gpu
Here are 2,150 public repositories matching this topic...
-
Updated
Apr 15, 2021 - Jupyter Notebook
-
Updated
Mar 24, 2021 - Makefile
At this moment relu_layer op doesn't allow threshold configuration, and legacy RELU op allows that.
We should add configuration option to relu_layer.
-
Updated
Apr 12, 2021 - JavaScript
-
Updated
Apr 16, 2021 - Python
-
Updated
Apr 11, 2021 - Python
Problem: the approximate method can still be slow for many trees
catboost version: master
Operating System: ubuntu 18.04
CPU: i9
GPU: RTX2080
Would be good to be able to specify how many trees to use for shapley. The model.predict and prediction_type versions allow this. lgbm/xgb allow this.
-
Updated
Feb 17, 2021 - Python
-
Updated
Apr 16, 2021 - Jupyter Notebook
-
Updated
Mar 19, 2021 - Python
Our users are often confused by the output from programs such as zip2john sometimes being very large (multi-gigabyte). Maybe we should identify and enhance these programs to output a message to stderr to explain to users that it's normal for the output to be very large - maybe always or maybe only when the output size is above a threshold (e.g., 1 million bytes?)
Hi ,
I have tried out both loss.backward() and model_engine.backward(loss) for my code. There are several subtle differences that I have observed , for one retain_graph = True does not work for model_engine.backward(loss) . This is creating a problem since buffers are not being retained every time I run the code for some reason.
Please look into this if you could.
-
Updated
Apr 16, 2021 - C++
-
Updated
Apr 16, 2021 - C++
-
Updated
Apr 24, 2020 - Jsonnet
-
Updated
Jun 13, 2020 - HTML
Is your feature request related to a problem? Please describe.
I would be useful to have the ability to make a reverse copy of a column and/or table.
I am thinking of std::reverse (https://en.cppreference.com/w/cpp/algorithm/reverse) . But not necessarily using iterators, since that might make things more complicated.
Describe the solution you'd like
The following APIs could be
Current implementation of join can be improved by performing the operation in a single call to the backend kernel instead of multiple calls.
This is a fairly easy kernel and may be a good issue for someone getting to know CUDA/ArrayFire internals. Ping me if you want additional info.
-
Updated
Mar 11, 2021 - CMake
We would like to forward a particular 'key' column which is part of the features to appear alongside the predictions - this is to be able to identify to which set of features a particular prediction belongs to. Here is an example of predictions output using the tensorflow.contrib.estimator.multi_class_head:
{"classes": ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"],
"scores": [0.068196
Problem
Cub allows itself to place into a namespace via CUB_NS_PREFIX and CUB_NS_POSTFIX, such that multiple shared libraries can each utilize their own copy of it (and thus different versions can safely coexist). Static variables used for caching could otherwise cause problems (e.g., https://github.com/NVIDIA/cub/blob/main/cub/util_device.cuh#L212).
Thrust however depends on cub and
-
Updated
Apr 16, 2021 - C++
How do I get TOP-K evaluation indicators for multi-classification? For example, TOP-3 accuracy.
How do I get TOP-K evaluation indicators for multi-classification? For example, TOP-3 accuracy.
Improve this page
Add a description, image, and links to the gpu topic page so that developers can more easily learn about it.
Add this topic to your repo
To associate your repository with the gpu topic, visit your repo's landing page and select "manage topics."
During our hackathon today, I ran into this weird error highlighting.
This code outputs: