 Run locally . 17
4.2.2 Run in Dataflow . 17

4.3 geotiff_dem . 17
4.3.1 Run Locally . 17

i

4.3.2 Run in Dataflow . 18
4.4 geotiff_soilgrid . 18

4.4.1 Run Locally . 18
4.4.2 Run in Dataflow . 18

4.5 shapefile_nfhl . 19
4.5.1 Run Locally . 19
4.5.2 Run in Dataflow . 19

4.6 streaming_pubsub . 19
4.6.1 Run Locally . 19

4.6.1.1 setup pubsub emulator . 19
4.6.1.2 run pipeline . 19
4.6.1.3 publish messages to topic . 20
4.6.1.4 unfortunate note . 20

4.7 geojson_stormwater . 20
4.7.1 Run Locally . 20
4.7.2 Run in Dataflow . 20

5 Indices and tables 21

Python Module Index 22

Index 23

ii

CHAPTER

ONE

MODULE DOCUMENTATION

1.1 geobeam package

1.1.1 Subpackages

1.1.1.1 geobeam.examples package

Submodules

geobeam.examples.geodatabase_frd module

Loads FRD (Flood Risk Database) layers into Bigquery using the FILE_LOADS insertion method. FILE_LOADS
should be used when individual geometries can be large and complex to avoid the size limits of the STREAM-
ING_INSERTS method. See: https://cloud.google.com/bigquery/quotas#streaming_inserts.

geobeam.examples.geodatabase_frd.run(pipeline_args, known_args)
Run the pipeline

geobeam.examples.geotiff_dem module

Example pipeline that loads a DEM (digital elevation model) raster into Bigquery.

geobeam.examples.geotiff_dem.elev_to_centimeters(element)
Convert the floating-point meters into rounded centimeters to store as INT64 in order to support clustering on
this value column (elev).

geobeam.examples.geotiff_dem.run(pipeline_args, known_args)
Run the pipeline. Invoked by the Beam runner.

geobeam.examples.geotiff_soilgrid module

Example pipeline that loads a Soil Grid raster that contains groundwater saturation values.

geobeam.examples.geotiff_soilgrid.run(pipeline_args, known_args)
Run the pipeline. Invoked by the Beam runner.

1

https://cloud.google.com/bigquery/quotas#streaming_inserts

geobeam, Release 0.4.6

geobeam.examples.shapefile_nfhl module

Example pipeline that loads the NFHL (National Flood Hazard Layer) into BigQuery.

geobeam.examples.shapefile_nfhl.run(pipeline_args, known_args)
Invoked by the Beam runner

Module contents

A set of examples that demonstrate geobeam functionality.

Usage: python -m geobeam.examples.<example> –runner=PortableRunner . . . args

1.1.2 Submodules

1.1.3 geobeam.fn module

Beam functions, transforms, and filters that can be used to process geometries in your pipeline

geobeam.fn.filter_invalid(element)
Use with fn.make_valid to filter out geometries that are invalid, empty, or are out of bounds.

Example: .. code-block:: python

p | beam.Map(geobeam.fn.make_valid)

beam.Map(geobeam.fn.filter_invalid)

geobeam.fn.format_record(element, band_column=None, band_type='int')
Format the tuple received from the geobeam file source into a record that can be inserted into BigQuery. If using
a raster source, the bands and band_column will be combined.

Args:
band_column (str, optional): the name of the raster band column band_type (str, optional): Default to int.
The data type of the

raster band column to store in the database.

Example: .. code-block:: python

vector p | beam.Map(geobeam.fn.format_record)

raster p | beam.Map(geobeam.fn.format_record,

band_column=’elev’, band_type=float)

geobeam.fn.make_valid(element, drop_z=True)
Attempt to make a geometry valid. Returns None if the geometry cannot be made valid.

Example: .. code-block:: python

p | beam.Map(geobeam.fn.make_valid)

beam.Map(geobeam.fn.filter_invalid)

1.1. geobeam package 2

geobeam, Release 0.4.6

geobeam.fn.trim_polygons(element, d=1e-07, cf=1.2)
Remove extraneous artifacts, tails, etc. from otherwise valid polygons

Args:
d (float, optional): trim distance cf (float, optional): corrective factor

Exmaple: .. code-block:: python

p | beam.Map(geobeam.fn.trim_polygons, d=0.00001, cf=1.2

1.1.4 geobeam.io module

This package contains Apache Beam I/O connectors for reading from spatial data files.

class geobeam.io.ESRIServerSource(file_pattern, skip_reproject=False, in_epsg=None, in_proj=None,
**kwargs)

Bases: FileBasedSource

A Beam FileBasedSource for reading layers from an ESRI ArcGIS Server.

The given file(s) should be a link to a specific layer from the ArcGIS Server REST API (ex. https://services.
arcgis.com/P3ePLMYs2RVChkJx/arcgis/rest/services/USA_States_Generalized/FeatureServer/0)

p | beam.io.Read(ESRIServerSource(file_pattern))

beam.Map(print)

Args:

skip_reproject (bool, optional): Defaults to False. True to return
geom in its original projection.

in_epsg (int, optional): override the source projection with an EPSG
code.

in_proj (str, optional): override the source projection with a
PROJ4 string.

Yields:
generator of (props, geom) tuples. props is a dict containing all of the feature properties. geom is the
geometry.

read_records(file_name, range_tracker)
Returns a generator of records created by reading file ‘file_name’.

Args:

file_name: a string that gives the name of the file to be read. Method
FileBasedSource.open_file() must be used to open the file and create a seekable file object.

offset_range_tracker: a object of type OffsetRangeTracker. This
defines the byte range of the file that should be read. See documentation in iobase.
BoundedSource.read() for more information on reading records while complying to the range
defined by a given RangeTracker.

Returns:
an iterator that gives the records read from the given file.

1.1. geobeam package 3

https://services.arcgis.com/P3ePLMYs2RVChkJx/arcgis/rest/services/USA_States_Generalized/FeatureServer/0
https://services.arcgis.com/P3ePLMYs2RVChkJx/arcgis/rest/services/USA_States_Generalized/FeatureServer/0

geobeam, Release 0.4.6

class geobeam.io.GeoJSONSource(file_pattern, skip_reproject=False, in_epsg=None, in_proj=None,
**kwargs)

Bases: FileBasedSource

A Beam FileBasedSource for reading GeoJSON Files.

The given file(s) should be a .geojson file.

p | beam.io.Read(GeoJSONSource(file_pattern))

beam.Map(print)

Args:

skip_reproject (bool, optional): Defaults to False. True to return
geom in its original projection.

in_epsg (int, optional): override the source projection with an EPSG
code.

in_proj (str, optional): override the source projection with a
PROJ4 string.

Yields:
generator of (props, geom) tuples. props is a dict containing all of the feature properties. geom is the
geometry.

read_records(file_name, range_tracker)
Returns a generator of records created by reading file ‘file_name’.

Args:

file_name: a string that gives the name of the file to be read. Method
FileBasedSource.open_file() must be used to open the file and create a seekable file object.

offset_range_tracker: a object of type OffsetRangeTracker. This
defines the byte range of the file that should be read. See documentation in iobase.
BoundedSource.read() for more information on reading records while complying to the range
defined by a given RangeTracker.

Returns:
an iterator that gives the records read from the given file.

class geobeam.io.GeodatabaseSource(file_pattern, gdb_name=None, layer_name=None, in_epsg=None,
in_proj=None, skip_reproject=False, **kwargs)

Bases: FileBasedSource

A Beam FileBasedSource for reading geodatabases.

The given file(s) should be a zip archive containing .gdb geodatabase directory.

p | beam.io.Read(GeodatabaseSource(file_pattern))

beam.Map(print)

Args:

gdb_name (str): Required. the name of the .gdb directory in the archive,
e.g. FRD_510104_Coastal_GeoDatabase_20160708.gdb

1.1. geobeam package 4

geobeam, Release 0.4.6

layer_name (str): Required. the name of the layer you want to read from
the gdb, e.g. S_CSLF_Ar

skip_reproject (bool, optional): Defaults to False. True to return
geom in its original projection.

in_epsg (int, optional): override the source projection with an EPSG
code.

in_proj (str, optional): override the source projection with a
PROJ4 string.

Yields:
generator of (props, geom) tuples. props is a dict containing all of the feature properties. geom is the
geometry.

read_records(file_name, range_tracker)
Returns a generator of records created by reading file ‘file_name’.

Args:

file_name: a string that gives the name of the file to be read. Method
FileBasedSource.open_file() must be used to open the file and create a seekable file object.

offset_range_tracker: a object of type OffsetRangeTracker. This
defines the byte range of the file that should be read. See documentation in iobase.
BoundedSource.read() for more information on reading records while complying to the range
defined by a given RangeTracker.

Returns:
an iterator that gives the records read from the given file.

class geobeam.io.GeotiffSource(file_pattern, band_number=1, include_nodata=False, skip_reproject=False,
centroid_only=False, in_epsg=None, in_proj=None, merge_blocks=32,
**kwargs)

Bases: FileBasedSource

A Beam FileBasedSource for reading Geotiff files.

The Geotiff is read in blocks and each block is polygonized. Each polygon is returned as a (value, geom) tuple,
where value is the band value of the polygonized pixels, and geom is the Polygon (or Point if centroid_only is True)
geometry that corresponds to the value. The raster is stored in RAM, so make sure you specify a machine_type
with enough RAM to hold the entire raster image.

p | beam.io.Read(GeotiffSource(file_pattern))

beam.Map(print)

Args:
file_pattern (str): required, passed to FileBasedSource. band_number (int, optional): Defaults to 1. the
band(s) to read from

the raster.

include_nodata (bool, optional): Defaults to False. False to ignore
nodata values in the raster band; True to include them.

centroid_only (bool, optional): Defaults to False. True to set geom
to the centroid Point, False to include the entire Polygon. Do not use with the merge_blocks option.

1.1. geobeam package 5

geobeam, Release 0.4.6

skip_reproject (bool, optional): Defaults to False. True to return
geom in its original projection. This can be useful if your data is in a bespoke CRS that requires a
custom reprojection, or if you want to join/clip with other spatial data in the same projection. Note:
you will need to manually reproject all geometries to EPSG:4326 in order to store it in BigQuery.

in_epsg (int, optional): override the source projection with an EPSG
code.

in_proj (str, optional): override the source projection with a
PROJ4 string.

merge_blocks (int, optional): Defaults to 32. Number of windows
to combine during polygonization. Setting this to a larger number will result in fewer file reads and
possible improved overall performance. Setting this value too high (>100) may cause file read issues
and worker timeouts. Set to a smaller number if your raster blocks are large (256x256 or larger).

Yields:
generator of (value, geom) tuples. The data type of value is determined by the raster band it came from.

read_records(file_name, range_tracker)
Returns a generator of records created by reading file ‘file_name’.

Args:

file_name: a string that gives the name of the file to be read. Method
FileBasedSource.open_file() must be used to open the file and create a seekable file object.

offset_range_tracker: a object of type OffsetRangeTracker. This
defines the byte range of the file that should be read. See documentation in iobase.
BoundedSource.read() for more information on reading records while complying to the range
defined by a given RangeTracker.

Returns:
an iterator that gives the records read from the given file.

class geobeam.io.ShapefileSource(file_pattern, layer_name=None, skip_reproject=False, in_epsg=None,
in_proj=None, **kwargs)

Bases: FileBasedSource

A Beam FileBasedSource for reading shapefiles.

The given file(s) should be a zip archive containing the .shp file alongside the .dbf and .prj files.

p | beam.io.Read(ShapefileSource(file_pattern))

beam.Map(print)

Args:

layer_name (str, optional): the name of the layer you want to read.
Required the zipfile contains multiple layers.

skip_reproject (bool, optional): Defaults to False. True to return
geom in its original projection.

in_epsg (int, optional): override the source projection with an EPSG
code.

in_proj (str, optional): override the source projection with a
PROJ4 string.

1.1. geobeam package 6

geobeam, Release 0.4.6

Yields:
generator of (props, geom) tuples. props is a dict containing all of the feature properties. geom is the
geometry.

read_records(file_name, range_tracker)
Returns a generator of records created by reading file ‘file_name’.

Args:

file_name: a string that gives the name of the file to be read. Method
FileBasedSource.open_file() must be used to open the file and create a seekable file object.

offset_range_tracker: a object of type OffsetRangeTracker. This
defines the byte range of the file that should be read. See documentation in iobase.
BoundedSource.read() for more information on reading records while complying to the range
defined by a given RangeTracker.

Returns:
an iterator that gives the records read from the given file.

1.1.5 geobeam.util module

This module contains utility functions that make working with geosaptial data in Google Cloud easier.

geobeam.util.get_bigquery_raster_schema(band_column='value', band_type='INT64')
Generate Bigquery table schema for a raster

geobeam.util.get_bigquery_schema(filepath, layer_name=None, gdb_name=None)
Generate a Bigquery table schema from a geospatial file

python -m geobeam.util get_bigquery_schema . . . args

Args:
filepath (str): full path to the input file layer_name (str, optional): name of the layer, if file contains

multiple layers

Returns:
dict: the schema, convertable to json by json.dumps(schema, indent=2)

geobeam.util.get_bigquery_schema_dataflow(filepath, layer_name=None, gdb_name=None)
Generate a Bigquery table schema from a geospatial file hosted on a Google Cloud Storage bucket

from apache_beam.io.gcp.bigquery_tools import parse_table_schema_from_json

table_schema = parse_table_schema_from_json(get_bigquery_schema_dataflow(known_args.gcs_url,
known_args.layer_name))

Args:
filepath (str): full path to the input file hosted on Google Cloud Storage layer_name (str, optional): name
of the layer, if file contains

multiple layers

Returns:
JSON: the schema in JSON that can be passed to the schema argument in WriteToBigQuery. Must use the
parse_table_schema_from_json() from apache_beam.io.gcp.bigquery_tools

1.1. geobeam package 7

geobeam, Release 0.4.6

1.1.6 Module contents

geobeam root namespace.

1.1. geobeam package 8

CHAPTER

TWO

README

geobeam adds GIS capabilities to your Apache Beam pipelines.

2.1 What does geobeam do?

geobeam enables you to ingest and analyze massive amounts of geospatial data in parallel using Dataflow. geobeam
provides a set of FileBasedSource classes that make it easy to read, process, and write geospatial data, and provides a
set of helpful Apache Beam transforms and utilities that make it easier to process GIS data in your Dataflow pipelines.

See the Full Documentation for complete API specification.

2.1.1 Requirements

• Apache Beam 2.27+

• Python 3.7+

Note: Make sure the Python version used to run the pipeline matches the version in the built container.

2.1.2 Supported input types

File format Data type Geobeam class
tiff raster GeotiffSource
shp vector ShapefileSource
gdb vector GeodatabaseSource
json vector GeoJSONSource
URL vector ESRIServerSource

2.1.3 Included libraries

geobeam includes several python modules that allow you to perform a wide variety of operations and analyses on your
geospatial data.

9

https://cloud.google.com/dataflow
https://beam.apache.org/releases/pydoc/2.27.0/apache_beam.io.filebasedsource.html
https://storage.googleapis.com/geobeam/docs/all.pdf

geobeam, Release 0.4.6

Module Version Description
gdal 3.2.1 python bindings for GDAL
rasterio 1.1.8 reads and writes geospatial raster data
fiona 1.8.18 reads and writes geospatial vector data
shapely 1.7.1 manipulation and analysis of geometric objects in the cartesian plane
esridump 1.10.1 read layer from ESRI server

2.2 How to Use

2.2.1 1. Install the module

pip install geobeam

2.2.2 2. Write your pipeline

Write a normal Apache Beam pipeline using one of geobeams file sources. See ``geobeam/examples` <https://github.
com/GoogleCloudPlatform/dataflow-geobeam/tree/main/geobeam/examples>`_ for inspiration.

2.2.3 3. Run

2.2.3.1 Run locally

python -m geobeam.examples.geotiff_dem \
--gcs_url gs://geobeam/examples/dem-clipped-test.tif \
--dataset=examples \
--table=dem \
--band_column=elev \
--centroid_only=true \
--runner=DirectRunner \
--temp_location <temp gs://> \
--project <project_id>

You can also run “locally” in Cloud Shell using the ``py-37` container variants <https://github.com/
GoogleCloudPlatform/dataflow-geobeam#note-on-python-versions>`_

Note: Some of the provided examples may take a very long time to run locally. . .

2.2.3.2 Run in Dataflow

Write a Dockerfile

This will run in Dataflow as a custom container based on the ``dataflow-geobeam/base` <Dockerfile>`_ image. See
[geobeam/examples/Dockerfile] for an example that installed the latest geobeam from source.

FROM gcr.io/dataflow-geobeam/base
FROM gcr.io/dataflow-geobeam/base-py37

(continues on next page)

2.2. How to Use 10

https://pypi.org/project/GDAL/
https://pypi.org/project/rasterio/
https://pypi.org/project/Fiona/
https://pypi.org/project/Shapely/
https://pypi.org/project/esridump/
https://github.com/GoogleCloudPlatform/dataflow-geobeam/tree/main/geobeam/examples
https://github.com/GoogleCloudPlatform/dataflow-geobeam/tree/main/geobeam/examples
https://cloud.google.com/shell
https://github.com/GoogleCloudPlatform/dataflow-geobeam#note-on-python-versions
https://github.com/GoogleCloudPlatform/dataflow-geobeam#note-on-python-versions
https://cloud.google.com/dataflow/docs/guides/using-custom-containers

geobeam, Release 0.4.6

(continued from previous page)

RUN pip install geobeam

COPY requirements.txt .
RUN pip install -r requirements.txt

COPY . .

build locally with docker
docker build -t gcr.io/<project_id>/example
docker push gcr.io/<project_id>/example

or build with Cloud Build
gcloud builds submit --tag gcr.io/<project_id>/<name> --timeout=3600s --machine-type=n1-
→˓highcpu-8

2.2.3.3 Start the Dataflow job

Note on Python versions

If you are starting a Dataflow job on a machine running Python 3.7, you must use the images suffixed with
py-37. (Cloud Shell runs Python 3.7 by default, as of Feb 2021). A separate version of the base
image is built for Python 3.7, and is available at gcr.io/dataflow-geobeam/base-py37. The Python
3.7-compatible examples image is similarly-named gcr.io/dataflow-geobeam/example-py37

run the geotiff_soilgrid example in dataflow
python -m geobeam.examples.geotiff_soilgrid \
--gcs_url gs://geobeam/examples/AWCh3_M_sl1_250m_ll.tif \
--dataset=examples \
--table=soilgrid \
--band_column=h3 \
--runner=DataflowRunner \
--worker_harness_container_image=gcr.io/dataflow-geobeam/example \
--experiment=use_runner_v2 \
--temp_location=<temp bucket> \
--service_account_email <service account> \
--region us-central1 \
--max_num_workers 2 \
--machine_type c2-standard-30 \
--merge_blocks 64

2.3 Examples

def run(options):
from geobeam.io import GeotiffSource
from geobeam.fn import format_record

with beam.Pipeline(options) as p:
(p | 'ReadRaster' >> beam.io.Read(GeotiffSource(gcs_url))

(continues on next page)

2.3. Examples 11

geobeam, Release 0.4.6

(continued from previous page)

| 'FormatRecord' >> beam.Map(format_record, 'elev', 'float')
| 'WriteToBigquery' >> beam.io.WriteToBigQuery('geo.dem'))

def run(options):
from geobeam.io import ShapefileSource
from geobeam.fn import make_valid, filter_invalid, format_record

with beam.Pipeline(options) as p:
(p | 'ReadShapefile' >> beam.io.Read(ShapefileSource(gcs_url))

| 'Validate' >> beam.Map(make_valid)
| 'FilterInvalid' >> beam.Filter(filter_invalid)
| 'FormatRecord' >> beam.Map(format_record)
| 'WriteToBigquery' >> beam.io.WriteToBigQuery('geo.parcel'))

See geobeam/examples/ for complete examples.

A number of example pipelines are available in the geobeam/examples/ folder. To run them in your Google Cloud
project, run the included terraform file to set up the Bigquery dataset and tables used by the example pipelines.

Open up Bigquery GeoViz to visualize your data.

2.3.1 Shapefile Example

The National Flood Hazard Layer loaded from a shapefile. Example pipeline at ``geobeam/examples/shapefile_nfhl.py`
<https://github.com/GoogleCloudPlatform/dataflow-geobeam/blob/main/geobeam/examples/shapefile_nfhl.py>`_

2.3. Examples 12

https://www.terraform.io
https://github.com/GoogleCloudPlatform/dataflow-geobeam/blob/main/geobeam/examples/shapefile_nfhl.py
https://storage.googleapis.com/geobeam/examples/geobeam-nfhl-geoviz-example.png

geobeam, Release 0.4.6

2.3.2 Raster Example

The Digital Elevation Model is a high-resolution model of elevation measurements at 1-meter resolution. (Val-
ues converted to centimeters). Example pipeline: ``geobeam/examples/geotiff_dem.py` <https://github.com/
GoogleCloudPlatform/dataflow-geobeam/blob/main/geobeam/examples/geotiff_dem.py>`_.

2.4 Included Transforms

The geobeam.fn module includes several Beam Transforms that you can use in your pipelines.

Module Description
geobeam.fn.
make_valid

Attempt to make all geometries valid.

geobeam.fn.
filter_invalid

Filter out invalid geometries that cannot be made valid

geobeam.fn.
format_record

Format the (props, geom) tuple received from a FileSource into a dict that can be
inserted into the destination table

2.4. Included Transforms 13

https://github.com/GoogleCloudPlatform/dataflow-geobeam/blob/main/geobeam/examples/geotiff_dem.py
https://github.com/GoogleCloudPlatform/dataflow-geobeam/blob/main/geobeam/examples/geotiff_dem.py
https://storage.googleapis.com/geobeam/examples/geobeam-dem-example-geoviz.png
https://beam.apache.org/documentation/programming-guide/#transforms

geobeam, Release 0.4.6

2.5 Execution parameters

Each FileSource accepts several parameters that you can use to configure how your data is loaded and processed. These
can be parsed as pipeline arguments and passed into the respective FileSources as seen in the examples pipelines.

Parame-
ter

Input
type

Description De-
fault

Re-
quired?

skip_reprojectAll True to skip reprojection during read False No
in_epsg All An EPSG integer to override the input source CRS to reproject from No
in_proj All A PROJ string to override the input source CRS No
band_numberRaster The raster band to read from 1 No
include_nodataRaster True to include nodata values False No
centroid_onlyRaster True to only read pixel centroids False No
merge_blocksRaster Number of block windows to combine during read. Larger values

will generate larger, better-connected polygons.
No

layer_name Vector Name of layer to read Yes, for
shapefiles

gdb_name Vector Name of geodatabase directory in a gdb zip archive Yes, for
GDB files

2.6 License

This is not an officially supported Google product, though support will be provided on a best-effort basis.

Copyright 2021 Google LLC

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

https://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

2.5. Execution parameters 14

https://en.wikipedia.org/wiki/EPSG_Geodetic_Parameter_Dataset
https://proj.org/usage/quickstart.html

CHAPTER

THREE

EXAMPLES

15

CHAPTER

FOUR

GEOBEAM EXAMPLES

4.1 shapefile_parcel

Load a shapefile of county parcels into Bigquery

4.1.1 Run locally

python -m geobeam.examples.shapefile_parcel \
--runner DirectRunner \
--project <your project>
--temp_location gs://geobeam-pipeline-tmp \
--gcs_url gs://geobeam/examples/ghent-parcels-shp.zip \
--layer_name Property_Information \
--dataset examples \
--table parcel

4.1.2 Run in Dataflow

python -m geobeam.examples.shapefile_parcel \
--runner DataflowRunner \
--worker_harness_container_image gcr.io/dataflow-geobeam/example \
--experiment use_runner_v2 \
--project=dataflow-geobeam \
--temp_location <your temp bucket>
--service_account_email <your service account>
--region us-central1
--gcs_url gs://geobeam/examples/ghent-parcels-shp.zip \
--layer_name Property_Information \
--dataset examples \
--table parcel

16

geobeam, Release 0.4.6

4.2 geodatabase_frd

4.2.1 Run locally

python -m geobeam.examples.geodatabase_frd \
--runner DirectRunner \
--project <your project> \
--temp_location <your temp bucket> \
--gcs_url gs://geobeam/examples/FRD_510104_Coastal_GeoDatabase_20160708.zip \
--dataset examples \
--table CSLF_Ar \
--gdb_name FRD_510104_Coastal_GeoDatabase_20160708.gdb \
--layer_name S_CSLF_Ar

4.2.2 Run in Dataflow

python -m geobeam.examples.geodatabase_frd \
--project <your project> \
--runner DataflowRunner \
--worker_harness_container_image gcr.io/dataflow-geobeam/example \
--experiment use_runner_v2 \
--temp_location <your temp bucket> \
--service_account_email <your service account> \
--region us-central1 \
--gcs_url gs://geobeam/examples/FRD_510104_Coastal_GeoDatabase_20160708.zip \
--gdb_name FRD_510104_Coastal_GeoDatabase_20160708.gdb \
--layer_name S_CSLF_Ar \
--dataset examples \
--table CSLF_Ar

4.3 geotiff_dem

Load a Digital Elevation Model (DEM) raster into Bigquery

4.3.1 Run Locally

python -m geobeam.examples.geotiff_dem \
--runner DirectRunner \
--temp_location <your temp bucket> \
--project <your project> \
--gcs_url gs://geobeam/examples/ghent-dem-1m.tif \
--band_column elev \
--centroid_only true \
--skip_nodata true

4.2. geodatabase_frd 17

geobeam, Release 0.4.6

4.3.2 Run in Dataflow

python -m geobeam.examples.geotiff_dem \
--runner DataflowRunner \
--worker_harness_container_image gcr.io/dataflow-geobeam/example \
--experiment use_runner_v2 \
--project dataflow-geobeam \
--temp_location gs://geobeam-pipeline-tmp/ \
--service_account_email dataflow-runner@dataflow-geobeam.iam.gserviceaccount.com \
--region us-central1 \
--gcs_url gs://geobeam/examples/dem-clipped-test.tif \
--dataset examples \
--table dem \
--schema 'elev:INT64,geom:GEOGRAPHY'
--band_column elev \
--max_num_workers 3 \
--machine_type c2-standard-30 \
--merge_blocks 80 \
--centroid_only true \

4.4 geotiff_soilgrid

4.4.1 Run Locally

python -m geobeam.examples.geotiff_soilgrid \
--runner DirectRunner \
--project <your project> \
--temp_location <your temp bucket> \
--gcs_url gs://geobeam/examples/soilgrid-test-clipped.tif \
--dataset examples \
--table soilgrid \
--band_column h3

4.4.2 Run in Dataflow

python -m geobeam.examples.geotiff_soilgrid \
--runner DataflowRunner \
--worker_harness_container_image gcr.io/dataflow-geobeam/example \
--experiment use_runner_v2 \
--temp_location <your temp bucket> \
--project <your project> \
--service_account_email <your service account> \
--region us-central1 \
--machine_type c2-standard-8 \
--gcs_url gs://geobeam/examples/soilgrid-test-clipped.tif \
--merge_blocks 20 \
--dataset examples \
--table soilgrid \
--band_column h3

4.4. geotiff_soilgrid 18

geobeam, Release 0.4.6

4.5 shapefile_nfhl

4.5.1 Run Locally

python -m geobeam.examples.shapefile_nfhl \
--runner DirectRunner \
--project <your project> \
--temp_location <your temp bucket> \
--gcs_url gs://geobeam/examples/510104_20170217.zip \
--dataset examples \
--table FLD_HAZ_AR \
--layer_name S_FLD_HAZ_AR

4.5.2 Run in Dataflow

python -m geobeam.examples.shapefile_nfhl \
--runner DataflowRunner \
--project <your project> \
--temp_location <your temp bucket> \
--worker_harness_container_image gcr.io/dataflow-geobeam/example \
--experiment use_runner_v2 \
--service_account_email <your service account> \
--gcs_url gs://geobeam/examples/510104_20170217.zip \
--layer_name S_FLD_HAZ_AR \
--dataset examples \
--table FLD_HAZ_AR

4.6 streaming_pubsub

4.6.1 Run Locally

4.6.1.1 setup pubsub emulator

gcloud components install pubsub-emulator
gcloud beta emulators pubsub start &
curl -X PUT -v http://localhost:8085/v1/projects/example-project/topics/example-topic

4.6.1.2 run pipeline

PUBSUB_EMULATOR_HOST=localhost:8085 python -m geobeam.examples.streaming_pubsub \
--runner DirectRunner \
--streaming \
--in_proj "+proj=merc +a=6378137 +b=6378137 +lat_ts=0.0 +lon_0=0.0 +x_0=0.0 +y_0=0␣

→˓+k=1.0 +units=m +nadgrids=@null +wktext +no_defs"

4.5. shapefile_nfhl 19

geobeam, Release 0.4.6

4.6.1.3 publish messages to topic

curl -v \
-X POST \
-H "Content-Type: application/json" \
-d "@geobeam/examples/pubsub_emulator_messages.json" \
http://localhost:8085/v1/projects/example-project/topics/example-topic:publish

4.6.1.4 unfortunate note

There is a bug in the pubsub emulator, or the directrunner, that garbles the message timestamp from the emulator. You
may not be able to use the emulator for testing until this is resolved.

4.7 geojson_stormwater

bq mk --table <dataset>.stormwater geobeam/examples/stormwater_schema.json

4.7.1 Run Locally

python -m geobeam.examples.geojson_stormwater \
--runner DirectRunner \
--project <your project> \
--temp_location <your temp bucket> \
--gcs_url gs://geobeam/examples/Stormwater_Pipes.geojson \
--dataset examples \
--table stormwater \

4.7.2 Run in Dataflow

python -m geobeam.examples.geojson_stormwater \
--runner DataflowRunner \
--project <your project> \
--temp_location <your temp bucket> \
--worker_harness_container_image gcr.io/dataflow-geobeam/example \
--experiment use_runner_v2 \
--service_account_email <your service account> \
--gcs_url gs://geobeam/examples/Stormwater_Pipes.geojson \
--dataset examples \
--table stormwater

4.7. geojson_stormwater 20

CHAPTER

FIVE

INDICES AND TABLES

• search

21

PYTHON MODULE INDEX

g
geobeam, 8
geobeam.examples, 2
geobeam.examples.geodatabase_frd, 1
geobeam.examples.geotiff_dem, 1
geobeam.examples.geotiff_soilgrid, 1
geobeam.examples.shapefile_nfhl, 2
geobeam.fn, 2
geobeam.io, 3
geobeam.util, 7

22

INDEX

E
elev_to_centimeters() (in module

geobeam.examples.geotiff_dem), 1
ESRIServerSource (class in geobeam.io), 3

F
filter_invalid() (in module geobeam.fn), 2
format_record() (in module geobeam.fn), 2

G
geobeam

module, 8
geobeam.examples

module, 2
geobeam.examples.geodatabase_frd

module, 1
geobeam.examples.geotiff_dem

module, 1
geobeam.examples.geotiff_soilgrid

module, 1
geobeam.examples.shapefile_nfhl

module, 2
geobeam.fn

module, 2
geobeam.io

module, 3
geobeam.util

module, 7
GeodatabaseSource (class in geobeam.io), 4
GeoJSONSource (class in geobeam.io), 3
GeotiffSource (class in geobeam.io), 5
get_bigquery_raster_schema() (in module

geobeam.util), 7
get_bigquery_schema() (in module geobeam.util), 7
get_bigquery_schema_dataflow() (in module

geobeam.util), 7

M
make_valid() (in module geobeam.fn), 2
module

geobeam, 8

geobeam.examples, 2
geobeam.examples.geodatabase_frd, 1
geobeam.examples.geotiff_dem, 1
geobeam.examples.geotiff_soilgrid, 1
geobeam.examples.shapefile_nfhl, 2
geobeam.fn, 2
geobeam.io, 3
geobeam.util, 7

R
read_records() (geobeam.io.ESRIServerSource

method), 3
read_records() (geobeam.io.GeodatabaseSource

method), 5
read_records() (geobeam.io.GeoJSONSource

method), 4
read_records() (geobeam.io.GeotiffSource method), 6
read_records() (geobeam.io.ShapefileSource method),

7
run() (in module geobeam.examples.geodatabase_frd), 1
run() (in module geobeam.examples.geotiff_dem), 1
run() (in module geobeam.examples.geotiff_soilgrid), 1
run() (in module geobeam.examples.shapefile_nfhl), 2

S
ShapefileSource (class in geobeam.io), 6

T
trim_polygons() (in module geobeam.fn), 2

23

	module documentation
	geobeam package
	Subpackages
	geobeam.examples package
	Submodules
	geobeam.examples.geodatabase_frd module
	geobeam.examples.geotiff_dem module
	geobeam.examples.geotiff_soilgrid module
	geobeam.examples.shapefile_nfhl module
	Module contents

	Submodules
	geobeam.fn module
	geobeam.io module
	geobeam.util module
	Module contents

	README
	What does geobeam do?
	Requirements
	Supported input types
	Included libraries

	How to Use
	1. Install the module
	2. Write your pipeline
	3. Run
	Run locally
	Run in Dataflow
	Write a Dockerfile

	Start the Dataflow job
	Note on Python versions

	Examples
	Shapefile Example
	Raster Example

	Included Transforms
	Execution parameters
	License

	Examples
	geobeam Examples
	shapefile_parcel
	Run locally
	Run in Dataflow

	geodatabase_frd
	Run locally
	Run in Dataflow

	geotiff_dem
	Run Locally
	Run in Dataflow

	geotiff_soilgrid
	Run Locally
	Run in Dataflow

	shapefile_nfhl
	Run Locally
	Run in Dataflow

	streaming_pubsub
	Run Locally
	setup pubsub emulator
	run pipeline
	publish messages to topic
	unfortunate note

	geojson_stormwater
	Run Locally
	Run in Dataflow

	Indices and tables
	Python Module Index
	Index

